Как расшифровать маркировку конденсаторов. Какие бывают типы маркировок. Как определить емкость и другие параметры по обозначениям на корпусе. Какие единицы измерения используются в маркировке конденсаторов.
Что такое маркировка конденсаторов и зачем она нужна
Маркировка конденсаторов — это система обозначений, наносимая на корпус компонента, которая позволяет определить его основные характеристики. Главная цель маркировки — возможность быстрой и точной идентификации параметров конденсатора без использования измерительных приборов.
Основные параметры, которые можно определить по маркировке конденсатора:
- Емкость — главная характеристика конденсатора
- Номинальное рабочее напряжение
- Допустимое отклонение емкости от номинального значения
- Температурный коэффициент емкости
- Полярность (для полярных конденсаторов)
- Дата изготовления
Правильная расшифровка маркировки позволяет подобрать нужный конденсатор для замены или использования в электронных схемах без риска выхода из строя устройства из-за несоответствия параметров.
Основные типы маркировки конденсаторов
Существует несколько основных систем маркировки конденсаторов:
Полная буквенно-цифровая маркировка
При этом способе на корпус конденсатора наносятся полные значения основных параметров:
- Емкость с указанием единиц измерения (например, 100 мкФ)
- Номинальное напряжение (например, 16 В)
- Допуск (например, ±10%)
Такая маркировка наиболее информативна и не требует расшифровки, но применяется только на конденсаторах с достаточно большим корпусом.
Кодовая цифровая маркировка
Используется на малогабаритных конденсаторах и состоит обычно из 3-4 цифр:
- Первые две цифры — значащие цифры емкости
- Третья цифра — множитель (количество нулей)
- Четвертая цифра (если есть) — допуск
Например, маркировка 104 означает 10 × 10^4 пФ = 100 000 пФ = 100 нФ = 0,1 мкФ.
Цветовая маркировка
Применяется редко, в основном на старых конденсаторах. Каждый цвет соответствует определенной цифре или множителю согласно специальной таблице.
Буквенно-цифровая кодовая маркировка
Сочетает буквы и цифры для компактного обозначения параметров. Например:
- n22 = 0,22 нФ
- 2n2 = 2,2 нФ
- 4u7 = 4,7 мкФ
Единицы измерения емкости в маркировке конденсаторов
В маркировке конденсаторов используются следующие единицы измерения емкости:
- Фарад (Ф) — основная единица, но для обычных конденсаторов слишком большая
- Микрофарад (мкФ, µF) = 10^-6 Ф
- Нанофарад (нФ, nF) = 10^-9 Ф
- Пикофарад (пФ, pF) = 10^-12 Ф
Обычно емкость указывается в наиболее удобных единицах, чтобы избежать слишком больших или маленьких чисел. Например, вместо 0,047 мкФ удобнее написать 47 нФ.
Как расшифровать цифровую маркировку конденсаторов
Цифровая маркировка конденсаторов обычно состоит из 3 цифр. Принцип расшифровки следующий:
- Первые две цифры — значащие цифры емкости
- Третья цифра — количество нулей после первых двух цифр
- Полученное число — емкость в пикофарадах
Примеры расшифровки:
- 104 = 10 × 10^4 пФ = 100 000 пФ = 100 нФ = 0,1 мкФ
- 223 = 22 × 10^3 пФ = 22 000 пФ = 22 нФ
- 471 = 47 × 10^1 пФ = 470 пФ
Если первая цифра 0, это означает емкость менее 10 пФ. Например:
- 082 = 0,8 × 10^2 пФ = 80 пФ
Маркировка номинального напряжения конденсаторов
Номинальное напряжение — это максимальное напряжение, при котором конденсатор может длительно работать без повреждений. На корпусе оно может обозначаться несколькими способами:
- Прямое указание в вольтах, например, «16V» или «16В»
- Буквенный код (для малогабаритных конденсаторов)
Таблица буквенных обозначений напряжения:
- A — 50 В
- C — 100 В
- E — 250 В
- G — 400 В
- J — 630 В
Если номинальное напряжение не указано, это обычно означает, что конденсатор рассчитан на низкое напряжение (до 50 В).
Обозначение допуска в маркировке конденсаторов
Допуск — это максимальное отклонение фактической емкости конденсатора от номинального значения. Он может обозначаться:
- В процентах, например, ±10%
- Буквенным кодом
Основные буквенные обозначения допуска:
- F — ±1%
- G — ±2%
- J — ±5%
- K — ±10%
- M — ±20%
Чем меньше допуск, тем точнее конденсатор соответствует своему номиналу.
Особенности маркировки электролитических конденсаторов
Электролитические конденсаторы имеют некоторые особенности маркировки:
- Обязательно указывается полярность («+» и «-«)
- Емкость обычно указывается напрямую в микрофарадах
- Часто указывается максимальная рабочая температура
- Может указываться срок службы
Пример маркировки: 100µF 16V 85°C
Это означает емкость 100 мкФ, номинальное напряжение 16 В, максимальная рабочая температура 85°C.
Как определить температурный коэффициент емкости по маркировке
Температурный коэффициент емкости (ТКЕ) показывает, насколько изменяется емкость конденсатора при изменении температуры. В маркировке он обычно обозначается буквенным кодом.
Основные обозначения ТКЕ:
- NPO или COG — практически нулевой ТКЕ
- N750 — отрицательный ТКЕ 750 ppm/°C
- P100 — положительный ТКЕ 100 ppm/°C
- Y5V — очень большой ТКЕ, до ±22%
- X7R — средний ТКЕ, ±15% в диапазоне -55…+125°C
Конденсаторы с малым ТКЕ (например, NPO) более стабильны, но имеют меньшую удельную емкость.
Дополнительные обозначения в маркировке конденсаторов
Кроме основных параметров, на корпусе конденсатора могут указываться:
- Тип диэлектрика (например, «X7R» для керамических)
- Дата изготовления (обычно зашифрована)
- Класс безопасности (например, «Y2» для сетевых конденсаторов)
- Рабочая температура (например, «-40+85°C»)
- Логотип или код производителя
Эти дополнительные обозначения помогают более точно идентифицировать конденсатор и его характеристики.
Таблица конденсаторов и их цифровое обозначение. Маркировка керамических конденсаторов
Что такое конденсатор?
Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.
Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).
Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.
Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.
Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.
Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.
Как обозначаются конденсаторы на схеме?
Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.
Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.
Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Каких видов бывают конденсаторы
- Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
- Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
- Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
- Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
- Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
- С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Особенности конденсаторов
Конденсаторами называют двухполюсники с переменным или определенным значением емкости и малой проводимостью. Отличительная черта изделия – оно обеспечивает накопление заряда и энергии электрического поля. Сам элемент применяется как пассивный электронный компонент. Конструкция не представляет ничего сложного – два электрода в виде пластин, которые разделены диэлектриком небольшой толщины. Все чаще применяются элементы, имеющие многослойные диэлектрики и электроды.
Существует большой выбор конденсаторов, которые находят применение в самых различных схемах. Чтобы грамотно подобрать параметры электросети, следует разобраться, как осуществляется маркировка керамических конденсаторов, – это ключевое их значение. Это не совсем просто, так как параметры могут существенно отличаться, в зависимости от компании-изготовителя, страны-экспортера, вида, размера и самих параметров элемента.
Какие параметры могут быть указаны в маркировке
Для конденсаторов важны три параметра:
- ёмкость;
- номинальное (рабочее) напряжение;
- допуск по отклонению ёмкости.
С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили- , микро- , нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Согласно «ГОСТ 30668-2000 Изделия электронной техники. Маркировка», указываются буквы и цифры, обозначающие год и месяц выпуска.
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
ГодКод
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Единицы измерения
Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады.10 -6
- 1 нанофарада – одна миллиардная часть фарады. 10 -9
- 1 пикофарада -10 -12 фарады.
Маркировка конденсаторов тремя цифрами
При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.
Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0. 022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0. 033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Физические величины, используемые в маркировке емкости керамических конденсаторов
Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.
Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Наименование единицы | Варианты обозначений | Степень по отношению к Фараду | |
Микрофарад | Microfarad | мкФ, µF, uF, mF | 10-6F |
Нанофарад | Nanofarad | нФ, nF | 10-9F |
Пикофарад | Picofarad | пФ, pF, mmF, uuF | 10-12F |
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).
На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.
Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.
Численные и численно-буквенные коды в маркировках конденсаторов
Обозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя.
Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов
Напряжение, В | Код | Напряжение, В | Код |
1 | I | 63 | K |
1,6 | R | 80 | L |
3,2 | A | 100 | N |
4 | C | 125 | P |
6,3 | B | 160 | Q |
10 | D | 200 | Z |
16 | E | 250 | W |
20 | F | 315 | X |
25 | G | 400 | Y |
32 | H | 450 | U |
40 | C | 500 | V |
50 | J |
Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом.
Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ
Допуск при -60°C…+80°C, +/-, % | Буквенный код | Допуск при -60°C…+80°C, +/-, % | Буквенный код |
20 | Z | 70 | E |
30 | D | 90 | F |
Третья позиция – номинальная емкость, которая может указываться несколькими способами.
Таблица значений конденсаторов, маркировка
Ёмкость конденсаторов может обозначаться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF), либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены.
Таблица обозначений конденсаторов
uF (мкФ) nF (нФ) pF (пФ) Code (Код) * более подробную информацию для конкретных серий конденсаторов (DataShet-ы, описание, параметры, технические характеристики, и тд.) вы сможете найти на сайтах поисковых систем Яндекс или Google. 1uF 1000nF 1000000pF 105 0.82uF 820nF 820000pF 824 0.8uF 800nF 800000pF 804 0.7uF 700nF 700000pF 704 0.68uF 680nF 680000pF 684 0. 6uF 600nF 600000pF 604 0.56uF 560nF 560000pF 564 0.5uF 500nF 500000pF 504 0.47uF 470nF 470000pF 474 0.4uF 400nF 400000pF 404 0.39uF 390nF 390000pF 394 0.33uF 330nF 330000pF 334 0.3uF 300nF 300000pF 304 0.27uF 270nF 270000pF 274 0.25uF 250nF 250000pF 254 0.22uF 220nF 220000pF 224 0.2uF 200nF 200000pF 204 0.18uF 180nF 180000pF 184 0.15uF 150nF 150000pF 154 0.12uF 120nF 120000pF 124 0.1uF 100nF 100000pF 104 0. 082uF 82nF 82000pF 823 0.08uF 80nF 80000pF 803 0.07uF 70nF 70000pF 703 0.068uF 68nF 68000pF 683 0.06uF 60nF 60000pF 603 0.056uF 56nF 56000pF 563 0.05uF 50nF 50000pF 503 0.047uF 47nF 47000pF 473 0.04uF 40nF 40000pF 403 0.039uF 39nF 39000pF 393 0.033uF 33nF 33000pF 333 0.03uF 30nF 30000pF 303 0.027uF 27nF 27000pF 273 0.025uF 25nF 25000pF 253 0.022uF 22nF 22000pF 223 0.02uF 20nF 20000pF 203 0. 018uF 18nF 18000pF 183 0.015uF 15nF 15000pF 153 0.012uF 12nF 12000pF 123 0.01uF 10nF 10000pF 103 0.0082uF 8.2nF 8200pF 822 0.008uF 8nF 8000pF 802 0.007uF 7nF 7000pF 702 0.0068uF 6.8nF 6800pF 682 0.006uF 6nF 6000pF 602 0.0056uF 5.6nF 5600pF 562 0.005uF 5nF 5000pF 502 0.0047uF 4.7nF 4700pF 472 0.004uF 4nF 4000pF 402 0.0039uF 3.9nF 3900pF 392 0.0033uF 3.3nF 3300pF 332 0.003uF 3nF 3000pF 302 0. 0027uF 2.7nF 2700pF 272 0.0025uF 2.5nF 2500pF 252 0.0022uF 2.2nF 2200pF 222 0.002uF 2nF 2000pF 202 0.0018uF 1.8nF 1800pF 182 0.0015uF 1.5nF 1500pF 152 0.0012uF 1.2nF 1200pF 122 0.001uF 1nF 1000pF 102 0.00082uF 0.82nF 820pF 821 0.0008uF 0.8nF 800pF 801 0.0007uF 0.7nF 700pF 701 0.00068uF 0.68nF 680pF 681 0.0006uF 0.6nF 600pF 621 0.00056uF 0.56nF 560pF 561 0.0005uF 0.5nF 500pF 52 0.00047uF 0. 47nF 470pF 471 0.0004uF 0.4nF 400pF 401 0.00039uF 0.39nF 390pF 391 0.00033uF 0.33nF 330pF 331 0.0003uF 0.3nF 300pF 301 0.00027uF 0.27nF 270pF 271 0.00025uF 0.25nF 250pF 251 0.00022uF 0.22nF 220pF 221 0.0002uF 0.2nF 200pF 201 0.00018uF 0.18nF 180pF 181 0.00015uF 0.15nF 150pF 151 0.00012uF 0.12nF 120pF 121 0.0001uF 0.1nF 100pF 101 0.000082uF 0.082nF 82pF 820 0.00008uF 0.08nF 80pF 800 0.00007uF 0. 07nF 70pF 700 0.000068uF 0.068nF 68pF 680 0.00006uF 0.06nF 60pF 600 0.000056uF 0.056nF 56pF 560 0.00005uF 0.05nF 50pF 500 0.000047uF 0.047nF 47pF 470 0.00004uF 0.04nF 40pF 400 0.000039uF 0.039nF 39pF 390 0.000033uF 0.033nF 33pF 330 0.00003uF 0.03nF 30pF 300 0.000027uF 0.027nF 27pF 270 0.000025uF 0.025nF 25pF 250 0.000022uF 0.022nF 22pF 220 0.00002uF 0.02nF 20pF 200 0.000018uF 0.018nF 18pF 180 0. 000015uF 0.015nF 15pF 150 0.000012uF 0.012nF 12pF 120 0.00001uF 0.01nF 10pF 100 0.000008uF 0.008nF 8pF 080 0.000007uF 0.007nF 7pF 070 0.000006uF 0.006nF 6pF 060 0.000005uF 0.005nF 5pF 050 0.000004uF 0.004nF 4pF 040 0.000003uF 0.003nF 3pF 030 0.000002uF 0.002nF 2pF 020 0.000001uF 0.001nF 1pF 010
Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Типы маркировок
Производители, выпуская конденсаторы, пользуются несколькими типами маркировок, которые располагаются непосредственно на корпусе элемента. Представленные ниже значения сугубо теоретические, в качестве наглядного примера:
- Наиболее простым типом маркировки считается, когда ёмкость сразу указывается на теле конденсатора. То есть не применяются различные шифры и табличные замещения, вся необходимая информация содержится на корпусе. Данный способ был бы актуален для всех устройств, однако, не всегда его получается использовать в силу громоздкости. Для того чтобы предоставить полное обозначение емкости, подходят только довольно большие изделия, в ином случае рассмотреть цифры проблематично даже с применением лупы. На примере разберем запись 100 µF±6% – это ёмкость конденсатора 100 микрофарад, а амортизация 6% от общей емкости. В итоге значение – 94-106 микрофарад. В некоторых ситуациях применяется маркировка следующего вида: 100 µF +8%/-10% – это неравнозначная амортизация, 90-108 микрофарад. Подобная маркировка пленочных конденсаторов хоть и считается наиболее простой и понятной, но применима не во всех случаях из-за своей громоздкости. Как правило, она используется на больших приборах немалых ёмкостей;
- Цифровая маркировка (или с использованием цифр и букв) актуальна, если площадь изделия слишком мала, чтобы на ней разместить подробную запись. Здесь для замены определенных значений применяются обычные цифры и латинские буквы, которые необходимо уметь расшифровывать. Если на поверхности изделия встречаются лишь цифры (как правило, их три), то чтение простое. Первые две цифры – так обозначается емкость. Третья цифра – число нулей, которые следует дописать после первых двух. Для измерения емкости подобных конденсаторов применимы пикофарады. В качестве примера ознакомимся с изделием, на теле которого размещена цифра 104. Оставляем первые цифры, к которым приписываются нули: в нашем случае это 4. В итоге имеем значение в 100000 пикофарад. Чтобы уменьшить число нулей, используется другое значение – микрофарады, которых в нашем случае 100. В некоторых ситуациях величина обозначается буквой. Например, 2n2 – 2.2 нанофарад. Чтобы определить, к какому классу принадлежит изделие, в конце дописывают дополнительную кодовую маркировку конденсатора, к примеру, 100V;
- Маркировка импортных конденсаторов из керамики осуществляется с использованием букв и чисел – это стандарт для данных изделий. Алгоритмы шифрования аналогичны предыдущему методу. Надписи наносит сам производитель;
- Цветовая маркировка конденсаторов тоже встречается, хотя и реже, так как данный способ несколько устарел. Ее применяли в советское время, что позволяло упростить считывание маркировки, даже если изделие было слишком маленьким. Здесь есть единственный недостаток – сразу запомнить обозначения проблематично, поэтому первое время рекомендуется иметь при себе специальную таблицу. Чтение маркировки выглядит так: первые два цвета – емкость в пикофарадах, третий цвет – число дописываемых нулей, четвертый и пятый цвета – номинал напряжения, подаваемого на изделие, и возможный допуск. Так, желтый прибор имеет обозначение цифрой 4, а синий – 6;
- Импортные конденсаторы маркируются так же, а кириллица заменяется латиницей. К примеру, возьмем отечественный вариант с обозначением 5мк1 – 5.1 микрофарад. В случае с импортной кодовой маркировкой выглядеть будет как 5µ.
Важно! Если расшифровка непонятна, то следует обратиться к официальному производителю, на сайте которого, как правило, имеется соответствующая таблица.
Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные. Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Цифро-буквенное обозначение
Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».
Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:
- p – пикофарады,
- n – нанофарады
- m – микрофарады.
При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».
Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:
Особенности хранения
Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.
Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:
- Соблюдение требований техпроцессов;
- Многоступенчатый контроль качества продукции;
- Соблюдение условий хранения;
- Выполнение требований к организации рабочего места для монтажа устройств на плату;
- Соблюдение рекомендуемого температурного режима пайки;
- Правильный выбор безопасных рабочих режимов;
- Соблюдение требований по эксплуатации.
Цветовая кодировка керамических конденсаторов
На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски. Как правило, номинал емкости оказывается закодирован первыми тремя полосками. Каждому цвету, в первых двух полосках,соответствует своя цифра: черный — цифра 0; коричневый — 1; красный — 2; оранжевый — 3; желтый — 4; зеленый — 5; голубой — 6; фиолетовый — 7; серый — 8; белый — 9. Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.
В третьей полоске цвета имеют следующие значение: оранжевый — 1000; желтый — 10000; зеленый — 100000. Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: белый — ± 10 %; черный — ± 20%. Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.
Маркировка СМД (SMD) конденсаторов.
Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).
Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и. т.д.
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Источники
- https://hmelectro.ru/poleznye_statyi/markirovka-kondensatorov-tsifrovaya-tsvetnaya-eyo-rasshifrovka
- https://odinelectric.ru/equipment/electronic-components/kak-rasshifrovat-markirovku-kondensatora
- https://www.radiodetector.ru/markirovka-kondensatorov/
- https://www.RadioElementy.ru/articles/markirovka-keramicheskikh-kondensatorov/
- https://instanko.ru/elektroinstrument/markirovka-keramicheskih-kondensatorov-rasshifrovka-tablica.html
- https://ElectroInfo.net/kondensatory/kak-oboznachajutsja-kondensatory-na-sheme.html
Маркировка конденсаторов
RADIODETECTOR
Радиоэлектроника, схемы, статьи
и программы для радиолюбителей.
Стать автором
Вход Регистрация
- Вопрос/Ответ
- Литература
- Радиотовары с Aliexpress
- Объявления
- Пользователи
Содержание
- 1 Маркировка конденсаторов тремя цифрами
- 2 Маркировка конденсаторов четырьмя цифрами
- 3 Буквенно-цифровая маркировка
- 4 Маркировка керамических SMD конденсаторов
- 5 Маркировка электролитических SMD конденсаторов
- 6 Кодовая маркировка, дополнение
- 6. 1 Маркировка 3 цифрами
- 6.2 Маркировка 4 цифрами
- 6.3 Маркировка емкости в микрофарадах
- 6.4 Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
- 7 Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
- 7.1 1. Маркировка 2 или 3 символами
- 7.2 2. Маркировка 4 символами
- 7.3 3. Маркировка в две строки
Для того чтобы понять какого номинала конденсатор, на его корпус наносится маркировка — специальное цифровое или буквенно-цифровое обозначение. По этой маркировке можно узнать емкость конденсатора , номинальное напряжение, допустимые отклонения и другие параметры.
Маркировка конденсаторов тремя цифрами
При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.
Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
---|---|---|---|
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0. 047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 0.68 нФ | ||
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0. 01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0. 47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1 мкФ |
Маркировка конденсаторов четырьмя цифрами
Все тоже самое что и выше только первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах.
Пример обозначения:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Также для обозначения используют букву R, она используется для обозначения емкостей в мкФ. А если перед «R» стоит ноль, то это значит что емкость в пикофарадах.
Пример буквенно-цифровой маркировки обозначения:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
Маркировка керамических SMD конденсаторов
SMD конденсаторы также маркируются кодом, код маркировки состоит из символов, которых может быть 1 или 2 и цифры. Если в обозначении 2 символа то первый это код изготовителя, например K означает Kemet.
Второй символ это мантисса значение представлено в таблице. Цифра это показатель степени по основанию 10. По сути тоже самое что и маркировка 3-мя цифрами, только мантисса тут обозначается символом.
Пример обозначения:
B1 /по таблице определяем мантиссу: B=1.1/ = 1.1*101 пФ = 11 пФ
A3 /по таблице A=4.7/ = 1.0*103 пФ = 1000 пФ = 1 нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
---|---|---|---|---|---|---|---|
A | 1. | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3. 9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Маркировка электролитических SMD конденсаторов
Электролитические SMD конденсаторы маркикуются 2 основными способами:
1. Способ, емкостью в микрофарадах и рабочим напряжением ,например:
10 6.3V = 10 мкФ на 6,3В.
2. Способ, при помощи буквы и три цифры
Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для
получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод.
Пример:
по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т. е. это
конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
---|---|---|---|---|---|---|---|---|---|
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0».
Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
---|---|---|---|
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
Маркировка 4 цифрамиВозможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
---|---|---|---|
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
Вместо десятичной точки может ставиться буква R.
Код | Емкость [мкФ] |
---|---|
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
---|---|
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
Для конденсаторов таких фирм как «Panasonic», «Hitachi» и др. маркировка осуществляется 3-мя основными способами:
1. Маркировка 2 или 3 символамиКод содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости можно посмотреть в таблице ниже:
Код | Емкость [мкФ] | Напряжение [В] |
---|---|---|
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.
Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
3. Маркировка в две строкиЕсли величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение.
Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Полезные ссылки по проекту
Набор электролитических конденсаторов c Aliexpress 500 шт. 0,1 мкФ-1000 мкФ Набор керамисеских конденсаторов c Aliexpress 480 шт. 10 пФ — 10 мкФ Набор SMD конденсаторов c Aliexpress
Похожие записи
Практические каждая принципиальная электрическая схема подразумевает наличие транзисторов, которые являются своего рода усилительным ключом. Основа любых транзисторов – кристалл,…
18 Окт 2020
- 9376
- 0
Согласно с публикациями IЕС 62 для катушек индуктивности кодируется номинальное значение индуктивности и допуск. Самые популярные это кодировки в 4 или 3 полоски (или точки). Первые две метки…
21 Сен 2020
- 4295
- 0
Индуктивности кодируются цифрами и буквам по которым можно узнать о значении ее номинала и допуск. Цифры говорят нам о номинальном значении индуктивности а буквы определяют допуск….
20 Сен 2020
- 9622
- 2
. ..
20 Сен 2020
- 3753
- 0
При маркировке транзисторов, изготовленных в корпусе КТ-26 (ТО-92) используют цветовую (нанесение точек разнообразных цветов) и кодовую (символы)….
20 Сен 2020
- 4223
- 0
Ввиду малых размеров транзисторов в корпусу ТО-126 используется специальная маркировка. Ниже на рисунке проставлена маркировка и соответствующие ей…
20 Сен 2020
- 3288
- 0
Если вы нашли ошибку в статье, или на сайте. Можете сообщить об этом воспользовавшись формой.
Ваше имя
Ваше почта
Сообщение
Сообщение
Администрация сайта свяжется с Вами в ближайшее время.
Скачать
Конденсаторы обозначение и маркировка
Для определения емкости используется физическая величина называемая – фарад (Ф). Значение одного фарада для практически любой схемы будет просто огромным, поэтому маркировка конденсаторов более малыми единицами измерения. Чаще всего применяется величина мкФ (mF).
Кроме того, часто в обозначении емкости могут фигурировать куда меньшие единицы нанофарады (1 нФ=10 -9 Ф и даже пикофарады 1 пФ=10 -12 Ф.
Для понимание перевода одной величины в другую, рассмотрим простой практический пример: На участке представленной ниже принципиальной схемы указаны конденсаторы: С6-1500пф, С7-0,1мкф, С8-47нф. Определим варианты емкостей, которые можно поставить, в место обозначенных по схеме.
Итак: 1500 пф это таже емкость, что и 1,5нф и она равна 0,0015мкф, 0,1мкф=100нф=100000пф, 47нф=0,047мкф=47000пф. Как видим, все очень просто, главное знать элементарную математику. Теперь, если нам необходимо заменить неисправный радиокомпонент, можно легко подобрать нужный номинал.
Маркировка конденсаторов больших размеров и габаритов
В случае больших габаритов этих радиокомпонентов значение емкости наносится прямо на корпус, но здесь имеется парочка интересных особенностей:
При позволяющих габаритах возможно нанесение допусков, от номинальной емкости. Например, на рисунке ниже мы видим маркировку: 50 мкФ ± 5%, это означает что реальная емкость этого электролитического конденсатора с учетом погрешности лежит в интервале от 47,5 мкФ до 52,5 мкФ.
При отсутствии процентов, их может заменять буква. Обычно она находится отдельно или после числового номинала емкости. Смотри расшифровку на рисунке ниже:
На габаритных емкостях может присутствовать и маркировка напряжения, которая обычно обозначается числами, за которыми идут буквы, например: V, VDC, WV или VDCW. WV или Working Voltage, в переводе с вражьего означает рабочее напряжение. Цифровые показатели считаются максимумом Working Voltage.
При отсутствии на корпусе конденсатора обозначения указывающего на напряжение, его можно использоваться только в низковольтных цепях. В цепях переменного тока следует применять радиокомпоненты, только для этих схем, они маркируются AC.
Правильное определение полярности имеет огромное значение, т. к при ошибке может возникнуть КЗ и даже взрыв емкостного устройства. Обозначение минуса часто наносится в виде кольцеобразного углубления или цветной полосы. При обозначении плюса или минуса цветовую маркировку можно не учитывать.
Для расшифровки обозначения, требуется знать значение первых двух цифр, которые говорят о емкости. Если устройство имеет очень маленькие габаритные размеры, не позволяющие это условие выполнить, то его маркировка осуществляется по международному стандарту EIA.
Цифро-буквенное обозначение емкости:
Если в обозначении имеются только две цифры и одна буква, то цифровые значения соответствуют емкости. Все остальные обазначения расшифровываются по-другому.
Если в обозначении имеются три цифры и одна буква, то расшифровка происходит в зависимости от последней цифры. Если она лежит в интервале от 0 до 6, то к первым двум добавляются нули в соответствии с последней цифрой. Например 453, расшифровываться как 45 х 10 3 = 45000 пФ. Подробней смотри таблицу ниже:
Если последняя цифра будет 8, то первые две необходимо умножить на коэффициент 0,01, т.е, при маркировке 458, получаем 45 х 0,01 = 0,45. Если же последней будет 9, то первые две умножаем на 0,1.
Если буква находится в двух первых символах, ее расшифровка осуществляется несколькими методами. При наличии буквы R, она заменяется запятой, для обозначения десятичной дроби. Например 4R1 будет соответствовать 4,1 пФ.
При наличии латинских букв р, n, u, соответствующих пико-, нано- и микрофараде тоже требуется замена на десятичную запятую. Например n61 читается как 0,61 нФ, 5u2 равно 5,2 мкФ.
Буква-цифра-буква: Первый буквенный символ указывает на минимальную температуру, например, Z = 10, Y = -30, X = -55 градусов по Цельсию. Цифра – это максимальная температура. 2 – 45, 4 – 65, 5 – 85, 6 – 105, 7 – 125 градусов Цельсия. Значение последней буквы говорит о изменяющейся емкости конденсатора, в пределах между температурным минимумом и максимумом. Так например, «А» + 1,0%, «V» от 22 до 82%. Чаще всего бывает «R», 15%.
С помощью нее можно узнать значение напряжения. На рисунке ниже представлены специальные символы, соответствующие максимально допустимому уровню напряжению для конкретной емкости при постоянном токе.
В отдельных случаях маркировка значительно упрощается. С этой целью применяется только первая цифра. Допустим, ноль будет говорит о том, что напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и т.д
Маркировка керамических конденсаторов
Они имеют плоскую круглую форму и два контакта. На корпусе дополнительно наносится допуск отклонений. С этой целью применяется определенная буква, следующая сразу после цифрового указания емкости. Так, буква «В» соответствует отклонению + 0,1 пФ, D – + 0,5 пФ и «С» – + 0,25 пФ. Это верно при емкости ниже 10 пФ. С большим номиналом емкости буквенные обозначения соответствуют определенному проценту отклонений.
Керамические smd конденсаторы полностью совпадают по типоразмеру с smd резисторами, а вот танталовые имеют свою систему типоразмеров и маркировку:
com/embed/MgrxJsI3Imk»>Теперь на практике попробуем воспользоваться полученными знаниями и по маркировке конденсатора определим его емкостной номинал.
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
керамика%20конденсатор%20103%20z%2021 техническое описание и примечания по применению
Каталог техническое описание | MFG и тип | ПДФ | Теги документов |
---|---|---|---|
2002 — ГРМ42-6Ч Реферат: GRM40C0G103J50 GRM39F104Z GRM1882C1H8R0DZ01 GRM188F11E104Z GRM40X7R104K25 GRM39X7R473K25 GRM39U2J100D GRM40B106K GRM1885C1h491JA01J | Оригинал | ГХМ1030Р101К1К ГХМ1030Р101К630 ГХМ1030Р102К630 ГХМ1030Р151К1К ГХМ1030Р151К630 ГХМ1030Р221К1К ГХМ1030Р221К630 ГХМ1030Р331К1К ГХМ1030Р331К630 ГХМ1030Р470К1К ГРМ42-6Ч ГРМ40К0Г103ДЖ50 ГРМ39Ф104З GRM1882C1H8R0DZ01 ГРМ188Ф11Э104З ГРМ40X7R104K25 ГРМ39С7Р473К25 ГРМ39У2Ж100Д ГРМ40Б106К ГРМ1885C1х491JA01J | |
2002 — грм43-2х7р225 Реферат: GRM42-2X7R104K100 GRM43DR73A103KW01L GRM44 GRM43-2C Керамические конденсаторы 104 GRM42-2B105K50 GHM1545X7R105K250 GHM15 GRM42-2X7R225K25 | Оригинал | ГХМ1545С7Р104К1К ГРМ55ДР73А104КВ01Л ГХМ1545С7Р105К250 GRM55DR72E105KW01L ГХМ1545С7Р154К630 ГРМ55ДР72ДЖ154КВ01Л ГХМ1545С7Р224К630 ГРМ55ДР72ДЖ224КВ01Л ГХМ1545С7Р334К250 GRM55DR72E334KW01L грм43-2х7р225 ГРМ42-2Х7Р104К100 ГРМ43ДР73А103КВ01Л ГРМ44 ГРМ43-2С Керамические конденсаторы 104 ГРМ42-2Б105К50 ГХМ15 ГРМ42-2Х7Р225К25 | |
2002 — GRM40CH Резюме: GRM40X7R104K50 grm21bb10j106 GRM40B grm40f GRM21BR11H GHM1530X7R GRM40X7R104K25 GRM21BB11h204K GRM31CR61A106KA01K | Оригинал | ГХМ1530С7Р104К100 GRM31CR72A104KW03L ГХМ1530С7Р104К250 GRM31CR72E104KW03L ГХМ1530С7Р153К630 ГРМ31КР72ДЖ153КВ03Л ГХМ1530С7Р333К250 GRM31CR72E333KW03L ГХМ1530С7Р473К250 GRM31CR72E473KW03L ГРМ40Ч ГРМ40С7Р104К50 грм21bb10j106 ГРМ40Б грм40ф ГРМ21BR11H ГХМ1530С7Р ГРМ40X7R104K25 ГРМ21ББ11х204К ГРМ31CR61A106KA01K | |
2001 — ГРМ42-6Ч Аннотация: GRM39F104Z25 GRM1885C1h200JA01B GRM39F104Z GRM188R60J105KA01B grm219b31a GRM40F104Z50 GRM39CH GRM40X7R104K50 GRM188F11C105Z | Оригинал | ГХМ1030Р101К1К ГХМ1030Р101К630 ГХМ1030Р102К630 ГХМ1030Р151К1К ГХМ1030Р151К630 ГХМ1030Р221К1К ГХМ1030Р221К630 ГХМ1030Р331К1К ГХМ1030Р331К630 ГХМ1030Р470К1К ГРМ42-6Ч ГРМ39Ф104З25 ГРМ1885С1х200ЖА01Б ГРМ39Ф104З ГРМ188Р60ДЖ105КА01Б грм219б31а ГРМ40Ф104З50 ГРМ39Ч ГРМ40С7Р104К50 ГРМ188Ф11С105З | |
bts 2140 1b техпаспорт Резюме: SF0140BA03110S SF0070BA03052S SF214 SF0070BA03051S военное реле SF1575BA02634S SF0070CD21803T sf0570BA03233S SF0434BA02587S | Оригинал | ||
2000 — КЕРАМИЧЕСКАЯ РЕШЕТКА ДЛЯ ШТЫРЕЙ 120 штифтов Аннотация: 144 CERAMIC PIN GRID MARAY CPGA CPGA U121A U68B U120C CERAMIC PIN GRID ARRAY CPGA UA65A UA251A U68C | Оригинал | MS101111 UA65A КЕРАМИЧЕСКАЯ РЕШЕТКА ДЛЯ КОНТАКТОВ 120 штифтов 144 КЕРАМИЧЕСКАЯ РЕШЕТКА ДЛЯ ШТЫРЬКОВ CPGA CPGA U121A U68B U120C КЕРАМИЧЕСКАЯ КОНСТРУКТИВНАЯ СЕТКА CPGA UA65A UA251A U68C | |
2009 — сароникс 49s Резюме: g3 smd транзистор Saronix 48 МГц кристалл S1614 S1613XP S1613 S1612 HC49 smd транзистор kn smd 5v | Оригинал | ||
ЛА 4301 Резюме: нет абстрактного текста | OCR-сканирование | 00/рн 60/рн ЛА 4301 | |
2008 – 32 768 финансового года Реферат: Кристалл SMD 4,5 x 2 Кварцевые кристаллы 32768 SMD 32768 SMD ic smd code sm Кристалл saronix g4 32768 SARONIX fl | Оригинал | 670 МГц 32С12С-Ф 32 768 финансового года Кристалл SMD 4,5 x 2 Кристаллы кварца 32768 SMD 32 768 долларов США ic smd код см Сароникс g4 кристалл 32768 САРОНИКС фл | |
2005 — Недоступно Резюме: нет абстрактного текста | Оригинал | 200 мА 300 мА XC6411) ОТ-25 XC6411/6412 | |
МБМ10422А-5 Резюме: MBM10474A-10 MBM100480-15 24-контактный керамический DIP MBM10470 MBM100422A-5 MBM10474A-5 MBM10474A MBM100422 | OCR-сканирование | МБМ10422А-5 МБМ100422А-5 МБМ10470А-7 МБМ100470А-7 МБМ10470А-10 МБМ100470А-10 МБМ10А474-3 МБМ101474А-3 МБМ10474А-5 М8М100474А-5 МБМ10474А-10 МБМ100480-15 24-контактный керамический DIP МБМ10470 МБМ10474А МБМ100422 | |
СЕР0276А Резюме: CER0081A cer0349B CER0295C CER0456B CER0207A CER0455B CER0034A CER0046A CER0121A | Оригинал | CER0017A DCR0027A DCR0028A DCR0029A CER0276A CER0081A cer0349B CER0295C CER0456B CER0207A CER0455B CER0034A CER0046A CER0121A | |
1996 — WC68 Резюме: XC3042A PQ100 XC3090L XC3090A XC3064L XC3064A XC3042L XC3042A wc84 XC3030A | Оригинал | ПЛАСТ20 ПП132 PG132 ТК144 PG144 PG156 PQ160 CQ164 CB164 ПП175 WC68 XC3042A PQ100 XC3090L XC3090A XC3064L XC3064A XC3042L XC3042A туалет84 XC3030A | |
2005 — XC6215B302 Резюме: XC6215B30 XC6215B502 SSOT-24 XC6215 XC6215P XC6215B152 | Оригинал | 200 мА 300 мА ССОТ-24 XC6215 XC6215x152 XC6215x302 XC6215x502 уд200546 XC6215B302 XC6215B30 XC6215B502 ССОТ-24 XC6215P XC6215B152 | |
2013 – Недоступно Резюме: нет абстрактного текста | Оригинал | NJM2841-T NJM2841F 500 мА 300 мА ОТ-23-5 AEC-Q100 | |
2010 — NJM2841F012 Реферат: njm2841 0,1 мкФ Конденсатор Керамический конденсатор керамический | Оригинал | NJM2841 NJM2841 500 мА NJM2841F 500 мА NJM2841F012 Керамический конденсатор 0,1 мкФ конденсатор керамический | |
2000 — CERAMIC QUAD FLATPACK CQFP Реферат: CQFP64 Cqfp128 CQFP CQFP256 CQFP-128 EL28B 64 керамических четырехъядерных плоских корпуса EL132C EL132B | Оригинал | EL28B MS101107 EL64A EL100A EL116A EL116B EL128A CERAMIC QUAD FLATPACK CQFP CQFP64 Cqfp128 CQFP CQFP256 CQFP-128 EL28B 64 керамических квадроцикла в плоской упаковке EL132C EL132B | |
Недоступно Резюме: нет абстрактного текста | Оригинал | XC6214 ETR0318 500 мА | |
2013 — Нет в наличии Резюме: нет абстрактного текста | Оригинал | XC6214 JTR0318-012 | |
Недоступно Резюме: нет абстрактного текста | Оригинал | 6800пФ 8200пФ 0033 мкФ 0068 мкФ 0082 мкФ 110 пФ | |
2010 — Нет в наличии Резюме: нет абстрактного текста | Оригинал | XA6214 JTR0359-001 | |
кс6214 ТО252 Аннотация: XC6214 | Оригинал | XC6214 ETR0318 500 мА xc6214 TO252 | |
2011 — NJM2842U2 Аннотация: 500120 | Оригинал | NJM2842 NJM2842 NJM2842U2 НЖМ2842Х2 NJM2842U2 500120 | |
2005 — Недоступно Резюме: нет абстрактного текста | Оригинал | 200 мА 300 мА XC6411) XC6411/6412 | |
1997 — XC9572 VQ44 Резюме: XC3090L XC3090A XC3064L XC3064A XC3042L XC3042A XC3030L XC3030A wc84 | Оригинал | PG132 ТК144 PG144 PG156 PQ160 CB164 ПП175 PG175 ТК176 PG191 XC9572 VQ44 XC3090L XC3090A XC3064L XC3064A XC3042L XC3042A XC3030L XC3030A туалет84 |
Предыдущий 1 2 3 . .. 23 24 25 Далее
Цветовые коды конденсаторов — как прочитать значение конденсатора? Калькулятор
Как узнать значение емкости конденсатора с помощью стандартной и цветовой маркировки – калькулятор и примеры показать значение емкости конденсатора, его номинальное напряжение и допуск и т. д. Использование различных цветов на конденсаторе для отображения его значений и характеристик известно как цветовое кодирование конденсатора.
Похожие сообщения:
- Цветовые коды индуктора – как читать значение индуктора? Калькулятор
- Калькулятор цветового кода резистора – расчет 3-, 4-, 5- и 6-полосных резисторов
Нажмите на изображение, чтобы увеличить его
Содержание
Стандартные коды конденсаторовКак правило, значения емкости, номинального напряжения, допуска и даже полярности (в случае поляризованного конденсатора) напечатаны на большом размер конденсатора. С другой стороны, для небольших конденсаторов, таких как слюдяные и керамические конденсаторы, используются цветовые коды для обозначения их значений (обычно) в пФ (пикофарадах).
Значение керамических дисковых конденсаторов емкостью менее 1000 пф напечатано на нем в виде цифр и чисел. Например, на конденсаторе емкостью 300 пф напечатано единственное число «300».
Конденсаторы с емкостью 1000 пф и более, их значения можно прочитать по трехзначным числам (например, 102, 103, 105 и т. д.), напечатанным на них. Эти 3 цифры цветового кодирования можно прочитать следующим образом.
- 102 = 10 x 10 2 = 1000 пФ (пФ)
- 103 = 10 х 10 3 = 10 000 пФ (пФ)
- 105 = 10 х 10 5 = 1 000 000. пФ (пикофарад) = 1 мкФ (микрофарад)
Как правило, на этих конденсаторах записывается и печатается общий номинал. Например
Рис. 2 (а)
- Значение емкости 47 мкФ (микрофарад).
- Значение максимального напряжения, которое выдерживает этот конденсатор, составляет 400 В постоянного тока
Рис. 2 (в)
- Значение емкости 1200 нФ (нанофарад).
- Значение максимально допустимого напряжения составляет 500 В.
- Значение допуска составляет ± 5 %. например изменение емкости в плюс минус.
Рис. 2 (в)
- Значение емкости 1200 мкФ (мкФ).
- Значение максимального напряжения составляет 63 В постоянного тока.
- Значение допуска составляет ± 20 %.
- Значение температурного коэффициента от -40 до +105°С.
Рис. 2 (d)
Мы покажем пример решения и таблицу (см. рис. 3) ниже, чтобы показать, как считывать значение керамических конденсаторов
- Значение емкости составляет 0,01 мкФ (микрофарад).
- Значение максимального напряжения «2G» (400 В).
- Значение допуска составляет «J» ± 5 %.
Нажмите на изображение, чтобы увеличить его
Имейте в виду, что поляризованные и неполяризованные конденсаторы, а также конденсаторы переменного и постоянного тока могут использоваться только в соответствии со спецификациями. Например, конденсатор постоянного тока не может работать от сети переменного тока и наоборот до тех пор, пока это не будет указано в руководстве пользователя. VDC и VAC указаны на паспортной табличке конденсатора со знаком минус (-) для обозначения отрицательной клеммы.
Следующие символы и единицы измерения используются для представления значений емкости конденсаторов в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ).
Символ | Сокращение | Значение в цифрах |
мкФ | Микрофарад | 10 -6 |
нФ | Нано-фарад | 10 -9 |
пФ | Пикофарад | 10 -12 |
Похожие сообщения:
- Конденсаторная батарея в кВАр и мкФ Калькулятор для коррекции коэффициента мощности
- Калькулятор коррекции коэффициента мощности. Как найти конденсатор P.F в мкФ и квар?
Для небольших конденсаторов, таких как керамические, танталовые, пленочные конденсаторы и т. д., область очень мала, поэтому невозможно распечатать на ней значения емкости и напряжения. Таким образом, используются некоторые специальные обозначения, например. цифры, цифры и буквенно-цифровые символы, которые указывают на различные характеристики и номиналы конденсаторов. Как правило, номиналы этих конденсаторов указаны в пФ (пикофарад 1 x 10 -9 ).
Позвольте мне показать , как читать значение керамических конденсаторов ?
2 числовых значения:Если керамический конденсатор имеет два числовых значения или любые две цифры и букву, например 33P, это означает, что значение составляет 33 пикофарад.
- Если в середине двух цифр есть буква, например 6R2, это показывает:
Например: 6R2 = 6,2 пФ.
- Если первая или средняя буква «μ», «p» или «n» вместо R, она представляет основные единицы измерения емкости, такие как
Например:
- 5 мк = 5 микрофарад
- 3 мк1 = 3,1 мкФ
- P42 = 42 пикофарад
На большинстве керамических конденсаторов напечатаны три числовых значения. Например, 103, 104, 105 и т. д. Давайте посмотрим, как читать эти значения. Предположим, что на керамическом конденсаторе напечатано значение «103»
- 103 = 10 x 10 3 = 10 000 пФ (пФ)
Аналогично, если код специальной маркировки на керамическом конденсаторе 105:
- 105 = 10 + 5 нулей = 1 000 000 пФ
= 1000 нФ = 1 мкФ
Допуск керамических конденсаторов
На керамических конденсаторах напечатаны заглавные буквы, за исключением значения емкости, например 22M.
В следующей таблице указаны допуски для керамических конденсаторов, обозначенные буквами.
Письма | Допуск в % |
А | ±0,05 пФ |
Б | ±0,1 пФ |
С | ±0,25 пФ |
Д | ±0,5 пФ |
Е | ±0,5% |
Ф | ±1% |
Г | ±2% |
Н | ±3% |
Ж | ±5 % |
К | ±10% |
Л | ±15% |
М | ±20% |
Н | ±30% |
П | –0%, +100% |
С | –20%, +50% |
Вт | –0%, + 200% |
Х | –20%, +40% |
З | –20%, +80% |
Похожие сообщения:
- Как рассчитать подходящий размер конденсатора в мкФ и кВАр для улучшения коэффициента мощности
- Как преобразовать мкФ конденсатора в кВАр и наоборот? – Для коррекции PF
Значение кодов стандартных конденсаторов
В следующей таблице показаны стандартные номиналы стандартных кодов конденсаторов и напечатанные на них буквенные обозначения.
Код | Микрофарад, мкФ | Нанофарад «нФ» | Пикофарад «пФ» | Код | Микрофарад, мкФ | Нанофарад «нФ» | Пикофарад «пФ» |
100 | 0,00001 | 0,01 | 10 | 225 | 2,2 | 2200 | 2200000 |
101 | 0,0001 | 0,1 | 100 | 254 | 0,2 | 200 | 200000 |
102 | 0,001 | 1,0 | 1000 | 330 | 0,000033 | 0,033 | 33 |
103 | 0,01 | 10 | 10000 | 331 | 0,00033 | 0,33 | 330 |
104 | 0,1 | 100 | 100000 | 332 | 0,0033 | 3,3 | 3300 |
105 | 1,0 | 1000 | 1000000 | 333 | 0,033 | 33 | 33000 |
121 | 0,00012 | 0,12 | 120 | 334 | 0,33 | 330 | 330000 |
131 | 0,00013 | 0,13 | 130 | 335 | 3,3 | 3300 | 3300000 |
150 | 0,000015 | 0,015 | 15 | 470 | 0,000047 | 0,047 | 47 |
151 | 0,00015 | 0,15 | 150 | 471 | 0,00047 | 0,47 | 470 |
152 | 0,0015 | 1,5 | 1500 | 472 | 0,0047 | 4,7 | 4700 |
153 | 0,015 | 15 | 15000 | 473 | 0,047 | 47 | 47000 |
154 | 0,15 | 150 | 150000 | 474 | 0,47 | 470 | 470000 |
155 | 1,5 | 1500 | 1500000 | 502 | 0,005 | 5,0 | 5000 |
181 | 0,00018 | 0,18 | 180 | 561 | 0,00056 | 0,56 | 560 |
202 | 0,002 | 2,0 | 2000 | 562 | 0,0056 | 5,6 | 5600 |
205 | 2,0 | 2000 | 2000000 | 681 | 0,00068 | 0,68 | 680 |
220 | 0,000022 | 0,022 | 22 | 682 | 0,0068 | 6,8 | 6800 |
221 | 0,00022 | 0,22 | 220 | 683 | 0,068 | 68 | 68000 |
222 | 0,0022 | 2,2 | 2200 | 684 | 0,68 | 680 | 680000 |
223 | 0,022 | 22 | 22000 | 751 | 0,00075 | 0,75 | 750 |
224 | 0,22 | 220 | 220000 | 821 | 0,00082 | 0,82 | 820 |
Как читать цветовые коды конденсаторов?
Помимо маркировки и буквенно-цифровых кодов, для обозначения номинала конденсатора также используются различные цветовые коды. Эти цветные полосы (на керамических трубчатых конденсаторах) или точки (на слюдяных конденсаторах) напечатаны на внешней поверхности конденсатора.
Нажмите на изображение, чтобы увеличить его
Емкость конденсатора Цветовой кодЗначение конденсатора, имеющего пять цветных полос (или 5 точек), можно определить с помощью следующей таблицы.
В следующих таблицах первые три цветные полосы показывают значение емкости, четвертая полоса — допуск в процентах, а пятая полоса — температурный коэффициент. Например:
- 1 st Цветная полоса = первое число номинала конденсатора.
- 2 nd Цветная полоса = второй номер номинала конденсатора.
- 3 3rd Цветная полоса = количество нулей (в качестве множителя) с первыми двумя цифрами конденсатора (цифрами).
- 4 th Цветная полоса = допуск в процентах.
- 5 th Цветная полоса = температурный коэффициент.
Похожие сообщения:
- Калькулятор параллельных конденсаторов Калькулятор конденсаторов серии
Таблица цветовых кодов 5 полос для керамических конденсаторов
Цвет полосы | 1 ст Цифра | 2 -й Цифра | Множитель | Допуск (%) | Температурный коэффициент | |
Более 10 пф | Менее 10 пф | |||||
ЧЕРНЫЙ | 0 | 0 | 1 | ± 20% | ± 2,0 пФ | 0 |
КОРИЧНЕВЫЙ | 1 | 1 | 10 | ± 1% | ± 0,1 пФ | -30 |
КРАСНЫЙ | 2 | 2 | 100 | ± 2% | ± 0,25 пФ | -80 |
ОРАНЖЕВЫЙ | 3 | 3 | 1000 | ± 3% | – | -150 |
ЖЕЛТЫЙ | 4 | 4 | 10 000 | ± 4% | – | -220 |
ЗЕЛЕНЫЙ | 5 | 5 | 100 000 | ± 5% | ± 0,5 пФ | -330 |
СИНИЙ | 6 | 6 | 1 000 000 | ± 6% | – | -470 |
ФИОЛЕТОВЫЙ | 7 | 7 | – | ± 7% | – | -750 |
СЕРЫЙ | 8 | 8 | 0,01 | +80%,-20% | ± 0,25 пФ | +30 |
БЕЛЫЙ | 9 | 9 | 0,1 | ± 10% | ± 1,0 пФ | +120-750 |
ЗОЛОТО | – | – | 0,1 | ± 5% | – | – |
СЕРЕБРО | – | – | 0,01 | ± 10% | – | – |
Таблица четырехполосных цветовых кодов для керамических и трубчатых бумажных конденсаторов с номинальным напряжением (особенно для точечного цветового кода для конденсаторов из слюды и формованной бумаги).
Цвет ленты | Значимая цифра | Десятичный множитель | Допуски (%) | Номинальное напряжение |
ЧЕРНЫЙ | 0 | 1 | – | – |
КОРИЧНЕВЫЙ | 1 | 10 | 1 | 100 |
КРАСНЫЙ | 2 | 100 | 2 | 200 |
ОРАНЖЕВЫЙ | 3 | 1000 | 3* | 300 |
ЖЕЛТЫЙ | 4 | 10 000 | 4* | 400 |
ЗЕЛЕНЫЙ | 5 | 100 000 | 5 | 500 |
СИНИЙ | 6 | 1 000 000 | 6 | 600 |
ФИОЛЕТОВЫЙ | 7 | 10 000 000 | 7 | 700 |
СЕРЫЙ | 8 | 100 000 000 | 8 | 800 |
БЕЛЫЙ | 9 | 1000 000 000 | 9 | 900 |
ЗОЛОТО | – | 0,1 | 5 | 1000 |
СЕРЕБРО | – | 0,01 | 10 | 2000 |
Нет цвета | – | – | 20 | 500 |
* Номинальное напряжение для конденсаторов типа K
** Умножьте на 10 для трубчатых бумажных конденсаторов.
Напряжение конденсатора Цветовой кодЦвет ремешка | Тип «J» | Тип «К» | Тип «L» | Тип «М» | Тип «N» |
ЧЕРНЫЙ | 4 | 100 | – | 10 | 10 |
КОРИЧНЕВЫЙ | 6 | 200 | 100 | 1,6 | – |
КРАСНЫЙ | 10 | 300 | 250 | 4 | 35 |
ОРАНЖЕВЫЙ | 15 | 400 | – | 40 | – |
ЖЕЛТЫЙ | 20 | 500 | 400 | 6,3 | 6 |
ЗЕЛЕНЫЙ | 25 | 600 | 16 | 15 | |
СИНИЙ | 35 | 700 | 630 | – | 20 |
ФИОЛЕТОВЫЙ | 50 | 800 | – | – | – |
СЕРЫЙ | – | 900 | – | 25 | 25 |
БЕЛЫЙ | 3 | 1000 | – | 2,5 | 3 |
ЗОЛОТО | – | 2000 | – | – | – |
СЕРЕБРО | – | – | – | – | – |
Примечание. Буквы «J», «K», «L», «M» и «N» обозначают следующие типы конденсаторов
- Тип «J» = Танталовые конденсаторы с погружением
- Тип «K» = Слюдяные конденсаторы
- Тип «L» = Конденсаторы из полиэстера и полистирола
- Тип «M» = Электролитические четырехдиапазонные конденсаторы
- Тип «N» = Электролитические трехполосные конденсаторы
Related Posts
- Формула и уравнения для конденсатора и емкости
- Символы конденсаторов
На следующем рисунке показано, как считывать цветовые коды конденсаторов шмелей на примере решения 0,047 мкФ (эквивалентно 47000 пФ или 47 нФ).
Как читать цветовые коды дисковых и керамических конденсаторов?
Цветовые коды для неполяризованных формованных слюдяных и полиэфирных конденсаторов, таких как керамические и дисковые конденсаторы, являются методом старой школы (BS-EN 60062) и, следовательно, заменены маркировкой конденсатора (стандарт BS-1852) с буквенно-цифровыми кодами. Если вы все еще найдете конденсатор с цветовой кодировкой старости, вы можете определить номинал керамического конденсатора, используя следующий пример (см. рис. 3(c) и 3(d).
Калькулятор цветовых кодов конденсаторовСледующий 5-полосный калькулятор конденсаторов рассчитает значение емкости пяти цветных полосок, напечатанных на конденсаторе. Этот калькулятор поддерживает 5-цветные полоски и значения емкости в Ф (Фарад), мкФ (микро-Фарад), нФ (нано-Фарад) и пФ (пико-Фарад). Просто выберите цветовые коды конденсатора и нажмите «Рассчитать желаемое значение емкости, его допуск и максимальное напряжение конденсатора (типа K).
Код конденсатора для расчета емкости конденсатораСледующий калькулятор стоимости конденсатора вычисляет значения емкости для керамических конденсаторов. Просто введите маркировку кода конденсатора, например «103», и нажмите «Рассчитать». Результат покажет значение емкости керамического конденсатора в мкФ (микрофарад = 1×10 -6 ), нФ (нанофарад = 1×10 -9 ) или пФ (пикофарад = 1×10 -12). ).
Введите значения | ||
Введите трехзначный код конденсатора: | ||
Значение конденсатора: | ||
пФ – (пФ) | ||
нФ – (нанофарад) | ||
мкФ – (микрофарады) |
Следующий калькулятор кода конденсатора вычисляет код емкости для керамических конденсаторов. Просто введите значение емкости керамического конденсатора в мкФ (микрофарад = 1×10 -6 ), нФ (нанофарад = 1×10 -9 ) или пФ (пФ (пикофарад = 1×10 -12 ) и нажмите «Рассчитать». Результат покажет код емкости керамических конденсаторов, например «103», «104», «105» и т. д., в зависимости от входного значения.
Введите значения | ||
Емкость: | пФ – (ПикоФарад)нФ – (НаноФарад)мкф – (МикроФарад) | |
Код конденсатора: |
Похожие сообщения:
- Цветовые коды электрических проводов для переменного и постоянного тока — NEC и IEC
- Цветовые коды кабелей и проводов ABYC для проводки на яхтах, лодках и морских судах
Приведенные выше таблицы приведены ниже в виде изображений и диаграмм для справки. (Нажмите на картинку, чтобы увеличить)
Значение стандартных кодов конденсаторовТаблица 5-полосных цветовых кодов для керамических конденсаторовЕмкость конденсатора Цветовой кодНапряжение конденсатора Цветовой кодДопуск керамических конденсаторовЗначения емкости конденсаторов в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ)Связанные сообщения:
- Как найти номинал резисторов SMD
- Как проверить конденсатор с помощью цифрового и аналогового мультиметра — 8 методов
- Общая номинальная табличка конденсатора (электролитический конденсатор)
- Какова роль конденсатора в цепи переменного и постоянного тока?
- Расчет резистора, необходимого для схемы светодиода
- Как найти значение сгоревшего резистора (три удобных метода)
- Калькулятор ближайшего значения стандартного резистора
- Для чего используется резистор с нулевым сопротивлением? Применение резисторов 0 Ом
- Разница между сопротивлением постоянному и переменному току — какое из них больше?
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Как читать керамический конденсатор
Уильям Джон
Существует несколько вариантов символа конденсатора. Итак, сегодня мы просто сосредоточимся на том, как читать керамические конденсаторы. Тот, что слева, для электролитических конденсаторов. Керамические конденсаторы не имеют полярности. Вот почему схематический символ немного отличается от электрического добавленного конденсатора. Теперь есть две диаграммы, на которые мы должны ссылаться, когда говорим о конденсаторе.
Marking | Capacitance (pF) | Capacitance (ìF) |
---|---|---|
101 | 100 pF | 0.0001 ìF |
221 | 220 pF | 0.00022 ìF |
471 | 470 pF | 0. 00047 ìF |
102 | 1,000 pF | 0.001 ìF |
222 | 2,200 pF | 0.0022 ìF |
472 | 4,700 pF | 0.0047 ìF |
103 | 10,000 pF | 0.01 ìF |
223 | 22,000 pF | 0.022 ìF |
473 | 47,000 pF | 0.047 ìF |
104 | 100 000 PF | 0,1 ìF |
224 | 220 000 п.Ф.0015 | |
105 | 1,000,000 pF | 1 ìF |
225 | 2,200,000 pF | 2. 2 ìF |
475 | 4,700,000 pF | 4.7 ìF |
Contents Summary
- 0.1 Конденсатор с буквенным принтом указывает допуск
- 1 Что такое керамический конденсатор?
- 1.1 Где использовать керамический конденсатор?
- 2 Как мы считываем номинал керамического конденсатора
- 2.1 Calculate ceramic capacitor value
- 3 Ceramic disk capacitor codes table
- 3.1 Capacitor voltage code
- 3.2 Related content
Letter printed capacitor indicate tolerance
Letter | Tolerance | |||
---|---|---|---|---|
A | ±0,05 пФ | |||
B | ±0,1 пФ | |||
C | ±0,25 пФ | D | ±0. 5 pF | |
E | ±0.5% | |||
F | ±1% | |||
G | ±2% | |||
H | ±3% | |||
J | ±5 % | |||
K | ±10% | |||
L | ±15% | |||
M | ±20% | |||
N | ±30% | |||
P | –0%, +100% | |||
S | –20%, + 50% | |||
W | –0%, + 200% | |||
X | –20%, + 40% | |||
Z | – 20%, + 80% |
Что такое керамический конденсатор?
Что такое керамический конденсатор? Керамический конденсатор имеет форму диска и имеет минимальные размеры. Керамический конденсатор имеет две клеммы. Это неполяризованный конденсатор, что означает, что между положительной и отрицательной клеммами нет разницы. Посмотрите сюда, внутрь керамического конденсатора. Внешний двор защищает внутреннюю сторону конденсаторов. Этот — электрод, а верхний — диэлектрический керамический диск.
Поэтому конденсатор называется керамическим. Этот керамический диск хранит заряды. Это символ керамического конденсатора. Маленький диск и маленькая точка обозначают керамический конденсатор. Диапазон керамических конденсаторов от 0 до 0,01 мкФ до 1 мкФ.
Где использовать керамический конденсатор?
Керамический конденсатор используется в различных местах. В основном используется для фильтрации. Он используется в сигнальной или частотной цепи для фильтрации сигнала и его очистки. Он также используется на DC для чистого DC. Керамический конденсатор используется для хранения энергии. Он хранит постоянный ток, но пропускает переменный ток. Это и есть керамический конденсатор.
Как мы считываем значение керамического конденсатора
Первый — это буквенный код, который говорит нам о допуске компонента. Второй — числовой код, который говорит нам о фактическом размере емкости конденсатора.
Сейчас мы рассмотрим наш пример. И наш пример говорит 102 k. Если разбить код, то первая значащая цифра будет единица, а вторая значащая цифра — ноль. Итак, это числа перед нашим множителем.
Рассчитайте стоимость керамического конденсатора
Итак, теперь, когда мы берем ваш множитель, который равен двум, и когда мы смотрим на график, это означает два нуля. Таким образом, мы добавляем два нуля в конце числа. Итак, 1000 пикофарад. Теперь K представляет наш допуск компонента, который в данном случае составляет плюс-минус 10%. Вот как мы определяем размер и номинал конденсатора.
Узнайте здесь, как измерить емкость конденсатора, подключив его к мультиметру. Итак, в этом примере я использую конденсатор с числовым значением 103, что составляет 10 нанофарад.
Теперь, когда вы посмотрите на дисплей того, что оценивается, его практическая оценка такова, что это девять ферритов. Так что допуск около 10%. Теперь, когда вы подключаете его к своему базовому мультиметру. Убедитесь, что у вас есть соответствующий терминал в этом. Как видите, в правом нижнем углу у меня есть символ емкости. Затем убедитесь, что вы находитесь в соответствующем диапазоне вашего мультиметра. А затем, чтобы убедиться, что вы выбрали соответствующую настройку.
Керамические дисковые конденсаторы, коды, таблица
Picofarad pF | Nanofarad nF | Microfarad µF | Code |
---|---|---|---|
10 | 0.01 | 0.00001 | 100 |
15 | 0.015 | 0.000015 | 150 |
22 | 0.022 | 0.000022 | 220 |
33 | 0.033 | 0. 000033 | 330 |
47 | 0.047 | 0.000047 | 470 |
100 | 0.1 | 0.0001 | 101 |
120 | 0.12 | 0.00012 | 121 |
130 | 0.13 | 0,00013 | 131 |
150 | 0,15 | 0,00015 | 151 |
180 | 0.18 | .00018 | |
0.18 | .00018 | ||
0.18 | |||
0.18 | 19.00018 | ||
0.18 | |||
0.18 | |||
.0019 181 | |||
220 | 0.22 | 0.00022 | 221 |
330 | 0. 33 | 0.00033 | 331 |
470 | 0.47 | 0.00047 | 471 |
560 | 0.56 | 0.00056 | 561 |
680 | 0.68 | 0.00068 | 681 |
750 | 0.75 | 0.00075 | 751 |
820 | 0.82 | 0.00082 | 821 |
1000 | 1.0 | 0.001 | 102 |
1500 | 1.5 | 0.0015 | 152 |
2000 | 2.0 | 0.002 | 202 |
2200 | 2.2 | 0.0022 | 222 |
3300 | 3.3 | 0.0033 | 332 |
4700 | 4.7 | 0.0047 | 472 |
5000 | 5.0 | 0.005 | 502 |
5600 | 5. 6 | 0.0056 | 562 |
10000 | 10 | 0.1 | 102 |
15000 | 15 | 0.015 | 152 |
22000 | 22 | 0.022 | 223 |
33000 | 33 | 0.033 | 333 |
47000 | 47 | 0.047 | 473 |
68000 | 68 | 0.068 | 683 |
100000 | 100 | 0.1 | 104 |
150000 | 150 | 0.15 | 154 |
200000 | 200 | 0.2 | 254 |
220000 | 220 | 0.22 | 224 |
330000 | 330 | 0.33 | 334 |
470000 | 470 | 0.47 | 474 |
680000 | 680 | 0. 68 | 684 |
1000000 | 1000 | 1.0 | 105 |
1500000 | 1500 | 1.5 | 154 |
2000000 | 2000 | 2.0 | 205 |
2200000 | 2200 | 2.2 | 225 |
3300000 | 3300 | 3.3 | 335 |
4700000 | 4700 | 4,7 | 475 |
Последний номер, записанный на концентрации, не нанесен на 100423
.
Допустим, керамический конденсатор записал код 682; сначала проверьте последний номер. Таким образом, как мы видим, вот последний номер 2. Теперь мультипликатор — 10 2
Некоторые примеры
- 204 = 20 × 4 = 200000 PF 204 = 20 × 4 = 200000 PF 444444444444439 43944443994439944394439 43944443994444439 4394444444439 439444444444439 43944444444439 4444436 .