Классификация трансформаторов тока – типы, принцип действия, схема, устройство

Содержание

Классификация трансформаторов тока | Заметки электрика

Добро пожаловать на страницы сайта «Заметки электрика».

В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.

Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди  них, необходимо их классифицировать.

Вот сегодня мы и поговорим об их разновидностях и классификации.

Классификация ТТ по назначению

Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.

Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.

Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).

Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.

Классификация трансформаторов тока по месту установки

По месту установки трансформаторов тока их можно классифицировать следующим образом:

  • наружные

  • внутренние

  • встроенные

  • переносные

  • специальные

Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.

На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).

Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.

Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.

Вот установка высоковольтного трансформатора тока  ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.

На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).

Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).

А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.

Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.

Пример встроенных ТТ Вы можете посмотреть на фотографии ниже. Эти трансформаторы тока ТВТ встроены в бак силового трансформатора 110/10 (кВ) мощностью 40 (МВА). Они установлены на стороне 110 (кВ) и основная цель их установки — это осуществление дифференциальной защиты трансформатора.

Переносные ТТ применяются для  лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.

Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.

Разделение ТТ по способу установки

По способу установки трансформаторов тока их можно классифицировать следующим образом:

  • проходные

  • опорные

Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания).  Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.

Как видно по фотографиям, проходные трансформаторы тока легко узнать по особенностям расположения выводов первичной обмотки. Один вывод всегда расположен вверху, другой — внизу.

Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.

Отличительной особенностью опорных трансформаторов тока является то, что вывода первичной обмотки располагаются либо все вверху, либо один вывод слева, другой — справа.

Классификация трансформаторов тока по коэффициенту трансформации

В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?

Трансформаторы тока бывают:

  • с одним постоянным коэффициентом трансформации (одноступенчатые)

  • с несколькими коэффициентами трансформации (многоступенчатые)

Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и  эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.

У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.

Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.

Классификация трансформаторов тока по первичной обмотке

По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:

Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.

Разделение ТТ по типу изоляции

Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:

  • твердая изоляция
  • вязкая изоляция
  • смешанная изоляция
  • газовая изоляция

Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).

Вязкая изоляция состоит из компаундов различных составов.

Под смешанной изоляцией понимают бумажно-масляную изоляцию.

В качестве газовой изоляции применяется воздух или элегаз.

Классификация ТТ по методу преобразования

Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.

Различают следующие методы преобразования:

Классификация трансформаторов тока по классу напряжения

Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:

Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.

 

Выводы

Из опыта эксплуатации и технического обслуживания трансформаторов тока на подстанциях своего предприятия скажу, что чаще всего трансформаторы тока с классом напряжения от 3-10 (кВ) выполняются проходными, реже опорными. Все они предназначены для внутренней установки и имеют один коэффициент трансформации. Также у них используется 2 вторичные обмотки, одна из которых используется для цепей измерения и учета электроэнергии, а другая — для релейной защиты.

P.S. Если Вам необходимо узнать все классификационные характеристики конкретного трансформатора тока, то воспользуйтесь его паспортом. Если во время прочтения статьи у Вас появились вопросы, то смело задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Измерительные трансформаторы тока: назначение, устройство, схемы

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: I
    НОМ1
    /IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider Electric
  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

www.asutpp.ru

устройство, классификация, принцип работы, видео

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

  1. силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу. Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем. Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже: Потери намагничивания обуславливают некоторую погрешность в классах точности. Погрешность определяется: конструкцией магнитопровода; проницаемостью стали; коэффициентом мощности, т.е. зависит от вторичной нагрузки. Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения Классификация трансформаторов напряжения Трансформаторы напряжения принято разделять по следующим признакам: По количеству фаз: однофазные; трехфазные. По числу обмоток: 2-х-обмоточные; 3-х-обмоточные. По способу действия системы охлаждения: электрические устройства с масляным охлаждением; электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие). По способу установки и размещения: для наружной установки; для внутренней; для комплектных РУ. По классу точности: по нормируемым величинам погрешностей. Виды трансформаторов напряжения Рассмотрим несколько трансфомраторов напряжения разных производителей: Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11 Производиель — Невский трансформаторный завод «Волхов». Назначение и область применение ЗНОЛ-НТЗ Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции. Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх. Рисунок — Габаритные размеры трансформатора Рисунок — схемы подключения обмоток трансформаторов Характеристики: Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27 Наибольшее рабочее напряжение, кВ — 30 40,5 40,5 Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5 Номинальное напряжение основной вторичной обмотки, В — 57,7 100 Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127 Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3 Ещё одно интересное видео о работе трансформаторов тока: Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И) Производитель «Свердловский завод трансформаторов тока» Назначение 3хЗНОЛПМ(И) Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью. Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150. Рабочее положение — любое. Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора. Трехфазная группа может комплектоваться в 4-ех вариантах: из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10; из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10; из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10; из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10. Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А. Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа. Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя. Срок службы — 30 лет. НАМИТ-10-2 Производитель ОАО «Самарский Трансформатор» Назначение и область применения Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий Технические параметры трансформатора напряжения НАМИТ-10-2 Номинальное напряжение первичной обмотки, кВ — 6 или 10 Наибольшее рабочее напряжение, кВ — 7,2 или 12 Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110) Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3 Класс точности основной вторичной обмотки — 0,2/0,5 Рисунок — Габаритные размеры и схема подключения
  2. Классификация трансформаторов напряжения
  3. Виды трансформаторов напряжения
  4. Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11
  5. Назначение и область применение ЗНОЛ-НТЗ
  6. Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)
  7. Назначение 3хЗНОЛПМ(И)
  8. НАМИТ-10-2
  9. Назначение и область применения
  10. Технические параметры трансформатора напряжения НАМИТ-10-2

силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

Погрешность определяется:

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

Трансформаторы напряжения принято разделять по следующим признакам:

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:


Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.


НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2
  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

pue8.ru

классификация и устройство преобразователей напряжения и тока

Измерительный трансформатор — электромагнитное устройство, установленное в контролируемую электрическую цепь и предназначенное для измерения и наблюдения за показаниями напряжения, тока или фазы. В основном применяется в случаях, когда невозможно произвести измерения электрических показателей непосредственным подключением измерительных приборов. Рассчитывают их таким образом, чтобы обеспечить минимальное влияние на измеряемую цепь.

Устройство электрических аппаратов

Основным назначением измерительных трансформаторов является понижение первичного тока до значения, позволяющего осуществить подключение электрических измерительных приборов, защитных систем и т. д.

Кроме этого, они обеспечивают гальваническую развязку между высоким и низким напряжением, позволяющую безопасно работать обслуживающему персоналу. Состоит этот аппарат из следующих составляющих:

  • первичной обмотки с рассчитанным количеством витков;
  • вторичной обмотки;
  • изготовленного из специальной стали сердечника.

Электрические провода первичной обмотки подключают последовательно к эксплуатируемой цепи, в которой проводят проверку показаний. К проводам вторичной обмотки подключают измерительные приборы, комплекс автоматических устройств для защиты цепи от повреждений, различные системы автоматики и т. д.

Чтобы не происходило коротких замыканий между обмотками и витками в них, обязательно наличие изоляции. А также проводят обязательное заземление вторичной обмотки на случай замыкания между катушками.

Классификация агрегатов

Все аппараты разделяют на измерительные трансформаторы тока и напряжения. Причем токовые устройства существуют двух видов: для постоянного и переменного тока. По методу трансформации их разделяют на преобразователи тока в ток, тока в напряжение и тока в не относящуюся к электричеству функцию (например, световой поток).

При этом трансформаторы разделяют на аналоговые и дискретные (в зависимости от метода получения информации). Все измерительные аппараты классифицируются по следующим признакам:

  • по виду установки;
  • по ее способу;
  • по числу коэффициентов трансформации;
  • по количеству ступеней преобразования;
  • по виду первичной обмотки;
  • по роду изоляции;
  • по принципу трансформации тока.

Эти агрегаты предназначены для работы под открытым небом, в закрытых помещениях. Они бывают непосредственно встроены в электрооборудование и специальные установки (на судах, в шахтах, электровозах и др.).

Непосредственно их устанавливают в проемах стен, потолков или в специальных металлических конструкциях, если они предназначены для использования в качестве ввода. Опорные измерительные преобразователи монтируются на ровную плоскость, а встроенные трансформаторы устанавливают непосредственно в плоскость электрооборудования.

Существуют разновидности аппаратов как с одним коэффициентом трансформации, так и с несколькими, которые получают методом изменения количества витков первичной или вторичной обмотки.

Различают их и по способу изготовления изоляции, которая бывает твердой, вязкой и комбинированной. Все измерительные трансформаторы делятся на электромагнитные и оптико-электронные, в зависимости от способа преобразования тока.

Преобразователи для измерения напряжения

Используются такие аппараты для понижения напряжения в первичном контуре от 6 кВ и выше, до 100 В во вторичной обмотке. Они способны преобразовывать эти показания в первичном контуре в стандартный электрический ток и обеспечивать защиту подключенных электроприборов от перегрузок.

Кроме этого, такие агрегаты обеспечивают обслуживающему персоналу безопасную работу. Эта техника взаимодействует с переменным и постоянным током, а по своему функционированию она приближается к режиму холостого хода, так как не происходит передачи мощности. По своим функциональным действиям эти аппараты практически ничем не отличаются от силовых трансформаторов. Различают несколько их видов:

  1. Заземляемый аппарат — представляет собой преобразователь с одной фазой, находящейся под напряжением и заземленным одним концом первичного контура. В трехфазных агрегатах заземляется нейтральный провод первичной катушки.
  2. Трансформаторы без заземления — все части первичной катушки, в том числе и контакты, изолированы от соединения с землей до рекомендуемого уровня, соответствующего классу напряжения.
  3. Емкостные аппараты — в конструкцию включены конденсаторы, обеспечивающие понижение напряжения.
  4. Каскадные трансформаторы — первичный контур обладает несколькими частями, соединяющимися со вторичным контуром связующими и выравнивающими обмотками.

А также существуют аппараты как с одним вторичным контуром, так и с двумя: основным и дополнительным.

Трансформаторы тока

Этими измерительными преобразователями выполняют ряд особых функций. К ним подключают измерительные приборы, способные снимать показания в различных режимах.

Основными функциями агрегата являются:

  1. Преобразование переменного тока к значениям в 1 или 5 А.
  2. В обычном режиме предохраняет вторичный контур от высоковольтной первичной обмотки.
  3. Работа осуществляется в защитном режиме вторичного контура от перегрузок.

Помимо этого, такие трансформаторы имеют в своей конструкции выпрямители, а вторичные цепи обязательно заземляются в одной точке. Конструктивные особенности этого агрегата запрещают разрывать вторичную цепь, находящуюся под напряжением, так как в этот момент происходит нарушение изоляции, сердечник нагревается и происходит нарушение нормального режима работы.

Перед установкой и запуском измерительного преобразователя, обязательно проводят его проверку. Производят диагностику его работы на всех режимах и проверяют состояние изоляции. В условиях длительной эксплуатации периодически проводят техническое обслуживание агрегатов, что позволяет избежать непредвиденных поломок.

220v.guru

Трансформаторы. Описание, типы, классификация трансформаторов. Измерительные, силовые, импульсные трансформаторы.

Электрический трансформатор - это устройство, предназначенное для изменения величины напряжения в сети переменного тока. Принцип действия трансформаторов основан на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока, в обмотках генерируется магнитное поле, которые взывает ЭДМ во вторичных обмотках. Данная ЭДС пропорциональна числу  витков в первичных и вторичных  обмотках. Отношение электродвижующей силы в первичной обомотке/вторичной называется коэффициентом трансформации.

Основными элементами конструкции трансформатора являются первичные и вторичные обмотки и ферромагнитный магнитопровод (обычно замкнутого типа). Обмотки расположены на магнитопроводе и индуктивно связаны друг с другом. Использование магнитопровода позволяет саккумулировать большую часть магнитного поля внутри трансформатора, что повышает КПД устройства. Магнитопровод обычно состоит из набора металлических пластин, покрытых изоляцией, для предотвращения возникновения «паразитных» токов внутри магнитопровода.
Зачастую часть вторичной обмотки служит часть первичной и наоборот. Данный тип трансформаторов называют автотрансформаторами. В этом случае концы первичных обмоток подключаются к сети  переменного напряжения, а концы вторичной присоединяются к потребителям электроэнергии.

Основная классификация трансформаторов.

  • По назначению: измерительные трансформаторы тока, напряжения, защитные, лабораторные, промежуточные.
  • По способу установки: наружные, внутренние, шинные, опорные, стационарные, переносные.
  • По числу ступеней: одноступенчатные, многоступенчатые (каскадные).
  • По номинальному напряжения: низковольтные, высоковольтные.
  • По типу изоляции обмоток: c сухой изоляцией, компаундной, бумажно-маслянной.

Основные типы трансформаторов 

Силовые трансформаторы - наиболее распространенный тип  электро. трансформаторов.  Они предназначены  для изменения  энергии переменного тока в электросетях энергосистем, в сетях освещения или питания электрооборудования. Применяются для создания комплектных трансформаторных подстанций.
Классифицируются по количеству фаз и номинальному напряжения.
Наиболее известные низковольтные однофазные и трехфазные трансформаторы серии ТП и ОСМ.
Среди высоковольтных трансформаторов, наиболее используемые в данной момент в энергетике,  трансформаторы ТМГ-с масляным охлаждением в герметичном баке.. Преимуществами данной серии вляется высокий КПД (до 99%), высокие показатели защиты от перегрева, высокие эксплуатационные характеристики, и минимальное обслуживание во время использования.
Помимо силовых, существуют трансформаторы различных типов и назначения: для измерения больших напряжений и токов (измерительные трансформаторы), для преобразования напряжения синусоидальной формы в импульсное (пик-трансформаторы), для преобразования импульсов тока и напряжения (импульсные трансформаторы), для выделения переменной составляющей тока, для разделения электрических цепей на гальванически не связанные между собой части, для их согласования и т.д.

Измерительные трансформаторы- электротехнические устройства, предназначенные для изменения уровня напряжения с высокой точностью трансформации.
Классифицируются по назначению, изменению уровня напряжения или тока.
Также делятся на низковольтные трансформаторы тока  типа Т, 066 ТШ-0,66, ТТИ-066 и Высоковольтные трансформаторы напряжения, такие как НАМИТ и ЗНОЛ.
Вторичные обмотки данных устройств соединены с измерительными устройствами (амперметрами, счетчиками электроэнергии, вольтметрами, фазометрами, реле тока и т.д.) Применение данного оборудования позволяет изолировать измеряющее оборудование от больших токов и напряжений измеряемой цепи, и создает возможность стандартизации измеряющего оборудования.

Автотрансформаторы – устройства, обмотки которого соеденены гальванически между собой.  Благодыря малым коэффициентам трансформации,  автотрансформаторы имеют меньшие габариты и стоимость оп сравнению с многообмоточными. Из недостатков необходимо отметить невозможность гальванической изоляции цепей. 
Основные сферы использования автотрансформаторов – изменение напряжения в пусковых устройствах крупных электрических машин переменного тока, в системах релейной защиты при плавном регулировании напряжения.  В случае реализации в конструкции автотрансформатора изменения количества рабочих витков вторичной обмотки, появляется возможность сохранять уровень вторичного напряжения при изменении первичного напряжения. Наибольшее распространение данный  данный механизм используется в стабилизаторах напряжения.

Импульсный трансформатор - это устройство  с ферромагнитным сердечником, используемый для изменения импульсов тока  или напряжения.
Импульсные трансформаторы наиболее часто используются в электронновычислительных устройствах, системах радиолокации, импульсной радиосвязи и т.д. в качестве измерительного устройства в счетчиках электроэнергии.
Основное требование импульсным трансформаторам, - при изменении импульса форма импульса должна сохраняться. Это достигается максимальным уменьшением межвитковой емкости, индуктивности рассеивания за счет использования применением сердечников малой величины, взаимным расположение и уменьшением числа обмоток. 

Пик-трансформатор - устройство, изменяющее  напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.  Пик-трансформаторы применяются в качестве генераторов  импульсов главным, высоковольтных исследовательских установках и системах автоматики..

www.elektro-portal.com

Измерительные трансформаторы тока: особенности применения

Измерительный трансформатор тока — это специальный прибор узкого направления, который предназначен для измерения переменного тока и его контроля. Чаще всего применяется в системах релейной защиты (автоматики) и измерительных приборов. Его использование необходимо тогда, когда непосредственное присоединение прибора для измерения, к электрической сети с переменным напряжением невозможно или небезопасно для персонала обслуживающего его. А также для организации гальванической развязки первичных силовых цепей от измерительных. Расчёт и выбор измерительного трансформатора тока выполняется таким образом, чтобы изменения формы сигнала были сведены к нулю, а влияние на силовую контролируемую цепь было минимальным.

Назначение измерительных трансформаторов

Главная функция этого измерительного прибора — это отображение изменений тока, максимально пропорционально. Трансформаторы тока гарантируют полную безопасность измерений, отделяя измерительные цепи от первичных с опасным высоким напряжением, которое чаще всего составляют тысячи вольт. Требования, предъявляемые к их классу точности очень велики, так как от этого зависит работа дорогостоящего мощного оборудования.

Принцип действия и конструкция

Трансформаторы измерительные выпускают с двумя и больше группами вторичных обмоток. Первая применяется для включения устройств релейной защиты и сигнализации. А другая, с большим классом точности, для подключения устройств точного измерения и учёта. Они помещены на специально изготовленный ферромагнитный сердечник, который набран из листов специальной электротехнической стали довольно тонкой толщины. Первичную обмотку непосредственно включают последовательно в измеряемую сеть, а ко вторичной обмотке подключают катушки различных измерительных приборов, чаще всего амперметров и счетчиков электроэнергии.

В трансформаторах тока, как и в большем количестве других таких электромагнитных устройств, величина первичного тока больше, чем вторичного. Первичная обмотка исполняется из провода разного сечения или же шины, в зависимости от номинального значения тока. В трансформаторах тока 500 А и выше, первичная обмотка чаще всего выполнена из 1-го единственного витка. Он может быть в виде прямой шины из меди или алюминия, которая проходит через специальное окно сердечника. Корректность измерений любого измерительного трансформатора характеризуется погрешностью значения коэффициента трансформации. Для того чтобы не перепутать концы, на них обязательно наносится маркировка.
Аварийная небезопасная работа, связана с обрывом вторичной цепи ТТ при включенной в цепь первичной, это приводит к очень сильному намагничиванию сердечника и даже при обрывe вторичной обмотки. Поэтому при включении без нагрузки вторичные обмотки соединяются накоротко.
По классу точности все измерительные ТТ разделены на несколько уровней. Особенно точные, называются лабораторные и имеют классы точности не больше 0,01–0,05;

Схемы соединений

Схемы соединений, представленные ниже, дают возможность персоналу контролировать токи в каждой из фаз.

В целях безопасности персонала, низковольтного измерительного оборудования и приборов один вывод вторичной обмотки, а также корпус заземляют.

Классификация и выбор

По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:

  • Встроенные. Первичная обмотка у них служит элементом для другого устройства. Они устанавливаются на вводах и имеют только вторичную обмотку. Функцию первичной обмотки выполняет другой токоведущий элемент линейного ввода. Конструктивно это магнитопровод кольцевого типа, а его обмотки имеют отпайки, соответствующие разным коэффициентам трансформации;
  • Опорные. Предназначенные для монтажа и установки на опорной ровной плоскости;
  • Проходной. По своей структуре это тот же встроенный, только вот находиться он может снаружи другого электрического устройства;
  • Шинный. Первичной обмоткой служит одна или несколько шин включенных в одну фазу. Их изоляция рассчитывается с запасом, что бы он мог выдержать даже многократное увеличение напряжения;
  • Втулочный. Это одновременно и проходной, и шинный трансформатор тока;
  • Разъемный. Его магнитопровод состоит из разборных элементов;
  • Переносной. Это устройство электрики называют токоизмерительные клещи. Они являются переносным и удобным измерительным трансформатором тока, у которого магнитная система размыкается и замыкается уже вокруг того провода в котором и нужно измерять значение тока.

При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А. То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно. Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5. Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.

Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:

  1. Номинальное и максимальное напряжение в первичной обмотке;
  2. Номинальное значение первичного тока;
  3. Частота переменного тока;
  4. Класс точности, для цепей измерения и защиты он разный.

Техническое обслуживание

Эксплуатация измерительных трансформаторов не является очень сложным и трудоёмким процессом. Действия персонала заключаются, в основном, в надзоре за исправностью его вторичных цепей, наличием защитных заземлений и показаниями приборов контроля, а также счётчиков. Осмотр чаще всего производится визуальный, из-за опасности поражения человека высоким напряжением, вход за ограждения, где установлены трансформаторы строго запрещён. Однако, это касается в большей степени систем с напряжением выше 1000 Вольт. Для низковольтных цепей визуальный осмотр на наличие нагрева соединений, а также коррозии контактных зажимов является неотъемлемой работой электротехнического персонала. Самый часто применяемый прибор для измерения тока в цепях 0,4 кВ это токоизмерительные клещи. Так как при расчёте и разработке пусковой аппаратуры очень редко используются стационарные трансформаторы для измерения.

В любом случае нужно обращать внимание и принимать меры к устранению обнаруженных дефектов таких как:

  1. Обнаружение трещин в изоляторах и фарфоровых диэлектрических элементах;
  2. Плохое состояние армированных швов;
  3. Потрескивания и разряды внутри устройства;
  4. Отсутствие заземления корпуса или вторичной обмотки.

Проводя обслуживание измерительных трансформаторов, на щитах где установлены приборы, нужно смотреть не только за показаниями приборов, а ещё и за контактными соединениями проводов, которые подключаются к ним. Кстати, их сечение не должно быть меньше 2,5 мм² для медных проводов, и 4 мм² для алюминиевых.

Проверка измерительных трансформаторов

Испытание измерительных трансформаторов сводится к измерению сопротивления изоляции и коэффициента трансформации, который определяется по следующей схеме.

При этом в первичную обмотку от специального нагрузочного трансформатора или автотрансформатора подаётся ток не меньше 20% от номинального. Как известно, коэффициент трансформации будет равен соотношению тока в первичной обмотке к току во вторичной. После чего это значение сравнивается с номиналом. Если трансформатор имеет несколько вторичных обмоток, то необходимо проверит каждую. И также нельзя забывать о наличии правильной маркировки.

Выбор нужно трансформатора тока, а также их испытательные характеристики определяют в лабораторных условиях специальный высококвалифицированный электротехнический персонал, где и выдаётся соответствующий документ по его результатам.

amperof.ru

Параметры трансформатора тока | Заметки электрика

Доброго времени суток, уважаемые гости и читатели сайта «Заметки электрика».

Сегодня мы рассмотрим основные характеристики и параметры трансформаторов тока. Эти параметры будут необходимы нам для правильного выбора трансформаторов тока.

Итак, поехали.

Основные характеристики и параметры трансформаторов тока

1. Номинальное напряжение трансформатора тока

Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока.

Существует стандартный ряд номинальных значений напряжения у трансформаторов тока:

Ниже смотрите примеры трансформаторов тока с номинальным напряжением 660 (В) и 10 (кВ). Разница на лицо.

2. Номинальный ток первичной цепи трансформатора тока

Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока.

Обозначается этот параметр индексом — I1н

Существует стандартный ряд номинальных значений первичных токов у выпускаемых трансформаторов тока:

Прошу обратить внимание на то, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 300, 600, 750, 1200, 1500, 3000 и 6000 (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 320, 630, 800, 1250, 1600, 3200 и 6300 (А). В остальных случаях наибольший первичный ток не должен быть больше номинального значения первичного тока.

Ниже на фото показан трансформатор тока с номинальным первичным током равным 300 (А).

3. Номинальный ток вторичной цепи трансформатора тока

Еще одним параметром трансформатора тока является номинальный ток вторичной цепи, или номинальный вторичный ток — это ток, протекающий по вторичной обмотке трансформатора тока.

Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А).

Обозначается этот параметр индексом — I2н

Сам лично ни разу не встречал трансформаторы тока со вторичным током 1 (А). Также по индивидуальному заказу можно заказать ТТ с номинальным вторичным током равным 2 (А) или 2,5 (А).

4. Вторичная нагрузка трансформатора тока

Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи). Это значение измеряется в омах (Ом).

Обозначается индексом — Z2н

Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе.

Если сказать точно по определению, то вторичная нагрузка трансформатора тока — это вторичная нагрузка с коэффициентом мощности (cos=0,8), при которой сохраняется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его номинального значения.

Вот так сложно написал, но просто вчитайтесь в текст внимательнее и все поймете.

Обозначается индексом — S2н.ном

И здесь тоже существует ряд стандартных значений номинальной вторичной нагрузки трансформаторов тока, выраженных через вольт-амперы при cos=0,8:

Чтобы выразить эти значения в омах, то воспользуйтесь следующей формулой:

К этому вопросу мы еще с Вами вернемся. В следующих статьях я покажу Вам как самостоятельно можно рассчитать вторичную нагрузку трансформатора тока наглядным примером из своего дипломного проекта. Чтобы ничего не пропустить, подписывайтесь на новые статьи с моего сайта. Форму подписки Вы можете найти после статьи, либо в правой колонке сайта.

5. Коэффициент трансформации трансформатора тока

Еще одним из основных параметров трансформатора тока является коэффициент трансформации. Коэффициент трансформации трансформатора тока — это отношение величины первичного тока к величине вторичного тока.

При расчетах коэффициент трансформации разделяют на:

  • действительный (N)
  • номинальный (Nн)

В принципе их названия говорят сами за себя.

Действительный коэффициент трансформации — это отношение действительного первичного тока к действительному вторичному току. А номинальный коэффициент — это отношение номинального первичного тока к номинальному вторичному току.

Вот примеры коэффициентов трансформации трансформаторов тока:

  • 150/5 (N=30)
  • 600/5 (N=120)
  • 1000/5 (N=200)
  • 100/1 (N=100)

6. Электродинамическая стойкость

Здесь сразу нужно внести ясность, что такое ток электродинамической стойкости — это максимальное значение амплитуды тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без каких-либо повреждений, препятствующих дальнейшей его исправной работе.

Своими словами, это способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания.

Ток электродинамической стойкости обозначается индексом — Iд.

Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости  к амплитуде номинального первичного тока I1н.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока. Читайте статью про классификацию трансформаторов тока. По другим типам трансформаторов тока данные о токе электродинамической стойкости можно найти все в том же паспорте.

7. Термическая стойкость

Что такое ток термической стойкости?

А это максимальное действующее значение тока короткого замыкания за промежуток времени t, которое трансформатор тока выдерживает без нагрева токоведущих частей до превышающих допустимых температур и без повреждений, препятствующих дальнейшей его исправной работе. Так вот температура токоведущих частей трансформатора тока, выполненных из меди не должна быть больше 250 градусов, из алюминия — 200.

Ток термической стойкости обозначается индексом — ItТ.

Своими словами, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени.

Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н.

Все данные о токе термической стойкости Вы можете найти в паспорте на трансформатор тока.

Ниже я представляю Вашему вниманию скан-копию этикетки на трансформатор тока типа ТШП-0,66-5-0,5-300/5 У3, где указаны все его вышеперечисленные основные параметры и характеристики.

P.S. На этом я завершаю свою статью про основные характеристики и параметры трансформаторов тока. В следующих статьях я расскажу Вам про обозначение выводных концов, принцип работы трансформатора тока, режимы работы, класс точности и другие интересные темы.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о