Кавитация в системе отопления: «Что такое «кавитация» в системе отопления?» – Яндекс.Кью

Содержание

Кавитация в системе отопления Текст научной статьи по специальности «Физика»

Кавитация в системе отопления

Шалунова Виктория Александровна

преподаватель кафедры начертательной геометрии и графики, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», [email protected]

В статье анализируются причины и условия возникновения кавитации, ее последствия в системах водоснабжения и отопления, а также предлагаются способы, как устранения кавитационных явлений, так и использования положительных свойств кавитации.

Исходя из опыта эксплуатации систем теплоснабжения, очевидно, что наименее надежным звеном данных систем является транспортировка тепла. Основными проблемами тепловых сетей, на ряду с коррозионными разрушениями и загрязнениями трубопроводов является, техническое и технологическое несовершенство машинного оборудования, например, циркалюционных насосов, генераторов, кавита-ционных котлов и т.

п.

Возникающие проблемы безопасности и надежности функционирования систем водоподготовки в энергетических комплексах могут быть решены с помощью кавитационной технологии, основанной на использовании эффектов кавитации. В связи с этим возникает много важных вопросов, ответы на которые должны быть найдены в процессе всесторонних исследований.

Ключевые слова: кавитация, каверна, система отопления, система водоснабжения, гидродинамика, обтекание тел, ламинарный пограничный слой, турбулентный процесс, динамика жидкости, кинетическая энергия, число кавитаций.

Согласно определению Кристофера Бренне-на: «Когда жидкость подвергается давлению ниже порогового (напряжению растяжения), тогда целостность ее потока нарушается, и образуются парообразные полости. Это явление называется кавитацией.

Формирование и схлопывание пузырьков пара происходит в течении долей секунды. Схло-пывание каждого пузырька вызывает относительно небольшое повреждение, но в течении тысяч циклов формирования и схлопывания повреждения накапливаются. Как только на поверхности появятся неравномерности, кавита-ционные разрушения начнут концентрироваться у поврежденных участков, вызывая глубокую локализованную кавитацию.

Кавитацию в насосах часто вызывают слишком большие перепады давления между всасыванием и нагнетанием. Ускоряющий кавитацию причиной обычно становиться недостаточное выходное давление. Высоким перепадам давления способствует дросселирование на стороне всасывания насоса. Образованию пузырьков может способствовать газ, уносимый через негерметичные прокладки и выделяющийся при разложении химических веществ, содержащихся в воде. Неожиданно часто вызывают трудности и неправильно сконструированные крыльчатки, и другие детали насосов.

Рассмотрим процессы образования кавитации на примере крыльчатки насоса отопительной системы более подробно.

Рссмотрение спектров обтекания различных элементов тел показывает, что отрыв пограничного слоя наступает на том участке поверхности, где при плавном обтекании давление возрастает. В тоже время, детальные исследования картин обтекания показывает, что отрыв пограничного слоя наступает не сразу после начала движения. Картинка обтекания вначале будет неустановившейся. Продолжительность начальной стадии движения от размеров и формы тела, скорости его движения и свойств жидкости [1,2,3].

Таким образом, необходимым условием отрыва потока является положительный градиент давления В общем же случае отрыв по-

тока происходит под воздействием положительного градиента, а также ламинарных и турбулентных процессов. Если оба эти фактора от-

х

X

о

го А с.

X

го т

о

ю 2

М О

О)

о

см

см

О!

о ш т

X

3

<

т О X X

сутствуют, то отрыва не происходит, например, поток не отрывается от плоской пластины, для которой характерными являются постоянство давления во всех сечениях пограничного слоя и, следовательно, равенство продольного градиента давления @р^х=0) [4,5,6] (Рисунок 1). . В точках потока жидкости, в которых давление падает до этого значения, происходит нарушение сплошности течения, то есть срыв пограничного слоя, и образуется область, заполнения парами жидкости и газами, выделившимися из раствора. Это явление в гидродинамике называется кавитацией [7].

Рисунок 1 — Смешанный пограничный слой на стенке:

1 — точка потери устойчивости ламинарного пограничного слоя;

2 — нарастающие возмущения в нем; 3 — начало области «турбулентных

пятен»; 4 — область «турбулентных пятен»; 5 — начало области развитого

турбулентного слоя; А — ламинарный пограничный слой; Б — переходная

зона; В — турбулентный пограничный слой; П — точка перехода

Однако дать определение явлению возникновения кавитации оказывается совсем не так просто, как это может показаться на первый взгляд. С понятием возникновения кавитации хотя и принято связывать появление в однородном жидком объеме паровых или газовых полостей. Однако без специальных оговорок принять такое определение нельзя, поскольку установлено, что газовые включения — кавитацион-ные зародыши — всегда существуют в жидкости, и, следовательно, однородной средой она не является.

Вместе с тем ясно, что в конечном итоге представляет интерес не сам факт наличия в жидкости каверн тех или иных размеров, а те

специфические эффекты, к которым оно приводит. Проявления кавитации чрезвычайно многообразны: изменение гидродинамических характеристик обтекаемых тел, кавитационная эрозия, люминесценция, шум, диссипация и рассеяние энергии распространяющихся в кавита-ционной области звуковых волн и т. п.

Тем не менее, всякое проявление кавитации связано с возникновением определенного вида движения каверн относительно окружающей жидкости, поэтому при определении явления возникновения кавитации целесообразно ориентироваться на тот физический механизм, вследствие действия которого стационарно существовавшие в жидкости и поэтому никак себя не проявлявшие кавитационные зародыши преобразуются в каверны и приобретают возможность совершать тот или иной вид движения.

Исследования кавитационных течений при пузырьковой и вихревой формах кавитации показывают, что при сильных степенях их развития у тела возникает связанная с ним или, как ее принято называть, присоединенная каверна. Характерные свойства таких каверн — практически прозрачная заполненная паром головная часть и пульсации заполненной пеной хвостовой части, сопровождающиеся выбросом в поток пенистых парогазовых образований.

Известно, что в хвостовой части развитой каверны невозможно существование задней критической точки, так как давление в ней, с одной стороны, должно быть равно давлению в невозмущенной жидкости, натекающей на тело, а с другой — давлению заполняющих каверну насыщенных паров (Рисунок 2).

Рисунок 2- Схема развитого кавитационного течения с обратной струйкой

Также известно, что при идеализации течения и представлении его стационарной схемой, обеспечивающей возможность долгого существования струйки (схема Эфроса), скорость на границе каверны, в том числе и в обратной струйке,

V = + , (1)

где Vм — скорость невозмущенного натекающего на тело потока;

а — число кавитации,

а площадь сечения струйки ^ пропорциональна площади миделевого сечения каверны Эк и коэффициенту сопротивления тела сп [8,9]

у = • сп

4 . (2)

В действительности такая схема течения реализовываться не может, так как поступающая в каверну масса жидкости должна каким-то образом эвакуироваться из каверны. Наблюдения показывают, что обратная струйка возникает и исчезает периодически. Следовательно, ее возникновение должно сопровождаться не упругим ударом смыкающихся в хвостовой части каверны слоев жидкости, связанным с потерями энергии и образованием пенообразной пароводяной смеси. Это подтверждается опытами: скорость струйки оказывается меньше скорости частиц жидкости на поверхности каверны.

Более детальное описание процессов, приводящих к нестационарному характеру течения в хвостовой части каверны, дает гипотеза, высказанная Л. А.Эпштейном. Схематически, согласно этой гипотезе, механизм происходящих в хвостовой части каверны процессов выглядит следующим образом. Под действием начального импульса пенообразная масса, пополняемая за счет обратной струйки, продвигается вперед -по направлению к головной части каверны.

Скорость движения на оси струйки выше, чем на периферии, так как при соприкосновении периферийных частей струйки с границей каверны возникают касательные напряжения, отбрасывающие эти частицы назад к основанию струйки. В результате пена приходит во вращательное движение, образуя тороидальный вихрь. Сила трения на границе каверны, будучи пропорциональной площади границы, на которой действуют касательные напряжения, растет по мере заполнения пеной ее хвостовой части, достигая в конце концов величины секундного импульса обратной струйки. После этого возникают условия, нарушающие силовое равновесие: сила трения продолжает расти в результате поступления пены в хвостовую часть каверны, а импульс обратной струйки уменьшается, поскольку из-за заполнения каверны пеной давление в хвостовой части падает (Рисунок 3).

Таким образом, основополагаясь на основные законы гидродинамики следует отметить, что момент возникновения кавитации характеризуется критической величиной параметра кавитации, который обычно записывают в форме числа Эйлера и имеет следующий вид

а =

кр

Р- Pv

V2

р-«

2(p„- Pv) PV2 ‘

2 (3)

где ру- давление паров насыщения; р« — давление в невозмущенном потоке; V« — скорость в невозмущенном натекающем (набегающем) на тело потоке; р — массовая плотность воды.

Рисунок 3 — Выброс пены из каверны

При искусственной кавитации давление насыщенных паров равно давлению в каверне, то есть рн = рк, а давление над свободной поверхностью равно атмосферному давлению, то есть рм = р0 [7]. Тогда выражение для параметра кавитации можно переписать в следующем виде

2(Рс — Рк)

а = ■

pVl

(4)

Структура числа кавитации — критерия моделирования кавитационных явлений — показывает, что на момент возникновения кавитации оказывает влияние не только скорость потока, но и давление, обусловленное глубиной погружения. С увеличением глубина погружения кавитация «затрудняется». Данный вывод подтверждается и результатами расчетов, проведенных Седовым Л. И., Логвиновичем Г.В., Эпштейном Л.А. [10,11,12] для веретенообразных тел с величиной числа кавитации 0,3.

Из анализа указанных работ следует также и вывод о том, что для так называемых плохо обтекаемых тел величина критической скорости наступления кавитации меньше, чем для тел хорошо обтекаемых форм

Таким образом, отрыв потока представляет собой одно из характерных явлений, сопровождающих движение жидкости. При отрыве происходит перераспределение давления на поверхность тела, вследствие чего изменяется гидродинамическая сила. Используя отрыв, вызвав его искусственным путем на каком-либо месте поверхности тела, можно, обеспечить уменьшение силы лобового сопротивления, а соответственно и потери кинетической энергии данного тела в воде.

Литература

1. Белоцерковский С.М. Математическое моделирование плоскопараллельного отрывного обтекания тел. — М.: Наука, 1988.

2. Смирнова М.Н., Звягин А.В. Подводное движение тонкого тела вблизи свободной поверхности с учетом отрыва жидкости от тела. \\ Известия российской академии ракетных и артиллерийских наук №3/2014 — С-Пб.: Научно-производственное объединение специальных материалов, 2014, с. 75-83

3. Nazarenko, Sergey (2014), Fluid Dynamics via Examples and Solutions, CRC Press (Taylor & Francis group), ISBN 978-1-43-988882-7

x x О го А С.

X

го m

о

ю 2

М О

to

4. Лойцянский Л.Г. Ламинарный пограничный слой. — М.: Физматиздат, 1962.

5. Капранова А.Б., Солопов С.А., Мельцер А.М. О способах описания процесса формирования кавитационных потоков. \\ Евразийский союз ученых №6-2 (15)/2015 — М.: ООО «Международный Образовательный Центр», 2015, с. 99-102

6. Martin, Michael J. Blasius boundary layer solution with slip flow conditions. AIP conference proceedings 585.1 2001: 518-523. American Institute of Physics. 24 Apr 2013

7. Кнэпп Р., Дейли Дж., Хэммит Ф. Кавитация. Перевод с англ. докт. техн. наук Э.А. Ашратова.

— М.: Мир, 1974.

8. Перник А.Д. Проблемы кавитации. — С.П.: Судостроение, 1966.

9. Прокофьев В.В., Козлов И.И., Очеретяный С. А. Моделирование каверн с отрицательным числом кавитации — обзор некоторых работ, проведенных в институте механики МГУ. Сборник научных трудов: посвящается 80-летию со дня рождения А. Г. Терентьева. — Чебоксары, 2016. С. 138-151.

10. Седов Л.И. Плоские задачи гидродинамики и аэродинамики. — М.: Наука, 1966.

11. Логвинович Г.В. Гидродинамика течений со свободными границами. — Киев, Наукова думка, 1969.

12. Эпштейн Л.А. Методы теории размерностей и подобия в задачах гидромеханики судов.

— Л.: Судостроение, 1970.

References

1. Belotserkovskiy S.M. Matematicheskoye modelirovaniye ploskoparallel’nogo otryvnogo obtekaniya tel. — M.: Nauka, 1988.

2.

Smirnova M.N., Zvyagin A.V. Podvodnoye dvizheniye tonkogo tela vblizi svobodnoy poverkhnosti s uchetom otryva zhidkosti ot tela. \\ Izvestiya rossiyskoy akademii raketnykh i artilleriyskikh nauk №3/2014 — S-Pb.: Nauchno-proizvodstvennoye ob»yedineniye spetsial’nykh materialov, 2014, s. 75-83.

3. Nazarenko, Sergey (2014), Fluid Dynamics via Examples and Solutions, CRC Press (Taylor & Francis group), ISBN 978-1-43-988882-7

4. Loytsyanskiy L.G. Laminarnyy pogranichnyy sloy. — M.: Fizmatizdat, 1962.

5. Kapranova A.B., Solopov S.A., Mel’tser A.M. O sposobakh opisaniya protsessa formirovaniya kavitatsionnykh potokov. \\ Yevraziyskiy soyuz uchenykh №6-2 (15)/2015 — M.: OOO «Mezhdunarodnyy Obrazovatel’nyy Tsentr», 2015, s. 99-102.

6. Martin, Michael J. Blasius boundary layer solution with slip

flow conditions. AIP conference proceedings 585.1 2001: 518-523. American Institute of Physics. 24 Apr 2013.

7. Knepp R., Deyli Dzh., Khemmit F. Kavitatsiya. Perevod s angl.

dokt. tekhn. nauk E.A. Ashratova. — M.: Mir, 1974.

8. Pernik A.D. Problemy kavitatsii. — S.P.: Sudostroyeniye, 1966.

9. Prokofyev V.V., Kozlov 1.1., Ocheretyanyy S.A. Modelirovaniye kavern s otritsatel’nym chislom kavitatsii -obzor nekotorykh rabot, provedennykh v institute mekhaniki MGU. Sbornik nauchnykh trudov: posvyashchayetsya 80-letiyu so dnya rozhdeniya A. G. Terent’yeva. — Cheboksary, 2016. S. 138-151.

10. Sedov L.I. Ploskiye zadachi gidrodinamiki i aerodinamiki. -M.: Nauka, 1966.

11. Logvinovich G.V. Gidrodinamika techeniy so svobodnymi granitsami. — Kiyev, Naukova dumka, 1969.

12. Epshteyn L.A. Metody teorii razmernostey i podobiya v zadachakh gidromekhaniki sudov. — L.: Sudostroyeniye, 1970.

o>

о

es

es

Ol

О Ш

m

X

The power effect of the incident flow of fluid on the streamlined body

Shalunova V.A.

National Research Moscow State University of Civil Engineering

The article analyzes the causes and conditions for the occurrence of cavitation, its consequences in the systems of water supply and heating, and also suggests ways to eliminate cavitation phenomena and to use the positive properties of cavitation.

Based on the experience of operating heating systems, it is obvious that the least reliable link in these systems is the transportation of heat. The main problems of heat networks, along with corrosion damage and contamination of pipelines, are technical and technological imperfections of machinery, for example, circulating pumps, generators, cavitation boilers, etc.

The emerging problems of safety and reliability of water treatment systems in energy complexes can be solved using cavitation technology based on the use of cavitation effects. In this regard, there are many important questions, the answers to which must be found in the process of comprehensive research.

Key words: cavitation, cavity, heating system, water supply system, hydrodynamics, body flow, laminar boundary layer, turbulent process, fluid dynamics, kinetic energy, number of cavitations.

3

<

m о x

X

Влияние кавитации на работу насоса

Выбор перекачивающего устройства для жидкостной системы делается на основании инженерных расчетов, с учетом всех параметров магистрали. Однако это априори не гарантирует эффективной работы насоса – она определяется и тем, насколько грамотно произведен монтаж. Имеется ряд существенных факторов, влияющих на функционирование прибора, причем не в лучшую сторону. Один из них – явление кавитации. Зная, что она собой представляет и как ее предотвратить (или минимизировать последствия), можно добиться долговременной безаварийной эксплуатации насоса на проектной мощности.

Кавитация – что это

Данное явление относится к области гидродинамики и во многом зависит от конструктивных особенностей технического средства, а также физических свойств перекачиваемой среды (например, ее вязкости). Оно возникает на отдельных участках как результат резкого локального снижения давления, в момент прохождения акустической волны по магистрали и в ряде иных случаев. Говорят, что этим нарушается «целостность», однородность жидкости. Кавитация сопровождается образованием воздушных пузырей, часто содержащих разреженный пар. Постепенно увеличиваясь в размерах, в определенный момент они схлопываются. Такой процесс неуправляем, и его можно лишь спрогнозировать и принять ряд мер, препятствующих возникновению подходящих для него условий.

Эффект кавитации имеет и положительные стороны, а потому используется для решения многих задач в различных сферах: медицине, промышленности. Но на перекачивающие устройства она действует пагубно.

Последствия кавитации для насоса

  • Эрозия материалов. Данный эффект обусловлен наличием выделяющихся газов с высокой температурой (по некоторым расчетам до +1 300 0С) и их химической агрессивностью. В такой среде ротор, крыльчатка насоса, улитка, подшипники, элементы уплотнений и присоединений не прослужат срок, заявленный производителем.
  • Резкие перепады давления, гидравлические удары. Во время кавитации происходит постоянное образование и схлопывание воздушных пузырей. Выделяющаяся энергия действует разрушительно даже на химически инертные материалы.
  • Шумы. Их источник – ударная волна. Она возникает в области кавитации, и работа насоса сопровождается «звуковым эффектом». Если он установлен не в пристройке (топочной, мини-котельной), то этот шум будет постоянным фоном в доме, и избавиться от него крайне сложно.
  • Сбои в функционировании оборудования. Некорректная работа насоса, снижение его производительности напрямую отражается на котельной установке: постоянная и хаотичная смена режимов горелки, интенсивности пламени и тому подобное. Повышенный износ деталей, расход топлива, а то и отказ техники по сигналу аварии обеспечены.

Способы борьбы с явлением кавитации

  1. Грамотный выбор насоса по характеристикам. В документации на каждый образец обозначен кавитационный запас (∆hтр). Данная величина показывает, при каком давлении (минимальном) жидкая среда сохранит свою однородность при прохождении по перекачивающему устройству.

    Расчет значения параметра ∆hтр производится на основании сложных формул и таблиц. А потому для определения данной характеристики насоса, монтируемого в конкретную систему, лучше обратиться к профессионалу. В дальнейшем устранить причины, вызывающие кавитацию, будет довольно сложно, хлопотно и дорого.

  2. Увеличение сечения всасывающего патрубка. Если объем жидкости на входе будет больше, чем на выходе, риск появления кавитации нивелируется.
  3. Повышение напора в системе. Это достигается несколькими способами:
  • уменьшением расстояния между насосом и гидробаком;
  • заменой присоединяемой трубы на изделие с идеально гладкой полостью. Например, металла на пластик;
  • максимальным выпрямлением участка схемы до насоса. То есть оптимизацией количества поворотов трассы. При невозможности этого нужно увеличить радиус изгиба труб;
  • регулярным наполнением бака, повышением в нем давления, установкой бустерного насоса.
Конкретные рекомендации по устранению причин, вызывающих эффект кавитации в насосе, может дать только профессионал. Учитывая негативные последствия, в том числе и материального характера, вряд ли стоит экономить на оплате его услуги.

Специалисты сервисного подразделения «АЛЬФАТЭП» помогут жителям Подмосковья правильно спроектировать систему отопления или водоснабжения, выбрать оптимальную версию насоса, а также устранить причины, вызывающие явление кавитации в уже смонтированном приборе. Связаться с ними можно по телефону 8 (495) 109 00 95 (звонок бесплатный) или через сайт alfatep.ru (раздел «Контакты»). Заявки на производство работ обрабатываются в день оставления, оплата – в любой удобной клиенту форме.

Кавитационный теплогенератор.

Устройство и работа. Применение

Кавитационный теплогенератор – специальное устройство, в котором применяется эффект нагрева жидкости кавитационным способом. То есть это эффект, при котором образуются микроскопические пузырьки пара в областях локального уменьшения давления в воде. Это может наблюдаться во время вращения насосной крыльчатки или вследствие воздействия на воду звукового колебания. В результате этого жидкость нагревается, а это значит, что при помощи нее можно обогревать дом или квартиру.

На сегодняшний день кавитационный теплогенератор считается инновационным изобретением. Однако уже практически век тому назад ученые размышляли над тем, как можно использовать эффект кавитации. Впервые подобную установку собрал Джозеф Ранк в 1934 году. Именно он отметил, что входные и выходные температуры воздушных масс этой трубы отличаются. Советские ученые несколько усовершенствовали трубы Ранка, использовав для этой цели жидкость. Опыты показали, что установка позволяет быстро разогревать воду. Однако на тот период необходимость в такой установке была минимальна, ведь энергия стоила копейки. Сегодня же, вследствие удорожания электричества, нефти и газа, потребность в таких установках возрастает.

Виды
Кавитационный теплогенератор
 по своему устройству может быть роторным, трубчатым или ультразвуковым:
  • Роторные устройства представляют агрегаты, в которых используются центробежные насосы с измененной конструкцией. В качестве статора здесь применяется насосный корпус, куда устанавливается входная и выходная труба. Главным рабочим элементом здесь выступает камера, где размещается подвижный ротор, он работает по принципу колеса.

Роторная установка имеет сравнительно простую конструкцию, однако для эффективной ее работы необходим очень точный монтаж всех его элементов. В том числе здесь требуется точнейшее балансирование двигающегося цилиндра. Необходима плотная посадка роторного вала, а также тщательная выверка и замена пришедших в негодность материалов изоляции. КПД таких устройств не являются довольно большим. Они имеют не очень большой срок службы. К тому же такие агрегаты работают с выделением достаточно большого шума.

  • Трубчатые тепловые генераторы осуществляют кавитационное нагревание благодаря продольному расположению трубок. При помощи помпы нагнетается давление во входящую камеру. В результате жидкость направляется через указанные трубки. На входе вследствие этого появляются пузырьки. Во второй камере устанавливается высокое давление. Пузырьки, которые при попадании во вторую камеру разрушаются, вследствие чего они отдают свою тепловую энергию. Эта энергия вместе с паром направляется на обогрев дома. Коэффициент полезного действия подобных конструкций может достигать высоких показателей.
  • Ультразвуковые тепловые генераторы. Кавитация здесь образуется благодаря ультразвуковым волнам, которые создает установка. В результате такого принципа работы обеспечиваются минимальные потери энергии. Трения здесь практически нет, вследствие чего коэффициент полезного действия ультразвукового теплового генератора невероятно высок.
Устройство

Кавитационный теплогенератор имеет устройство в зависимости от принципа действия. Типичным и наиболее распространенным представителем роторных тепловых генераторов является центрифуга Григгса. В такой агрегат заливается вода, после чего запускается ось вращения при помощи электрического двигателя. Главным достоинством такой конструкции является то, что привод нагревает жидкость, а также выступает в качестве насоса. Поверхность цилиндра имеет огромное количество неглубоких круглых отверстий, которые позволяют создать эффект турбулентности. Нагревание жидкости обеспечивается благодаря силам трения и кавитации.

Число отверстий в установке зависит от используемой роторной частоты вращения. Статор в тепловом генераторе выполнен в виде цилиндра, который запаян с двух концов, где непосредственно вращается ротор. Существующий зазор между статором и ротором равняется примерно 1,5 мм. Отверстия в роторе необходимы для того, чтобы в жидкости, трущейся о поверхности цилиндра, появлялись завихрения с целью создания кавитационных полостей.

В указанном зазоре также наблюдается и нагревание жидкости. Чтобы тепловой генератор эффективно работал, поперечный размер ротора должен составлять минимум 30 см. В то же время скорость его вращения должна достигать 3000 оборотов в минуту.

В ультразвуковых устройствах для создания эффекта кавитации используется кварцевая пластина. Она под воздействием электрического тока создает колебания звука. Эти звуковые колебания направляются на вход, вследствие чего устройство производит вибрации. На обратной фазе волны создаются участки разряжения, вследствие чего можно наблюдать кавитационные процессы, которые создают пузырьки.

Чтобы обеспечить максимальный коэффициент полезного действия, рабочая камера теплового генератора выполняется в виде резонатора, который настроен на ультразвуковую частоту. Образованные пузырьки моментально переносятся потоком через узкие трубки. Это необходимо, чтобы получить разряжение, так как пузырьки в тепловом генераторе могут быстро смыкаться, отдавая свою энергию обратно.

Принцип работы

Кавитационный теплогенератор позволяет создать процесс, во время которого в жидкости создаются пузырьки. Если рассматривать этот процесс, то он сравним с закипанием воды. Однако при кавитации наблюдается локальное падение давления, что и приводит к появлению пузырьков. В тепловом генераторе формируются вихревые потоки, вследствие них происходит кавитационный разрыв пузырьков, что приводит к нагреванию жидкости. Нагревание приводит к резкому снижению давления жидкости. Полученная энергия получается довольно дешевой, она отлично подходит для отопления помещений. В качестве теплоносителя можно использовать антифриз.

Для подобных установок обычно нужно примерно в 1,5 раза меньше электрической энергии, чем это необходимо для радиаторных и иных систем. При этом нагревание жидкости осуществляется в замкнутой системе. Работают такие агрегаты посредством преобразования одной энергии в другую. В итоге она превращается в тепловую.

Применение

Кавитационный теплогенератор
 в большинстве случаев применяется для нагревания воды, а также смешивания жидкостей. Поэтому подобные установки в большинстве случаев используются для:
  • Отопления. Тепловой генератор преобразует механическую энергию движения воды в тепловую энергию, которую успешно можно использовать для обогрева зданий различного характера. Это могут быть небольшие частные постройки, в том числе крупные промышленные объекты. К примеру, на территории нашей страны на текущий момент можно насчитать минимум с десяток населенных пунктов, в которых централизованное отопление осуществляется не обычными котельными, а кавитационными установками.
  • Нагревания проточной воды, которая применяется в быту. Тепловой генератор, который включен в сеть, может довольно быстро нагревать воду. В результате подобное оборудование с успехом можно применять для разогревания воды в бассейнах, автономном водопроводе, саунах, прачечных и тому подобное.
  • Смешивания несмешиваемых жидкостей. Устройства кавитационного типа могут применяться в лабораториях, где имеется необходимость высококачественного смешивания жидкостей, имеющих разную плотность.
Как выбрать

Кавитационный теплогенератор может быть выполнен в нескольких исполнениях. Поэтому выбирать такое устройство для отопления своего дома нужно с учетом ряда параметров:

  • Подбирать тепловой генератор необходимо, исходя из того, для какой площади необходимо отопление. Также следует учесть, какая погода наблюдается в зимний период. Важной характеристикой будет и теплоизоляция стен. То есть нужно выбирать устройство, которое будет обеспечивать необходимое количество тепла.
  • Если Вы приобретаете стандартную установку, то желательно, чтобы она была оборудована приборами контроля выделяемой теплоты и датчиками защиты. Лучше сразу приобрести установку с автоматическим блоком контроля и управления. Поэтому кавитационную установку рекомендуется приобретать в комплексе с другим оборудованием с услугой установки под ключ. Специалисты сами подберут и выполнят расчеты по монтажу тепловой системы в вашем доме.
  • Если Вы решили сэкономить и приобрести оборудование по отдельности, то здесь важно определиться с особенностями всех элементов системы. Насос должен иметь возможность работы с жидкостями, которые нагреты до высокой температуры. В противном случае система быстро придет в негодность и ее придется ремонтировать. К тому же насос должен обеспечивать давление от 4 атмосфер.
  • Если Вы решили соорудить кавитационную установку самостоятельно, то здесь важно верно подобрать сечение канала камеры кавитации. Оно должно составлять порядка 8-15 мм. Перед созданием такой установки важно тщательно изучить действующие схемы подобных устройств. Кавитационный теплогенератор по своему виду будет напоминать насосную станцию, которой не нужна дымоотводная труба. При ее работе не выделяется угарный газ, грязь или копоть.
Похожие темы:

Кавитация: основные понятия, причины возникновения и ее следствия

Кавитация: основные понятия, причины возникновения и ее следствия

Нарушение сплошности потока жидкости, обусловленное появлением в ней пузырьков или полостей, заполненных паром и выделившимся из жидкости газом, называется кавитацией. Кавитация возникает в области пониженного давления, где возникают растягивающие напряжения, которые приводят к разрыву жидкости и образующие полости — каверны заполняются парами жидкости и выделившимся из нее растворенным газом. Попадая в область высоких давлений паровые пузырьки (каверны) «захлопываются». Захлопывание каверн вызывает местный гидравлический удар, который может привести к разрушению (эрозии) стенок каналов. Действительно, давление в пузырьках остается постоянным и равным давлению упругости насыщенного пара, в то время как давление жидкости по каналу рабочего колеса повышается при течении жидкости от входа к выходу. Попадая в область высокого давления, пузыри схлопываются под действием высокого давления. Это схлопывание сопровождается местным повышением давления в несколько тысяч атмосфер. Если оно происходит на поверхности лопаток или других элементах насоса, то с их поверхности выбиваются частицы материала, из которого они сделаны. Это явление называется эрозией. Этот процесс можно определить по потрескивающим звукам, которые усиливаются с увеличением кавитации.

Возникновение и развитие кавитации в жидкости связано с наличием так называемых ядер кавитации. В технических жидкостях всегда имеются ядра кавитации. Они являются теми слабыми точками, в которых нарушается сплошность жидкости, и возникают кавитационные явления. Наиболее вероятно, ядра кавитации представляют собой нерастворенные газовые включения, в том числе в порах и трещинах, а также микрочастицы, взвешенные в жидкости.

Если в жидкости присутствуют свободные или растворенные газовые включения, то кавитация будет протекать более интенсивно, с большим шумом и вибрациями.

Кавитация приводит к трем основным отрицательным последствиям:

  1. К срыву подачи, напора, мощности и к.п.д.
  2. К эрозионному износу элементов насоса: рабочего колеса, вала и т.д.
  3. К звуковым явлениям: шуму, вибрации установки, а также к низкочастотным

    автоколебаниям давления в трубопроводах.

В насосах кавитация возникает при давлении перед входом в насос существенно превышающем давление парообразования при данной температуре жидкости. Это означает, что область минимального давления располагается внутри проточной части насоса. Падение давления внутри проточной части насоса (по сравнению с входным давлением Рвх) связано с обтеканием лопаток. При обтекании лопаток, как при обтекании любого тела, образуется область пониженного давления Рmin.

Как только давление станет ниже давления насыщенного пара, то образуется кавитация. В потоке жидкости такое падение давления происходит обычно в области повышенных скоростей и при перекачивании горячих жидкостей в условиях, когда происходит интенсивное парообразование в жидкости, находящейся в насосе. Пузырьки пара попадают вместе с жидкостью в область более высоких давлений, где мгновенно конденсируются. Жидкость стремительно заполняет полости, в которых находился сконденсировавшийся пар, что сопровождается гидравлическими ударами, шумом и сотрясением насоса. Кавитация приводит к быстрому разрушению насоса за счёт гидравлических ударов и усиления коррозии в период парообразования. При кавитации производительность и напор насоса резко снижаются.

Зависимость напора насоса от давления на входе при постоянном расходе и постоянной частоте вращения называется кавитационной характеристикой. Такие характеристики снимаются на специальных стендах.

Уменьшение давления перед насосом Рвх достигается вакуумированием воздушной подушки в резервуаре. Во время испытаний насоса при постоянном значении расхода Q и постоянных числах оборотов определяют значения давлений на входе, при которых появляются кавитационные явления.

По результатам испытаний строятся кавитационные характеристики.

При давлении на входе равного Рнач в насосе возникает кавитация, которая сказывается в появлении мелких пузырьков и шума от их схлопывания. Дальнейшее уменьшение давления от Рнач до Ркрит, несмотря на развитие кавитации (увеличивается количество и объем пузырьков), не приводит к изменению напора и к.п.д. насоса, но при этом могут усиливаться эрозионные и колебательные явления.

При давлении Ркрит, напор начинает снижаться (одновременно с напором снижается к.п.д. насоса). Это критический режим.

При давлении на входе насоса равного Рсрв напор и расход резко падают. Это — срывной кавитационный режим.

На кавитационной характеристике насоса можно выделить несколько областей:

а) режим начальной кавитации (или скрытая кавитация) насоса, когда Ркрит < Рвх < Рнач,

б) критический режим Рсрв < Рвх < Ркр, при котором заметен излом напорной характеристики. При этом зона распространения кавитационных полостей в насосе невелика.

в) режим Pвх < Pсрв, при котором наблюдается срыв всех основных параметров насоса. При этом вся проточная часть насоса практически занята паровой или газовой каверной.

Для насосов длительного использования, например, для отопления или водоснабжения, важно избежать даже начальной стадии кавитации.

В этом случае, давление на входе Рв должно быть больше давления РначЭто позволит избежать появления кавитационного шума и эрозионного износа элементов насоса.

Для того чтобы избежать кавитации можно предпринять следующие шаги:

  • повысить давление во всасывающем патрубке (опустить насос, или увеличить

давление в приемном резервуаре). Производительность от этого не измениться.

  • Использовать насосы, имеющими меньшие числа оборотов.
  •  
  • Снизить расход жидкости через насос или температуру перекачиваемой жидкости, что соответствует уменьшению давления пара.

Не все то кавитация, что шумит или Что же происходит на самом деле?

Кавитация в камере насоса явление, мягко говоря, не желательное. Последствия разрушительного действия тысяч микроскопических гидроударов на рабочие колеса насосов видны на Рис 1, 2. Процесс кавитации сопровождается характерным звуком, шипением с металлическим звоном.
 Рис 1                                                                                Рис 2

Но если вы слышите звук и думаете, что это кавитация, то это не всегда так. Вернемся к физике процесса.

Кавитация и как её избежать

Кавитация — это процесс образования и схлопывания пузырьков пара в движущейся жидкости. Причиной возникновения пузырьков является локальное снижение давления на всасывающей стороне насоса и часть воды там закипает.

Из курса физики известно, что температура кипения воды зависит от давления. При нормальном атмосферном давлении вода закипает при 100°С, а на высокогорных плато, где атмосфера разрежена и давление ниже, уже при 70°.

В приемной камере насоса давление может падать до нескольких процентов от атмосферного и часть воды закипает даже при температуре 7-10°С, с образованием множества микроскопических пузырьков пара. А при прохождении жидкости через рабочее колесо, давление резко возрастает, процесс кипения прекращается, пузырьки схлопываются. Процесс резкого схлопывания сопровождается ударной волной (гидроударом), которая и разрушает рабочие части насоса и вызывает характерный шум.

Чтобы не допустить возникновения кавитации производители насосов в характеристиках указывают параметр NPSH: Net Positive Suction Head – чистый гидравлический напор (кавитационный запас). Измеряется в метрах водяного столба.

По сути, он значит, что давление перекачиваемой жидкости на всасывающей стороне насоса не должно опускаться ниже указанного уровня NPSH.

На Рис 3 изображен образец графика кривой насоса. Для выбранной рабочей точки Q=16,2м3\ч; H=45,5м кавитационный запас составляет 1,4 метра.

Рис 3

Чтобы оценить склонность системы к возникновению кавитации нужно сравнить реальное давление на всасывающей стороне (маркируется NPSHa) с данными от производителя (паспортным NPSH, в нашем примере =1,4 м, его еще маркируют NPSHr). Для стабильной работы насоса рекомендуется, чтобы уровень NPSHa был больше NPSHr минимум на 0,5м – в нашем примере NPSHa должен быть не меньше 1,4+0,5=1,9 метра.

Проще всего измерить уровень NPSHa с помощью манометра, установленного на всасывающей стороне перед насосом.

Но сделать это не всегда возможно, поэтому приводим несколько формул для расчета уровня NPSHa, для самых распространенных вариантов. Эскизы и формулы также полезны для понимания физики процесса.
 Рис 4                                                                                                 Рис 5

Где:

Pb = атмосферное давление, в метрах;

Vp = Давление насыщенных паров жидкости при максимальной рабочей температуре жидкости, в метрах;

P = Давление на поверхности жидкости в закрытой емкости, в метрах;

Ls = Максимальная высота всасывания, в метрах;

Lh =Максимальная высота подпора, в метрах;

Hf = Потери на трение во всасывающем трубопроводе при требуемой производительности насоса, в метрах.

Рис 6                                                                                          Рис 7


Воздухововлечение — что это и чем грозит

Но похожий звук могут давать и растворенный в воде воздух, который тоже образовывает пузырьки при падении давления. Вреда от этих пузырьков существенно меньше, так как они не могут так резко схлопнуться, чтобы образовать ударную волну.

Но если воздуха в воде будет слишком много, а так бывает если идет подсос через трещину в трубе или повреждение фланцевых уплотнений, то в рабочей камере насоса может образоваться «воздушный замок» и движение жидкости останавливается. Насос все же не компрессор и протолкнуть воздушную пробку не может, и в результате перестает качать. Давление на выходе падает, и хорошо, если насос отключит система защиты от сухого хода. Иначе насос выйдет из строя.

Но даже если воздуха в жидкости недостаточно чтобы образовать воздушную пробку и остановить поток, эта «гремучая смесь» вызывает вибрацию, которая вредит подшипниками и торцевым уплотнениям, а шум легко спутать с кавитацией.

Эта проблема чаще присуща самовсасывающим системам (см. Рис. 4, 6). Давление на всасывающей стороне у них ниже атмосферного и, если погруженный в емкость патрубок оказывается слишком близко к поверхности, он засасывает водно-воздушную смесь, которая и вызывает вышеописанные проблемы.

Чтобы рассчитать минимально необходимую глубину погружение патрубка существует множество формул главными переменными, в которых являются размер (производительность) насоса и скорость движения жидкости во всасывающем трубопроводе. Но по опыту эксплуатации и эмпирическим данным известно, что:

  • для маломощных самовсасывающих насосов – минимальный уровень погружения патрубка – 1 метр;
  • для больших насосов – уровень погружения патрубка не менее 3 метров.

Вихри и водовороты в области заборного патрубка

Бывают ситуации, когда выдержать требования по глубине погружения или скорости движения жидкости через водозаборный патрубок невозможно. В таких случаях есть опасность образования водных вихрей (водоворотов) в районе всасывающего патрубка. Структура формирования вихря показана на Рис 8.

 Рис 8

Закручивающийся водный поток образует «хобот», который затягивает воздух во всасывающий патрубок. К чему это может привести описано в предыдущем пункте.

А если сам «хобот» вихря поднимется по трубе в камеру насоса, то перед тем как он будет «разрублен» рабочим колесом, вал, само колесо и подшипниковые узлы испытывают значительные динамические нагрузки, и вибрацию. Тем более, что сам по себе водяной вихрь нестабилен, и его конец «гуляет» по радиусу рабочего колеса.

Эффективно противостоять возникновению вихря внутри всасывающего патрубка помогает раструб (колокол) на конце трубопровода, диаметр которого в 1,3 раза больше диаметра основной всасывающей трубы, см. Рис. 9. Кромка колокола разрубает «хобот» водоворота и не дает ему подняться в трубу.

Рис 9

Если раструба недостаточно специалисты рекомендуют также вертикальные перегородки вокруг труб, похожие на ракетные стабилизаторы.

На Рис 10, 11 изображены крайне нежелательные варианты взаимного расположения труб, которые увеличивают опасность возникновение вихрей во всасывающем трубопроводе.
 Рис 10                                                                                                 Рис 11

Если конструкция и размеры резервуара не позволяют максимально удалить всасывающие и напорные трубопроводы друг от друга, специалисты-гидротехники рекомендуют устанавливать между ними перегородку, которая будет разрушать вихревые потоки.

Надеемся материал статьи был для вас полезен, если есть дополнительные вопросы по подбору и эксплуатации насосного оборудования, звоните нам +38 (044) 587-78-30. Наш технический отдел всегда к вашим услугам.

Поделитесь статьей в соц сетях с Вашими коллегами, которым важно знать такие факты.

Водоснабжение и отопление, — стр. №30

При этом процесс кавитации ведет к разрушению рабочей поверхности ротора, и несмотря на то, что теплогенераторы роторного типа эффективнее, срок их службы непродолжителен. Теплогенераторы, в которых процессы кавитации происходят в отдельной камере кавитатора, а насос является внешним устройством, обладают несколько меньшей эффективностью, зато гораздо более длительным сроком эксплуатации.

Рис. 3.22. Кавитатор роторного типа:1 – ротор; 2 – вал ротора; 3 – рабочая камера; 4 – входной патрубок рабочей камеры; 5 – выходной патрубок рабочей камеры; 6 – тормозное устройство

Кроме сверхпроизводительности, кавитационный теплогенератор имеет весьма существенный плюс: он не требует топлива как такового. Фактически топливом для него служит рабочая жидкость (чаще всего вода), которую «заставляет работать» тем или иным образом электродвигатель (это может быть создание вихревых закрученных потоков, повышение/понижение давления за счет изменения скорости протекания жидкости и т. д.).

Кавитационный теплогенератор очень просто монтируется в систему отопления (Рис. 3.23), его работа может быть полностью автоматизирована, он экологически безопасен, не требует наличия дымохода и дополнительной звукоизоляции помещения котельной. Кроме того, кавитационный генератор не слишком дорог.

К минусам кавитационного теплогенератора относятся электрозависимость (нет электричества – не работает электродвигатель, насос – и нет работы генератора), высокая стоимость электродвигателя, привода ротора или насоса, а также низкая ремонтопригодность – из-за недостатка специалистов, которые способны помочь в случае поломки оборудования. Правда, существуют кавитационные теплогенераторы, имеющие уникальную гарантию: 25–50 лет с момента запуска (для сравнения: газовые и твердотопливные котлы обычно имеют гарантию до 3 лет с момента запуска). Так что есть шанс, что до выработки теплогенератором гарантийного ресурса появятся и специалисты по данному оборудованию.

Универсальные (многотопливные) котлы

При выборе отопительного оборудования следует помнить, что любой прибор может сломаться. Поэтому оптимально, если в загородном доме имеется не один отопительный котел, а два, работающие на разных видах топлива, при этом один котел устанавливается в качестве основного, а второй – вспомогательного, который подключается лишь тогда, когда с основным возникли какие-то проблемы. С одной стороны подобный подход выглядит излишней перестраховкой – отопительные котлы не так часто выходят из строя, да и стоит оборудование не слишком дешево, чтоб тратить деньги на «мертвый груз», который может и не потребоваться долгое время. Но с другой стороны, только представьте, что именно ваш котел «решил» сломаться, да еще зимой, а мастера придется ждать минимум несколько дней.

Рис. 3.23. Подключение кавитационного теплогенератора в систему отопления: 1 – основной насос; 2 – кавитатор; 3 – циркуляционный насос; 4 – электромагнитный клапан; 5 – запорная арматура; 6 – мембранный расширительный бак; 7 – радиатор отопления

Однако, даже если котел не сломался, а благополучно работает, все равно могут возникнуть проблемы, требующие подключения вспомогательного оборудования. Причиной подобного может быть, к примеру, недоступность топлива. В сельской местности падение давления газа в магистрали не исключение, а скорее правило. Так же, как и возможные сбои в поставке газа, различные аварии на магистрали или отключение электричества. В таких случаях резервное отопительное оборудование, работающее на другом виде топлива, становится из роскоши прямой необходимостью.

Есть и еще один нюанс: изменяющаяся цена на различные виды топлива. На сегодняшний день электричество – самый дорогой вариант, но и цены на газ (самый дешевый в настоящее время вид топлива) растут, а цена на солярку такова, что проще установить электрический котел (по крайней мере имеются периоды, когда на электричество действует льготный тариф для отопления, а вот на солярку льготных тарифов нет). Но завтра ситуация может измениться. И подорожает, к примеру, твердое топливо. И котел, сегодня вполне удовлетворяющий требованиям эксплуатационных расходов – удобный и экономичный, начнет «выжигать» громадные дыры в семейном бюджете. Замена котла, модернизация системы отопления под новый тип отопительного оборудования – дело не пяти минут, да и не слишком дешевое. Другое дело, если заранее предусмотреть установку альтернативного оборудования с возможностью переключения с одного котла на другой при необходимости. Это повышает затраты на стадии организации отопления загородного дома, зато одновременно значительно возрастает надежность системы отопления, а также экономичность эксплуатации (всегда можно выбрать именно тот вид топлива, который будет наиболее экономичным на сегодняшний день).

Предусмотрительные владельцы загородных домов, не желая устанавливать несколько котлов разного типа (один в качестве основного, второй – в качестве вспомогательного, «аварийного»), приобретают универсальные (многотопливные) котлы, которые способны работать практически на любом топливе – на твердом, газообразном и жидком. Есть и такие котлы, которые имеют, кроме прочего, встроенные ТЭНы, то есть способны работать и как электрические отопительные котлы, и как твердотопливные, жидкотопливные, и как газовые котлы (Рис. 3.24).

Рис. 3.24. Отопительный котел, рассчитанный на все виды топлива: 1 – подключение к дымовой трубе; 2 – очистной люк; 3 – змеевик; 4 – теплообменник ГВС; 5 – люк загрузки твердого топлива; 6 – отверстие под горелку; 7 – колосник; 8 – ТЭН

В таких универсальных котлах имеются камера для сжигания твердого топлива, отдельная камера для сжигания жидкого или газообразного топлива, ТЭН, а также возможность установки горелок как для газа, так и для жидкого топлива (это может быть как солярка, так и сжиженный газ). Таким образом, можно обеспечить свой дом всеми плюсами любого отопительного котла в зависимости от текущего момента и использовать то топливо, которое в данный момент является наиболее выгодным.

К минусам многотопливных котлов относится электрозависимость, довольно сложный монтаж, потребность в постоянной профилактике и техобслуживании, а также относительно сложное управление. Кроме того, если у вас имеется основной котел и резервный, работающий на другом виде топлива, и основной котел вышел из строя (или топливо для него стало недоступным), то можно подключить резервный. Но если функции основного и резервного котла выполняет многотопливный котел и он вышел из строя, то подключить вместо него уже нечего. Так что универсальный котел решает многие проблемы, кроме одной – возникающей при неисправности основного котла. Именно это снижает популярность котлов такого типа.

Примечание

Многие убеждены: чем сложнее оборудование, тем чаще оно выходит из строя, и это в полной мере относится к многотопливным котлам – ведь они являются сложным оборудованием. Следует заметить, что универсальные котлы считаются более долговечными и надежными, чем однотопливные, они изготавливаются с повышенным запасом прочности (надежности) именно из-за того, что предназначены выполнять функции как основного, так и резервного отопительного оборудования.

К многотопливным котлам относятся и газовые/жидкотопливные котлы со сменными горелками, которые могут работать как с магистральным газом, так и с жидким топливом. Но к этим котлам настолько привыкли, что даже не считают их универсальными. Такие котлы используются в основном в тех случаях, когда ожидается подключение магистрального газа, а жидкое топливо является временным вариантом.

Одноконтурные и двухконтурные котлы

Выбрав отопительный котел по типу потребляемого топлива, следует задуматься о вариантах исполнения: одноконтурный или двухконтурный котел. То есть будет ваш котел обеспечивать отопление только дома, или вы доверите ему еще и горячее водоснабжение.

Разница между одноконтурным и двухконтурным отопительными котлами – в количестве теплообменников: в одноконтурном имеется один теплообменник, через который проходит теплоноситель (вода или антифризы), а в двухконтурном – два теплообменника, через которые проходят теплоносители, причем один из теплообменников предназначен для обеспечения подогретым теплоносителем системы отопления, а второй – для подогрева воды для хозяйственных и бытовых нужд. При этом одноконтурная отопительная система работает от одноконтурного котла, а двухконтурная может работать как от двухконтурного, так и от одноконтурного. Чтобы двухконтурная отопительная система могла работать от одноконтурного котла, достаточно подключить к такому котлу бойлер для системы горячего водоснабжения.

Если вам нужно не слишком много горячей воды (до 15 л/мин), при этом не слишком высокой температуры (до +30 °C), то можно использовать двухконтурный отопительный котел проточного типа – со встроенным змеевиком. Такой котел несущественно дороже одноконтурного, а наличие встроенного змеевика практически не увеличивает габариты котла. Но если требуется полноценное горячее водоснабжение, то приходится использовать двухконтурный отопительный котел со встроенным бойлером. Таким образом, обеспечивается запас 45–60 л горячей воды (если необходимо обеспечить горячей водой несколько точек водоразбора и при этом есть вероятность их одновременной работы, желательно использовать бойлер большего объема – 200 л и более, в зависимости от потребности в горячей воде и количества одновременно работающих точек водоразбора).

Недостатками котла со встроенным бойлером являются существенно увеличившиеся габариты (по сравнению с котлом со встроенным змеевиком), большой вес (за счет бойлера), а также увеличение расхода топлива (необходимо поддерживать температуру воды, запасенной в бойлере).

  • Недорогие твердотопливные котлы отопления здесь

Страницы:

Подбор циркуляционного насоса — расчет мощности, производительности, напора и другиие характеристики

Какой циркуляционный насос выбрать?

Кроме основных характеристик необходимо обратить внимание и на другие показатели этого прибора:

Схема подбора насоса для системы отопления.

Экономичность. Очень важный фактор, и зависеть он будет от типа насоса, конструкционных особенностей, наличия блока электронного управления. Он позволит сэкономить до 40% электрической энергии и продлить срок службы насоса. Это устройство контролирует скорость вращения ротора в зависимости от потребности в интенсивности отопления. Так как прибор будет работать на полную мощность не всегда, то и уровень шума, создаваемый им, значительно снизится.
Запас прочности. После расчета напора и производительности насоса, необходимого для вашей топливной системы, прибавьте к этим цифрам еще 10-20%. Таким образом, прибор, установленный вами, не будет работать на износ, а станет использовать свой ресурс оптимально.
Срок службы современных насосов зависит от качества их исполнения. При условии правильной установки и эксплуатации они служат около 10 лет. Чтобы достичь этого, монтаж приборов производите перед входом в отопительный котел. В этом месте системы температура теплоносителя самая низкая, и износ деталей насосов, соприкасающихся с водой, не такой сильный. Для удобства демонтажа агрегата и последующего его обслуживания до места установки насоса и после него монтируют запорные краны. Если в системе предусмотрен расширительный бак мембранного типа, то насос устанавливают за ним, по ходу движения теплоносителя. Такая точка подключения позволяет наиболее эффективно удалять воздух. Помните, что образование воздушных пробок недопустимо. При монтаже циркуляционного агрегата необходимо расположить его так, чтобы ось вращения вала находилась в горизонтальной плоскости

Следует обратить внимание на степень загрязненности рабочей жидкости. Большое количество абразивных веществ, которые могут находиться в воде, срока службы насосу не добавят.

Кавитация

Кавитацией называют образование в толще движущейся жидкости пузырьков пара при снижении гидростатического давления и схлопывание этих пузырьков в толще где гидростатическое давление повышается.

В центробежных насосах кавитация образуется на входной кромке рабочего колеса, в месте с максимальной скоростью потока и минимальным гидростатическим давлением. Схлопывание пузырька пара происходит во время его полной конденсации, при этом в месте схлопывания возникает резкое увеличение давления до сотен атмосфер. Если в момент схлопывания пузырёк находился на поверхности рабочего колеса или лопатки, то удар приходится на эту поверхность, что вызывает эрозию метала. Поверхность метала подверженная кавитационной эрозии носит выщербленный характер.

Кавитация в насосе сопровождается резким шумом, треском, вибрацией и что особенно важно, падением напора, мощности, подачи и КПД. Материалов, имеющих абсолютную устойчивость против кавитационного разрушения не существует, поэтому работа насоса в кавитационном режиме не допускается

Минимальное давление на входе в центробежный насос называют кавитационным запасом NPSH и указывается производителями насосов в техническом описании.

Кавитация в системе отопления

В любом трубопроводе возможно возникновение кавитации. Разница в давлении вследствие, например, вследствие естественного спада давления в точках с разной высотой, трения потоков воды о стенки труб или ротора, на участках трубопровода приводит к кавитации — образованию микроскопических пузырьков из насыщенного пара в зонах с пониженным давлением.

Обычно такие зоны существуют недолго и как только давление повышается до значения, когда образовавшийся насыщенный пар не может существовать в равновесии с жидкостью, микропузырьки схлопываются, порождая микроскопическое подобие взрывов. Сами пузырьки и их схлопывание поодиночке не опасны, но, когда их много, это грозит к разрушениям материала труб, насоса и других узлов системы отопления.

Кавитационный нагрев воды

Для минимизации кавитации следует по возможности обеспечить ровное давление на всех участках системы и чем выше это давление, тем лучше. Понижение температуры перекачиваемой воды уменьшает вероятность кавитационных явлений. Также очевидно, что насосы с меньшим числом оборотов будут создавать меньше кавитации, что тоже нужно учитывать при выборе насоса.

Если вы не уверены в возможности самостоятельно рассчитать характеристики нужного насоса отопительной системы, то лучше предоставить это профессионалам. Специалист произведёт все необходимые расчёты, поможет вам в выборе лучшего насоса и установит его.

Основные параметры насосов для систем отопления

Основная функция насосного оборудования циркуляционного типа, которое устанавливают в отопительные системы, заключается в воздействии центробежной силы вращения лопастей, расположенных внутри корпуса насоса, на жидкость в целях увеличения скорости ее движения. При выборе насосов ключевое значение приобретают следующие характеристики:

Производительность. По этому параметру можно понять, какое количество теплоносителя может пройти за час работы через насосную установку. Единицей измерения являются метр кубический в час, показатель производительности определяется гидравлическим сопротивлением, которое имеет магистраль;
Напор. Иначе называют гидравлическое сопротивление. Этот параметр влияет на предельную высоту, на которую насосное оборудование способно подавать столб воды;
Присоединительные размеры

При их определении следует обращать внимание на такой параметр, как диаметр подключаемых труб отопления и длину корпуса. Обычно первый параметр имеет значение, равное 25 или 32 мм, а при расчете второго необходимо исходить из того, что он должен позволить установить насос в то место, которое выделил для него владелец;
Максимальная температура

Циркуляционная насосная установка призвана в первую очередь обеспечить поступление нагретой жидкости до всех участников системы. По этой причине рекомендуется очень тщательно подходить к выбору этого параметра и использовать аппарат, который сможет пропускать через себя теплоноситель , нагретый до температуры 110 градусов Цельсия;
Производитель. Рекомендуется, как и при выборе иных видов устройств, отдавать предпочтение продукции известных производителей. Если рассматривать рынок насосного оборудования, то лучше всего зарекомендовали себя компании Grundfos, Vortex, Джилекс, Wilo и другие.

Чаще всего при подборе насоса для системы отопления учитывают два первых показателя. В большинстве своем их значения приведены в инструкции, прилагаемой к прибору, в виде графика, именуемого расходно-напорной характеристикой.

В продаже можно встретить отдельные модели насосов, предусматривающих несколько рабочих скоростей. Если владелец заинтересовался подобным аппаратом, то он должен убедиться, что для каждого из них указаны диапазоны значений.

Тепловая потребность помещения

Приступая к выбору циркуляционного насоса, в первую очередь, нужно исходить из потребностей помещения в тепловой энергии. Во время расчетов нужно опираться на тот объем тепла, который необходим в наиболее холодные месяцы. Рекомендуется поручить эту работу профессиональным проектировщикам, которые смогут предоставить с высокой точностью рассчитанные показатели.

Самостоятельный расчет

Когда потребитель не может воспользоваться услугами специалистов, то необходимо, опираясь на размеры помещения, нуждающегося в обогреве, рассчитать приблизительное значение мощности насоса. Если рассматривать Московский регион, то, согласно СНиП, для жилых зданий, имеющих один и два этажа, рекомендуемым показателем удельной тепловой мощности является 173 кВт/м2 , а для домов в три и четыре этажа — 98 кВт/м2. Для определения общего количества необходимого тепла необходимо перемножить эти цифры с площадью помещения.

Модификации насоса и технические параметры

Исходя из особенностей конструкции, насосы характеризуется производительной мощностью двигателя, типом ротора и управления.

Двигатель

Точный расчет параметров двигателя выполняется для конкретной отопительной системы, но общее правило подбора простое – мощность пропорциональна производительности (размера) рабочей части.

Управление работой

Управление насоса – это выбор скоростных режимов, от которых зависит эффективность всей системы. Для подогрева используется минимальный режим, в то время как при низких температурах быстрый отвод тепла требует увеличения скорости. Для регулирования этого процесса используется 2 типа управления:

  1. Механический. Выбор скорости производится самостоятельно, а переключение вручную. Такое управление эффективно для небольших контуров, где реагирование на изменение скорости происходит быстро. Насос для отопления в частном доме, чаще всего, приобретается с таким управлением благодаря невысокой стоимости и более высокой ремонтопригодности.
  2. Умные модернизированные модели управляются системой автоматики, которая в зависимости от температуры теплоносителя регулирует скорость потока. Стоят они дороже, но при установке многокомпонентных систем с коллекторами, он незаменимы. Кроме этого они увеличивают энергоэффективность на 25-35%.

Каждый производитель использует свои разработки, способствующие безаварийной работе в течение срока годности, поэтому цены на модели с одинаковыми характеристиками отличаются, также как и качество оборудования.

У внешне одинаковых насосов могут быть совершенно различные характеристики

Снижение стоимости в более дешевых фирмах происходит за счет минимального запаса прочности. Чаще всего это подразумевает уменьшение толщины на неответственных элементах деталей, использование менее прочных и дешевых материалов, которых хватает только на указанный срок эксплуатации. Выбор фирмы–производителя во многом определяет качественные характеристики изделия. Сориентироваться в них можно, прочитав отзывы или углубившись в изучение используемых для деталей материалов.

Ротор или маховое колесо

Существует 2 принципа работы ротора:

Сухой. Трущиеся детали и сам ротор находится в герметично закрытом корпусе, – с водой соприкасаются только лопасти, создающие поток. Такие модели характеризуются высокой мощностью, эффективностью, но более чувствительны к механическому загрязнению энергоносителя. Требуется прохождение ежегодной технической профилактики электродвигателя. Кроме того, их установка должна проводиться удалено от жилых комнат из-за повышенного уровня шума.

Циркуляционный насос с сухим ротором – двигатель и нагнетатель расположены в разных корпусах

Мокрый. Наиболее распространенный тип за счет неприхотливости в обслуживании, стоимости и разнообразия моделей. В открытой конструкции движущиеся детали (подшипники, валы, ротор и т. д.) находятся в воде, которая одновременно является для них смазочным материалом и охладителем для двигателя. Используются соответствующие нержавеющие сплавы, прокладки из водостойких материалов. Система менее прихотлива к механическим примесям в энергоносителе, а срок службы бытового прибора рассчитан на 7 лет.

В насосе с мокрым ротором двигатель и нагнетатель расположены в одном корпусе

Кавитация в отопительной системе и в системе водоснабжения

Кавитация – это такой процесс, во время которого в отопительной установке благодаря уменьшению давления образуются молекулы пара. Такой процесс имеет место в том случае, если в трубах снизится или повысится скорость потока жидкости.


Кавитация в системе отопления

Если отопительная система характеризуется слишком низкими или слишком высокими температурами, то такое явление может сказаться отрицательным образом. Пар, который образуется, собирается в пузырьки, и если они лопаются, то, тем самым, наносят повреждение материалу, из которого изготовлены трубы или другие компоненты системы отопления.

Если у вас не получается самостоятельным образом произвести такие операции, как как рассчитать насос для отопления, или вы сомневаетесь в их правильности, то лучше доверить это дело профессионалу в данной области. Специалист не только поможет с выбором помпы или произведением расчетов, но также займется непосредственно и установкой насоса.

Принцип работы циркуляционных насосов

Задача, которую призваны выполнять циркуляционные насосы для отопления частных домов, относительно проста. Создавая в трубах с теплоносителем избыточное давление, агрегат принудительно заставляет его циркулировать, тем самым обеспечивая доставку необходимого количества тепловой энергии во все помещения дома. Наличие такого нагнетателя позволяет не только уменьшить диаметры труб отопительных контуров, но и проложить их наиболее удобным способом и даже с учетом особенностей интерьера.

В настоящий момент существуют такие виды циркуляционных насосов:

  • с сухим ротором;
  • с мокрым ротором.

Насос с сухим ротором представляет собой обычный электродвигатель, на валу которого установлена крыльчатка, размещенная в герметичном корпусе. То есть, в этом агрегате перекачивающий узел и привод размещены отдельно и, конечно же, ротор электродвигателя никак не соприкасается с теплоносителем. В силу своих характеристик данные нагнетатели используются там, где нужна значительная мощность циркуляционного насоса – в тепловых сетях промышленных предприятий или централизованных котельных различных учреждений и организаций.

Мощные циркуляционные насосы для систем отопления с отдельным приводом отличаются внушительными габаритами и высоким уровнем шума, что делает невозможным их применение в частном домостроительстве. В индивидуальных системах устанавливаются агрегаты с мокрым ротором, имеющие совсем малые размеры и практически не издающие шума при работе. В этих перекачивающих устройствах для отопления дома привод и крыльчатка совмещены в одном корпусе. Для герметизации ротор помещен в оболочку из нержавеющей стали и помещен внутрь гильзы из того же материала. Гильза защищает от влаги статор агрегата, вся конструкция показана на рисунке:

Немного о производителях. Один из самых популярных брендов – немецкие циркуляционные насосы WILO. За годы эксплуатации они зарекомендовали себя с наилучшей стороны. Производитель предлагает несколько линеек агрегатов различной мощности и набором функций

Так что при выборе марки насосов стоит в первую очередь обратить внимание на этот бренд. Также широко распространены насосы фирмы GRUNDFOS, но их качество немножко похуже

Рекомендации по установке насосов

При установке насосов в магистраль отопления необходимо соблюдать следующие правила:

  • Агрегат устанавливается таким образом, чтобы его вал занимал горизонтальное положение, направление перемещения теплоносителя должно соответствовать стрелке на корпусе прибора.
  • Крепление подобранного устройства производится разводным сантехническим ключом при помощи резьбового крепежа (накидные гайки от фитингов американка) с прокладками.
  • Подсоединение к системе электроснабжения производится согласно электрической схеме включения, при этом используют три провода сечением не менее 0,75 мм. кв. и внешним диаметром, рассчитанным на уплотнительную муфту в коробке.

Перед первым включением проверяют трубопровод на отсутствие посторонних предметов, герметичность резьбовых соединений, правильность подключения проводов и параметры питающей электросети, убеждаются в том, что краны запорной арматуры открыты.

При включении удаляют воздух из насоса выкручиванием резьбовой пробки, проверяют амперметром силу тока в обмотке электродвигателя (она должна соответствовать данным, приведенным на корпусной маркировке), убеждаются в отсутствии повышенной вибрации и шума при работе агрегата.

Модели насосов Grundfos

Насосы UPS – это агрегаты с циркуляционного типа, с мокрым ротором. На данных моделях применяется двигатель с асинхронным видом действия. Насос укомплектован специальной клеммой коробкой, которая обеспечивает подключение агрегата к электроэнергии. При первоначальном запуске рекомендуется открыть технологическое отверстие и спустить воздух из рабочей камеры насоса. Так же в конструкции предусмотрена возможность ручной прокрутки ротора в случае его закисания. Данные насосы обладают тремя скоростными режимами работ, которые выставляются вручную и обеспечивают устойчивую работу определенных систем.

Насосы новой модели AIpha 2 (L) являются первыми в общей линейки серии. Данный наос обладает более широкими возможностями чем насосы серии UPS. Здесь присутствует электродвигатель, который имеет постоянные магниты на корпусе. Если один из магнитов удалить, что во многих случаях делают русские умельцы, можно значительно сократить энергопотребление агрегата. Так же в новой конструкции отсутствует технологическая гайка для выпуска воздуха. В этой модели происходит автоматический сброс воздуха при кратковременном включении насоса на третьей скорости. Подключение к электропитанию стало проще, это происходит с помощью штекерного разъема. Данная модель обладает уже семью режимами работы. К имеющимся трем прибавилось еще два режима работы с постоянным перепадом давления и два режима пропорционального регулирования.

Работа насоса в режиме постоянного перепада – предполагает устойчивую работу насоса даже в тех случаях, когда в системе происходит изменения расхода жидкости и перепад давления. Создаваемый насосом определенный уровень давления, всегда будет автоматически поддерживается на одном уровне.

Режим пропорционального регулирования – данный режим работы обеспечивает надежное функционирование насоса в случае, когда в системе происходит переменный расход. Данный режим не заменим если в процессе эксплуатации происходит периодическое перекрывание радиаторов, что приводит к возрастанию давления в системе. Происходит автоматическое снижение скорость вращения насоса, в результате расход и напор в системе будет пропорционально уменьшаться. Основных режимов работ все же три. Системы, в которых они применяются;

  • теплые полы,
  • однотрубные системы,
  • тупиковые системы,
  • коллекторные системы,
  • двухтрубные системы,
  • радиаторные системы.

Самой инновационной можно назвать модель AIpha 3. Эту модель можно рассматривать как очень точный инструмент способным одновременно обеспечивать надежную работу всей системы и в тоже время позволяет контролировать расход теплоносителя. Эту возможность можно использовать совместно с приложением Grundfos GO Balance. Наличие этих приложений позволяют производит настройку всей топливной системы на удаленном расстоянии. Данное оборудование можно использовать и для измерения и балансировки всей системы отопления, устанавливая его на место другого циркуляционного насоса, подходящего по своим габаритам и размерам. Особенно хорош насос при балансировке радиаторов, коротких петель в системе теплый пол, а также при малых расходах теплоносителя. Наличие возможности трехкратной градации режимов как постоянного, так и пропорционального напора делают данную модель очень надежной и продуктивной. Ведь как известно, для любого мастера производящим монтаж отопительной системы, очень важным является способность монтируемого оборудования обеспечить нормальный расход теплоносителя, а для заказчика важным является надежность и экономичность данной системе. Циркуляционный насос дает положительный результат обоим. Экономичный и достаточно простой в обслуживании данный насос очень хорошо подходит для обустройства автономного отопления в загородных домах и отдельных квартирах.

Подбор центробежного насоса

Для подбора центробежного насоса используют графическую зависимость напора от подачи, которая индивидуальна для каждой модели и приводится в каталогах производителей.

Методика подбора центробежного насоса зависит от возложенных на него задач. Чтобы подобрать повысительный насос — задаются подачей и с оси абсцисс проводят перпендикуляр на кривую характеристики насоса, полученная рабочая точка определит напор при заданной подаче.

Циркуляционный насос подбирают, накладывая на характеристику насоса, гидравлическую характеристику циркуляционного кольца, отображающую зависимость потерь напора от протекающего расхода. Рабочая точка будет находиться в точке пересечения характеристик насоса и циркуляционного кольца.

Если заданным параметрам соответствует несколько моделей, выбирают менее мощный насос работающий в режиме с большим КПД. Подбирая центробежный насос для сети с изменяющимся расходом воды, лучше отдать предпочтение модели с более пологой напорной характеристикой и широким диапазоном подачи.

Шумовые характеристики, часто становятся преобладающим параметром при подборе насосов для установки в жилых домах. В таких случаях рекомендуется выбрать насос с электродвигателем меньшей мощности и частотой вращения не более 1500 оборотов в минуту.

Напор насосного оборудования циркуляционного типа

Напор создается од действием насосного устройства для того чтобы противостоять гидродинамическим потерям, возникающим в трубах, радиаторах, вентилях, соединениях. Другими словами, напор – величина гидравлического сопротивления, которое агрегат должен преодолеть. Для обеспечения оптимальных условий для перекачки теплоносителя по системе показатель гидравлического сопротивления должен быть меньше показателя напора. Слабый водяной столб не сможет справиться с поставленной задачей, а слишком сильный — может стать причиной возникновения шума в системе.

Расчет показателя напора циркуляционного насоса требует предварительного определения гидравлического сопротивления. Последнее зависит от диаметра трубопровода, а также скорости перемещения по нему теплоносителя. Чтобы рассчитать гидравлические потери, нужно знать скорость движения теплоносителя: для полимерных трубопроводов – 0,5-0,7м/с, для труб, выполненных из металла, – 0,3-0,5м/м. На прямых участках трубопровода показатель гидравлического сопротивления будет находиться в пределах 100-150Па/м. Чем больше диаметр труб, тем меньше потери.

При этом ζ обозначает коэффициент местных потерь, ρ – показатель плотности теплоносителя, V – скорость перемещения теплоносителя (м/с).
Далее необходимо суммировать показатели местных сопротивлений и величины сопротивлений, которые были рассчитаны для прямолинейных участков. Полученное значение будет отвечать минимально допустимому напору насоса. Если в доме сильноразветвленная система отопления, расчет напора следует произвести по каждой ветки отдельно.

    — котел – 0,1-0,2;
    — теплорегулятор – 0,5-1;
    — смеситель – 0,2-0,4.

При этом Hpu – напор насоса, R – потери, которые были вызваны трением в трубах (измеряется Па/м, за основу можно принять значение 100-150 Па/м), L – протяженность обратного и прямого трубопроводов самой длинной ветки или сумма ширины, длины и высоты дома умножена на 2 (измеряется в метрах), ZF – коэффициент для термостатического вентиля (1,7), арматуры/фасонных деталей( 1,3), 10000 — коэффициент пересчета единиц (м и Па).

Оборудование с «сухим» ротором

Данный механизм отличается высоким уровнем КПД. Этот показатель доходит до 80%, что позволяет использовать данное оборудование при монтаже отопительных систем в больших и производственных помещениях. При этом непосредственно ротор работает без прямого контакта с жидкостью. Данный тип циркуляционных насосов имеет и ряд значительных недостатков. Главным из которых можно отнести тот факт, что работа насоса требует постоянного контроля за качеством перекачиваемой среды. Оборудование очень восприимчиво к наличию посторонних примесей и воздушных пузырьков, что может привести к нарушению герметичности в уплотнительных кольцах. Высокий шум работающего механизма так же можно отнести к его недостаткам при использовании в системах отопления частных домом и небольших помещений. На данный момент на рынке представлены следующие виды циркуляционных насосов с «сухим» ротором

  • блочные
  • вертикальные, здесь выходные и входные патрубки расположены вертикально на одной оси
  • горизонтальные(консольные), здесь оба патрубка перпендикулярно друг другу.

Расчет мощности

Оптимальный выбор насоса определяется по графику пересечения кривых напора и расхода воды, значения которых определяются по внутренним характеристикам отопительной системы или водоснабжения. Выбор будет оптимальным, если насос в выбранной рабочей точке будет работать с лучшим КПД, в этом случаем можно считать расчет мощности насоса отопления выполненным верно.

В такой рабочей точке мощность насоса соответствует потреблению энергии отопительной системой. Если рабочая точка выбрана неверно, то установленный по ней насос будет работать плохо, потребляя более высокую мощность, чем это необходимо и, в конечном счёте, может привести к перегрузке и выходу из строя насоса и всей отопительной системы. В таких случаях приходится выбирать новый более мощный насос.

Рабочая точка насоса

Мощность насоса отопления определяется по формуле:

P2(кВт) = (p * Q * H) / 367 * КПД,

здесь p – плотность воды в килограммах на литр, Q – расход воды в кубометрах в час, H – напор воды в метрах.

Заключение

Использование циркуляционного насосного оборудования позволяет вывести отопительную систему на новый уровень качества работы. Главная выгода от установки этого аппарата в систему заключается в уменьшении затрат энергии на подогрев теплоносителя. Главной же проблемой для потребителя является правильный выбор насосного оборудования, где следует учитывать множество параметров. Но определяющими здесь будут выступать потребности в тепле для конкретного помещения.

Учитывая же, что процедура подсчета параметров для насоса отличается достаточной сложностью и требует учета других характеристик, рекомендуется поручать эту работу квалифицированным специалистам. Это же касается и установки самого насоса. Соблюдая эти две рекомендации, можно быть уверенным, что владелец сумеет не только сэкономить на отоплении, но и всегда поддерживать в помещении наиболее комфортный тепловой режим.

Кавитация гидравлического насоса | Проблемы с водой HVAC Лучшие советы 101

Кавитация в гидронасосе — Кавитация в насосе может вызвать серьезные проблемы в насосе, если ее не устранить и не устранить. Чтобы понять причину кавитации, вам необходимо понять соотношение давления и температуры жидкости в контуре. Будь то вода или смесь воды и гликоля. Когда вода проходит через насос, она изменяет давление со стороны всасывания на сторону нагнетания насоса.

Если статическое давление воды падает, образуется слишком много пара, вызывая крошечные пузырьки в воде или жидкости в контуре, проходящем через насос.Эти пузырьки нестабильны и схлопываются, вызывая сильную турбулентность внутри подшипникового узла и может повредить рабочее колесо.

Кавитация гидравлического насоса | Проблемы с водой в системе отопления, вентиляции и кондиционирования воздуха

Кавитация часто возникает, когда слышны хлопки и потрескивания, проходящие через насос. Кавитация также может звучать так, будто насос качает камни через крыльчатку. Эти необычные шумы являются результатом схлопывания этих крошечных пузырьков.

По мере образования этих пузырьков насос теряет способность создавать необходимый напор для продолжения циркуляции жидкости через контур.Решите проблему, и шум исчезнет вместе с продленным сроком службы насосной системы.

Помимо повреждения рабочего колеса внутри кавитация также приводит к сокращению срока службы насоса. Кавитация вызывает ускоренный износ подшипников и уплотнений, увеличивая время простоя для обслуживания и ремонта. Это в сочетании с повышенными эксплуатационными расходами делает кавитацию серьезной проблемой, если насос остается в работе без решения проблемы по какой-либо причине.

Всегда устраняйте кавитацию, решая проблему с сердечником, и избегайте быстрых временных решений.Когда кавитация неизбежна, следует использовать специальные насосы, подшипники и рабочие колеса вместе с усиленным основанием насоса и крепежными деталями для отклонения вибраций, вызванных кавитацией.

Кавитация гидравлического насоса | Проблемы с водой в системе отопления, вентиляции и кондиционирования воздуха — причины кавитации

Плохо спроектированные гидравлические контуры, негабаритные насосы и эксплуатация жидкости контура при более высоких, чем расчетные, температурах являются частыми причинами кавитации в водяных контурах. Обычно кавитация возникает при высоких расходах, но может возникать и при низких расходах.Эти проблемы возникают, когда давление всасывающей головки падает ниже давления пара перекачиваемой жидкости. Проблемы, вызывающие кавитацию:

  • Слишком высокая температура жидкости
  • Гидронный контур засорен или забит. Проверьте сетчатые фильтры (особенно на стороне всасывания), ручные клапаны или другие проблемы, которые могут препятствовать потоку в гидравлическом контуре.
  • Насос увеличенного размера
  • Воздух в контуре
  • Внутренняя рециркуляция — это проблема внутри рабочего колеса, из-за которой внутри подшипникового узла развиваются схемы внутренней рециркуляции.Скорость жидкости в схемах рециркуляции увеличивается до тех пор, пока жидкость не испарится, вызывая кавитацию.
  • Турбулентность — слишком сильная турбулентность имеет тот же эффект внутренней рециркуляции, о котором говорилось выше.

Если у вас есть проблема с кавитацией гидравлического насоса, просмотрите список, чтобы решить эту проблему. Увеличьте давление всасывания или понизьте температуру жидкости и проверьте рабочее колесо на предмет необычного износа или проблем. Решите проблему кавитации гидравлического насоса и предотвратите серьезное повреждение гидравлического контура и насосной системы.

Кавитация гидравлического насоса | Проблемы с водой HVAC

Ресурсы для газового отопления

Газовое отопление для печей и котлов Основы

Связанные

— Что такое кавитация насоса?

Есть две проблемы, когда у вас есть система, работающая при давлении ниже нейтрального, что вызывает кавитацию. 1 — газы, выходящие из раствора создание воздушных карманов (см. Закон Генри) и 2 — испарение.Оба они очень похожи.

Чтобы это имело смысл, вам нужно знать, что Определение нейтрали — это не давление на полпути между положительной стороной насоса и отрицательной. Это гидростатическое давление. (Давление при выключенном насосе)

Вода в системе всегда будет пытаться найти равновесие. Теперь есть два способа, которыми он попытается найти равновесие: один — через абсорбцию газа относительно его парциального давления и температуры воды (частицы воздуха покидают и попадают в систему). система, хотя закон Генри), а вторая часть находит равновесие давления пара.

Частицы воды вообще покидают воду в результате испарения температуры (даже льда), а также повторно конденсируются с аналогичной скоростью. Когда вы нагреваете жидкость, ее молекулы становятся более энергичными, разрушают межмолекулярные силы (imf) и испаряются. Если вы запечатаете В верхней части кастрюли вы создадите давление пара над водой. более высокое давление пара приведет к большей повторной конденсации обратно в жидкую фазу. Если вы снимете эту крышку, вы увидите, что затяжка отключается. пар, поскольку давление сбрасывается, а вода испаряется из-за более низкого давления выше.Закройте крышку, чтобы пропарить пар, и начнется цикл испарения и конденсации.

Этот цикл всегда происходит, только в разной степени. и чем больше изменяется температура, тем больше она выходит из равновесия, поэтому вы увидите больше конденсации или испарения.

Точка кипения. «Точка кипения — это то место, где пар давление равно атмосферному ». Вот почему вода кипит при 100 ° C на уровне моря, 69 ° C на Эвересте и 101,1 ° C на Мертвом море (ниже уровня моря). Если вы поместите воду комнатной температуры под колокол и создайте вакуум, вы вскипятите воду комнатной температуры.. Затем он замерзнет, ​​но это другой процесс. (Тройная точка)

Однако это относится к кипячению воды на открытом воздухе. контейнер. Так что, если мы закроем контейнер? .. Лучше сказать, что «точка кипения — это когда давление пара равно давлению воды»

Следует также помнить, что пар является газом и может сжимается, как и любой другой газ, с небольшой разницей давления, тогда как вода резко увеличивает давление при сжатии, хотя не сжимается буквально.

Теперь, когда ваша система статична, она найдет равновесие. с разреженным воздухом и давлением пара. Когда вы включаете насос и бойлер, вы изменяете две характеристики: температуру и давление. Когда вода проходит через бойлер, температура увеличивается, что способствует испарению, но лишь незначительно увеличивает давление пара при сжатии газа. Когда вода проходит через насос, давление также увеличивается, поэтому вода остается в При реальном равновесии, когда давление в воде упадет ниже статического (нейтрального), у вас будет повышенное давление пара из-за нагретой воды и пониженное давление воды из-за сопротивление в системе и сила насоса.

После падения ниже нейтрали перепад давления между давлением пара и водой смыкается, когда вы достигаете загадочной точки, где «давление пара соответствует давлению воды», межмолекулярные силы молекул воды разрушаются, и вы получаете испарение!

Наряду с этим, как упоминалось ранее, чем выше Температура жидкости в сочетании с низким давлением выведет газы из раствора.

Это кавитация.

Чтобы избежать этого, установите расширительный бачок как можно ближе к поз. к отрицательной стороне помпы.

Написано Адамом Чепменом, специалистом по экотехнике

Www.chapmanplumbers.com

Предотвращение кавитации насоса в вашей системе нагрева теплоносителя

Кавитация значительно увеличивает износ ваших гидравлических насосов и регулирующих клапанов, что приводит к сокращению срока службы машины и низкой эффективности потока. Таким образом, предотвращение дорогостоящих последствий кавитации насоса в системах нагрева теплоносителя или горячего масла во многом зависит от знания того, как диагностировать и предотвращать это.

Что такое кавитация?

Кавитация возникает, когда воздух, пар или пары теплоносителя захватываются жидкостью. Результатом является помпаж насоса, и это следует исправить как можно скорее.

Процессы на водной основе — одна из наиболее частых причин кавитации. Жидкая вода и водяной пар содержат одинаковое количество молекул. Однако молекулы водяного пара имеют более высокий уровень энергии, что увеличивает объем, необходимый для их безопасного содержания. Если кипящие пузырьки лопаются из-за недостаточного давления, они создают энергетическую ударную волну, которая вызывает помпаж насоса или кавитацию.

КАК ДИАГНОСТИКА И УСТРАНЕНИЕ КАВИТАЦИИ В СИСТЕМАХ ТЕХНОЛОГИЧЕСКОГО НАГРЕВА

К счастью, кавитация проявляет четкие предупреждающие признаки, прежде чем она станет проблемой, угрожающей предприятию. Некоторые из симптомов кавитации включают

  • Пониженный расход или давление: Когда насос производит меньший объем потока или давление, чем ожидалось, это может быть результатом образования полостей во внутренних компонентах.
  • Шум: Кавитация может вызвать треск или треск в вашем оборудовании.Кавитация корпусов крыльчатки может звучать так, как будто в них вращаются незакрепленные шарикоподшипники.
  • Неожиданные вибрации: Большинство насосов и оборудования испытывают некоторую степень вибрации во время работы; однако резкие или неожиданные вибрации могут быть результатом кавитации.
  • Неисправность уплотнения или подшипника: Если вам необходимо заменить вышедшие из строя или протекающие уплотнения раньше или с большей частотой, чем ожидалось, вероятной причиной является кавитация.

ВИДЫ КАВИТАЦИИ

Кавитация может возникать как в системах с теплоносителем, так и в системах с горячим маслом, и каждый тип имеет свои уникальные симптомы и причины.Несколько распространенных типов кавитации включают:

  • Испарение: Также известное как классическая кавитация, испарение происходит при увеличении скорости и понижении давления, что вызывает кипение и испарение жидкости в насосе
  • Всасывание воздуха: Этот тип кавитация возникает из-за различных проблем, связанных с всасыванием воздуха в насос или трубопровод
  • Турбулентность: Турбулентные потоки могут возникать, когда такие элементы конструкции, как острые изгибы, неподходящие трубопроводы / фильтры / сетчатые фильтры или другие ограничения потока в системе, создают завихрения на всасывании насоса

КАК ПРЕДОТВРАТИТЬ ИЛИ ИСПРАВИТЬ КАВИТАЦИЮ

Есть много способов исправить кавитацию.Мы излагаем их ниже вместе с некоторыми общими рекомендациями о том, как в первую очередь предотвратить кавитацию:

  • Правильный насос и правильная работа: Используйте лучший насос для вашего конкретного применения и запускайте его с максимальной эффективностью (BEP) .
  • Более низкие рабочие температуры: Уменьшайте рабочие температуры по мере увеличения высоты над уровнем моря, чтобы предотвратить закипание.
  • Надлежащие уровни NPSH: Поддерживайте надлежащий чистый положительный напор на всасывании (NPSH), придерживаясь следующей формулы: NPSHa> NPSHr + 3 фута (или немного больше для запаса прочности), где NPSHa = абсолютное NPSH и NPSHr = требуется NPSH.

Поскольку компоненты насоса со временем изнашиваются или получают повреждения в результате кавитации, соблюдение этих рекомендаций может стать более трудным. В этих обстоятельствах может быть лучше рассмотреть вопрос о замене насосов и связанных с ними деталей в вашей системе.

ЧТО МОГУТ СДЕЛАТЬ ДЛЯ ВАС ТЕРМИЧЕСКИЕ ЖИДКОСТНЫЕ СИСТЕМЫ?

Опытный персонал Thermal Fluid Systems может помочь вам диагностировать кавитацию в ваших системах технологического нагрева. Мы можем предложить решения, предотвращающие и устраняющие кавитацию в ее источнике.Мы опираемся на более чем 40-летний опыт и можем порекомендовать и установить правильные насосы, клапаны и аксессуары для вашей работы. Наша цель — предоставить высококачественное обслуживание и запасные части для вашей системы масляного отопления.

Свяжитесь с нами, чтобы узнать больше о том, как Thermal Fluid Systems может помочь вам предотвратить или устранить кавитацию насоса на вашем предприятии.

Кавитационный реактор и технология интенсификации процессов

Есть ли у вас устройства для аренды?

Да, делаем.

Устройства SPR какого размера вы предлагаете?

Мы производим стандартные устройства от 1 л / мин до 2000 галлонов в минуту.

Может ли SPR работать с твердыми частицами?

Да, при условии, что был выбран соответствующий SPR с соответствующими зазорами, чтобы позволить твердым частицам проходить. Для образования кавитации сыпучий продукт должен вести себя как жидкость.

С какой максимальной вязкостью может работать SPR?

Если вы можете прокачать его через SPR, мы сможем его обработать.Размер двигателя и другие параметры, возможно, придется отрегулировать, но мы обрабатывали такие вязкие вещи, как зубная паста, жидкая ртуть и т. Д. растворы с 90% твердых веществ.

Могу ли я использовать вашу технологию для обогрева дома, нагрева воды, производства пара и т. Д.?

Технически да, но это экономично только при наличии смягчающих обстоятельств. Технология SPR может нагревать воду очень эффективно (90% +), но редко. финансово выгодный. Для нагрева текучей среды в текучую среду должна подаваться энергия, и это количество энергии является постоянным независимо от используемой технологии.SPR чаще всего использует электродвигатель для подачи необходимой энергии в отличие от горения. В настоящее время природный газ (обычное топливо для стандартных котлов) стоит по исторически низким ценам, которые прогнозируется, что будет сохраняться в течение многих лет. Сегодня, когда цены на природный газ и электричество равны, стоимость природного газа обычно составляет лишь небольшую часть цены. SPR — это Кроме того, это высокоточная технология с высокой частотой вращения, которая почти всегда дороже по сравнению с простыми котлами аналогичного размера.

Текущие цены в нашем родном штате Джорджия на 1 миллион британских тепловых единиц энергии (эквивалент 293 кВт) составляют 1,64 доллара за природный газ и 29 долларов за электричество (при условии, что 0,10 долл. США / кВт · ч) с сопоставимой эффективностью.

Поэтому мы обычно считаем, что SPR не самый экономичный способ нагрева относительно чистой и чистой воды как с точки зрения капитальных затрат, так и с точки зрения эксплуатационных затрат. Как правило, водяное отопление будет дешевле обычного бойлера, однако существуют смягчающие обстоятельства, при которых эта надбавка может иметь смысл, например:

  1. Продукты, в которых образование накипи и обрастания требует частого отключения
  2. Нагревание нечистых жидкостей и жидкостей твердыми телами
  3. Нагрев вязких жидкостей
  4. Обогрев при необходимости одновременного перемешивания
  5. Обогрев без пламени или автономный требуется

Какой размер SPR мне нужен для нагрева жидкости?

Используя стандартную термодинамику, вы можете разделить потребность в БТЕ на 2545, и это преобразует его в механическое значение в HP.Например, типичный домашний водонагреватель составляет 40 000 БТЕ. Если вы разделите это на 2545, чтобы преобразовать в л.с., для обеспечения такой же энергии требуется электродвигатель мощностью 15 л.с. Пожалуйста, воспользуйтесь калькулятором ниже, чтобы помочь вам.

Экспериментальное исследование кавитационного теплогенератора для нагрева воды

  • Цзюнь, Цай., Сюньфэн, Ли., И Бинь, Лю (2014). Влияние кавитирующего потока на вынужденную конвективную теплопередачу: модельное исследование. Китайский научный бюллетень, 59 (14): 1580-1590.

  • Сивакумар, М., & Пандит, А. Б. (2002). Очистка сточных вод: новый энергоэффективный гидродинамический кавитационный метод. Ультразвуковая сонохимия, 9: 123-131.

  • Чанд, Р., Бремнер, Д. Х., Намкунг, К. К., Коллиер, П. Дж., И Гогейт, П. Р. (2007). Обеззараживание воды с использованием нового подхода с использованием озона и жидкостного свистящего реактора. Журнал биохимической инженерии, 35 (3), 357-364.

  • Келкар, М. А., Гогейт, П. Р., и Пандит, А. Б. (2008). Интенсификация этерификации кислот для синтеза биодизеля с помощью акустической и гидродинамической кавитации.Ультразвуковая сонохимия, 15 (3), 188-194.

  • Парк К. А. и Берглес А. Э. (1988). Ультразвуковое усиление кипения насыщенных и недогретых бассейнов. Международный журнал тепломассообмена, 31 (3), 664-667.

  • Цай, Дж., Хуай, X., Ян, Р., и Ченг, Ю. (2009). Численное моделирование усиления естественной конвекции теплопередачи за счет акустической кавитации в квадратном корпусе. Прикладная теплотехника, 29 (10), 1973–1982.

  • Пуркарими, З., Резаи, Б., & Ноапараст, М. (2017). Эффективные параметры генерации нанопузырьков кавитационным методом для пенной флотации. Физико-химические проблемы переработки полезных ископаемых, 53 (2).

  • Ли Цуйси, Ян Чжун (2008). Анализ кавитации криогенной жидкости, проходящей через изогнутую трубу. Криогенная инженерия, (2): 4-9.

  • Чжу, Цзякай, Ван, Ихао и Ю, Лю и др. (2018). Визуализационное экспериментальное исследование нестационарного процесса кавитации жидкого азота.Криогенная инженерия, (2): 1-6.

  • Левцев А.П., Макеев А.Н., Кудашева О.В. (2017). Кавитатор для тепловыделения в жидкости: RU2015145776A. Дата публикации патента: RU2015145776A.

  • Что такое кавитация? — CPE Systems Inc.

    Странная взаимосвязь между давлением и состоянием

    Вы, наверное, уже знаете, что температура кипения воды составляет 100 ° C (212 ° F), но вы можете не знать, что это верно только тогда, когда вода находится под давлением 1 атмосфера.Если вы варите пиво на вершине горы. Эверест, где атмосфера более разреженная, вода закипает при температуре ~ 73 ° C (163 ° F). Давление и температура тесно связаны. При разном давлении вода кипит по-разному, и меньшее давление требует меньше тепла для ваших жидкостей, чтобы приблизиться к фазовому переходу. Фактически, при 0 атмосфер вода закипает при температуре около 20 ° C (70 ° F).

    Это может показаться не более чем мысленным экспериментом, но ваша пивоваренная система все время меняет давление, и в результате испарение воды может серьезно повредить ваши насосы и оборудование.

    • Когда жидкости движутся, особенно когда они толкаются гребным винтом или крыльчаткой, возникают области высокого и низкого давления.
    • Это также происходит, когда жидкости сжимаются через сужение, такое как клапан. В этом сценарии высокое давление создается у входа в отверстие, а низкое — только внутри.
    • Когда жидкости меняют направление — например, в изгибе — могут возникать зоны высокого и низкого давления.

    В большинстве случаев эти сценарии не являются проблемой. Однако, когда вы их комбинируете, особенно при перекачивании чего-либо с высокой температурой (например, горячего сусла), эти давления и / или температуры приводят к кавитации — образованию пузырьков в жидкости.

    Распознавание кавитации

    Кавитацию можно распознать по знакомому звуку кипения, который иногда называют «серьезным» или «похожим на мрамор». Это происходит из-за пузырьков, которые образуются и взрываются по всей системе. Эти пузырьки переносятся в секцию системы с повышенным давлением (или отсутствием вакуума), где они снова сжимаются, превращаясь в жидкость. Парообразное состояние материалов, особенно воды, занимает во много тысяч раз больше объема, чем жидкое состояние, поэтому схлопывание пузырька пара приводит к впечатляющей ударной волне, которая может создавать давление до 1000 фунтов на квадратный дюйм.

    Эти пузыри схлопываются, как сверхновая, сначала принимая форму тора, а затем выстреливая «микроструи» со значительной мощностью. Как взрывное действие, так и микроструи могут повредить оборудование, обычно поверхность крыльчатки, удаляя большие куски материала и / или очень маленькие кусочки, создавая губчатые повреждения. Это также означает, что в вашем продукте теперь есть металл!

    Есть два общих типа кавитации, которые влияют на насосы: кавитация на всасывании и кавитация на нагнетании.

    Всасывающая кавитация

    Всасывающая кавитация возникает из-за низкого давления в проушине рабочего колеса из-за отсутствия потока — возможно, из-за плохого соединения, слишком маленького шланга или проблемы в вашей линии. Они врезаются в крыльчатку, отламывая как большие куски, так и текстуру повреждений губки.

    Кавитация нагнетания

    Кавитация на нагнетании возникает, когда насосу не удается вытолкнуть жидкость — например, если подача слишком мала или есть застревание в линии.Это заставляет жидкость циркулировать внутри корпуса насоса. При небольшом зазоре между рабочим колесом и корпусом насоса жидкости движутся очень быстро, возникает разрежение и возникает кавитация. Это вызывает преждевременный износ наконечников лопастей рабочего колеса и корпуса насоса. Это также может привести к выходу из строя механического уплотнения и подшипников.

    Предотвращение кавитации

    Предотвращение кавитации означает размышление о том, где в вашей системе создается давление, а затем предотвращение всего, что может увеличить давление или увеличить нагрев.Однако следует помнить о нескольких простых приемах:

    • Шланги на стороне всасывания должны быть большими и короткими.
    • Никогда не пытайтесь отсосать через фильтр, теплообменник или другое оборудование.
    • Ваши всасывающие шланги и линии всегда должны быть такого же размера или больше, чем входное отверстие вашего насоса. Сделайте их как можно короче.

    Если вы уже испытываете кавитацию:

    • Осмотрите свои шланги и фитинги, чтобы убедиться, что путь, по которому жидкость попадает в насос и из него, не перекрывается.
    • Проверьте фильтры и сетчатые фильтры, так как засорение с обеих сторон насоса может вызвать дисбаланс давления.
    • Обратите внимание на кривую вашего насоса с помощью расходомера или манометра.
    • Избегайте резких углов непосредственно перед впускным отверстием помпы.
    • Учитывайте расстояние от резервуара или чайника до помпы, чтобы жидкости достаточно охлаждались.

    Кавитационные нагреватели

    С технической точки зрения кавитационные нагреватели — это просто устройства, которые преобразуют механическую энергию в тепловую энергию в рабочей жидкости.Обычная конструкция представляет собой очень неэффективный центробежный насос. Преобразование энергии в кавитационном нагревателе имеет хорошо известные преимущества в промышленных применениях, где рабочая жидкость может быть повреждена при контакте с нагревательными элементами со значительным перепадом температур.

    Например, в некоторых приложениях пищевой и химической промышленности, где некоторые составляющие жидкости могут выходить из раствора на поверхности теплопередачи (как при минерализации в водонагревателях и бойлерах) или где требуется нагревание по требованию (например, в воде для жилое или коммерческое использование).Известные коммерческие поставщики обслуживают эти промышленные рынки. -источник.

    Есть несколько компаний, которые разработали кавитационные устройства, пожалуйста, перейдите по ссылке выше, чтобы увидеть список компаний, которые в настоящее время поставляют кавитационные продукты.

    Однако возможно более эффективное использование кавитационной технологии. В частности, за счет вращения ротора с отверстиями, который почти мгновенно создает горячую воду или пар. В результате этот процесс производит на 70% больше энергии, чем было вложено в систему.

    Обнаружение гидроудара без топлива.

    В Риме, штат Джорджия, Джим Григгс из Hydrodynamics, Inc продемонстрировал сборку и работу «гидрозвукового водяного насоса», который работал сверх единицы, производя горячую воду или пар с энергией, превышающей электрическую энергию, подводимую к двигателю насоса. «Чрезмерное единство» было подтверждено довольными заказчиками, включая пожарную станцию ​​Олбани, куда были приглашены инженеры из «местного университета» и «местной энергетической компании» для проверки эффективности выше 100%.

    Раскрытие видео

    Quote — Гидрозвуковой насос Джеймса Григгса уже продается клиентам, регулярно обеспечивая их сверхмощной энергией. Консультант по энергоэффективности из Джорджии, Григгс изобрел насос в результате своего любопытства к обычному явлению, называемому гидроударом или кавитацией. Григгс заметил, что тепло исходит от жидкости, которая быстро течет по трубам бойлера, вызывая падение давления воды в части трубы.Пузырьки, образующиеся в областях с низким давлением, схлопываются, когда их переносят в области с более высоким давлением. Возникающие в результате ударные волны сталкиваются внутри трубы, вызывая эффект гидроудара.

    Насос

    Григгса состоит из цилиндрического ротора, который плотно прилегает к стальному корпусу. Когда ротор вращается, вода проталкивается через мелкое пространство между ротором и корпусом. В результате ускорение и турбулентность, создаваемые в зазоре, каким-то образом нагревают воду и создают пар. В 1988 году эксперт по испытаниям обнаружил, что тепловая энергия, выделяемая гидрозвуковым насосом, была на 10–30% выше, чем энергия, используемая для вращения ротора.

    В 1990 году Григгс основал компанию Hydrodynamics, Inc. Он и его партнер вложили в этот бизнес более миллиона долларов. Продаваемые ими агрегаты не только более эффективны, чем стандартные котлы, но и требуют меньшего обслуживания. Они самоочищаются и устраняют проблему накопления минералов, снижающего эффективность стандартных котлов. Джорджия Пауэр и отдел гражданского строительства Технологического института Джорджии в настоящее время проводят исследования насоса.

    Новое кавитационное устройство, подобное машине Григгса, теперь доступно для испытаний, научных исследований и приобретения исследовательскими лабораториями. Это

    «Кинетическая печь» компании Kinetic Heating Systems, Inc., Камминг, Джорджия. Печь, изобретенная совместно Юджином Перкинсом и Ральфом Поупом, представляет собой тепловыделяющее вращающееся кавитационное устройство, на которое изобретатели получили четыре патента США, последний из которых был выдан в 1994 году.Многочисленные независимые компании и агентства по тестированию обнаружили одинаковую производительность, превышающую единицу: коэффициент производительности или C.O.P. (отношение выходной мощности к входной мощности) в диапазоне от 1,2 до 7,0, при этом наиболее типичная работа находится в диапазоне от 1,5 до 2,0. Доктор Маллов и Джед Ротвелл из Infinite Energy недавно подтвердили наличие избыточного тепла в предварительных испытаниях на месте.

    Реакции, ответственные за избыточную энергию в устройстве Перкинса-Поупа, могут быть новыми ядерными реакциями или открытием резервуаров энергии, которые некоторые называют новыми энергетическими состояниями водорода или энергией нулевой точки.По словам доктора Маллова, невозможно, чтобы устройство можно было объяснить химической энергией или «накопительной энергией». -Конец цитаты. Ссылка на сайт.

    В 2002 году было показано, что теплогенератор Akoils (VHG) может производить дешевую тепловую энергию и горячую воду. Теплогенераторы имеют коэффициент преобразования энергии (электрическая — механическая — тепловая), который намного превышает 100%.

    Веб-сайт.

    Изготавливают универсальные экологически чистые установки с очень низким потреблением электроэнергии и высоким выходом тепловой энергии (коэффициент преобразования электрической энергии в тепловую более 100%), работающие без нагревательных устройств, предназначены для систем отопления промышленных предприятий, жилищно-коммунальное хозяйство и частные дома.

    Этот доступный прототип доказывает, что вихревой теплогенератор (VHG) может производить больше тепловой энергии, чем потребляемой электроэнергии.

    Несмотря на то, что у этих людей есть работающее доступное устройство, эта научная находка не получила признания преподавателей, и они, кроме того, не могут заставить преподавателей представить и принять эти открытия.

    Их вклады нуждаются в поддержке среды научных исследований и разработок, чтобы процветать, и они будут поддержаны грантом и представлены в исследованиях преподавателей в предлагаемом центре исследований и разработок Panaceas.

    Если вы являетесь членом общества или научной группы, которая может помочь в грантах для центра или в исследованиях кавитации, пожалуйста, свяжитесь с Panacea.

    Примечание. Кроме того, разработанная компанией Panacea технология Roto Verter с открытым исходным кодом также может значительно повысить эффективность этой технологии.

    Ссылки на исследования


    Ссылка

    Ссылка

    Ссылка

    Ссылка

    Ссылка

    Ссылка

    Ссылка

    Ссылка

    Ссылка

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *