Команды avr: Таблицы команд ассемблера AVR — Микроконтроллеры для всех

Таблицы команд ассемблера AVR — Микроконтроллеры для всех

В этой статье я хочу представить еще один вариант таблиц команд ассемблера для микроконтроллеров AVR.

Из дополнительных материалов у приобретателей курса уже есть pdf документ с набором таблиц команд. Так в чем же основное отличие набора команд, который представлен ниже?

В первую очередь, тем что в колонке «Описание» дается описание команд на английском. И как не трудно заметить, многие мнемоники команд образованы как раз от этих сокращений. Поэтому, тем кто знает английский язык, тем будет проще запомнить написание команд. И так же присутствует колонка «Код операции», где можно посмотреть каким образом та или иная команда выглядит в двоичном виде. Это на тот случай, если вам вдруг захочется по-программировать в машинных кодах.

Сразу стоит отметить, что здесь представлены в основном только команды семейства tiny. Я намерено убрал команды семейства mega, что бы лишний раз не вносить путаницу.

Арифметические и логические команды
Команда Описание Действие Циклы Код операции Флаги
add Rd,Rr Add two Registers Rd←Rd+Rr 1 0000 11rd dddd rrrr Z,C,S,N,V,H
adc Rd,Rr Add with Carry two Registers Rd←Rd+Rr+C 1 0001 11rd dddd rrrr Z,C,S,N,V,H
adiw Rdl,K Add Immediate to Word Rdh:Rdl←Rdh:Rdl+K 2 1001 0110 KKdd KKKK Z,C,S,N,V
sub Rd,Rr Subtract two Registers Rd←Rd-Rr 1 0001 10rd dddd rrrr
Z,C,S,N,V,H
sbc Rd,Rr Subtract with Carry two Registers Rd←Rd-Rr-C 1 0000 10rd dddd rrrr Z,C,S,N,V,H
subi Rd,K Subtract Constant from Register Rd←Rd-K 1 1010 KKKK dddd KKKK Z,C,S,N,V,H
sbci Rd,K Subtract with Carry Constant from Register Rd←Rd-K-C 1 0100 KKKK dddd KKKK Z,C,S,N,V,H
sbiw Rdl,K Subtract Immediate from Word Rdh:Rdl←Rdh:Rdl-K 2 1001 0111 KKdd KKKK Z,C,S,N,V
and Rd,Rr Logical AND Registers Rd←Rd AND Rr 1 0010 00rd dddd rrrr Z,S,N
andi Rd,K Logical AND Register and Constant Rd←Rd AND K 1 0111 KKKK dddd KKKK Z,S,N
or Rd,Rr Logical OR Registers Rd←Rd OR Rr 1 0010 10rd dddd rrrr Z,S,N
ori Rd,K Logical OR Register and Constant Rd←Rd OR K 1 0110 KKKK dddd KKKK Z,S,N
eor Rd,Rr Exclusive OR Registers Rd←Rd EOR Rr 1 0010 01rd dddd rrrr Z,S,N
com Rd One’s complement Rd←0xFF-Rd 1 1001 010d dddd 0000 Z,S,N
neg Rd Two’s complement Rd←0x00-Rd 1 1001 010d dddd 0001 Z,C,S,N,V,H
sbr Rd,K Set Bit (s) in Register Rd←Rd OR K 1 0110 KKKK dddd KKKK Z,S,N
cbr Rd,K Clear Bit (s) in Register Rd←Rd AND (0xFF- K) 1 0111 KKKK dddd KKKK Z,S,N
inc Rd Increment Rd←Rd+1 1 1001 010d dddd 0011 Z,S,N,V
dec Rd Decrement Rd←Rd-1 1 1001 010d dddd 1010 Z,S,N,V
tst Rd Test for Zero or Minus Rd←Rd AND Rd 1 0010 00dd dddd dddd Z,S,N
clr Rd Clear Register Rd←Rd EOR Rd 1 0010 01dd dddd dddd Z,S,N
ser Rd Set Register Rd←0xFF 1 1110 1111 dddd 1111
None

Команды пересылки данных

Команда Описание Действие Циклы Код операции Флаги
mov Rd,Rr Move Between Registers Rd←Rr 1 0010 11rd dddd rrrr None
movw Rd,Rr Copy Register Word Rd+1:Rd←Rr+1:Rr 1 0000 0001 dddd rrrr None
ldi Rd,K Load Immediate Rd←K 1 1110 KKKK dddd KKKK None
ld Rd,X
Load Indirect Rd← (X) 2 1001 000d dddd 1100 None
ld Rd,X+ Load Indirect and
Post-Inc.
Rd← (X), X←X+1 2 1001 000d dddd 1101 None
ld Rd, -X Load Indirect and
Pre-Dec.
X←X-1, Rd← (X) 2 1001 000d dddd 1110 None
ld Rd,Y Load Indirect Rd← (Y) 2 1000 000d dddd 1000 None
ld Rd,Y+ Load Indirect and
Post-Inc.
Rd← (Y), Y←Y+1 2 1001 000d dddd 1001 None
ld Rd, -Y Load Indirect and
Pre-Dec.
Y←Y-1, Rd← (Y)
2 1001 000d dddd 1010 None
ldd Rd,Y+q Load Indirect with Displacement Rd← (Y+q) 2 10q0 qq0d dddd 1qqq None
ld Rd,Z Load Indirect Rd← (Z) 2 1000 000d dddd 0000 None
ld Rd,Z+ Load Indirect and
Post-Inc.
Rd← (Z), Z←Z+1 2 1001 000d dddd 0001 None
ld Rd, -Z Load Indirect and
Pre-Dec.
Z←Z-1, Rd← (Z) 2 1001 000d dddd 0010 None
ldd Rd,Z+q Load Indirect with Displacement Rd← (Z+q) 2 10q0 qq0d dddd 0qqq None
lds Rd,k Load Direct from SRAM Rd← (k) 2 1001 000d dddd 0000kkkk kkkk kkkk kkkk None
st X,Rr Store Indirect (X) ←Rr 2 1001 001r rrrr 1100 None
st X+,Rr Store Indirect and
Post-Inc.
(X) ←Rr, X←X+1 2 1001 001r rrrr 1101 None
st -X,Rr Store Indirect and
Pre-Dec.
X←X-1, (X) ←Rr 2 1001 001r rrrr 1110 None
st Y,Rr Store Indirect (Y) ←Rr 2 1000 001r rrrr 1000 None
st Y+,Rr Store Indirect and
Post-Inc.
(Y) ←Rr, Y←Y+1 2 1001 001r rrrr 1001 None
st -Y,Rr Store Indirect and
Pre-Dec.
Y←Y-1, (Y) ←Rr 2 1001 001r rrrr 1010 None
std Y+q,Rr Store Indirect with Displacement (Y+q) ← Rr 2 10q0 qq1r rrrr 1qqq None
st Z,Rr Store Indirect (Z) ←Rr 2 1000 001r rrrr 0000 None
st Z+,Rr Store Indirect and
Post-Inc.
(Z) ←Rr, Z←Z+1 2 1001 001r rrrr 0001 None
st -Z,Rr Store Indirect and
Pre-Dec.
Z←Z-1, (Z) ←Rr 2 1001 001r rrrr 0010 None
std Z+q,Rr Store Indirect with Displacement (Z+q) ← Rr 2 10q0 qq1r rrrr 0qqq None
sts k,Rr Store Direct to SRAM (k) ←Rr 2 1001 001r rrrr 0000kkkk kkkk kkkk kkkk None
lpm Load Program Memory R0← (Z) 3 1001 0101 1100 1000 None
lpm Rd,Z
Load Program Memory
Rd← (Z) 3 1001 000d dddd 0100 None
lpm Rd,Z+ Load Program Memory
and Post-Inc.
Rd← (Z), Z←Z+1 3 1001 000d dddd 0101 None
spm Store Program Memory (Z) ←R1:R0 1001 0101 1110 1000 None
in Rd,P In Port Rd←P 1 1011 0PPd dddd PPPP None
out P,Rr Out Port P←Rr 1 1011 1PPr rrrr PPPP None
push Rr Push Register in Stack STACK←Rr, SP←SP-1
2
1001 001r rrrr 1111 None
pop Rd Pop Register from Stack SP←SP+1, Rd←STACK 2 1001 000d dddd 1111 None

Команды передачи управления

Команда Описание Действие Циклы Код операции Флаги
rjmp k Relative Jump PC←PC+k+1 2 1100 kkkk kkkk kkkk None
ijmp Indirect Jump to (Z) PC← (Z) 2 1001 0100 0000 1001 None
*jmp k Direct Jump PC←k 3 1001 010k kkkk 110kkkkk kkkk kkkk kkkk None
rcall k Relative Subroutine Call STACK←PC+1,PC←PC+k+1,SP←SP-2 or 3 ¾ 1101 kkkk kkkk kkkk None
icall Indirect Call to (Z) STACK←PC+1, PC← (Z),SP←SP-2 or 3 ¾ 1001 0101 0000 1001 None
*call k Direct Subroutine Call STACK←PC+1, PC←k,SP←SP-2 or 3 4/5 1001 010k kkkk 111kkkkk kkkk kkkk kkkk None
ret Subroutine Return PC←STACK,
SP←SP+2 or 3
4/5 1001 0101 0000 1000 None
reti Interrupt Return PC←STACK,
SP←SP+2 or 3
4/5 1001 0101 0001 1000 I
cpse Rd,Rr Compare, Skip if Equal if (Rd=Rr)
PC←PC+2 or 3
½/3 0001 00rd dddd rrrr None
cp Rd,Rr Compare Rd-Rr 1 0001 01rd dddd rrrr Z,C,S,
N,V,H
cpc Rd,Rr Compare with Carry Rd-Rr-C 1 0000 01rd dddd rrrr Z,C,S,
N,V,H
cpi Rd,K Compare Register with Immediate Rd-Rr-K 1 0011 KKKK dddd KKKK Z,C,S,
N,V,H
sbrc Rr,b Skip if Bit in
Register is Cleared
if (Rr (b)=0)
PC←PC+2 or 3
½/3 1111 110r rrrr obbb None
sbrs Rr,b Skip if Bit in
Register is Set
if (Rr (b)=1)
PC←PC+2 or 3
½/3 1111 111r rrrr obbb None
sbic P,b Skip if Bit in IO
Register is Cleared
if (P (b)=0)
PC←PC+2 or 3
½/3 1001 1001 PPPP Pbbb None
sbis P,b Skip if Bit in IO
Register is Set
if (P (b)=1)
PC←PC+2 or 3
½/3 1001 1011 PPPP Pbbb None
brbc s,k Branch if Status
Flag is Cleared
if (SREG (s)=0)
PC←PC+k+1
½ 1111 01kk kkkk ksss None
brbs s,k Branch if Status
Flag is Set
if (SREG (s)=1)
PC←PC+k+1
½ 1111 00kk kkkk ksss None
brcc k Branch if Carry
Flag is Clearsd
if (C=0) PC←PC+k+1 ½ 1111 01kk kkkk k000 None
brcs k Branch if Carry
Flag is Set
if (C=1) PC←PC+k+1 ½ 1111 00kk kkkk k000 None
brsh k Branch if Same
or Higher
if (C=0) PC←PC+k+1 ½ 1111 01kk kkkk k000 None
brlo k Branch if Lower if (C=1) PC←PC+k+1 ½ 1111 00kk kkkk k000 None
brne k Branch if Not Equal if (Z=0) PC←PC+k+1 ½ 1111 01kk kkkk k001 None
breq k Branch if Equal if (Z=1) PC←PC+k+1 ½ 1111 00kk kkkk k001 None
brpl k Branch if Plus if (N=0) PC←PC+k+1 ½ 1111 01kk kkkk k010 None
brmi k Branch if Minus if (N=1) PC←PC+k+1 ½ 1111 00kk kkkk k010 None
brvc k Bruach if Overflow
Flag is Cleared
if (V=0) PC←PC+k+1 ½ 1111 01kk kkkk k011 None
brvs k Branch if Overflow
Flag is Set
if (V=1) PC←PC+k+1 ½ 1111 00kk kkkk k011 None
brge k Branch if Greate or
Equal, Signed
if (S=0) PC←PC+k+1 ½ 1111 01kk kkkk k100 None
brlt k Branch if Less than
Zero, Signed
if (S=1) PC←PC+k+1 ½ 1111 00kk kkkk k100 None
brhc k Branch if Half Carry
Flag is Cleared
if (H=0) PC←PC+k+1 ½ 1111 01kk kkkk k101 None
brhs k Branch if Half Carry
Flag is Set
if (H=1) PC←PC+k+1 ½ 1111 00kk kkkk k101 None
brtc k Branch if Transfer
Flag is Cleared
if (T=0) PC←PC+k+1 ½ 1111 01kk kkkk k110 None
brts k Branch if Transfer
Flag is Set
if (T=1) PC←PC+k+1 ½ 1111 00kk kkkk k110 None
brid k Branch if Interrupt
Disable
if (T=0) PC←PC+k+1 ½ 1111 01kk kkkk k111 None
brie k Branch if Interrupt
Enable
if (T=1) PC←PC+k+1 ½ 1111 00kk kkkk k111 None

*Обратите внимание! Команды jmp и call не поддерживаются микроконтроллерами семейства tiny, но так как они часто используются при программировании семейства mega, то я решил их так же внести в таблицу, что бы вы не забывали о их существовании.

 

Команды условных переходов по состоянию флагов SREG
Проверкафлага Команда условногоперехода АльтернативнаяФорма написания Условие перехода
C brbc 0,k brcc k Переход если флаг переноса установлен
brsh k Переход если больше или равно
brbs 0,k brcs k Переход если флаг переноса сброшен
brlo k Переход если меньше
Z brbc 1,k breq k Переход если равно
brbs 1,k brne k Переход если не равно
N brbc 2,k brpl k Переход если плюс
brbs 2,k brmi k Переход если минус
V brbc 3,k brvc k Переход если флаг дополнительного кода сброшен
brbs 3,k brvs k Переход если флаг дополнительного кода установлен
S brbc 4,k brge k Переход если больше или равно нулю (знаковое)
brbs 4,k brlt k Переход если меньше нуля (знаковое)
H brbc 5,k brhc k Переход если флаг половинного переноса сброшен
brbs 5,k brhs k Переход если флаг половинного переноса установлен
T brbc 6,k brtc k Переход если флаг хранения бита сброшен
brbs 6,k brts k Переход если флаг хранения бита установлен
I brbc 7,k brid k Переход если прерывания запрещены
brbs 7,k brie k Переход если прерывания разрешены

Команд битовых операций

Команда Описание Действие Циклы Код операции Флаги
sbi P,b Set Bit in I/O Rerister I/O (P,b) ←1 2 1001 1010 PPPP Pbbb None
cbi P,b Clear Bit in I/ORerister I/O (P,b) ←0 2 1001 1000 PPPP Pbbb None
lsl Rd Logical Shift Left Rd (n+1) ←Rd (n), Rd (0) ←0 1 0000 11dd dddd dddd Z,C,N,V
lsr Rd Logical Shift Right Rd (n) ←Rd (n+1), Rd (7) ←0 1 1001 010d dddd 0110 Z,C,N,V
rol Rd Rotate Left through Carry Rd (0) ←C, Rd (n+1) ←Rd (n), C←Rd (7) 1 0001 11dd dddd dddd Z,C,N,V
ror Rd Rotate Right through Carry Rd (7) ←C, Rd (n) ←Rd (n+1), C←Rd (0) 1 1001 010d dddd 0111 Z,C,N,V
asr Rd Arithmetic Shift Right Rd (n) ←Rd (n+1),
n=0…6
1 1001 010d dddd 0101 Z,C,N,V
swap Rd Swap Nibbles Rd (3…0) ←Rd (7…4),Rd (7…4) ←Rd (3…0) 1 1001 010d dddd 0010 None
bst Rr,b Bit Store from
Rerister to T
T←Rr (b) 1 1111 101b bbbb 0bbb T
bld Rd,b Bit Load from T
to Rerister
Rd (b) ←T 1 1111 100b bbbb 0bbb None
bset s Flag Set SREG (s) ←1 1 1001 0100 0sss 1000 SREG (s)
bclr s Flag Clear SREG (s) ←0 1 1001 0100 1sss 1000 SREG (s)
sec Set Carry C←1 1 1001 0100 0000 1000 C
clc Clear Carry C←0 1 1001 0100 1000 1000 C
sez Set Zero Flag Z←1 1 1001 0100 0001 1000 Z
clz Clear Zero Flag Z←0 1 1001 0100 1001 1000 Z
sen Set Negative Flag N←1 1 1001 0100 0010 1000 N
cln Clear Negative Flag N←0 1 1001 0100 1010 1000 N
sev Set Twos Complement Overflow V←1 1 1001 0100 0011 1000 V
clv Clear Twos Complement Overflow V←0 1 1001 0100 1011 1000 V
ses Set Signed Test Flag S←1 1 1001 0100 0100 1000 S
cls Clear Signed Test Flag S←0 1 1001 0100 1100 1000 S
seh Set Half Carry Flag H←1 1 1001 0100 0101 1000 H
clh Clear Half Carry Flag H←0 1 1001 0100 1101 1000 H
set Set Transfer bit T←1 1 1001 0100 0110 1000 T
clt Clear Transfer bit T←0 1 1001 0100 1110 1000 T
sei Global Interrupt Enable I←1 1 1001 0100 0111 1000 I
cli Global Interrupt Disable I←0 1 1001 0100 1111 1000 I

Команды управления процессором

Команда Описание Действие Циклы Код операции Флаги
nop No operation 1 0000 0000 0000 0000 None
sleep Sleep 1 1001 0101 1000 1000 None
wdr Watchdog Reset 1 1001 0101 1010 1000 None

 

 

Сделаем простой AVR микроконтроллер

Меня часто спрашивают: «Чем отличается микроконтроллер от ПЛИС?» Ну что тут можно ответить? Это как бы разные вещи. .. Микропроцессор последовательно выполняет команды, описанные в его программе. Работа ПЛИС в конечном счете определяется принципиальной электрической схемой, реализованной внутри чипа. Архитектура микроконтроллера, то есть тип процессора, количество портов ввода вывода, интерфейсы, определяется производителем. Микросхема микроконтроллера изготовлена на заводе и изменить ее нельзя. Можно только написать программу, которую он будет исполнять. ПЛИС — это свобода для творчества. Архитектура реализуемого устройства может быть почти любая, лишь бы поместилась вся логика в чип. В ПЛИС можно, например, попробовать реализовать даже и микроконтроллер! Попробуем?

Один из самых распространенных микроконтроллеров — это 8-ми разрядные RISС процессоры семейства AVR компании Atmel. В этой статье я расскажу как реализовать «почти» совместимый с AVR микроконтроллер внутри нашей ПЛИС на плате Марсоход.

Прежде, чем начинать делать свою реализацию микроконтроллера, конечно, следует изучить внутренности контроллера AVR. Нужно как минимум знать систему команд микропроцессора AVR. На нашем сайте можно скачать его описание:

Система команд микроконтроллера AVR ( 703303 bytes )

Мы не будем ставить себе целью полностью повторить поведение чипа Atmel, мы хотим сделать наш микропроцессор лишь частично совместимым. Полностью повторить можно, но нужна ПЛИС гораздо большего объема. У нас на плате Марсоход стоит CPLD EPM240T100C5, значит у нас есть всего-навсего 240 триггеров и логических элементов.

Кроме триггеров и логики в нашей ПЛИС имеется последовательная флеш память UFM объемом 512 слов по 16 бит. В этой флеш памяти мы будем хранить программу микроконтроллера.  Удобно, что слова, хранимые во флеш, имеют разрядность 16. Все команды процессора AVR также шестнадцатиразрядные. Кое-что про UFM мы уже писали на нашем сайте. У нас был проект для ПЛИС платы Марсоход, который выполнял чтение из UFM памяти.

«Оперативной памяти» в нашей ПЛИС нет. Ну значит не будет памяти у нашего микроконтроллера, жаль но это нас не остановит.

У микроконтроллера AVR имеется 32 восьмиразрядных регистра общего назначения. Нижняя группа регистров r0-r15 может быть использована только в командах с операндами-регистрами. Верхняя группа регистров r16-r31 может использоваться в командах и с непосредственными операндами. Поскольку места внутри нашего чипа на плате Марсоход действительно не много, нам придется реализовать только некоторые регистры. Это довольно существенное ограничение, и его нужно будет учитывать при написании программ для нашего микроконтроллера.

Мы реализуем только 7 регистров: r16-r22:

  • Первые 4 регистра r16…r19 — это просто регистры.
  • Регистр r20 — это тоже обычный регистр, только его биты мы подключим к 8-ми светодиодам платы Марсоход.
  • Регистр r21 — это тоже обычный регистр, но его биты мы подключим к выводам управления шаговых двигателей на плате Марсоход.
  • Регистр r22 — только для чтения. К нему подключены входы от 4-х кнопочек платы Марсоход.

Схема нашего микроконтроллера создана в среде Altera QuartusII и выглядит вот так (нажмите на картинку, чтобы увеличить):


Наш микроконтроллер работает по простому алгоритму:

  1. Считывает из флеш памяти UFM очередную команду.
  2. Декодирует команду и выбирает для нее нужные операнды из регистров или непосредственно из кода команды.
  3. Выполняет команду в арифметико-логическом устройстве.
  4. Запоминает результат исполнения команды в регистре приемнике, определяемом командой.
  5. Переходит к исполнению следующей команды.

У нас сейчас нет цели сделать высокопроизводительный микроконтроллер, мы не будем делать конвейерную обработку данных. Это объясняется тем, что команды из флеш памяти чипа мы можем считывать только в последовательном формате, то есть на чтение одной команды нужно как минимум 16 тактов. Быстрее здесь сделать нельзя (да нам и не нужно сейчас).

Ход выполнения программы может изменяться в зависимости от результата исполнения команд. Специальные команды переходов позволяют переходить к нужной операции в нужных условиях.

Перечислим команды микроконтроллера AVR, которые мы собираемся реализовать:


ADD  0000 11rd dddd rrrr
SUB  0001 10rd dddd rrrr

AND  0010 00rd dddd rrrr
EOR  0010 01rd dddd rrrr
OR   0010 10rd dddd rrrr
MOV  0010 11rd dddd rrrr

CP   0001 01rd dddd rrrr
LSR  1001 010d dddd 0110

SUBI 0101 KKKK dddd KKKK
ANDI 0111 KKKK dddd KKKK
ORI  0110 KKKK dddd KKKK
CPI  0011 KKKK dddd KKKK
LDI  1110 KKKK dddd KKKK

BREQ 1111 00kk kkkk k001
BRNE 1111 01kk kkkk k001
BRCS 1111 00kk kkkk k000
BRCC 1111 01kk kkkk k000


Слева написаны названия команд, а справа — их бинарное представление (кодирование). Так буква «r» обозначает регистр источник, буква «d» — регистр приемник, «K» — это непосредственно операнд.

Конечно — это только малая часть от «настоящей системы команд», но уже и эти команды позволять писать вполне работающие программы.
У нас будет упрощенное АЛУ (Арифметико-Логическое Устройство). Оно реализует только некоторые, наиболее употребительные команды, а так же всего 2 флага для условных переходов: «Z» и «C».

Флаг «Z» устанавливается, если результат АЛУ это ноль. Если результат из АЛУ не нулевой, то флаг «Z» сбрасывается. Флаг «C» устанавливается при возникновении переноса в арифметических операциях ADD и SUB/SUBI или сравнения CP/CPI. Флаги влияют на исполнение команд условных переходов: флаг «Z» влияет на BREQ, BRNE, а флаг «C» влияет на BRCS, BRCC.

Вообще всеь проект мы уже реализовали и его можно взять здесь:

Ядро микропроцессора Atmel AVR ( 109584 bytes )

.
Исходный текст нашего ядра AVR написан на языке Verilog и его можно посмотреть здесь.

Теперь посмотрим, как мы сможем написать программу для нашего микроконтроллера? Для написания программы на языке ассемблер воспользуемся средой разработки компании Atmel AVRStudio4. Эту среду разработки можно скачать прямо с сайта компании Атмел (после регистрации), вот здесь. Или поищите в яндексе — наверняка найдете в свободном доступе.


Создаем проект в AVRStudio4 и пишем простую программу. Программа будет моргать светодиодом на плате Марсоход и опрашивать состояние нажатых кнопочек. Если нажать одну кнопочку, то моргающий светодиод «побежит» в одну сторону, а если нажать другую кнопочку, то светодиод «побежит» в другую сторону. Вот исходный текст на ассемблере для нашего примера:


.include «1200def.inc»
.device AT90S1200

.cseg
.org 0

start:

;initial one bit in register
ldi    r16,$80

rd_port:

;read port (key status)
mov    r17,r22
cpi r17,$0f
;go and blink one LED if no key pressed
breq do_xor

cpi r17,$0e
;go and right shift LEDs if key[0] pressed
breq do_rshift

cpi r17,$0d
;go and left shift LEDs if key[1] pressed
breq do_lshift

;jump to read keys
or    r16,r16
brne rd_port

do_rshift:
cpi r16,1
breq set80
lsr    r16
mov    r20,r16
brne pause
set80:    
ldi    r16,$80
mov    r20,r16
or    r16,r16
brne pause

do_lshift:
cpi r16,$80
breq set1
lsl    r16
mov    r20,r16
brne pause
set1:    
ldi    r16,$01
mov    r20,r16
or    r16,r16
brne pause

do_xor:
eor    r20,r16

pause:
ldi    r18,$10
cycle2:
ldi r19,$FF
cycle1:
or    r19,r19
or    r19,r19
subi r19,1
brne cycle1
subi r18,1
brne cycle2

or    r16,r16    
brne rd_port


Видите? Чтение состояния кнопочек — это чтение из регистра r22. Изменение состояния светодиодов — это запись в регистр r20.
Настройте AVRStudio так, что бы выходной формат был «Generic». Это в свойствах проекта, «Assembler Options», настройка «Hex Output Format».
После компиляции программы получается вот такой текстовый файл с кодами программы:


000000:e800
000001:2f16
000002:301f
000003:f0c1
000004:301e
000005:f021
000006:301d
000007:f059
000008:2b00
000009:f7b9
00000a:3001
00000b:f019
00000c:9506
00000d:2f40
00000e:f471
00000f:e800
000010:2f40
000011:2b00
000012:f451
000013:3800
000014:f019
000015:0f00
000016:2f40
000017:f429
000018:e001
000019:2f40
00001a:2b00
00001b:f409
00001c:2740
00001d:e120
00001e:ef3f
00001f:2b33
000020:2b33
000021:5031
000022:f7e1
000023:5021
000024:f7c9
000025:2b00
000026:f6d1


Этот файл нам почти подходит для QuartusII. В нашем проекте для ПЛИС есть файл avr_prog. mif (Memory Initialization File), куда мы и вставляем полученный из AVRStudio код (только нужно добавить точку с запятой в конце каждой строки). Таким образом, после компиляции QuartusII эти коды попадут во флеш  UFM нашей ПЛИС.

Теперь можно компилировать и пробовать наш проект в плате Марсоход. Вот видеоролик, демонстрирующий работоспособность нашего процессора: