Катод анод диода: анод катод, подключение на схеме, где плюс и минус, полярность

Содержание

Анод и катод — что это и как правильно определить? Куда течет ток или где же этот чертов катод

Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме . Буквами А и К соответственно обозначены анод диода и катод диода . Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром


Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на

m.katod-anod.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром — Практическая электроника

В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Анод — это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод — это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод — это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, — катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод — это электрод, на котором протекает процесс восстановления, а анод — это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны — наоборот.

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…


Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Как работает диод? Применение диодов

Как работает полупроводниковый диод

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми тебе в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая типа n. На рис. 1, а дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т. е. положительным электродом, является область типа р, а катодом, т. е. отрицательным электродом, — область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода.

Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т. е. с областью типа р, а отрицательный — с катодом, т. е. с областью типа n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи пойдет ток, значение которого зависит от приложенного к нему напряжения и свойств диода/ При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно-дырочным переходом или, короче, р-n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование.

Рис. 1. Схематическое устройство и работа полупроводникового диода

Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок. В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.

Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.

А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.

001

Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.

На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току. Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Так, например, уже при прямом напряжении Uпр = 0,5 В ток Iпр равен 50 мА (точка а на характеристике), при Uпр = 1 В он возрастает до 150 мА (точка б на характеристике), а при обратном напряжении Uобр = 100 В обратный ток Iобр не превышает 0,5 мА (500 мкА). Подсчитай, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видишь, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов.

Примерно такие вольт-амперные характеристики имеют все германиевые диоды. Вольт-амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1–0,2 В, а кремниевый при 0,5–0,6 В.

Прибор, на примере которого я рассказал тебе о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2–4 мм2 и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р-n переход. Контактами электродов диода служат капелька индия и металлический диск (или стержень) с выводными проводниками.

Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на рис. 3, б.

Рис. 3. Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б)

Приборы заключены в цельнометаллические корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств.

Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, — заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными диодами.

Схему простейшего выпрямителя переменного тока ты видишь на рис. 4, а. На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямленного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке

Рис. 4. Схемы однополупериодного выпрямителя



При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диод закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть выпрямление переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока.

Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутки между импульсами, поэтому никаких мерцаний света мы не заметим.

А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор большой емкости, как это показано на рис. 4, б. Заряжаясь от импульсов тока, конденсатор Сф в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на рис. 4, б сплошной волнистой линией. Но и таким, несколько приглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы.

В выпрямителе, с работой которого ты сейчас познакомился, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление.

Рис. 5 Двухполупериодный выпрямитель с сетевым трансформатором

В выпрямителе на рис. 5 четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1–2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Следи внимательно! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40 %. Именно такой выпрямитель я позже буду рекомендовать тебе для питания транзисторных конструкций.

Теперь о точечном диоде

Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на рис. 6.

Рис. 6. Схематическое устройство и внешний вид точечного диода серии Д9

Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Такой или ему подобный диод, например Д2, тебе уже знаком — я рекомендовал использовать его в твоем первом приемнике в качестве детектора.

Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм2) пластина полупроводника германия или кремния n типа и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов.

После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно-дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50 мкм2. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами.

Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р-n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В.

Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.

А теперь, чтобы лучше закрепить в памяти твое представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л и лампочки накаливания, рассчитанной на напряжение 3,5 В и ток накала 0,28 А, включи любой плоскостной диод из серии Д226 или Д7, но так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод с отрицательным выводом (рис. 7, а). Лампочка должна гореть почти так же, как если бы диода не было в цени. Измени порядок включения электродов диода в цепь на обратный (рис. 7, б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р-n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался.

Рис. 7. Опыты с плоскостным диодом

Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпр, сопротивление диода было мало и через него протекал прямой ток Iпр, значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр, равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр, который не мог накалить нить лампочки.

В этом опыте лампочка выполняла двоякую функцию. Она, во-первых, была индикатором наличия тока в цепи, а во-вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

См. также:


Светодиоды анод. Что такое диод. Обозначение светодиодов и других диодов на схеме

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

Подробно о полярностях светодиодных ламп

Несоблюдение полярности и неправильное включение может привести к поломке светодиода

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Способы выявления полярности

Определение полярности светодиода по внешнему виду

Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

Использование мультиметра

Определение полярности светодиода при помощи мультиметра

Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

  • На аппарате устанавливают режим измерения сопротивления.
  • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
  • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

  • Выставляют нужный режим.
  • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

Если минус светодиода подключен к коллектору, лампочка даст свет.

Метод подачи напряжения

Определение полярности светодиода методом подачи напряжения

Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

Действуют таким образом:

  • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
  • Если полярности элемента соблюдены правильно, светодиод даст колер.
  • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

Определение полярности с помощью техдокументации

Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

  • масса;
  • цоколевка светодиодов;
  • габариты;
  • электрические параметры:
  • иногда распиновка (схема подключения).

При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

Когда требуется определение полярностей LED-лампочек

Применение светодиодов в декорировании улицы

Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

  • уличное освещение: рекламные вывески, парковые подсветки;
  • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
  • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
  • детские игрушки;
  • пульты ДУ и многое другое.

При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

  • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
  • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

Имеет два вывода: анод и катод.

Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному .

Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод , его подключаем к “+” источника питания.

Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

С помощью батарейки

Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

С помощью мультиметра

Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.

Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

Применение мультиметра

Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой – это заряженный конденсатор , шланг – это провод, катушка индуктивности – это колесо с лопастями


которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент – . И в этой статье мы познакомимся с ним поближе.

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-).

Некоторые диоды выглядят почти также как и резисторы:



А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:


Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса



2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод – плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).


Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”


Для объяснения параметров диода, нам также потребуется его


1) Обратное максимальное напряжение U обр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток I обр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток I пр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота F d , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца . Главный параметр стабилитрона – это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (I min , I max) . Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:


На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (U обр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.



Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.



Очень большим спросом пользуются светодиодные ленты, состоящие из множества светодиодов. Смотрятся очень красиво.


На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления


Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах


Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое , которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – I ос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (U у ), которое подается на управляющий электрод и при котором тиристор полностью открывается.


а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы . У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты – одна из разновидностей диодных сборок.


На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Что такое катод и анод в химии. Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
  • Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Автор больше всего боится, что неискушённый читатель далее заголовка читать не станет. Он считает, что определение терминов анод и катод известно каждому грамотному человеку, который, разгадывая кроссворд, на вопрос о наименовании положительного электрода сразу пишет слово анод и по клеточкам всё сходится. Но не так много можно найти вещей страшнее полузнания.

Недавно в поисковой системе Google в разделе «Вопросы и ответы» я нашел даже правило, с помощью которого его авторы предлагают запомнить определение электродов. Вот оно:

«Катод — отрицательный электрод, анод — положительный . А запомнить это проще всего, если посчитать буквы в словах. В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс».

Правило простое, запоминаемое, надо было бы его предложить школьникам, если бы оно было правильным. Хотя стремление педагогов вложить знания в головы учащихся с помощью мнемоники (наука о запоминании) весьма похвально. Но вернемся к нашим электродам.

Для начала возьмем очень серьезный документ, который является ЗАКОНОМ для науки, техники и, конечно, школы. Это «ГОСТ 15596-82 . ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения ». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом ». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом ». (Термины выделены мной. БХ). Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело?

А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается.

Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах — зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным , хотя полярность электродов не меняется .

В зависимости от этого назначение электродов будет разным. При зарядке положительный электрод будет принимать электрический ток, а отрицательный отпускать. При разрядке — наоборот. При отсутствии движения электрического тока разговоры об аноде и катоде бессмысленны .

«Поэтому, во избежание неясности и неопределенности, а также ради большей точности, — записал в своих исследованиях М.Фарадей в январе 1834г., — я в дальнейшем предполагаю применять термины, определение которых сейчас дам».

Каковы же причины введения новых терминов в науку Фарадеем?

А вот они: «Поверхности, у которых, согласно обычной терминологии, электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов ». (Фарадей. Подчеркнуто нами. БХ)

В те времена после открытия Т. Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя » при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца.

Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь (солнца) вверх, катод — путь (солнца) вниз.

В русском языке есть прекрасные термины ВОСХОД и ЗАХОД, которые легко применить для данного случая, но почему-то переводчики Фарадея этого не сделали. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

Ошибкам в применениях терминов АНОД и КАТОД нет числа. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. (Не путать с направлением электронов).

Литература:

1. Михаил Фарадей. Экспериментальные исследования по электричеству. Том 1. Изд-во АН СССР, М. 1947. с.266-268.

2. Б.Г.Хасапов. Как определять термины «анод» и «катод». ВНИИКИ. Научно-техническая терминология. Реферативный сборник №6, Москва, 1989, с.17-20.

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…


Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Электровакуумный диод — это… Что такое Электровакуумный диод?

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

ВАХ

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика электровакуумного диода имеет 3 участка:

  1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.
  2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается , где первеанс g — постоянная, зависящая от конфигурации и размеров электродов. В простейшей модели первеанс не зависит от состава и температуры катода, в действительности первеанс растёт с ростом температуры из-за неравномерного его нагрева.
  3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся в этом режиме анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана: , где  — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ:  — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление:
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Способны кратковременно выдерживать большие перегрузки (полупроводниковые «выгорают» сразу[источник не указан 1008 дней]). Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Катод и анод — это плюс или минус: как определить

Анод и катод — два физических термина прикладной электроники, гальванотехнике и химии. Уяснив эти термины, можно понять, почему, например, греется аудиоплеер. Путаница в терминологии спровоцирует аварийные ситуации.

Что это такое

Катоды и аноды — электрические проводники, которые имеют электронную проводимость. Посредством анода электрический заряд втекает в аппаратуру, а катода — наоборот, истекает. На первом возникает окислительная реакция (называют восстановитель) и отсылает заряженные частицы, на втором — восстановительная реакция (называют окислитель) и принимает заряженные частицы.

Анод и катод в диоде

Если перемещение электрических проводников проходит от восстановления к окислению по цепи извне, возникает источник электроэнергии. Прибор, с помощью которого преобразовывается химическая энергия в электроэнергию, получил название «гальванический элемент».

Чтобы не возникло путаницы, стоит четко усвоить и запомнить отличие плюса и минуса в разных процессах:

В гальванотехнике химические реакции происходят внутри элемента. В электричестве извне не нуждается, так как заряд сам потечет во внешнюю цепь из элемента. В этом случаев катод — положительный, анод — отрицательный.

Схема гальванического элемента

В электролизе необходим внешний источник тока, включенный в разрыв проводника внешней цепи. Внешний источник создаст разность потенциалов между электрическими проводниками, и вне устройства будет вкачивать ток в элемент. На аноде будет плюс, а на катоде — противоположно.

Важно! Чтобы определить, катод и анод — это плюс или минус, нужно запомнить: в гальванотехнике отрицательным становится анод, а катод — положительный. У электролитов — противоположно.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет.

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.
Определение полюсов с помощью лампочки

Заряд аккумулятора

Если взглянуть на аккумулятор или обычные батарейки, то можно заметить терминалы, отличающиеся обозначением «+» и «-», которые расположены на противоположных концах.

Аккумулятор имеет металлический или пластиковый каркас. Внутри катод сведен с положительной полярностью, а анод подключен к отрицательной полярности. Отделяет их друг от друга заслон, поэтому они не соприкасаются, а электрический заряд свободно протекает между ними. Помогает этому электролит — специальный раствор серной кислоты.

Схема заряда АКБ

Когда проходит химическая реакция заряда с электролитом на одном из электрических проводников, возникнет окислительная реакция. Если включить гальванический компонент в электросеть, электроны с анода перетекут на катод, производя функционирование пока в электролите возникают химические взаимодействия. Работать химический источник электрического тока прекратить только тогда, когда химические составляющие электролита израсходуются.

На заметку. Когда происходит разряд гальванического элемента, то анод является «-», когда заряд — катод имеет знак «+».

Применение в электронике

В электронике применяют особенности диодов впускать заряд по прямому маршруту, но не отпускать обратно.

Р-n переход тока

Работа светодиода заключается в свойстве кристаллов, которые светятся при пропускании через p-n переход тока по прямой.

В электрохимии электрические проводники необходимы при создании автономных источников питания (аккумуляторные батареи), а также при воспроизведении технологических процессов. Аноды, катоды участвуют в электролизе, электроэкстракции, гальваностегии и гальванопластике.

Гальваника — восстановления металла при химических процессах под воздействием электротока. Такая процедура приводит к устойчивости от коррозии узлов и агрегатов механизмов.

Катод отрицательный электрод. Что такое анод и катод — простое объяснение

Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.

Катод и анод в электрохимии

Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:

  • Процедура преобразования электрического воздействия в химическую реакцию, называемая электролизом;
  • Процедура преобразования химической реакции в электрический ток, называемая гальваническим процессом.

В электрохимии под терминами анод и катод понимают следующее:

  1. Электрод, на котором проходит окислительная реакция, называется анодом;
  2. Электрод, на котором осуществляется процедура восстановления, называется катодом.

Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.

Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.

Катод в вакуумных приборах

Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.

В составе любой радиолампы такие элементы:

  • Катод;
  • Анод;
  • Сетка.

Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:

  • Катод прямого разогрева;
  • Катод непрямого разогрева.

Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.

Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.

Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.

Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.

Катод у полупроводниковых приборов

К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.

Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.

Автор больше всего боится, что неискушённый читатель далее заголовка читать не станет. Он считает, что определение терминов анод и катод известно каждому грамотному человеку, который, разгадывая кроссворд, на вопрос о наименовании положительного электрода сразу пишет слово анод и по клеточкам всё сходится. Но не так много можно найти вещей страшнее полузнания.

Недавно в поисковой системе Google в разделе «Вопросы и ответы» я нашел даже правило, с помощью которого его авторы предлагают запомнить определение электродов. Вот оно:

«Катод — отрицательный электрод, анод — положительный . А запомнить это проще всего, если посчитать буквы в словах. В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс».

Правило простое, запоминаемое, надо было бы его предложить школьникам, если бы оно было правильным. Хотя стремление педагогов вложить знания в головы учащихся с помощью мнемоники (наука о запоминании) весьма похвально. Но вернемся к нашим электродам.

Для начала возьмем очень серьезный документ, который является ЗАКОНОМ для науки, техники и, конечно, школы. Это «ГОСТ 15596-82 . ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения ». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом ». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом ». (Термины выделены мной. БХ). Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело?

А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается.

Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах — зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным , хотя полярность электродов не меняется .

В зависимости от этого назначение электродов будет разным. При зарядке положительный электрод будет принимать электрический ток, а отрицательный отпускать. При разрядке — наоборот. При отсутствии движения электрического тока разговоры об аноде и катоде бессмысленны .

«Поэтому, во избежание неясности и неопределенности, а также ради большей точности, — записал в своих исследованиях М.Фарадей в январе 1834г., — я в дальнейшем предполагаю применять термины, определение которых сейчас дам».

Каковы же причины введения новых терминов в науку Фарадеем?

А вот они: «Поверхности, у которых, согласно обычной терминологии, электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов ». (Фарадей. Подчеркнуто нами. БХ)

В те времена после открытия Т. Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя » при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца.

Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь (солнца) вверх, катод — путь (солнца) вниз.

В русском языке есть прекрасные термины ВОСХОД и ЗАХОД, которые легко применить для данного случая, но почему-то переводчики Фарадея этого не сделали. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

Ошибкам в применениях терминов АНОД и КАТОД нет числа. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. (Не путать с направлением электронов).

Литература:

1. Михаил Фарадей. Экспериментальные исследования по электричеству. Том 1. Изд-во АН СССР, М. 1947. с.266-268.

2. Б.Г.Хасапов. Как определять термины «анод» и «катод». ВНИИКИ. Научно-техническая терминология. Реферативный сборник №6, Москва, 1989, с.17-20.

Анод — это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод — это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод — это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, — катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод — это электрод, на котором протекает процесс восстановления, а анод — это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны — наоборот.

Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
  • Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

m.katod-anod.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром — Практическая электроника

В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Как найти анодный катод диода: 3 метода тестирования по шагам

ОПРЕДЕЛЕНИЕ ДИОДА

Диод — это электронный компонент с двумя выводами, который проводит ток в основном в одном направлении .

Структура и обзор диода

Диоды имеют высокое сопротивление в одном направлении (обратное смещение) и почти нулевое сопротивление в другом направлении (прямое смещение).

Полупроводниковые диоды широко используются в настоящее время, и две клеммы соединены p-n переходом.В основном диоды сделаны из полупроводников (обладающих свойствами между проводником и изолятором).

Полупроводниковые материалы, относящиеся к группе 4 с 4 валентными электронами, такие как кремний и германий, широко используются (кроме углерода).

Символ и полярность диода

Как найти анодный катод диода?

Анод-катод диода можно легко идентифицировать по его внешнему виду. Рядом с катодной (отрицательной) клеммой есть серебряное или черное кольцо вокруг диода.Таким образом, клемма с серебряной или черной полосой является катодом, а другая клемма — анодом (положительным).

Полярность диода также можно определить по его символу. Диод имеет два вывода: положительный и отрицательный. В символе это стрелка, которая указывает от положительной (анодной) стороны к отрицательной (катодной) стороне. Как найти анод и катод в диоде

Характеристика диода ВАХ

Поскольку диод является нелинейным устройством, он имеет нелинейная характеристическая кривая.График зависимости тока от напряжения представляет собой кривую, а не прямую линию. Напряжение на диоде должно превышать напряжение барьера, чтобы провести ток, и этот потенциал барьера создает изгиб кривой, который известен как напряжение изгиба кривой. Коленное напряжение (напряжение включения) составляет около 0,7 В для кремниевых диодов и около 0,3 В. ВАХ диодной характеристики

Типы диодов

  1. Стабилитрон
  2. PN переходной диод
  3. Светоизлучающий диод
  4. Обратный диод
  5. Диод Шоттки
  6. Точечный диод
  7. Варакторный диод
  8. Лазерный диод
  9. Фотодиод
  10. Туннельный диод

Что такое

ZENER DIODE ?

Стабилитрон — это специальный кремниевый полупроводниковый диод, который может проводить ток в обратном направлении, когда он достигает определенного напряжения (напряжения Зенера)

Тесты диодов

Как проверить диод с помощью цифрового мультиметра

Цифровой мультиметр — самый подходящее оборудование на случай, как найти анод и катод в диоде.Есть два теста, которые можно реализовать.

  1. Нахождение анодного катода диода с помощью режима тестирования диода
  2. Нахождение анодного катода диода с помощью тестирования режима с омметром (сопротивления)
Как найти анод и катод в диоде с помощью тестирования в режиме диода в цифровой мультиметр
  • Поверните центральную ручку туда, где отображается символ диода, который соответствует режиму проверки диодов в цифровом мультиметре.
  • Держите красный свет (+) и черный свет (-) на любом из выводов диода.
  • Проверьте показания на дисплее.
  • Если отображается значение напряжения, то диод смещен в прямом направлении, и вывод, на котором u удерживал красный световой импульс, является анодом, а вывод, на котором u удерживал черный световой импульс, является катодом диода. (Если отображаемое напряжение составляет примерно 0,6–0,7, то это кремниевый диод с прямым смещением и это значение равно 0.25 — 0,3 для германиевых диодов)
  • Если на дисплее не отображается какое-либо значение или отображается «OL», это означает, что через диод не протекает ток, и он находится в состоянии обратного смещения, когда красный фоб находится на катод.
Как найти анод-катод диода с помощью омметра (сопротивления) режима тестирования в цифровом мультиметре.
  • Установите центральную ручку в режим проверки сопротивления, где отображается символ Ом.
  • Держите красный и черный свет по обе стороны от диода.
  • Проверьте показания на дисплее, повернув центральную ручку из режима низкого сопротивления в режим высокого сопротивления.
  • Если на дисплее отображается низкое значение сопротивления в режиме проверки низкого сопротивления, то он смещен вперед, и красный световой импульс находится на аноде, а черный световой импульс — на катоде.
  • Если на дисплее отображается очень высокое значение сопротивления или «OL», это означает, что диод смещен в обратном направлении, где красный световой импульс находится на катоде, а черный световой импульс находится на аноде.При обратном смещении диоды создают очень высокое сопротивление.

Как найти анод и катод в диоде с помощью аналогового мультиметра

  • Подключите положительный световой сигнал к положительной клемме диода (анода), а отрицательный световой сигнал к отрицательной клемме диода (катода)
  • Затем показания должны давать низкое значение сопротивления, следовательно, оно смещено в прямом направлении.
  • Затем подключите положительный световой сигнал к катоду, а отрицательный — к аноду.
  • Тогда показания должны отображать высокое значение сопротивления (состояние OL), следовательно, диод вызывает очень высокое сопротивление при обратном смещении.

FAQ:

Почему прямое сопротивление диодов не одинаково при измерении в разных шкалах цифрового мультиметра?

Диод — нелинейное электронное устройство. изменения шкалы цифрового мультиметра приведут к изменению силы тока и результирующего прямого сопротивления.Поэтому он дает разные значения сопротивления с разными шкалами.

Что такое коленное напряжение диода?

Напряжение на диоде должно превышать напряжение барьера, чтобы провести ток, и этот потенциал барьера создает изгиб кривой, который известен как напряжение изгиба кривой. Изгибное напряжение (напряжение включения) составляет около 0,7 В для кремниевых диодов и около 0,3 В для германиевых диодов

Как установить режим сопротивления в цифровом мультиметре?

Поверните центральную ручку в режим проверки сопротивления, где отображается символ Ом «Ω».Цифровые мультиметры, установленные в режим «сопротивления», указывают на разрыв, отображая на дисплее «OL» (разомкнутый контур) или пунктирные линии.


ЗНАЕТЕ ЛИ ВЫ, КАК правильно определять 3 контакта транзистора?

ПРОЧИТАЙТЕ ЗДЕСЬ


В чем разница между диодами, анодами и катодами?

Полупроводящий диод — базовый компонент огромного количества электрических систем. Эти компоненты имеют два вывода: один для подачи электричества, а другой для его вывода.Этот процесс работает одним способом; если терминал принимает электричество, он не пропускает электроэнергию обратно. Катод — это часть диода, которая пропускает мощность, а анод — это часть, которая позволяет ей поступать. Комбинация этих двух элементов позволяет диоду функционировать.

Физическая конструкция диода незначительно меняется в зависимости от цели его использования, но некоторые факторы остаются неизменными.Диод имеет два вывода, катод и анод, которые соединены небольшим количеством полупроводящего материала. Этим материалом обычно является кремний, но можно использовать широкий спектр различных материалов. Вся сборка окружена стеклянным или пластиковым покрытием. Диоды могут быть любого размера, и хотя большинство диодов не очень большие, они могут быть почти микроскопическими.

Анод принимает электричество.Этот терминал получил свое название от отрицательно заряженных анионов, которые движутся к нему во время обычной электрохимической реакции. Заряд анода зависит от функции устройства. Если устройство использует питание, заряд отрицательный, а если он вырабатывает энергию, его заряд положительный. Этот сдвиг полярности позволяет электричеству правильно течь от терминала.

Катод по существу противоположен аноду.Катод позволяет мощности вытекать из устройства. Этот терминал получил свое название от положительно заряженных катодов, которые он привлекает во время реакции. Когда устройство использует питание, катод является положительным, а когда он генерирует энергию, — отрицательным.

Материал в середине диода — полупроводник.Полупроводники — это материалы, которые не проводят электричество, как стандартный проводник, но не препятствуют ему, как изолятор. Эти материалы подходят посередине и обладают очень специфическими свойствами, когда через них проходит электричество. В большинстве серийно выпускаемых диодов используется кремниевый полупроводник, но диоды из германия не редкость.

С момента своего изобретения в конце 1800-х годов основные диоды практически не изменились.Материалы, которые использовались для их изготовления, были улучшены, а базовый дизайн стал намного меньше, но это действительно все, что изменилось. Ни принципы их изготовления, ни их конструкция не сильно отличаются от оригинального творения.

Самая большая инновация с диодами — альтернативные версии, вдохновленные первоначальным изобретением.Существуют десятки различных типов диодов, которые работают немного по-разному. Эти разные диоды имеют всевозможные дополнительные функции, помимо методов ввода-вывода базовой формы. Они варьируются от туннельного диода, который работает в квантовом масштабе, до светодиода (LED), используемого в качестве источника света во многих современных электронных устройствах.

Введение диода

| Прядильные числа

Эти маленькие стеклянные корпуса имеют внутри кремниевые диоды.Черная полоса на одном конце — это катод, сторона, где ток выходит из диода.

Диод — наш первый полупроводниковый прибор. Отличительная особенность диода в том, что он проводит ток в одном направлении, а не в другом. Мы не будем вдаваться в подробности того, как диод делает это или как он устроен. К счастью, вам не нужно знать, как сделать диод, прежде чем вы сможете использовать его в цепи.

Автор Вилли Макаллистер.


Содержание


Куда мы направляемся

  • Диод сильно проводит в одном направлении и практически 0 $ в другом.

  • Научитесь определять выводы реального диода — катода и анода .

  • Понять диодные термины — прямое смещение, обратное смещение , ток насыщения и пробой .


Диод — это любое электрическое устройство, которое проводит в одном направлении, а не в противоположном. Каждый диод, который вы встретите в современной электронике, сделан из полупроводникового материала.

Что такое полупроводник?

Полупроводник материалов находятся между изоляторами и проводниками. Они полупроводниковые. Полупроводники обычно действуют как изоляторы, но мы можем контролировать их проводимость, изменяя способ их изготовления — добавляя небольшое количество примесных атомов — и прикладывая напряжение.

Самый известный и хорошо изученный полупроводниковый материал — это кремний (Si, атомный номер $ 14 $) в периодической таблице. Кремний на сегодняшний день является наиболее распространенным материалом, используемым для создания полупроводниковых устройств.О кремнии известно больше, чем о любом другом материале на Земле.

Часть периодической таблицы, показывающая кремний (Si) и другие близлежащие полупроводниковые материалы. B — бор, C — углерод, N — азот, Al — алюминий, Si — кремний, P — фосфор, Ga — галлий, Ge — германий, As — мышьяк.

Другие полупроводниковые материалы включают германий (Ge, атомный номер $ 32 $, прямо под кремнием) и арсенид галлия, галлий и мышьяк в соотношении $ 1: 1 $, также известный как GaAs (атомные номера $ 31 $ и 33 $, на обе стороны от германия).

Наша способность точно контролировать проводящие свойства кремния позволяет нам создавать современные чудеса, такие как компьютеры, мобильные телефоны и любые другие сложные электронные устройства. Детали того, как работает полупроводник, регулируются квантовой механикой.

Обозначение диода

Условное обозначение диода выглядит так:

Черная стрелка ► в символе указывает направление прямого тока диода, $ \ blueD i $. Напряжение диода, $ \ goldD v $, ориентировано знаком $ + $ на конце, где прямой ток проходит в диода, точно так же, как условное обозначение для пассивных компонентов.

Диодные клеммы

Когда вы рисуете диоды, символ четко указывает направление прямого тока. Обычно имена для двух терминалов не нужны. Вы найдете их в технических паспортах: Anode и Cathode .

Как мне запомнить анод и катод?

Долгое время я не мог вспомнить, какой конец диода был анодом, а какой — катодом — я каждый раз искал его.Наконец-то я придумал средство для запоминания. Катод по-немецки Kathode . Большой K выглядит как символ диода.

Переверните символ диода, пока он не станет похож на K. Катод — это клемма слева.

Определите выводы реального диода

Если вы работаете с настоящими диодами, вам нужно выяснить, в какую сторону направить диод. Реальные диоды настолько малы, что на них нет места, чтобы нарисовать маленький символ диода, поэтому вам нужно идентифицировать клеммы каким-то другим способом.

Диоды поставляются во всевозможных крошечных упаковках. Есть несколько способов указать, какая клемма диода какая.

Диодные корпуса, такие как стеклянные и черные пластиковые цилиндры, показанные выше, обычно имеют окрашенную полосу на одном конце. Полоса на упаковке — это полоса символа диода, поэтому она указывает на катод.

Полоса (любого контрастного цвета) соответствует катоду диода.

У этого красного светодиода (светоизлучающего диода) нет полосы, но вместо него имеются провода разной длины.Прямой ток идет в более длинный вывод (анод). На анодной стороне упаковки может быть выступ или выступ.

Более длинный вывод соответствует аноду. С этого направления в диод течет ток.

Определить клеммы мультиметром

Надежный способ проверить идентичность клемм — использовать мультиметр для определения направления прямого тока. Когда измеритель настроен на считывание сопротивления, $ \ Omega $, он подает небольшое напряжение на свои измерительные провода (вот почему омметру нужна батарея).Вы используете это небольшое напряжение, чтобы увидеть, в каком направлении течет ток.

На каждом изображении диод перевернут.

$ \ text a. $ Если омметр показывает конечное сопротивление, это означает, что диод проводит небольшой ток в прямом направлении. Небольшой ток течет от красного провода $ + $ через диод. Это означает, что красный провод касается анода.
$ \ text b. $ Если сопротивление показывает O.L (перегрузка), диод не проводит ток. Это означает, что красный свинец $ + $ касается катода.

Ваш счетчик может иметь диодную настройку — маленький символ диода.

Если это так, измеритель будет отображать прямое напряжение и может издать звуковой сигнал, когда красный провод касается клеммы прямого тока (анода).

Типы диодов

Существует много типов диодов, различающихся материалами и обработкой и предназначенных для различных целей. Вот несколько (некоторые из этих терминов еще не определены)

  • Кремниевый диод. Кремний является наиболее распространенным материалом для изготовления диодов.Кремний имеет типичное прямое напряжение $ 0,6–0,7 \, \ text V $.
  • Германиевый диод — Изготовлен из другого элемента. Германиевые диоды имеют более низкое прямое напряжение $ 0,25–0,30 \, \ text V $.
  • Диод Шоттки — Изготовлен из прямого контакта кремния и металла. Прямое напряжение ниже, чем у обычных кремниевых диодов, в диапазоне от 0,15 $ до 0,45 $ \, \ text V $. Это диод в кристаллическом радиоприемнике с «кошачьим усом».
  • Стабилитрон — Преднамеренно срабатывает в области пробоя, используется как источник опорного напряжения.
  • LED (светодиод) — делает то, что говорит его название. В противном случае он действует как обычный диод с прямым напряжением где-то между $ 2 $ и $ 4 \, \ text V $ в зависимости от цвета. Светодиоды сделаны из материалов по обе стороны от кремния в периодической таблице. Например, вы можете сделать желтый светодиод из фосфида арсенида галлия (GaAsP).
  • Фотодиод
  • — Этот диод имеет окошко, через которое свет падает прямо на поверхность кремния. Ток в диоде пропорционален силе света.Солнечные элементы — это фотодиоды.
  • Малосигнальный диод или переключающий диод — Кремниевый диод, сконструированный для очень быстрого переключения прямого тока на обратный и обратно. Это достигается за счет создания очень маленького диода.

Диод $ i $ — $ v $ характеристика

Диод — устройство нелинейное. Это типичная кривая $ i $ — $ v $ для кремниевого диода,

Диод $ i $ — $ v $ кривая кремниевого диода. Положительное напряжение (анод выше катода) на диоде помещает его в область прямого смещения.Отрицательное напряжение означает, что диод работает в области обратного смещения. При отрицательных напряжениях, превышающих $ \ text V _ {\ text {br}} $, диод выходит из строя, и ток быстро увеличивается в отрицательном направлении.

Синяя кривая выше может быть создана путем измерений. Возьмите обычный диод и подайте на него разное напряжение. Запишите ток при каждом напряжении. Ваши данные $ i $ — $ v $ будут напоминать этот график.

Прямое смещение

Допустим, мы помещаем небольшое положительное напряжение, например, $ + 0.2 $ вольт через кремниевый диод. Это помещает нас немного правее начала кривой $ i $ — $ v $. При таком небольшом положительном напряжении протекает очень небольшой прямой ток. Если мы увеличим напряжение примерно до $ + 0,6 \, \ text V $, измеримый ток начнет течь через диод в прямом направлении (в направлении стрелки ►). Когда напряжение немного превышает $ 0,6 \, \ text V $, ток через диод быстро возрастает. Кривая $ i $ — $ v $ в этой точке почти вертикальна (немного наклоняется вправо).

При положительном напряжении на его выводах мы говорим, что диод смещен в прямом направлении . Диод смещен в прямом направлении, когда его напряжение находится где-либо на стороне источника напряжения $ + $. При нормальной работе напряжение на кремниевом диоде, смещенном в прямом направлении, находится где-то между $ 0,60–0,75 \, \ text V $. Если вы установите напряжение выше 0,75 вольт, ток диода сильно возрастет, и он может перегреться.

Обратное смещение

Если вы подаете отрицательное напряжение на диод, так что катодный вывод $ — $ имеет более высокое напряжение, чем анодный вывод $ + $, это помещает нас в левую часть кривой $ i $ — $ v $.{-12} \, \ text A $. В большинстве случаев это значение достаточно близко к нулю, чтобы его можно было игнорировать. В некоторых случаях (например, в интегральной схеме с миллионами диодов) обратный ток насыщения становится важным, и вы даете ему неприятное название: ток утечки .

Что означает «предвзятость»?

Вы слышите слово bias в разговорах о диодах и транзисторах. У него нет единого точного определения.

В повседневном использовании предвзятость может быть отрицательной, подразумевая несправедливость или фаворитизм: «Правила настроены против меня.«Или это может описывать тенденцию:« Они демонстрируют предвзятость к действиям ». Или« Вратарь имеет предвзятость прыгать влево при выполнении штрафных ударов ».

В электронике смещение возникает только в нескольких ситуациях. Его тянет в сторону. Когда мы говорим о диодах, как мы здесь делаем, прямое смещение означает, что приложенное напряжение подтягивает диод к прямой проводящей стороне его кривой $ i $ — $ v $. Обратное смещение — наоборот, отрицательное напряжение втягивает диод в область обратного смещения , где он не проводит.

Другое место, где вы говорите о смещении: вы прикладываете напряжение смещения к клеммам транзистора, чтобы поместить его в диапазон напряжений, в котором он работает лучше всего. Например, если транзистор работает лучше всего, когда его входной вывод составляет от 1 до 3 долларов вольт, вы прикладываете напряжение смещения с центром в 2 доллара вольт, прямо в середине его счастливой зоны.

Обратный пробой

Диод с обратным смещением не может продержаться вечно. Когда напряжение достигает высокого отрицательного значения, известного как напряжение пробоя , $ \ text {V} _ {\ text {br}} $, диод начинает проводить в обратном направлении.При пробое ток резко возрастает и становится очень большим в отрицательном направлении. Напряжение пробоя $ \ text {V} _ \ text {br} $ $ -50 \, \ text V $ типично для обычных диодов. В большинстве случаев вы не позволяете диодному напряжению приближаться к $ \ text {V} _ \ text {br} $.

Сводка

Условное обозначение и названия клемм диода,

Диод имеет сильную проводимость в направлении черной стрелки, и, по существу, ток $ 0 $ может течь в противоположном направлении.

Кремниевый диод имеет прямое напряжение в диапазоне $ 0,60–0,75 \, \ text V $.

Как определить анод и катод

Как определить анод и катод

Как определить анод и катод
Джон Денкер

* Содержание

1 Определение

  • Определение: анод устройства — терминал, через который ток течет от вне. Катод устройства — это терминал, на котором ток вытекает.Это показано на рисунке 1.

    Полезная мнемоника — ACID: Anode Current Into Device. В настоящее время мы означают положительный условный ток. Поскольку электроны отрицательно заряженный, протекающий положительный ток такой же, как электроны вытекают.

    Вот и все.

2 Некоторые примеры

Наше определение легко и правильно применимо к любой ситуации, которую я могу подумайте (с одним отвратительным исключением, как обсуждалось в пункте 11 ниже).

  1. Гальванические элементы и батареи.
  2. Горячий катод в электронно-лучевой трубке, обнаруженный в телевизор старого образца или осциллограф.
  3. Горячий катод в лампе электронного усилителя («Флеминг клапан»).
  4. Горячий катод в рентгеновской трубке, как на рисунке 2.
  5. Вращающийся анод в рентгеновской трубке, как на рисунке 2.
  6. Светодиодная матрица с общим анодом, например, 7-сегментная цифра множество, хотя это не оптимальная терминология по причинам, обсуждаемым в пункт 8.
  7. Жертвенный анод в лодке; см. пункт 16.
  8. Анодная пластина и катодная пластина (а также анодный раствор) в ячейка электролитического рафинирования; см. пункт 9.

Важно отметить, что наше определение прекрасно применимо к таким вещам, как аккумуляторная батарея, в которой нельзя идентифицировать анод и катод пока вы не увидите, как работает устройство, как описано в пункт 6.

Наше определение также применимо в тех случаях, когда оно относительно легко отличить анод от катода, просто посмотрев, как обсуждается в пункте 7.

Существует одно ужасное исключение, как описано в пункте 11 ниже.

3 Обсуждение

Наше оригинальное, проверенное временем определение. Это согласуется с этимологией, как обсуждается в пункте 17. Другого разумного определения нет. Я видел несколько попыток определения, но если они не были эквивалентны нашему определению (как приведенные в разделе 1), они были гротескно чрезмерно сложными, неправильно, или и то, и другое.
По устоявшемуся соглашению (возвращаясь к Бен Франклин), когда мы говорим о нынешнем , мы имеем в виду обычные положительный ток.В металлических проводах ток передается по электронов движутся в направлении, противоположном току. Этот усложняет понятие тока, но необходимо, потому что электрон заряжен отрицательно.
Для подавляющего большинства людей нет Пункт в запоминании значения анода и катода. Условия просто не очень полезны, если вы не устроитесь на работу в электрохимии лаборатория или какая-нибудь сравнительно узкая специальность. Если когда-нибудь ты сделаешь нужно знать значения, вы можете найти их сегодня утром и забыть их снова в тот вечер.
Обратите внимание, что когда мы говорим ток-вход, мы имеем в виду ток поступающий в устройство из внешнего контура. Точно так же, когда мы говорят, что ток выходит, мы имеем в виду ток, текущий из устройства в сторону внешняя цепь. Мы относимся к устройству как к черному ящику, и мы категорически не говорят о токах, протекающих в устройство. Эта терминология черного ящика является стандартной во всех отраслях инженерное дело и наука, если контекст явно не требует иначе.

Если вы настаиваете на том, чтобы заглянуть внутрь черного ящика, история получит больше сложно, как вы можете видеть на рисунке 2.Тем не мение, это не меняет ни буквы, ни духа определения, которое основан на поведении черного ящика, если смотреть снаружи.

Важно помнить, что анод / катод различие основано на токе, а не на напряжении. Анод / катод не то же самое, что и положительный / отрицательный, или наоборот. Наглядный пример: для разряженной батареи положительный полюс — катод, в то время как для той же аккумуляторной батареи положительный полюс анод.
Имейте в виду, что анод и катод относятся к функции, а не к структуре. Есть много из устройства, где было бы безумием постоянно маркировать структуры как анод или катод, потому что их функция время от времени меняется. Перезаряжаемые батареи — распространенный и очень важный пример, как указано в пункте 5.
Хотя анод и катод фундаментально определен в терминах функция не структура, там некоторые исключительные устройства, функция которых практически заблокирована к структуре.В таком случае, возможно, допустимо пометить структурирует как анод и катод, потому что только одно направление тока имеет смысл. В списке в разделе 2 все примеры , за исключением аккумуляторной батареи , находятся в этом категория.

В любом случае имейте в виду, что эту категорию нужно считать рискованное исключение, а не общее правило. Верное общее правило объяснено в пункте 6.

Даже в тех случаях, когда это возможно можно идентифицировать определенный анод и катод, обычно есть более простые и лучшие способы обозначения терминалов.В частности, для аккумулятор (аккумуляторный или нет), он обычный и разумный говорят о положительной клемме и отрицательной клемме. Для диода это условно и разумно говорить о стороне, легированной фтором, и о N-легированная сторона. В частности, для модуля светодиодного дисплея так называемый конфигурацию с общим анодом правильнее было бы назвать общая конфигурация стороны P.
Вот интересный и важный пример. Рассмотрим электролитическое рафинирование металлов, таких как медь.

При нормальной работе через элемент протекает большой ток, навязывается извне. Ток проталкивается в ячейку на анод, и вынутый на катоде. Клеммы обозначены в соответствии с их нормальной функцией, в соответствии с определением приведено в разделе 1.

В начале работы анодом является грязная медь. На В конце операции катод — это медь гораздо более высокой чистоты. Пытаться поиск в Google анода грязь.

Если какой-нибудь умник временно изменил направление тока, нормальный анод станет временным катодом и наоборот.Однако эта возможность настолько странная, что обычно даже не считается. Клеммы имеют маркировку в соответствии с их нормальными функция.

Обратите внимание на контраст:

Ячейка электролитического рафинирования. Батарея обыкновенная
В ячейке рафинирования напряжение ячейки холостого хода, если таковое имеется, очень мало и совершенно неактуально. В батарее есть определенная положительная клемма и определенная отрицательная клемма.
Падение напряжения на ячейке примерно пропорционально электрический ток. Во время работы анод будет находиться под положительным напряжение относительно катода. Падение напряжения на ячейке равно качественно одинаково, вне зависимости от того, положительный ли ток, отрицательный, или ноль. Положительный вывод — это катод во время разряд, но во время перезарядки это анод.
Во всех случаях вы можете использовать описательные термины ток-сток и ток-источник как синонимы анода и катода.Описание обычно предпочтительнее жаргона.
Можно купить массив стабилитронов. Увы, согласно устоявшемуся, но нелогичному соглашению, так называемая конфигурация с общим анодом конструктивно аналогична матрица светодиодов с общим анодом в том смысле, что стороны, легированные P, являются связаны вместе. Это мерзость, потому что при обычном использовании Зенера сторона, легированная P, — это то место, где выходит ток, и, по логике, она должна быть называется катодом. Очевидно, кто-то был под неправильным впечатлением этот анод / катод относится к структуре, а не к функции.

Никогда не используйте термины анод или катод для описания структурные части стабилитрона, по той же причине не следует Используйте такие термины для обозначения конструкции аккумуляторной батареи. Анод и катод относится к функции, а не к структуре. Вместо этого вам следует обратиться к сторона с примесью P и сторона с примесью азота, и вы должны настаивать на том, чтобы другие делают то же самое.

Обратите внимание, что изменение правил маркировки матриц стабилитронов не решит проблему в каком-либо фундаментальном смысле, потому что там являются вполне разумными схемами, в которых — часть времени — Стабилитрон смещен в прямом направлении, так что он ведет себя так же, как и любой другой. другой диод.Это та же ситуация, с которой мы сталкиваемся в связи с с аккумуляторными батареями: если вы прикрепите постоянный анод / катод метки к структуре, вы будете ошибаться, по крайней мере, часть времени.

Термины
«анод» и «катод» правильно относятся к функции, а не к конструкции.
Электрохимическое следствие: в любом электрохимическом на аноде протекают реакции окисления, а на аноде протекают реакции восстановления. реакции происходят на катоде.(Если вы не знаете, что это означает, не беспокойтесь об этом.) Это включает в себя зарядку батарей. (анод = положительный), а также разряжаются батареи (анод = отрицательный). Это следствие, вытекающее из нашего определения, и с традиционной точки зрения, что ячейка — это черный ящик, а все внешнее по отношению к ячейке — это внешняя цепь.

Ситуация резюмирована в следующей таблице:

9050
зарядка выгрузка
— пластина: катод 9050 9050 9050 9050 9050 9050 окисление
+ пластина: анод
окисляется
катод
восстанавливается
Сделаем краткое исключение из черного ящика. точки зрения и рассмотрим, что происходит внутри электрохимической ячейки.Внутри клетки катионы (положительно заряженные частицы) движутся в направлении катод вносит положительный вклад в обычный ток внутри ячейки , как показано на рисунке 3. Точно так же анионы (отрицательно заряженные частицы), движущиеся к аноду вносят положительный вклад в условный ток внутри ячейка . На рисунке не показаны анионы. Правило анионы на анод, катионы на катод применяются только внутри ячейки. Это правило требуется из-за того, что ток подчиняется закону сохранения закон; ток, который течет в ячейку на аноде, должен протекать через ячейку, а затем катод.За пределами клетки течет ток к аноду; внутри ячейки ток течет от анода. (Кстати, обычно предполагается, что вне клетки нет подвижные анионы или катионы, просто электроны, переносимые металлическими проводами в внешняя цепь.)
Рисунок 3: Анод и катод: внутри Черный ящик

Говоря об ионах, нужно помнить, что катионы положительно заряженный. Мнемоника катионов состоит в том, чтобы рассматривать «t» как знак плюс: ca + ion. Между тем, мнемоника для анионов является чем-то вроде аббревиатура: A Negative ION = ANION.

Помня о правиле катионов на катоде, нужно помнить что внутри ячейки катионы идут на катод (а не с него): ионы ca + + o ca + hode. Соответствующее правило отношения анионов к аноду одинаково действительно, но вам нужно работать усерднее, чтобы помнить, что анионы уходят в (не от) анода.

Пожалуйста, помните, что правило «катионы-катод» подлежит несколько предостережений. В лучшем случае это химическое следствие настоящего определение. Это не может служить определением катода, потому что катод хорошо определен для всех видов устройств, которые нет подвижных катионов, например.грамм. полупроводниковые диоды, электронно-лучевые трубки и т. д. Еще одно предостережение: это правило применяется к тому, что происходит внутри ячейки, тогда как для большинства целей (включая определение анода / катода) обычно и целесообразно фокусировать на свойствах черного ящика, если смотреть снаружи. (Похожий вопросы возникают по пунктам 14 и 16.)

Существует небольшая вероятность путаницы, когда думая об электронно-лучевых трубках и рентгеновских трубках, из-за соблазн отклониться от точки зрения черного ящика.(Подобные вопросы возникают в п. 13 и п. 16.) В Рентгеновская трубка, внутри устройства происходит интересная физика, тогда как определение анода выражается в терминах обычных ток течет во внешний терминал, течет в черный ящик снаружи. Помните, снаружи устройства мы видим позитив обычный ток, выходящий из катода и идущий в анод, в соответствии с нашим определением, как показано на рисунке 1 в разделе 1. Правило: КИСЛОТА: Анод Ток в устройство.(Если заглянуть внутрь устройства, мы увидим электроны вытекает из катода, но это только следствие определение, а не определение как таковое .)
Еще больше возможностей для путаницы, если вы пытаетесь объяснить или дать определение анода / катода с точки зрения электрохимических ячеек хотя бы потому, что мало кто понимает, как такие вещи Работа. См. Ссылку 1 и ссылки в ней. Как говорится Итак, обучение происходит от известного к неизвестному. Наше определение анода / катода, как указано в разделе 1, прост и полезен.Внутренний механизм батареи непростой. Это не имеет никакого смысла «объяснить» первое через второе.

Клеммы аккумулятора помечены как положительный и отрицательный. Они помечены в зависимости от напряжения, а не от заряда или тока. Это условно и вполне уместно, потому что положительный вывод остается на положительное напряжение (относительно другой клеммы) во время всех нормальных условия, в том числе когда аккумулятор разряжается, заряжается или просто сидеть там в равновесии без тока.

Напротив, как упоминалось в пункте 5, это было бы дико неуместно маркировать клеммы аккумулятора как анод и катод. Это потому, что вывод, который является катодом во время разряда становится анодом во время перезарядки … и не является ни анодом, ни катодом в равновесной (нетекущей) ситуации.

Кроме того, нет смысла определять анод и катод в терминах электрохимия, потому что эти термины используются во всевозможных ситуациях там, где нет электрохимии, в том числе полупроводниковой диоды, рентгеновские трубки и т. д.

Лодки и другие конструкции, контактирующие с соленая вода может вызвать некоторую путаницу об аноде по сравнению с катодом. На первый взгляд это может быть неочевидно что считается «черным ящиком» и что считается «Внешняя цепь». Традиционная точка зрения такова:
  • Вода и металлы, соприкасающиеся с водой, должны быть рассмотрены как гигантская электрохимическая ячейка. Есть анионы и катионы в вода внутри черного ящика.
  • Конструкция лодки (или чего-то еще) считается внешняя цепь. Нет анионов или катионов. Текущий переносятся электронами, протекающими внутри металлов.

То есть принято считать лодку внешней по отношению к вода … хотя может показаться более логичным думать о вода как внешняя по отношению к лодке. Это может показаться произвольным, но по крайней мере это согласуется с вышеупомянутым электрохимическим следствием (пункт 12), чтобы реакции окисления происходили на аноде, на катоде протекают реакции восстановления.Это приводит нас к полезная концепция расходуемого анода , который является просто дешевый, легко заменяемый электрод, который помещается в воду и расположены так, чтобы иметь большое положительное напряжение по отношению к остальной части лодка. Это делает все остальное на лодке катодом, в значительной степени уменьшение коррозии, потому что большинство форм коррозии связаны с окислением реакции. Другими словами, то же самое в воде, высококоррозионные анионы, такие как OH и Cl , текут в направлении анод и прочь от всего остального, в соответствии с правило анионов к аноду.Анод, конечно, быстро корродирует, и необходимо время от времени заменять.

Этимология: слова анод и катод были введен в 1834 году Майклом Фарадеем по совету Уильяма Уэвелл, ученый-эрудит и плодовитый мастер слова. Уэвелл немного понял по-гречески и нашел ему применение:
  • Анод происходит от греческих корней ἀνά + ὀδός (означает восходящий путь).
  • Катод происходит от греческих корней κατά + ὀδός (означает нисходящий путь).

Никогда не следует уделять слишком много внимания этимологии, потому что значения могут дрейфовать со временем. Действительно ἀνά и κατά отошли от своих древних корней. Однако ὀδός не имеет, и это ключ. Английские слова, когда были придуманы, явно предназначались для описания расхода, а не напряжения. Эти же корни используются в других греческих языках. и псевдогреческие термины на английском языке, например анаболический, катаракта, одометр, и так далее.

4 Резюме

Меня удивляет, что некоторые люди принимают простую и понятную концепцию. неважно, усложняйте его излишне и притворяйтесь важным.

Имея дело с батареями, не думайте об аноде и катод; думайте с точки зрения положительной клеммы и отрицательной клеммы.

При работе с полупроводниковыми диодами не беспокойтесь об аноде и катод; думайте в терминах стороны, легированной фтором, и стороны, легированной азотом.

Общее правило: анод означает ток в черный ящик и катод означает ток из черного ящика. Стабилитроны дают подняться до отвратительного исключения, которого следует избегать, как чума.

Существует множество свидетельств того, что даже люди, называющие себя эксперты не могут придерживаться правильной терминологии, связанной с анодом / катодом. В любой практическая ситуация, всегда есть способ разобраться, как зацепить вещи без глубокого понимания анода по сравнению с катодом.

Термины анод и катод иногда удобны в ситуациях где имеет смысл только одно направление тока.

В других ситуациях обычно лучше избегать терминов анод и катод. Есть лучшие способы сказать то, что нужно сказать.Конструктивное предложение: лучше поговорить о текущем (а не электрод). Лучше поговорить о том, что ток делает (а не то, что «есть» у электрода).

5 Ссылки

Джон Денкер, «Как работает аккумулятор»
www.av8n.com/physics/battery.htm

Диоды — DioT Labs

Содержание

  1. О диодах
  2. Защита от обратного тока
  3. Чтобы узнать больше

Диод

О диодах

Диоды позволяют электричеству течь только в одном направлении: электричество легко течет от анод (положительный вывод) к катоду (отрицательный вывод).В другом направлении он сильно сопротивляется току от катода к аноду.

Пример диодов

Вы уже встречали один тип диодов: светодиод или светоизлучающий диод. Если вы когда-либо подключали светодиод наоборот, он не загорится. Это связано с тем, что он позволяет току течь только от анода (более длинный вывод) к католду (отрицательный вывод).

На стандартном диоде катод будет отмечен серой линией (см. Ниже). И снова диоды пропускают ток только тогда, когда на анод подается положительное напряжение.Это означает, что вам нужно добавить его в свою схему, обращая особое внимание на то, где расположена эта маркировка.

Диод

Диод

Защита от обратного тока

Вы спросите, чем полезен диод?

Они важны при работе с двигателями или другими приводами. Когда вы отключите питание двигателя, он перестанет вращаться и быстро замедлится. Иногда он может отскочить назад и ненадолго повернуться в другом направлении. Это создает отрицательный всплеск напряжения, который будет течь в вашу цепь.Этот всплеск может повредить вашу частицу или транзистор, к которому она подключена.

Добавляя диод, мы гарантируем, что мощность будет течь только в одном направлении: он защищает от обратного тока и предотвращает его, ограничивая поток тока в одном направлении.

Чтобы защитить вашу схему, вам нужно отметить линию на диоде. При подключении к транзистору: линия всегда должна быть ближе всего к коллектору.


Содержание


Copyright © 2015-2020 Daragh Byrne.Этот сайт использует Just the Docs, тему документации для Jekyll ..

Что такое диоды? a quick refresher

Диод — это пассивный компонент, сделанный из полупроводниковых материалов (микросхема), который проводит ток, текущий в одном направлении, но не проводит ток, текущий в противоположном направлении. Символ диода (справа на рисунке 1) выглядит как стрелка, указывающая в направлении прямого тока. Ток течет в одном направлении от положительной клеммы (называемой анодом) к отрицательной клемме (называемой катодом).Реальный диод, показанный слева на рисунке 1, отмечен полосой на анодной стороне. Полоса также соответствует символу диода, указывающему на протекание тока.

Рисунок 1: Диод имеет полярность, обозначенную полосой на анодной (+) стороне. Электрический символ диода имеет соответствующую линию, которая также указывает анод и, следовательно, направление тока во время работы с прямым напряжением. (Изображение: автор)

Вольт-амперная кривая диода (см. Рисунок 2) показывает реакцию диода как функцию тока в зависимости от напряжения.Идеальный диод не будет проводить никакого тока при обратном смещении (испытывая отрицательное напряжение), но будет проводить ток полностью (как если бы это был просто провод), если бы мы приложили положительное напряжение к диоду. По ВАХ можно сказать, что настоящий диод нелинейный. Диоды не являются неразрушаемыми. Если вы смещаете диод в обратном направлении выше его напряжения пробоя, диод будет проводить ток в неправильном направлении. Некоторые диоды, называемые стабилитронами, специально разработаны с низким пробивным напряжением, которое можно безопасно превысить, не повредив его.Высоковольтный стабилитрон, также известный как лавинный диод, предназначен для работы за пределами напряжения пробоя. Лавинный пробой диода достигается, когда напряжение обратного смещения превышает напряжение пробоя. Лавина более известна как катастрофическое явление.

С точки зрения материаловедения, лавина касается реакции электронов на силу электрического поля в PN-переходе полупроводника. Стабилитроны и лавинные диоды отличаются от обычных диодов тем, что обычные диоды не предназначены для работы в режиме обратного смещения .Таким образом, ВАХ стабилитронов и лавинных диодов предназначены для использования после напряжения пробоя.

Рисунок 2: ВАХ из таблицы данных для переключающего диода общего назначения, которая показывает типичный прямой ток диода как функцию от прямого напряжения. (Источник: техническое описание Infineon для IDFW40E65D1E)

Когда диод смещен в обратном направлении относительно напряжения пробоя, ток течет в неправильном направлении, но диод не сломан; он просто больше не работает как одностороннее устройство.Однако любой диод можно сломать. В таблице данных диода будут указаны максимальные номинальные значения, включая пиковый уровень напряжения обратного смещения, которое выдерживает диод. Многие диоды могут выдерживать очень большие напряжения до пробоя. Стабилитроны часто используются для защиты цепей. Стабилитроны полезны для защиты от смещения схемы выше ее номинального напряжения (например, в цепи лома), регулирования напряжения в цепи (также известного как стабилизатор шунта на стабилитроне),

Другой тип диодов — диод Шоттки.Диоды Шоттки имеют переход полупроводник — металл , тогда как стандартный кремниевый диод имеет переход полупроводник. Переход металл-полупроводник имеет металл в контакте с полупроводниковым материалом. (Одно из основных отличий заключается в том, что ток металлического полупроводника будет выше при том же смещении напряжения, чем у диода с PN-переходом. Кроме того, с переходом металл-полупроводник модуляция и переключение могут быть намного быстрее.) Один из результатов перехода металл-полупроводник состоит в том, что диод Шоттки имеет гораздо более быстрое время восстановления после выхода из состояния обратного смещения.Поэтому диоды Шоттки используются там, где имеет значение время восстановления на более высоких частотах. Диоды Шоттки используются для фиксации напряжения (т. Е. Для перемещения всего сигнала вверх или вниз по уровню напряжения без изменения сигнала), для защиты от обратного тока и разряда, а также в импульсных источниках питания.

Рисунок 3: Электрические символы для стандартного диода, стабилитрона, диода Шоттки и светодиода (LED). (Источник: автор)

Один диод, который многие люди используют каждый день, — это светоизлучающий диод (LED).Технически диоды являются пассивными устройствами, потому что, подобно резисторам, конденсаторам, катушкам индуктивности и трансформаторам, они не управляют сигналом (или током) с помощью электрического сигнала, хотя их трудно рассматривать как пассивные, когда светодиод выделяет видимую энергию в виде света. Тем не менее, светодиод — это другой тип полупроводникового диода, который также проводит электричество при прямом смещении. Полярность светодиодов означает, что они не будут светить при обратном смещении напряжения. Светодиоды, используемые для индикаторов в схемах, будут иметь одну более длинную ножку, которая является анодом (+), а более короткая ножка — катодом (-).

Рисунок 4: Для светодиодов со сквозным отверстием или других светодиодов, которые используются в схемах, более длинная ветвь светодиода является анодом (+), более короткая ветвь — катодом (-). (Изображение: VCC, Mouser Electronics)

% PDF-1.4 % 6 0 obj > эндобдж xref 6 180 0000000016 00000 н. 0000004376 00000 п. 0000004453 00000 п. 0000004632 00000 н. 0000006128 00000 н. 0000006423 00000 н. 0000006687 00000 н. 0000006822 00000 н. 0000007108 00000 н. 0000007608 00000 н. 0000008307 00000 н. 0000008793 00000 н. 0000008925 00000 н. 0000009305 00000 п. 0000009353 00000 п. 0000009401 00000 п. 0000009449 00000 н. 0000009497 00000 н. 0000009545 00000 н. 0000009593 00000 н. 0000009641 00000 п. 0000009689 00000 н. 0000009737 00000 н. 0000009785 00000 п. 0000009833 00000 н. 0000009881 00000 п. 0000009929 00000 н. 0000009977 00000 н. 0000010025 00000 п. 0000010073 00000 п. 0000013757 00000 п. 0000013896 00000 п. 0000014059 00000 п. 0000014193 00000 п. 0000017681 00000 п. 0000021554 00000 п. 0000024729 00000 п. 0000028011 00000 п. 0000031403 00000 п. 0000031860 00000 п. 0000032198 00000 п. 0000035475 00000 п. 0000039125 00000 п. 0000039836 00000 п. 0000040670 00000 п. 0000041468 00000 п. 0000042233 00000 п. 0000043058 00000 п. 0000043805 00000 п. 0000044618 00000 п. 0000045365 00000 п. 0000046151 00000 п. 0000046967 00000 п. 0000047801 00000 п. 0000048635 00000 п. 0000049424 00000 п. 0000049964 00000 н. 0000050790 00000 п. 0000051642 00000 п. 0000051744 00000 п. 0000051836 00000 п. 0000064225 00000 п. 0000064499 00000 н. 0000064721 00000 п. 0000065026 00000 п. 0000075317 00000 п. 0000075580 00000 п. 0000088528 00000 п. 0000088801 00000 п. 0000088886 00000 п. 0000101411 00000 п. 0000101679 00000 п. 0000101887 00000 н. 0000102173 00000 п. 0000117542 00000 н. 0000117797 00000 н. 0000130752 00000 н. 0000131015 00000 н. 0000149558 00000 н. 0000149826 00000 н. 0000171069 00000 н. 0000171330 00000 н. 0000182373 00000 н. 0000182632 00000 н. 0000182722 00000 н. 0000194652 00000 н. 0000194920 00000 н. 0000195137 00000 н. 0000195435 00000 н. 0000220375 00000 н. 0000220630 00000 н. 0000242216 00000 н. 0000242484 00000 н. 0000242573 00000 н. 0000256035 00000 н. 0000256298 00000 н. 0000256511 00000 н. 0000256809 00000 н. 0000276729 00000 н. 0000276980 00000 н. 0000295446 00000 н. 0000296379 00000 н. 0000298014 00000 н. 0000299830 00000 н. 0000301620 00000 н. 0000303246 00000 н. 0000304833 00000 н. 0000306547 00000 н. 0000308342 00000 п. 0000310308 00000 н. 0000312330 00000 н. 0000328905 00000 н. 0000330947 00000 н. 0000332763 00000 н. 0000334012 00000 н. 0000334533 00000 н. 0000338405 00000 н. 0000339433 00000 н. 0000340790 00000 н. 0000342696 00000 н. 0000344879 00000 п. 0000347030 00000 п. 0000407227 00000 н. 0000409412 00000 н. 0000411737 00000 н. 0000413885 00000 н. 0000415481 00000 н. 0000417653 00000 н. 0000419820 00000 н. 0000422067 00000 н. 0000424383 00000 п. 0000426688 00000 н. 0000428840 00000 н. 0000454683 00000 н. 0000456722 00000 н. 0000458787 00000 н. 0000461001 00000 н. 0000463031 00000 н. 0000464408 00000 п. 0000466395 00000 н. 0000468529 00000 н. 0000470677 00000 н. 0000472641 00000 п. 0000474286 00000 н. 0000488516 00000 н. 0000489677 00000 н. 0000490811 00000 н. 0000492557 00000 н. 0000494446 00000 н. 0000496514 00000 н. 0000498753 00000 н. 0000500717 00000 н. 0000502076 00000 н. 0000504173 00000 н. 0000506427 00000 н. 0000509532 00000 н. 0000511803 00000 п. 0000513751 00000 н. 0000515920 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *