Конденсатор к76. Конденсаторы К76: характеристики, применение и особенности

Что представляют собой конденсаторы серии К76. Какие типы конденсаторов К76 существуют. Где применяются конденсаторы К76. Каковы основные характеристики и параметры конденсаторов К76. В чем преимущества и недостатки конденсаторов К76.

Содержание

Общая характеристика конденсаторов серии К76

Конденсаторы серии К76 представляют собой пленочные лакированные конденсаторы постоянной емкости. Они относятся к классу пассивных электронных компонентов и широко применяются в различных электронных устройствах.

Основные особенности конденсаторов К76:

  • Диэлектрик — полиэтилентерефталатная пленка
  • Обкладки — алюминиевая фольга
  • Герметичный пластмассовый корпус
  • Широкий диапазон емкостей и рабочих напряжений
  • Высокая надежность и стабильность параметров

Основные типы конденсаторов К76

Серия К76 включает несколько разновидностей конденсаторов, различающихся конструктивным исполнением и характеристиками:

  • К76-1 — в прямоугольном пластмассовом корпусе
  • К76-2 — в цилиндрическом пластмассовом корпусе
  • К76-3 — в металлическом корпусе
  • К76-4 — малогабаритные
  • К76-5 — высоковольтные

Наиболее распространенными являются типы К76-1 и К76-2. Они отличаются формой корпуса, но имеют схожие электрические характеристики.


Области применения конденсаторов К76

Благодаря своим свойствам конденсаторы К76 находят широкое применение в различных областях электроники:

  • Аудиотехника — в фильтрах, цепях развязки, частотных фильтрах
  • Источники питания — сглаживающие фильтры, цепи коррекции
  • Импульсная техника — формирование импульсов
  • Радиопередающие устройства — колебательные контуры
  • Измерительная аппаратура — образцовые емкости
  • Промышленная электроника — помехоподавляющие цепи

Основные параметры конденсаторов К76

Конденсаторы К76 характеризуются следующими основными электрическими параметрами:

  • Номинальная емкость: от 100 пФ до 10 мкФ
  • Рабочее напряжение: от 63 В до 1600 В
  • Допустимое отклонение емкости: ±5%, ±10%, ±20%
  • Тангенс угла потерь: не более 0,01
  • Сопротивление изоляции: не менее 3000 МОм
  • Температурный коэффициент емкости: от -50 до +50 ppm/°C

Конкретные значения параметров зависят от типономинала конденсатора. Широкий диапазон характеристик позволяет подобрать оптимальный вариант для различных применений.


Преимущества конденсаторов К76

Конденсаторы серии К76 обладают рядом важных преимуществ:

  • Высокая стабильность емкости при изменении температуры
  • Малые диэлектрические потери
  • Высокое сопротивление изоляции
  • Низкий уровень собственных шумов
  • Широкий диапазон рабочих температур (-60…+85°C)
  • Устойчивость к механическим воздействиям
  • Длительный срок службы (не менее 15-20 лет)

Эти качества обеспечивают надежную и стабильную работу конденсаторов К76 в составе различной аппаратуры.

Недостатки конденсаторов К76

К основным недостаткам конденсаторов К76 можно отнести:

  • Относительно большие габариты по сравнению с керамическими конденсаторами
  • Ограниченный диапазон емкостей (до 10 мкФ)
  • Чувствительность к перенапряжениям
  • Ухудшение характеристик при повышенной влажности

Однако в большинстве применений эти недостатки не являются критичными и компенсируются преимуществами конденсаторов К76.

Маркировка конденсаторов К76

На корпусе конденсаторов К76 обычно указывается следующая информация:

  • Тип конденсатора (например, К76-1)
  • Номинальная емкость (например, 0,1 мкФ)
  • Допустимое отклонение емкости (±10%)
  • Рабочее напряжение (например, 400 В)
  • Дата изготовления (год и квартал)

Маркировка может наноситься краской или лазерной гравировкой. Точная расшифровка маркировки приводится в технической документации на конкретный тип конденсатора.


Особенности монтажа конденсаторов К76

При монтаже конденсаторов К76 следует учитывать некоторые особенности:

  • Не допускается механическое воздействие на выводы вблизи корпуса
  • Пайка выводов должна производиться на расстоянии не менее 5 мм от корпуса
  • Температура пайки не должна превышать 260°C
  • Время пайки — не более 5 секунд
  • Не рекомендуется изгибать выводы на расстоянии менее 3 мм от корпуса

Соблюдение этих правил обеспечивает надежный монтаж и сохранение характеристик конденсаторов.

Хранение и транспортировка конденсаторов К76

Для обеспечения сохранности конденсаторов К76 необходимо соблюдать следующие условия:

  • Температура хранения: от -60°C до +85°C
  • Относительная влажность: не более 98% при 40°C
  • Отсутствие агрессивных сред (кислот, щелочей и т.п.)
  • Защита от прямых солнечных лучей
  • Отсутствие механических воздействий при транспортировке

При соблюдении этих условий гарантийный срок хранения конденсаторов К76 составляет не менее 25 лет.

Заменители конденсаторов К76

В случае отсутствия конденсаторов К76 их можно заменить аналогичными типами:


  • К73-17 — пленочные полиэтилентерефталатные
  • К78-2 — пленочные полипропиленовые
  • МБГЧ — металлобумажные герметизированные
  • КСО — слюдяные опрессованные

При замене необходимо учитывать соответствие основных параметров: емкости, рабочего напряжения, температурного коэффициента емкости.

Перспективы развития конденсаторов типа К76

Несмотря на появление новых типов конденсаторов, серия К76 продолжает развиваться. Основные направления совершенствования:

  • Уменьшение габаритов при сохранении емкости
  • Расширение диапазона рабочих температур
  • Повышение надежности и срока службы
  • Улучшение частотных характеристик
  • Снижение себестоимости производства

Эти усовершенствования позволят конденсаторам К76 оставаться востребованными еще долгое время.


Конденсатор К76-3 0,1 мкФ 250В — покупайте на newauction.com.ua по выгодной цене

Параметры:

Состояние : б/у

Наличие : в наличии

Техническое состояние : исправное

Гарантия : гарантия не предоставляется


Зняті з апаратури.

Виводи 12…12мм

 

Тип сделки:

Предоплата

Способы оплаты:

Стандартный банковский перевод

Наличными при встрече

Доставка:

Новая почта по городу: 6 грн. по стране: 35 грн.

Укрпочта по городу: 15 грн. по стране: 15 грн.

Курьерская служба по городу: 6 грн. по стране: 35 грн.

Личная встреча

Советские керамические и пленочные конденсаторы — Справочные материалы

Название : Конденсаторы — Справочник.

Рассматриваются основные параметры и характеристики различных классов конденсаторов, выпускаемых промышленностью. Приводится классификация конденсаторов, рассматриваются их конструктивные разновидности. Предлагаются рекомендации по выбору, применению и эксплуатации конденсаторов в радиоаппаратуре.
Для широкого круга радиолюбителей.

Настоящий Справочник представляет собой достаточно полное издание, содержащее сведения о широкой номенклатуре конденсаторов. В Справочнике приводятся данные по всем классам радиоконденсаторов, выпускающихся отечественной промышленностью.
Представленные в Справочнике конденсаторы сгруппированы в 22 классификационные группы, объединяющие конденсаторы по виду диэлектрика на керамические, стеклянные, стеклокерамические, слюдяные, бумажные, полистироль» ные, фторопластовые, полиэтилентерефталатные, комбинированные, лакопленочные, поликарбонатные, полипропиленовые, оксидноэлектролитические алюминием вые, танталовые, ниобиевые, объемно-пористые, оксидно-полупроводниковые, подстроечные воздушные, подстроечные с твердым диэлектриком, сборки, варикоиды и термоконденсаторы.

Содержание
Предисловие.
Классификация и условное обозначение конденсаторов
Обозначения конденсаторов в электрических схемах.
Устройство, принцип действия и основные параметры конденсаторов.
Устройство и принцип действия.
Основные параметры
Внешние факторы, влияющие на параметры конденсаторов
Выбор и применение конденсаторов.
Конденсаторы с неорганическим диэлектриком
Керамические конденсаторы (К 10, К15).
Стеклянные и стеклокерамические конденсаторы (К21, К22)
Слюдяные конденсаторы (К31).
Конденсаторы с органическим диэлектриком

Общие сведения
Бумажные (К40, К41) и металлобумажные (К42) конденсаторы
Пленочные полистирольные конденсаторы (К70, К71).
Пленочные фторопластовые конденсаторы (К72).
Пленочные полиэтилентерефталатные конденсаторы (К73, К74) .
Комбинированные конденсаторы (К75).
Лакопленочные конденсаторы (К76)
Пленочные поликарбонатные конденсаторы (К77)
Пленочные полипропиленовые конденсаторы (К78)
Конденсаторы с оксидным диэлектриком
Общие сведения
Оксидно-электролитические алюминиевые (К50) и танталовые (K5I)
конденсаторы
Объемнопористые конденсаторы (К52).
Оксиднополупроводнкковые конденсаторы (К53).
Подстроечные конденсаторы (КТ4).
Нелинейные конденсаторы
Общие сведения
Вариконды (ВК, КН1)
Термоконденсаторы (КН2).
Конденсаторные сборки (КС).
Приложения. Справочные данные
Указатель конденсаторов, помещенных в справочнике
Список литературы

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Конденсаторы — Справочник — Горячева Г.А., Добромыслов Е.Р. — fileskachat.com, быстрое и бесплатное скачивание.

  • Справочник по конструированию радиоэлектронной аппаратуры — Горобец А.И., Степаненко А.И., Коронкевич В.М.
  • Аспекты проектирования электронных схем на основе микроконтроллеров, Слесарев А.Ч., Моисейкин Е.В., Устьянцев Ю.Г., 2018

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре. 10 Ом.


Рис. 5 Конденсаторы КТК

Конденсаторы КТК — Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные — голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.


Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 — 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.


Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.


Рис. 8. МБГО, МБГЧ


Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО — конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.


Рис. 10. Различные типы конденсаторов



Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6 К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)


Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.


Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.


Рис. 14. Электролитические конденсаторы. Снизу — для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.


Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.


Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10…100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.


Рис. 16. Ионисторы

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Название : Справочник по электрическим конденсаторам.

Приведены классификация, основные технические параметры, особенности конструкций и эксплуатационные характеристики выпускаемых отечественной промышленностью конденсаторов, а также данные о влиянии режимов и условий эксплуатации на их работоспособность. Даны рекомендации по выбору и применению конденсаторов в аппаратуре. Для широкого круга специалистов, занимающихся разработкой, эксплуатацией и ремонтом радиоэлектронной аппаратуры.


Электрические конденсаторы — наиболее массовые изделия, широко используемые в радиоэлектронной аппаратуре, В связи с быстрым развитием современной электроники потребность в конденсаторах непрерывно возрастает. В настоящее время создана довольно широкая номенклатура этих изделий и продолжают разрабатываться новые типы с более высокими электрическими и эксплуатационными характеристиками.

Многообразие различных типов конденсаторов и отсутствие справочных материалов, достаточно полно характеризующих их эксплуатационные свойства, вызывает определенные трудности при конструировании радиоаппаратуры.

Настоящий Справочник представляет собой наиболее полное издание, содержащее сведения о широкой номенклатуре конденсаторов. Справочные материалы составлены на основе данных, указанных в государственных стандартах и технических условиях.

Справочник состоит из двух частей. Первая часть посвящена общим сведениям. Даются классификация, система условных обозначений, понятия об электрических параметрах и излагаются вопросы, связанные с применением и эксплуатацией конденсаторов.

Во второй части приводятся справочные данные по конкретным типам конденсаторов. В основу разбиения материала по разделам принято установившееся деление конденсаторов по виду диэлектрика (с органическим, неорганическим и оксидным). В отдельные разделы выделены конденсаторы подстроечные, вакуумные и нелинейные.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Справочник по электрическим конденсаторам — Дьяконов М.Н., Карабанов В.И., Присняков В.И. — fileskachat.com, быстрое и бесплатное скачивание.

  • Справочная книга радиолюбителя — конструктора — Чистяков Н. И.
  • Физика, Подготовка к ЕГЭ-2015, Книга 2, Монастырский Л.М., Богатин А.С., 2014

Следующие учебники и книги.

Конденсатор – пассивное электронное устройство, состоящее из двух или более обкладок к которым подключены внешние выводы, разделенных между собой диэлектриком. На этой странице вы не только узнаете практически все о конденсаторах, но сможете скачать справочник по конденсаторам. Мы можем встретить эти радиокомпонеты практически на любых схемах и в любых электронных устройствах, их условное обозначение на принципиальных схемах следующее:

Архив Подборка справочной документации по емкостям выпущенных во времена СССР и стран Варшавского договора

Справочные параметры конденсаторов

    Номинальная емкость С ном — Емкость, обозначенная на корпусе. Может отличаться от реальной, на некоторую величину, не превышающую допустимое отклонение.
    Температурный коэффициент емкости. ТКЕ Он может принимать отрицательные и положительные значения. Если во время роста температуры емкость конденсатора уменьшается, то ТКЕ отрицательный, и наоборот (М — отрицательный, П — положительный, МП — близко к нулю, Н — ненормированный). Обычно этот справочный параметр необходим в высокочастотных цепях, где требуется повышенная стабильность емкости или заданная закономерность ее изменения.
    Номинальное напряжение U ном — Максимально допустимое постоянное напряжение, которое задается с определенным запасом по отношению к длительной электрической прочности диэлектрика.
    Сопротивление изоляции R из Справочная характеристика описывает качество материала диэлектрика. По окончании процесса зарядки конденсатора, протекающий ток принимает некоторое финишное значение — ток утечки I ут . Отношение приложенного напряжения к току утечки по закону Ома и является сопротивлением изоляции. Исправный конденсатор в нормальных условиях обладает сопротивлением изоляции в несколько сотен мегаом.
    Реактивная мощность P q Вычисляется как произведение протекающего тока на приложенное напряжение.

Номиналы конденсаторов практически идентичны номиналам сопротивлений. В основном используемые ряды номиналов конденсаторов при производстве — ряд Е3 (в настоящее время не используется, но может такая деталька попасть из СССР запасов), Е6 и Е12, т.к. многие типы конденсаторов сложно изготовить с более высокой точностью. Более подробно смотри справочник по ссылке выше.

Многочисленные виды емкостей можно классифицировать по нескольким признакам: по назначению ; по характеру регулировки емкости; по способу монтажа на печатную плату; по характеру и уровню защиты от внешних воздействий.


Конденсаторы общего назначения применяются практически в любом электронном устройстве, так как к ним не применяются особые требования.
А вот к их коллегам специального назначения как раз и предъявляются особые требования по частоте, и напряжению, виду действующих сигналов и т.п. К даКонденсаторы общего назначения используются в большинстве видов радиоэлектронной аппаратуры. К ним не применяются особые требования
Конденсаторы постоянной и переменной емкости — Уже из названия понятно, что у первых величина емкости является постоянной и ни как не регулируется, а у их переменных собратьев номиналы в процессе работы можно регулировать различными способами: механически, или поднастройкой управляющего напряжения, изменением температуры окружающей среды и т.п
Подстроечные емкости – их используют для первоначальной регулировки аппаратуры или периодической подстройки схемы, где необходим малый диапазон изменения емкости.
Конденсаторы для печатного монтажа – используются в технике с обычными печатными платами с отверстиями под выводы радиоэлементов. У них выводы сделаны из проволоки круглого сечения.
Конденсаторры для навесного монтажа . Этот вид очень многообразен по исполнению выводов. Здесь могут быть мягкие и жесткие, радиальные или аксиальные, изготовленные из ленты или проволоки круглого сечения, а так же с выводами в виде опорных винтов и проходных шпилек.
Конденсаторы для поверхностного монтажа SDM . В последнее время они находят все большее применение. Альтернативное название таких конденсаторов – без выводные. У них в качестве выводов применяются части корпуса.
Конденсаторы с защёлкивающимися выводами , их выводы сделаны таким образом, что при установки в отверстия печатной платы они «защелкиваются», это дает возможность качественно и с удобствами осуществить их пайку.
Конденсаторы с выводами под винт используются для поверхностного монтажа. В выводах имеется резьба. В основном они используются в блоках питанияс большими токами. применение выводов под винт так же дает возможность установки конденсатора на радиатор.
Незащищенные и защищенные конденсаторы . Первые не допускают к работе в условиях повышенной влажности, только в составе герметизированной аппаратуры, а их защищенные собратья – наоборот, могут работать в условия повышенной влажности

Неизолированные конденсаторы не допускается касания их корпусом шасси аппаратуры, и наоборот, изолированные – имеют хорошо изолированный корпус, что допускает касания шасси аппаратуры или ее токоведущих поверхностей.

Уплотненные конденсаторы – их корпус, уплотнен различными органическими материалами.

Герметизированные конденсаторы обладают герметизированным корпусом, что исключает взаимодействие внутренней конструкции с окружающей средой.

Конденсатор постоянной емкости их виды

Конденсатор постоянной емкости характеризуются такими параметрами, как номинальная емкость, электрическая прочностью, реактивная мощность, качеством изоляции, потерями, коэффициентом абсорбции, индуктивностью, стабильностью и надежностью.

Их в основном используют в колебательных контурах, в схемах с различной рабочей частотой, построения сглаживающих фильтров, связи отдельных цепей переменного тока, накопления электрического заряда, в качестве делителя напряжения.

От того какой диэлектрик (изолятор) используется внутри емкости их делятся на керамические, металлопленочные, электролитические (алюминиевые и танталовые) и др

Керамические конденсаторы представляют собой конструкции с керамической базовой деталью в качестве диэлектрика, на которую нанесены в соответствующих местах металлические слои (обкладки).

Основные свойства керамических емкостей определяются свойствами керамики, из которых они изготавливаются. В зависимости от ее состава получается широкий диапазон значений диэлектрической проницаемости (от нескольких единиц до нескольких тысяч) и величин температурного коэффициента емкости.


Обладают низким током утечки, малыми размерами, очень низкой индуктивностью, способны отлично работать на высоких частотах и в цепях постоянного, переменного и пульсирующего тока.

Выпускаются в широком диапазоне рабочих напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения способны выдержать высокое напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.

Представляют собой конструкции, состоящие из металлических обкладок и слюдяных пластин, выполняющих роль диэлектрика

В настоящее время не выпускаются. Но у многих их еще полно из старых советских запасов. Обычно они имеют ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.


Состоят из двух длинных полос алюминиевой или свинцово оловянной фольги, разделенных несколькими слоями специальной бумаги и свернуты в виде рулона.

Такие конденсаторы бывают ёмкостью от тысяч пф до 30 мкф, и могут выдерживать напряжение от 160 до 1,5 кВ.

Металлобумажные конденсаторы имеют конструкцию, аналогичную бумажным конденсаторам, с той разницей, что вместо ленточных металлических электродов и бумаги в них используется бумажная лента, покрытая тонким слоем металла (алюминия или цинка) методом испарения в вакууме

Пленочные их можно поделит на полиэстеровые и полипропиленовые конденсаторы представляют собой радиокомпоненты с диэлектриком из синтетических пленок.


Полипропиленовые обладают двумя неоспоримыми плюсами. Во первых их можно изготавливать с очень маленьким уровнем допуском всего в 1%. И второе их преимущество это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость лижит в огромном интервале от 100 пФ, до 10 мФ)

Электролитические конденсаторы отличаются высокой удельной емкостью, обусловленной использованием в качестве диэлектрика тонкой оксидной пленки, образованной из вентильного металла электродов (алюминий, тантал, ниобий). Оксидная пленка имеет исключительно высокую электрическую прочность и обладает вентильными свойствами.

Обозначение конденсаторов на схемах основывается на требованиях ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы.

Ионисторы принцип действия

Ионисторы, другое название суперконденсаторы или ультраконденсаторы — это такие устройства, похожие на конденсаторы в которых накапливается электрический заряд между двумя обкладками на границе раздела двух сред — электролита и электродами. Вся энергия в ионисторах хранится в виде статического заряда. Накопление энергии происходит за счёт приложенного постоянного напряжения на его внешние выводы. Проще можно сказать, что это обычные конденсаторы, которые в отличие от простых, обладают огромной емкостью.

Конденсаторы для усилителя мощности

 

КАКИЕ КОНДЕНСАТОРЫ ПОСТАВИТЬ В УСИЛИТЕЛЬ МОЩНОСТИ

            Любой усилитель мощности состоит из компонентов, объединенных тем или иным способом. Количество компонентов может исчисляться десятками, а то и сотнями единиц и от каждого компонента что то зависит — это как кирпичики одного здания, от которых зависит и высота, и красота, и прочноcть всей конструкции. Об этих «кирпичиках» и пойдет речь в этой статье.
      «Имеет ли смысл гнаться за нулями после запятой в Кг?»
      В разумных пределах конечно имеет, поскольку звуковой тракт должен повторять задумку композитора и исполнителей максимально точно, не внося своих собственных «дополнений», не говоря уже о потрескиваниях и пошипываниях. Хотя многое зависит от использования аудиотракта. Если строится система для шумового сопровождения, типа балабонящего радиоприемника и не особо вникать в качество прослушиваемых фонограмм, то Кг и в 1% мешать не будет, поскольку подобные тракты эксплуатируются при выходных мощностях не более 3-5 Вт, а обычно гораздо меньше. Если же планируется целевое прослушивание, хотя бы время от времени, то к вносимым в тракт искажениям стоит подойти более серьезно и постараться обеспечить хотя бы один нолик после запятой на мощностях 2/3, в идеале 3/4 от максимальной. Дальнейшая гонка за нулями после запятой уже чревата серьезными экономическими вложениями и более тщательному подходу к схемотехнике усилителя, а так же однозначно предъявляет повышенные требования к используемым АС, поскольку каким хорошим не был тракт все может загубить именно АС.
     
     

КОНДЕНСАТОРЫ

      Про устройство конденсатора, пожалуй, рассказывать смысла не имеет — на эту тему достаточно много написано, поэтому сразу перейдем к параметрам, но для начала вспомним обозначение:

      В зависимости от используемой при производсте технологии конденсаторы деляться на на серии:
     

Серия

Краткое описание серии

Основные применения

Постоянной ёмкости

К10

Керамические на номинальное напряжение ниже 1600 В

Для высокочастотных конденсаторов: термокомпенсация, ёмкостная связь, фиксированная настройка контуров на ВЧ;

Для низкочастотных конденсаторов: шунтирующие, блокирующие и фильтрующие цепи, междукаскадная связь на НЧ.

К15

Керамические на номинальное напряжение 1600 В и выше

Ёмкостная связь, фиксированная настройка мощных ВЧ-контуров, импульсные устройства

К21

Стеклянные

Блокировка, фиксированная настройка ВЧ-контуров, ёмкостная связь, шунтирующие цепи

К22

Стеклокерамические

К23

Стеклоэмалевые

К26

Тонкоплёночные с неорганическим диэлектриком

 

К31

Слюдяные малой мощности

Блокировочные и шунтирующие цепи, ВЧ фильтрующие цепи, ёмкостная связь, фиксированная настройка контуров

К32

Слюдяные большой мощности

К40

Бумажные на номинальное напряжение ниже 2 кВ, фольговые

Блокировочные, буферные, шунтирующие, фильтрующие цепи, ёмкостная связь

К41

Бумажные на номинальное напряжение 2 кВ и выше, фольговые

К42

Бумажные металлизированные

Цепи развязок и фильтры; в качестве ёмкостей связи не применяются

К50

Оксидно-электролитические алюминиевые

Шунтирующие и фильтрующие цепи, накопление энергии в импульсных устройствах

К51

Оксидно-электролитические танталовые, ниобиевые и т. д.

Применяются вместо электролитических алюминиевых конденсаторов, в основном в полупроводниковой аппаратуре, при повышенных требованиях к параметрам конденсаторов

К52

Объёмно-пористые

К53

Оксидно-полупроводниковые

К60

С воздушным диэлектриком

Эталоны ёмкости и образцовые конденсаторы, блокировочные высоковольтные, развязывающие и контурные

К61

Вакуумные

К71 (К70)

Полистирольные

Точные временные цепи, интегрирующие устройства, контура высокой добротности, образцовые ёмкости

К72

Фторопластовые

Применяются аналогично полистирольным конденсаторам, при повышенных требованиях к температуре и электрическим параметрам

К73 (К74)

Полиэтилентерафталатные

Применяются аналогично бумажным конденсаторам при повышенных требованиях к электрическим параметрам

К75

Комбинированные (диэлектрик состоит из определённого сочетания слоёв различных материалов)

Применяются аналогично бумажным конденсаторам при повышенных требованиях к надёжности

К76

Лакоплёночные

Применяются аналогично бумажным и металлобумажным конденсаторов, а также частично могут заменять электролитические конденсаторы, особенно при повышенных значениях переменной составляющей.

К77

Поликарбонатные

Применяются аналогично полиэтилентерафталатным конденсаторам, но на более высоких частотах

К78

Полипропиленовые

Телевизионная и бытовая РЭА, электротехника

Подстроечные

КТ1

Вакуумные

Специальная аппаратура

КТ2

С воздушным диэлектриком

Радиоприёмная аппаратура

КТ3

С газообразным диэлектриком

Специальная аппаратура

КТ4

С твёрдым диэлектриком

Радиоприёмная и телевизионная аппаратура

Переменной ёмкости

КП1

Вакуумные

Специальная аппаратура

КП2

С воздушным диэлектриком

Радиоприёмная аппаратура

КП3

С газообразным диэлектриком

Специальная аппаратура

КП4

С твёрдым диэлектриком

Радиоприёмная и телевизионная аппаратура


     
      К основным параметрам конденсатора является емкость, т. е. способность конденсатора накапливать электрический заряд.
      Далее идет плотность энергии, в основном применяется к электролитическим конденсаторам. Этот параметр важен при использовании конденсатора как накопителя энергии и последующей ее мгновенной отдачей, например накопительные конденсаторы фотовспышки.
      Номинальное напряжение — параметр описывающий при каком напряжении конденсатор может эксплуатироваться непрерывно, круглосуточно. Превышение этого параметра ведет пробою диэлектрика и выходу конденсатора из строя. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
      Кроме этого у электролитических конденсаторов существует полярность, поскольку конструктивно выполнены на основе химических элементов, при смене полярности которые разрушаются и приводят к закипанию электролита, пары которого приводят к взрыву конденсатора.
      Эквивалентная схема конденсатора пиведена ниже и на ней видно, что у конденсатора есть еще «дополнительные» элементы:

      R1 — электрическое сопротивление изоляции конденсатора, отвечающий за ток утечки — чем выше сопротивление R1, тем меньше ток утечки.
      R2 — эквивалентное последовательное сопротивление (ЭПС (англ. ESR), внутреннее сопротивление) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор, вследствие поверхностного эффекта.
      L1 — эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора.
      С1 — собственно сама емоксть конденсатора.
      Так же у конденсаторов есть еще параметры, за которыми следует приглядывать, поскольку «забывчивость» на этот счет может привести к весьма не приятным эффектам. Особое внимание следует уделять при проектировании частото заивимых цепей температурному коэффициенту ёмкости (ТКЕ). ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (кельвин). При использовании конденсаторов с высоким ТКЕ в эквалайзерах частотный диапаозн регулировко будет изменяться в зависимости от окружающей температуры, а так же от внутреней температуры. Например эквалайзер устноавлен сверху усилителя мощности. Зимой, впрохладной квартире в момент включения частотный диапазон будет смещен в область НЧ, но по мере прогрева диапазон будет перемещаться в область ВЧ. На слух такое измение возможно и будет не замечено, однако при использовании эквалайзера для редактирования музыкальных фонограмм возможны недоразумения.
      Диэлектрическая абсорбция — появление напряжения на обкладках конденсатора после быстрого разряда и снятия нагрузки. Эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно ярок и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком (например, керамических и слюдяных) эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрическим поглощением обладают конденсаторы с неполярными диэлектриками: тефлон (фторопласт), полистирол, полипропилен и т.п.
      Многие керамические материалы обладают пьезоэффектом — способностью генерировать разность потенциалов при механических деформациях. Диэлектрики некоторых керамических конденсаторов также могут обладать таким свойством. Обычно это проявляется в возникновении помех в электрических цепях вследствие шума или вибрации, поэтому этот эффект довольно часто называют «микрофонным».
      Конденсаторы технологически отличаются друг от друга использумемыми при их производстве материалами все параметры в разных конденсаторах будут проявляться по разному, а поскольку целью статьи является ознакомление с элементной базой, то наиболее интересными будут свойства конденсаторов, которые применяются в звукотехнике.
      НЕПОЛЯРНЫЕ КОНДЕНСАТОРЫ
      Неполярные конденсаторы в усилителях мощности используются весьма интенсивно, причем используются не только для накопления энергии.
      Основных сфер использования конденсаторов в усилителях несколько:
      — фильтрация напряжения питания, где как раз и используется свойство конденсатора накапливать и отдавать энергию;
      — отсекание постоянного напряжения в трактах усиления, в которых используется перезарядка конденсатора переменным напряжением;
      — частотозависимые параметры, позволяющие изменять коф усиления каскада в зависимости от частоты проходящего сигнала.
      О последнем использования стоит поговорить более подробно. Дело в том, что кроме перечисленных выше параметров у конденсатора есть еще один — реактивное сопротивление. Этот параметр основан на скорости заряда-разряда конденсатора, которая определяет через какой промежуток времени конденсатор будет полностью заряжен или полностью заряжен. При подаче переменного напряжение скорость перезаряда будет определять на сколько процентов успел зарядится-разрядится конденсатор, а это зависит от емкости конденсатора и от подаваемой частоты.
      Для наглядности обратимся к схеме:

      Здесь V1 является генератором прямоугольных импульсов с длительностью 1 мС (1000 Гц) и амплитудой 10 В.
      На левом выводе конденсатора С1 присутствуют эти самые импульсы:

      По мере заряда конденсатора C1 напряжение на резисторе R1 уменьшается, поскольку через конденсатор перестает протекать ток:

      Кроме этого, в момент окончания импульса (на 0,5 мС) конденсатор начинает разряжаться, поскольку напряжение на генераторе равно нулю, а R1 не имеет источника ЭДС. Это означает, что ток меняет свое направление на противоположное, т.е. на верхнем выводе R1 появляется отрицательное напряжение и оно присутствует до тех пор пока конденсатор не разрядится.
      Но разрядится полностью он не успевает — снова появляется импульс на генераторе (1 мС), ток через С1 снова меняет свое направление и на R1 появляется положительное напряжение. Однако его величина уже меньше, чем в момент поялвения первого импульса — сказывается остаточный заряд в конденсаторе.
      По мере заряда конденсатора напряжение на R1 начинает уменьшаться, но до нуля не успевает дойти — импульс снова исчезает ( 1,5 мС) и конденсатор начинает разряжаться, т.е. процесс начинает повторяться с спотепенным выравниванием положительного и отрицательного напряжений на R1 и буквально через 3-4 такта генератора напряжение на R1 будет полноценным переменным, т.е. положительное напряжение будет достигать 7,5 В и отрицательное напряжение будет достигать 7,5 В:

      Кроме того, что на R1 теперь приходит переменное напряжение его стало меньше — форма напряжение отличается от изначальной прямоугольной довольно сильно, следовательно С1имеет какое то сопротивление, но конденсатор по определению не может иметь сопротивления, поскольку между обкладками конденсатора находится изолятор. Именно поэтому этот эквивалент конденсатора называют реактивным сопротивлением.
      Для уточнения правоты утверждения, что конденсатор выступает вроли сопротивление увеличим его емоксть в 10 раз, т.е. используем конденсатора на 470 нФ:

      Из рисунка видно, что напряжение на R1 приобрело более прямоугольную форму, т.е. очевидно, что действующее напряжение, приложенное к R1 возросло, слдеовательно реактивное сопротивление С1 уменьшилось.
      Тепреь изменим генерируемую генератором частоту, чтобы убедится, чтореактивное сопротивление зависит и от емкости конденсатора и от частоты. После уменьшения частоты в 10 раз прилагаемое к R1 напряжение приобретает вид:

      Рисунок один в один повторяет тот, который был при емкости в 47 нФ и частоте 1 кГц, только теперь частота 100 Гц, а емкость 470 нФ. Это подтверждает, что реактивное сопротивление конденсатора зависит и от частоты и от емкости самого конденсатора.
      Само сопротивление расчитывается по формуле:

      где F — частота в Герцах, С — емкость в Фаррадах.
      Используя эту формулу можно достаточно просто определить на какой частоте что будет происходить в частотозависимых цепях, а так же определить необходимый номинал разделительных конденсаторов, но это вопросы схемотехники, здесь же знакомство с самими компонентами, поэтому вернемся к конеднсаторам.
      Поскольку у конденсатора кроме полезных параметров есть еще и вредные не трудно сделать вывод, что проходя через конденсатор переменное напряжение будет искажаться. Величины искажений каждого типа конденсаторов различны, отсюда и пошло определение «звуковые конденсаторы», вносящие миимальные искажения в сигнал и остальные, пригодные для шунтирования питания.
      Для проверки конденсаторов использовалась следующая схема:

      Со звуковой карты подавалось синусоидальное напряжение максимальной амплитуды (2В эфф.), резистор подбирался так, чтобы напряжение на конденсаторе было в пределах 2…2,5 В амплитудного (т.е. примерно 1,5 вольта действующего) значения. Кроме напряжения на конденсаторе, измерялось и выходное напряжение звуковой карты, чтобы контролировать ее искажения. Из измерений видно, что искажения самой карты намного меньше, и не влияют на точность (искажения карты вычитались из результатов, вычитание было абсолютно правильным: корень квадратный из разности квадратов амплитуд соответствующей гармоники).

      В результате тестов было выяснено, что минимальные искажения вносят конденсаторы МБМ, а максимальные многослойная керамика КМ-5, остальные «кандидаты» расположились следующим образом:
     
     

Место

Тип

«Обычный» Кг

Нормированный К’г

1

МБМ

0,0014

0,0067

     

2

К78-19

0,0015

0,0049

     

3

К71-7

0,0016

0,0061

     

4

EPKOS

0,0017

0,0053

     

5

К73-16

0,0017

0,0091

     

6

К73-17

0,0019

0,0074

     

7

К78-2

0,0022

0,0064

     

8

ФТ-1

0,0023

0,0098

     

9

К42У-2

0,0023

0,0078

     

10

«Зеленый нонейм»

0,0025

0,024

     

11

Импортный «К73»

0,0027

0,012

     

12

К10-17а

0,83

2,2

     

13

КМ-5

2,1

6,1

     
 в защиту последних двух строчек следует сказать, что у них Кг сильно зависит от емкости конденсатора — чем больше емкость — тем больше Кг. Вывод напрашивается сам собой — их можно использовать в цепях коррекции, где емкость не более 100 пкФ, но нельзя использовать в качестве разделительных, где емкость должна быть более 1 мкФ.

      Кроме обычного способа использовался еще один способ вычислений Кг — нормированный. Этот способ нормирования придумали инженеры из лаборатории английской компании ВВС в 50-х годах ХХ века. И такой способ, когда напряжение гармоники умножается на квадрат ее номера, позволяет учесть ширину спектра гармоник. Зачем это нужно? А затем, что чем больше порядок нелинейности и шире спектр гармоник, тем хуже звук:

      Другими словами, если удасться собрать идеальный усилитель с Кг равным нулю, то используя в качестве разделительного конденсатора C1 конденсаторы МБМ на выходе получим Кг равным 0,0014%, а используя К10-17А — 0,8%:

      Примерно так же обстоят дела у электролитических конденсаторов — все «болячки» конденсаторов у них присутствуют, только для электролитических конденсаторов наиболее интересным является ESR, покольку электролитические конденсаторы больше применяются в цепях питания, т.е. используется их свойство накапливать и отдавать энергию. Обычно ESR указывается для определенной частоты/ емкости/рабочего напряжения, а также типоразмера корпуса конденсатора.
      Как правило, конденсаторы в высоких и узких корпусах имеют лучшие характеристики, чем низкие и широкие. Это связано с особенностями конструкции — в высоком и узком корпусе алюминиевая лента свернута в меньшее количество витков и имеет бОльшую ширину, а это- меньшая индуктивность и паразитное сопротивление конденсатора. Естественно, это замечание справедливо при сравнении конденсаторов одной серии одного производителя, низкокачественные поделки нонейм производителей форма корпуса не спасет.
      Ниже приведена таблица рейтинга электролитических конденсаторов, составленная на основании ислодований как поклоников аналоговой техники, так и цифровой, причем в рейтингах отсутствуют СУПЕРБРЕНДЫ, хотя их производители присутствуют. Позиция в левой колонке составлена звуковиками, которые отталкивались от надежности, а левую половину таблицы заполнили компьютерщики на основе раскопанных на конденсаторы даташитов:
     

ПРОИЗВОДИТЕЛЬ

ПРИМЕЧАНИЯ

РЕКОМЕНДУЕМЫЕ

SanyoСерия WG, сверхнизкое сопротивление, 0.016 om/100kHz для номинала 1800 мкф.
SP серия, конденсаторы с органическим полупроводниковым электролитом и сверхнизким сопротивлением, и вообще, крутая, но редкая штука. 0.008 om/300kHz для номинала 1500 мкф.
SVPC серия, алюминиевые с полимерным электролитом. повышенные частоты и надежность, сверхнизкое сопротивление, 0.01 om/300kHz для номинала 1500 мкф
  
RubyconMCZ, ультра низкое сопротивление, повышенные рабочие частоты, 0.016 om/100kHz для номинала 1500/6.3
серия MBZ ультра низкое сопротивление, 0.026 om/100kHz для номинала 1500/6.3. Серия уже снята с производства, на смену ей выпускается серия MCZ
серия YXG низкое сопротивление, 0.046 om/100kHz для номинала 1500/6.3. Это обычный хороший электролит с улучшенными параметрами. Для испльзования в фильтрах импульсных преобразователей питания процессоров /памяти не позиционируется, хотя для замены неисправных при отсуствии других вариантов сойдут. Для линейных стабилизаторов — более чем хороши.
  
ElnaДанных нет, но есть комент «слухача», тестировавшего конденсаторы в блоке питания усилителя:
      Elna Silmic II является лучшим устройством этого теста. По сравнению с очень хорошим Black Gate, Elna звучит лучше. Разница между Sprage и Black Gate такая же как между Black Gate и Elna. Это, безусловно, лучший выбор для электролитического конденсатора в фильтре питания усилителя мощности.
  
Nippon Chemi-Conсерия KZG, ультра низкое сопротивление (здесь, и дальше, будет иметься в виду ESR), 0.026 om/100kHz для номинала 1500/6.3 На некоторых форумах эту серию считают не очень надежной (первая партия, с кривым электролитом, досталась производителю материнкских плат ABIT, отсюда и пошли слухи).
PSC, алюминиевые с полимерным электролитом, сверхнизкое сопротивление, высокие частоты. 0.01 om/300kHz для номинала 1500 мкф
  
NichiconНМ, повышенное качество, свернизкое сопротивление, 0,016 ом/100kHz для номинала 1500/6.3.
НN имеет еще более низкое сопротивление, 0,012 ом/100kHz для номинала 1500/6.3
НZ имеет еще более низкое сопротивление, 0,009 ом/100kHz для номинала 1500/6.3, но уже не позиционируется производителем, как имеющая повышенную надежность
  
FujitsuНет данных
  
SamsungTLQ, повышенное качество, свернизкое сопротивление, 0,015 ом/100kHz для номинала 1500/6.3
  
EPCOSВ41886, ультра низкое сопроитвление, повышенная надежность. 0,028 ом/100kHz для номинала 1500/6.3. Если попадутся — смело берите, несмотря на средние показатели ESR, зато качество гарантировано
  
CapXonLZ, ультра низкое сопротивление, 0,02 ом/100kHz для номинала 1500/6.3
  
JamiconWL низкое сопротивление, пониженное на высоких частотах 0,036 ом/100kHz для номинала 1500/6.3
MZ пониженное низкое сопротивление, long life, 0,018 ом/100kHz для номинала 1500/6.3
  
Matsushita
      (Panasonic)
Серии FC, FK и FM имеют малое ERS, и сравнительно не так дороги.
  
HitachiНЕТ ДАННЫХ
HITANO
SAMWHA
Vishay
Teapo
OST
  

НЕ РЕКОМЕНДУЕМЫЕ

D.S (VENT) 
Chhsi (HK(M), WG(M)) 
G-LUXON (SM) 
GSC 
Fuhjyyu 
HEC 
Jackcon 
Jee 
Li-con (Licon) 
Jenpo 
JPCON 
JODEN 
Rulycon 
Rubysun 
Tayeh 
Lelon 
Ltec 
E.V.A.TOP 
JunFu (WG, HK) 
FULLTEC 
KYS 
SOWA 
Su’scon 
EASICON 
Gjt 
Elite 
TREC 
GLORIA (GAE) 
MK (M)P8 
Samxon 

      Разумеется, что при использовании конденсаторов с низким ESR к раcположению проводников на печатной плате предъявляются более жесткие требования — не правильная разводка платы может, если и не перечеркнуть полностью, то существенно снизить эффективность этих кондесаторов:

      Кроме упомянутых конденсатров существуют дополнительные серии «For Audio» — «СПЕЦИАЛЬНО ДЛЯ АУДИО» и имеющие сверхмалое ERS, повышенную плотность энергии и конечно же не копеечную стоимость. Использовать такие кондесаторы стоит в сверхвысококачественных усилителях, а если речь идет уже о таком качестве звукового тракта, то уже имеется и соответствующий опыт, следовательно расписывать все прелести «For Audio» не имеет смысла.
      При использовании электролитических конденсаторов в качестве разделительных рекомендуется последовательно-параллельное включение, которое позволяет избавится от проблем полярности электролитов и компенсирует возрастающий у них с частотой ERS:

      Сумарную емоксть получившегося конденсатора можно вычилить в два этапа:
      сначала вычисляется емкость двух последовательно соединенных конденсаторов
      , а затем к получившемуся результату прибавляется емскость С2, поскольку при параллельном соединении емкости конденсаторов суммируются.
      Напоследок осталось добавить, что механическая прочность выводов конденсатора гораздо меньше, чем это кажется, поэтому при монтаже на плату высоких конденсаторов лучше их дополнительно закрепить к плате при помощи клея или герметика, а расположенные близко друг к другу можно и «законтрить» между собой. Это особенно актуально при сборки автомобильной техники:

КАКИЕ РЕЗИСТОРЫ И ПРОВОДА ИСПОЛЬЗОВАТЬ В УСИЛИТЕЛЕ МОЩНОСТИ

 

       

   

 


Адрес администрации сайта: [email protected]
   

 

Справочник по конденсаторам зарубежные. Маркировка конденсаторов. Маркировка отечественных конденсаторов

Название : Конденсаторы — Справочник.

Рассматриваются основные параметры и характеристики различных классов конденсаторов, выпускаемых промышленностью. Приводится классификация конденсаторов, рассматриваются их конструктивные разновидности. Предлагаются рекомендации по выбору, применению и эксплуатации конденсаторов в радиоаппаратуре.
Для широкого круга радиолюбителей.

Настоящий Справочник представляет собой достаточно полное издание, содержащее сведения о широкой номенклатуре конденсаторов. В Справочнике приводятся данные по всем классам радиоконденсаторов, выпускающихся отечественной промышленностью.
Представленные в Справочнике конденсаторы сгруппированы в 22 классификационные группы, объединяющие конденсаторы по виду диэлектрика на керамические, стеклянные, стеклокерамические, слюдяные, бумажные, полистироль» ные, фторопластовые, полиэтилентерефталатные, комбинированные, лакопленочные, поликарбонатные, полипропиленовые, оксидноэлектролитические алюминием вые, танталовые, ниобиевые, объемно-пористые, оксидно-полупроводниковые, подстроечные воздушные, подстроечные с твердым диэлектриком, сборки, варикоиды и термоконденсаторы.

Содержание
Предисловие.
Классификация и условное обозначение конденсаторов
Обозначения конденсаторов в электрических схемах.
Устройство, принцип действия и основные параметры конденсаторов.
Устройство и принцип действия.
Основные параметры
Внешние факторы, влияющие на параметры конденсаторов
Выбор и применение конденсаторов.
Конденсаторы с неорганическим диэлектриком
Керамические конденсаторы (К 10, К15).
Стеклянные и стеклокерамические конденсаторы (К21, К22)
Слюдяные конденсаторы (К31).
Конденсаторы с органическим диэлектриком
Общие сведения
Бумажные (К40, К41) и металлобумажные (К42) конденсаторы
Пленочные полистирольные конденсаторы (К70, К71).
Пленочные фторопластовые конденсаторы (К72).
Пленочные полиэтилентерефталатные конденсаторы (К73, К74) .
Комбинированные конденсаторы (К75).
Лакопленочные конденсаторы (К76)
Пленочные поликарбонатные конденсаторы (К77)
Пленочные полипропиленовые конденсаторы (К78)
Конденсаторы с оксидным диэлектриком
Общие сведения
Оксидно-электролитические алюминиевые (К50) и танталовые (K5I)
конденсаторы
Объемнопористые конденсаторы (К52).
Оксиднополупроводнкковые конденсаторы (К53).
Подстроечные конденсаторы (КТ4).
Нелинейные конденсаторы
Общие сведения
Вариконды (ВК, КН1)
Термоконденсаторы (КН2).
Конденсаторные сборки (КС).
Приложения. Справочные данные
Указатель конденсаторов, помещенных в справочнике
Список литературы

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Конденсаторы — Справочник — Горячева Г.А., Добромыслов Е.Р. — fileskachat.com, быстрое и бесплатное скачивание.

  • Справочник по конструированию радиоэлектронной аппаратуры — Горобец А.И., Степаненко А.И., Коронкевич В.М.
  • Аспекты проектирования электронных схем на основе микроконтроллеров, Слесарев А.Ч., Моисейкин Е.В., Устьянцев Ю.Г., 2018

К73-17, К73-17В

Конденсаторы плёночные полиэтилентерефталатные металлизированные широкого применения

Конденсаторы К73-17 предназначены для работы в цепях постоянного, переменного и пульсирующего тока.

Выпускались в СССР в разных исполнениях, отличающихся различной видом выводов, выпускаются и поныне в России

К73-17, 0,033 мкФ на 400В

Производства SAHA — Индия

К73-17 4,7 мкФ ±10%, 63В

Фирма производитель SAHA, Индия

К73-17, 1 мкФ ±10% 63В

Производитель — неизвестен

К73-17, 220nK П 630В, изготовлен в июле 1990 г.

Тот же конденсатор, что и выше, с той же датой изготовления, но… внешний вид напоминает какую-то халтуру…

Северо-Задонский конденсаторный завод ЭЛЕКТРОЛИТ, СССР

К73-17В 220nM 400V, изготовлен в сентябре 1989 г.

Кузнецкий конденсаторный завод, СССР

К73-17 В 330nK 630V, изготовлен в феврале 1990 г.

Кузнецкий конденсаторный завод, СССР

К78-2

Конденсаторы фольгированные и металлизированные, полипропиленовые

Предназначены для работы в целях постоянного, переменного, пульсирующего токов и в импульсных режимах

Залитые компаундом, прямоугольные, выпускались в СССР, выпускаются и сейчас в Российской федерации


К78-2 5n6K 1600V A7

К79-2 10nJ 1000V A9

Новгородский завод конденсаторов, СССР


К78-2 1nJ 1600V A8

Новгородский завод конденсаторов, СССР


К78-2 5600pF ±5%, 1600V, изготовлен в июле 1990 г.

Новгородский завод конденсаторов, СССР

К71-7

Конденсаторы металлизированные на основе полистирольной пленки

Предназначены для работы в цепях постоянного, переменного, пульсирующего тока и в импульсных режимах.

Выпускались весьма качественные прецизионные конденсаторы в этой серии.

Изготавливал СССР, сейчас изготавливает Россия. Корпус — прямоугольный, залитый компаундом

К71-7 4700 пФ ±2%, 250В, изготовлен в августе 1990 г.

Северо-Задонский конденсаторный завод ЭЛЕКТРОЛИТ, СССР

К71-7 В, 4700 пФ ±1%, 250В, изготовлен в сентябре 1990 г.

Северо-Задонский конденсаторный завод ЭЛЕКТРОЛИТ, СССР

К71-7 0,05 мкФ ±0,5%, 250В, изготовлен в октябре 1988 г.

Северо-Задонский конденсаторный завод ЭЛЕКТРОЛИТ, СССР

К73-15А
Конденсаторы полиэтилентерефталатные фольговые уплотненные изолированные
Предназначены для работы в цепях постоянного, переменного и пульсирующего токов


Конденсатор К73-15А 0,01 мкФ ±10%, 160В, изготовлен в августе 1988 года, производитель неизвестен

К73-21

Конденсаторы класса «Х» предназначены для подавления индустриальных радиопомех в диапазоне частот от 0,1 до 100 МГц в цепях постоянного, переменного и пульсирующего токов

По конструкции — обернуты липкой лентой, залиты по торцам эпоксидным компаундом

Изготавливались в СССР и сейчас в России, часто используют в автомобильной электронике


Сдвоенный конденсатор К73-21, 2,2 мкФ ±10%, 160В, 6,3А

Изготовлен в январе 1985 года, производитель неизвестен


Сдвоенный конденсатор К73-21, 3,3 мкФ ±10%, 50В, 6,3А

Изготовлен в октябре 1984 года, производитель неизвестен

К53-19
Конденсаторы танталовые или ниобиевые оксидно-полупроводниковые, полярные, в органической оболочке с однонаправленными выводами,
высокой стабильности c низким током утечки и коэффициентом диссипации,
устойчивыми частотными и температурными характеристиками и длительным сроком службы

Конденсатор К53-19 с маркировкой цветными полосами, 4,7 мкФ, 16 вольт

Конденсатор полярный, выводы разной толщины, толстый вывод означает + (плюс)

МБГО-2

Предназначены для формирования мощных импульсов тока разряда в нагрузке, обладают высокой энергоемкостью

Конденсаторы изготовляют в металлических прямоугольных корпусах, герметизированных пайкой, с лепестковыми выводами

Выпускаются согласно ТУ ОЖО.462.124 ТУ приемка «1»

По способу крепления конденсаторы отличаются наличием или отсутствием на корпусе специальных крепежных пластин


МБГО-2, 4 мкФ ±10%, 160В, изготовлен в июле 1988 г.

Завод Никонд — г. Николаев, Украинская ССР

МБГЧ-1

Конденсаторы металлобумажные высоковольтные импульсные

МБГЧ-1, 1 мкФ ±10%, 250В, изготовлен в июле 1988 г.

Рязанский завод Поликонд, СССР

МБГП-2

Металлобумажный герметичный прямоугольный конденсатор

МБГП-2, 0,24 мкФ ±10%, 1600В, изготовлен в сентябре 1989 г. Партия №15

Производитель — Лаконд, Новая Ладога, СССР (Амфи-Лаконд)

ОКБГ-МП

Особый (вариант) Конденсатор Бумажный Герметизированный в Металлическом Плоском корпусе

По сути тот же КБГ-МП…

Выпускался с незапамятных времен — начала 1960-х годов, как сейчас — неизвестно


ОКБГ-МП, 0,25 мкФ ±10%, 600В, изготовлен в сентябре 1984 г.

Северо-Задонский конденсаторный завод ЭЛЕКТРОЛИТ, СССР

К70-7

Полистирольные конденсаторы К70-7 предназначены для работ в цепях постоянного, переменного и пульсирующего тока

Производство СССР, достаточно редкий и точный конденсатор

К70-7С, 66600 пФ ±0,5%, 100В

Изготовлен в декабре 1976 года на заводе Вектор, г.Остров, Псковская область

К40У-9

Герметичный масляно-бумажный конденсатор

Для работы в цепях постоянного, переменного, импульсного и пульсирующего тока


Конденсатор К40У-9, 0,015 мкФ ±10%, 400В

К31-11-3

Слюдяной конденсатор, применяется в высокочастотных цепях, фильтрах, как шунтрирующие и др.

Конструкция всех слюдяных конденсаторов в общем-то одинакова, К31-11-3 отличаются корпусом — капсула из эпоксидного компаунда

Конденсатор К31-11-3, 0,01 мкФ ±5%, дата 88 10 Г

Изготовитель неизвестен


К31-11-3, 1200 пФ ±5%, 88 12 Г

Изготовитель неизвестен

К31-11-3, 360 пФ ±5% Г

Изготовитель неизвестен

К73-9

Конденсаторы фольгированные полиэтилентерефталантные

Предназначены для работы в цепях постоянного, переменного, и пульсирующего токов

К73-9 47nK NA8, изготовитель — логотип непонятен…


К73-9 4Н7 В, 100В, изготовлен в ноябре 1978 года

Завод Микрокомпонент, Карачаевск, СССР

КСО

Конденсаторы слюдяные опрессованные, неполярные. Существует более 10 видов

Самого широкого применения. Выпускались в СССР с 1930-х, сейчас не производятся. Последние образцы начала 80-х годов

Буквенное обозначение Б, В и Г обозначает, что в качестве обкладки на слюду нанесен слой серебра — с Г самые лучшие

Конденсатор КСО 560 пФ ±5%, 250В, 1979 года, серия Г

КСО, Н39И — 0,39 нФ, или 390 пФ. И — точность, +-04%, номинальное рабочее напряжение 250 вольт

Новосибирский завод конденсаторов, СССР


Конденсатор КСО 560 пФ ±10%, 250В, серия Г, изготовлен в 1982 году

Новосибирский завод конденсаторов, СССР


Конденсатор КСО 680 пФ ±10%, 250В, серия Г, изготовлен в 1982 году

Новосибирский завод конденсаторов, СССР

Конденсатор КСО 100 пФ ±10%, 250В, серия Г, изготовлен в 1979 году

Новосибирский завод конденсаторов, СССР

К15-5, КВДС

Высоковольтные керамические конденсаторы

Конденсатор К15-5 2n2 5кВХ А5, производитель не указан

Конденсаторы КВДС 470 пФ 1,6 кВ Н70 и 470 пФ ±20% 3кв Н20 изготовлен в мае 1970 г.

Производитель неизвестен

КТП-3

Керамические проходные конденсаторы

Предназначены для работы в цепях постоянного, переменного и импульсного тока

Разработаны в конце 80-х годов, производятся и сейчас


Конденсатор КТП-3 15nZX A3

Производитель неизвестен

Михаил Дмитриенко, Алма-Ата, 2012 г.

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Конденсатор – пассивное электронное устройство, состоящее из двух или более обкладок к которым подключены внешние выводы, разделенных между собой диэлектриком. На этой странице вы не только узнаете практически все о конденсаторах, но сможете скачать справочник по конденсаторам. Мы можем встретить эти радиокомпонеты практически на любых схемах и в любых электронных устройствах, их условное обозначение на принципиальных схемах следующее:

Архив Подборка справочной документации по емкостям выпущенных во времена СССР и стран Варшавского договора

Справочные параметры конденсаторов

    Номинальная емкость С ном — Емкость, обозначенная на корпусе. Может отличаться от реальной, на некоторую величину, не превышающую допустимое отклонение.
    Температурный коэффициент емкости. ТКЕ Он может принимать отрицательные и положительные значения. Если во время роста температуры емкость конденсатора уменьшается, то ТКЕ отрицательный, и наоборот (М — отрицательный, П — положительный, МП — близко к нулю, Н — ненормированный). Обычно этот справочный параметр необходим в высокочастотных цепях, где требуется повышенная стабильность емкости или заданная закономерность ее изменения.
    Номинальное напряжение U ном — Максимально допустимое постоянное напряжение, которое задается с определенным запасом по отношению к длительной электрической прочности диэлектрика.
    Сопротивление изоляции R из Справочная характеристика описывает качество материала диэлектрика. По окончании процесса зарядки конденсатора, протекающий ток принимает некоторое финишное значение — ток утечки I ут . Отношение приложенного напряжения к току утечки по закону Ома и является сопротивлением изоляции. Исправный конденсатор в нормальных условиях обладает сопротивлением изоляции в несколько сотен мегаом.
    Реактивная мощность P q Вычисляется как произведение протекающего тока на приложенное напряжение.

Номиналы конденсаторов практически идентичны номиналам сопротивлений. В основном используемые ряды номиналов конденсаторов при производстве — ряд Е3 (в настоящее время не используется, но может такая деталька попасть из СССР запасов), Е6 и Е12, т.к. многие типы конденсаторов сложно изготовить с более высокой точностью. Более подробно смотри справочник по ссылке выше.

Многочисленные виды емкостей можно классифицировать по нескольким признакам: по назначению ; по характеру регулировки емкости; по способу монтажа на печатную плату; по характеру и уровню защиты от внешних воздействий.


Конденсаторы общего назначения применяются практически в любом электронном устройстве, так как к ним не применяются особые требования.
А вот к их коллегам специального назначения как раз и предъявляются особые требования по частоте, и напряжению, виду действующих сигналов и т.п. К даКонденсаторы общего назначения используются в большинстве видов радиоэлектронной аппаратуры. К ним не применяются особые требования
Конденсаторы постоянной и переменной емкости — Уже из названия понятно, что у первых величина емкости является постоянной и ни как не регулируется, а у их переменных собратьев номиналы в процессе работы можно регулировать различными способами: механически, или поднастройкой управляющего напряжения, изменением температуры окружающей среды и т.п
Подстроечные емкости – их используют для первоначальной регулировки аппаратуры или периодической подстройки схемы, где необходим малый диапазон изменения емкости.
Конденсаторы для печатного монтажа – используются в технике с обычными печатными платами с отверстиями под выводы радиоэлементов. У них выводы сделаны из проволоки круглого сечения.
Конденсаторры для навесного монтажа . Этот вид очень многообразен по исполнению выводов. Здесь могут быть мягкие и жесткие, радиальные или аксиальные, изготовленные из ленты или проволоки круглого сечения, а так же с выводами в виде опорных винтов и проходных шпилек.
Конденсаторы для поверхностного монтажа SDM . В последнее время они находят все большее применение. Альтернативное название таких конденсаторов – без выводные. У них в качестве выводов применяются части корпуса.
Конденсаторы с защёлкивающимися выводами , их выводы сделаны таким образом, что при установки в отверстия печатной платы они «защелкиваются», это дает возможность качественно и с удобствами осуществить их пайку.
Конденсаторы с выводами под винт используются для поверхностного монтажа. В выводах имеется резьба. В основном они используются в блоках питанияс большими токами. применение выводов под винт так же дает возможность установки конденсатора на радиатор.
Незащищенные и защищенные конденсаторы . Первые не допускают к работе в условиях повышенной влажности, только в составе герметизированной аппаратуры, а их защищенные собратья – наоборот, могут работать в условия повышенной влажности

Неизолированные конденсаторы не допускается касания их корпусом шасси аппаратуры, и наоборот, изолированные – имеют хорошо изолированный корпус, что допускает касания шасси аппаратуры или ее токоведущих поверхностей.

Уплотненные конденсаторы – их корпус, уплотнен различными органическими материалами.

Герметизированные конденсаторы обладают герметизированным корпусом, что исключает взаимодействие внутренней конструкции с окружающей средой.

Конденсатор постоянной емкости характеризуются такими параметрами, как номинальная емкость, электрическая прочностью, реактивная мощность, качеством изоляции, потерями, коэффициентом абсорбции, индуктивностью, стабильностью и надежностью.

Их в основном используют в колебательных контурах, в схемах с различной рабочей частотой, построения сглаживающих фильтров, связи отдельных цепей переменного тока, накопления электрического заряда, в качестве делителя напряжения.

От того какой диэлектрик (изолятор) используется внутри емкости их делятся на керамические, металлопленочные, электролитические (алюминиевые и танталовые) и др

Керамические конденсаторы представляют собой конструкции с керамической базовой деталью в качестве диэлектрика, на которую нанесены в соответствующих местах металлические слои (обкладки).

Основные свойства керамических емкостей определяются свойствами керамики, из которых они изготавливаются. В зависимости от ее состава получается широкий диапазон значений диэлектрической проницаемости (от нескольких единиц до нескольких тысяч) и величин температурного коэффициента емкости.


Обладают низким током утечки, малыми размерами, очень низкой индуктивностью, способны отлично работать на высоких частотах и в цепях постоянного, переменного и пульсирующего тока.

Выпускаются в широком диапазоне рабочих напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения способны выдержать высокое напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.

Представляют собой конструкции, состоящие из металлических обкладок и слюдяных пластин, выполняющих роль диэлектрика

В настоящее время не выпускаются. Но у многих их еще полно из старых советских запасов. Обычно они имеют ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.


Состоят из двух длинных полос алюминиевой или свинцово оловянной фольги, разделенных несколькими слоями специальной бумаги и свернуты в виде рулона.

Такие конденсаторы бывают ёмкостью от тысяч пф до 30 мкф, и могут выдерживать напряжение от 160 до 1,5 кВ.

Металлобумажные конденсаторы имеют конструкцию, аналогичную бумажным конденсаторам, с той разницей, что вместо ленточных металлических электродов и бумаги в них используется бумажная лента, покрытая тонким слоем металла (алюминия или цинка) методом испарения в вакууме

Пленочные их можно поделит на полиэстеровые и полипропиленовые конденсаторы представляют собой радиокомпоненты с диэлектриком из синтетических пленок.


Полипропиленовые обладают двумя неоспоримыми плюсами. Во первых их можно изготавливать с очень маленьким уровнем допуском всего в 1%. И второе их преимущество это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость лижит в огромном интервале от 100 пФ, до 10 мФ)

Электролитические конденсаторы отличаются высокой удельной емкостью, обусловленной использованием в качестве диэлектрика тонкой оксидной пленки, образованной из вентильного металла электродов (алюминий, тантал, ниобий). Оксидная пленка имеет исключительно высокую электрическую прочность и обладает вентильными свойствами.

Обозначение конденсаторов на схемах основывается на требованиях ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы.

Ионисторы принцип действия

Ионисторы, другое название суперконденсаторы или ультраконденсаторы — это такие устройства, похожие на конденсаторы в которых накапливается электрический заряд между двумя обкладками на границе раздела двух сред — электролита и электродами. Вся энергия в ионисторах хранится в виде статического заряда. Накопление энергии происходит за счёт приложенного постоянного напряжения на его внешние выводы. Проще можно сказать, что это обычные конденсаторы, которые в отличие от простых, обладают огромной емкостью.

Справочник по конденсаторам pdf | lifeinbooks.bitballoon.com

Название: Конденсаторы — Справочник.

Для широкого круга радиолюбителей.

Настоящий Справочник представляет собой достаточно полное издание, содержащее сведения о широкой номенклатуре конденсаторов. В Справочнике приводятся данные по всем классам радиоконденсаторов, выпускающихся отечественной промышленностью.

Представленные в Справочнике конденсаторы сгруппированы в 22 классификационные группы, объединяющие конденсаторы по виду диэлектрика на керамические, стеклянные, стеклокерамические, слюдяные, бумажные, полистироль» ные, фторопластовые, полиэтилентерефталатные, комбинированные, лакопленочные, поликарбонатные, полипропиленовые, оксидноэлектролитические алюминием вые, танталовые, ниобиевые, объемно-пористые, оксидно-полупроводниковые, подстроечные воздушные, подстроечные с твердым диэлектриком, сборки, варикоиды и термоконденсаторы.

Классификация и условное обозначение конденсаторов

Обозначения конденсаторов в электрических схемах.

Устройство, принцип действия и основные параметры конденсаторов .

Устройство и принцип действия.

Внешние факторы, влияющие на параметры конденсаторов

Выбор и применение конденсаторов.

Конденсаторы с неорганическим диэлектриком

Керамические конденсаторы (К 10, К15).

Стеклянные и стеклокерамические конденсаторы (К21, К22)

Слюдяные конденсаторы (К31).

Конденсаторы с органическим диэлектриком

Бумажные (К40, К41) и металлобумажные (К42) конденсаторы

Пленочные полистирольные конденсаторы (К70, К71).

Пленочные фторопластовые конденсаторы (К72).

Пленочные полиэтилентерефталатные конденсаторы (К73, К74) .

Комбинированные конденсаторы (К75).

Лакопленочные конденсаторы (К76)

Пленочные поликарбонатные конденсаторы (К77)

Пленочные полипропиленовые конденсаторы (К78)

Конденсаторы с оксидным диэлектриком

Оксидно-электролитические алюминиевые (К50) и танталовые (K5I)

Объемнопористые конденсаторы (К52).

Оксиднополупроводнкковые конденсаторы (К53).

Подстроечные конденсаторы (КТ4).

Вариконды (ВК, КН1)

Конденсаторные сборки (КС).

Приложения. Справочные данные

Указатель конденсаторов, помещенных в справочнике

Бесплатно скачать электронную книгу в удобном формате и читать:

Справочник конструктора редакция 4

Справочник по электрическим конденсаторам (Дьяконов М. Н.)

Оглавление: Предисловие [3]
Условные обозначения физических величин и параметров конденсаторов [4]
ЧАСТЬ ПЕРВАЯ. ОБЩИЕ СВЕДЕНИЯ [5]
  Раздел первый. Классификация и система условных обозначений конденсаторов [5]
    1.1. Общие понятия [5]
    1.2. Классификация конденсаторов [6]
    1.3. Система условных обозначений и маркировка конденсаторов [13]
  Раздел второй. Основные электрические параметры и характеристики конденсаторов [17]
    2.1. Номинальная емкость и допускаемое отклонение емкости [17]
    2.2. Номинальные напряжение и ток [17]
    2.3. Тангенс угла потерь [19]
    2.4. Сопротивление изоляции. Ток утечки [19]
    2.5. Температурный коэффициент емкости [20]
    2.6. Диэлектрическая абсорбция конденсаторов [21]
    2.7. Полное сопротивление конденсаторов. Резонансная частота [21]
    2.8. Реактивная мощность [22]
    2.9. Вносимое затухание и сопротивление связи [23]
    2.10. Специфические электрические параметры и характеристики подстроечных и вакуумных конденсаторов [23]
  Раздел третий. Применение и эксплуатация конденсаторов [24]
    3.1. Эксплуатационные факторы и их воздействие на конденсаторы [24]
    3.2. Частотные свойства конденсаторов и особенности их работы в импульсных режимах [31]
    3.3. Указания по выбору и эксплуатации конденсаторов [34]
ЧАСТЬ ВТОРАЯ СПРАВОЧНЫЕ ДАННЫЕ [41]
  Раздел четвертый. Конденсаторы с неорганическим диэлектриком [41]
    4.1. Низковольтные конденсаторы [41]
      Керамические монолитные: КМ-3, КМ-4, КМ-5, КМ-6, К10-9, К10-17, К10-23, К10-27, К10-28, К10-36, К10-42, К10-43, К10-47, К10-49, К10-50, К10-52 [41]
      Керамические дисковые, пластинчатые, трубчатые и секционные: КД-1, КД-2, КДУ, К10-18, К10-19, К10-24, К10-29, К10У-5, К10-7В, КТ-1, КТ-2, КТ-3, КТИ, К10-25, К10-38, КЛС; К10-45 [66]
      Стеклокерамические и стеклянные: СКМ, К22У-1, К22-4, К22-5, КС, К21-5, К21-7, К21-8, К21-9 [81]
      Слюдяные: КСГ, СГМ, СГМЗ, КСО, КСОТ, ССГ, СГО, К31П-4, К31П-5, К31У-3Е, К31-10, К31-11 [96]
    4.2. Высоковольтные конденсаторы [108]
      Керамические: К15У-1, К15У-2, К15У-3, К15-11, К15-12, К15-13, К15-14, К15-9, КВИ-1, КВИ-2, КВИ-3, К15-4, К15-5, К15-10 [108]
      Слюдяные: KB, KP, КБ [125]
    4.3. Помехоподавляющие конденсаторы [129]
      Керамические проходные и опорные: К10У-1, К10П-4, К10-44, К10-51, КТПМ-1, КТП, КО, КДО [129]
      Керамические проходные фильтры: Б7, Б14, Б23, Б23А [138]
  Раздел пятый. Конденсаторы с органическим диэлектриком [140]
    5.1. Низковольтные низкочастотные конденсаторы [140]
      Бумажные: КБГ (КБГ-И, КБГ-МН, КБГ-МП), ОКБГ (ОКБГ-И, ОКБГ-МН, ОКБГ-МП, ОКБГ-М), БГТ, К40П-2, К40У-5, К40У-9, К40-11, БМ-2, БМТ-2 [140]
      Металлобумажные: МБГ (МБГП, МБГЦ), МБГИ, МБГН МБГО МБГТ МБГЧ (МБГЧ-1, МБГЧ-2), МБМ, КМБП, К42У-2, К42П-5, К42Ч-6, К42-4, К42-8, К42-11, К42-18, К42-19 [155]
      Полиэтилентерефталатные: ПМГП, К73П-2, К73П-3, К73П-4, К73-5, К73-8, К73-9, K73-11, K73-15, К73-16, К73-17, К73-20, К73-22, К73-24, К73-26 [174]
      Комбинированные: К75-10, К75-12, К75-24, К75-38 [208]
      Лакопленочные: К76П-1, К76-3, К76-4, К76-5 218 Поликарбонатные: К77-1, К77-2, К77-3, К77-4, К77-6 [225]
      Полипропиленовые: К78-4 [239]
    5.2. Низковольтные высокочастотные конденсаторы [241]
      Полистирольные: ПМ-1 ПМ-2, ПО, К70-4, К70-6, К70-7, К70-8, МПО, МПГО, МПГ-Ц, МПГ-П, К71-4—К71-8 [241]
      Фторопластовые: ФТ, ФЧ, К72П-5, К72П-6, К72-9, К72-11, К72-11а [266]
      Полипропиленовые: К78-2, К78-3 [279]
    5.3. Высоковольтные конденсаторы постоянного напряжения [284]
      Бумажные: К41-1, КБГ-П [284]
      Полистирольные: ПОВ [293]
      Фторопластовые: ФГТИ [294]
      Полиэтилентерефталатные: К74-6, К74-7, К73-12, К73-13, К73-14 [296]
      Полипропиленовые: К78-5 [301]
      Комбинированные: ПКГТ (ПКГТ-П, ПКГТ-И), К75-15, К75-21, К75-22А, К75-22Б, К75-29А, К75-29Б, К75-45, К75-47, К75-50, К75-51 [302]
    5.4. Высоковольтные импульсные конденсаторы [320]
      Бумажные и металлобумажные: МБГВ, К42И-1, К42-13, К41И-7 [320]
      Комбинированные: ПКГИ, К75-11, К75-14, К75-17, К75-18, К75-19, К75-20, К75-25, К75-27, К75-28, К75-30, К75-39, К75-40, К75-44, К75-46, К75-48, К75-49, линии формирования Б4-1 [323]
    5.5. Дозиметрические конденсаторы [339]
      Фторопластовые: К72-1, К72-4, К72-8 [339]
    5.6. Помехоподавляющие конденсаторы [341]
      Бумажные: КЗ, КБП, ОКБП, ОКП, ОБПТ, КБПС-Ф, МБП, 3Б [341]
      Пленочные: ОППТ, К72П-3, К73-18, К73-21 [352]
      Комбинированные: К75-37, К75-41, К75-42, К75-43, К75П-4 [359]
  Раздел шестой. Конденсаторы с оксидным диэлектриком [368]
    6.1. Конденсаторы общего назначения [368]
      Алюминиевые оксидно-электролитические: К50-ЗА, К50-ЗБ, К50-6, К50-7, К50-9, K50-I2, К50-15, К50-16, К50-18, К50-20, К50-22, К50-24, К50-26, К50-27, К50-28, К50-29, К50-31, К50-32 [368]
      Танталовые оксидные объемно-пористые: ЭТО, К52-1, К52-1Б, К52-2, К52-5, К52-7А, К52-9, К52-10 [415]
      Танталовые оксидно-электролитические фольговые: ЭТ [428]
      Танталовые оксидно-полупроводниковые: К53-1, К53-1А, КОПП, К53-6А, К53-10, К53-15, К53-15А, К53-16, К53-16А, К53-18, К53-22, К53-30 [430]
      Алюминиевые оксидно-полупроводниковые: К53-14, К53-14А [454]
      Ниобиевые оксидно-полупроводниковые: К53-4, К53-4А, К53-19, К53-21, К53-26 [457]
    6.2. Конденсаторы неполярные [466]
      Алюминиевые оксидно-электролитические: К50-6, КБО-15 [468]
      Танталовые оксидно-электролитические: К52-8 [470]
      Танталовые оксидно-электролитические фольговые: ЭТН [473]
      Танталовые оксидно-полупроводниковые: К53-7 [474]
    6.3. Конденсаторы высокочастотные [476]
      Алюминиевые оксидно-электролитические: К50-33 [476]
      Танталовые оксидно-полупроводниковые: К53-25, К53-28 [479]
      Ниобневые оксидно-полупроводниковые: К53-27 [484]
    6.4. Конденсаторы импульсные [487]
      Алюминиевые оксидно-электролитические: К50И-1, К50-3Ф, К50-3И, К50И-8, К50-13, К50-17, K50-21, К50-23 [487]
    6.5. Конденсаторы пусковые [492]
      Алюминиевые оксидно-электролитические: К50-19 [492]
    6.6. Конденсаторы помехоподавляющие [493]
      Танталовые оксидно-полупроводниковые: К53-17 [493]
      Раздел седьмой. Конденсаторы подстроенные [495]
    7.1. Конденсаторы с твердым диэлектриком [495]
      Керамические дисковые: КТ4-21, КТ4-23, КТ4-24, КТ4-25, КТ4-27, КТ4-28, КТ4-29, КПК-2, КПК-3, КПКМ: керамические цилиндрические: КПК-МТ [495]
    7.2. Конденсаторы с воздушным диэлектриком: КТ2, КПВ, КПВМ [504]
  Раздел восьмой. Конденсаторы вакуумные [508]
    8.1. Конденсаторы вакуумные постоянной емкости В, KB, ВВ, ВМ, К61-1, К61-3, К61-4, К61-5, К61-9, К61-16, К61-18 [508]
    8.2. Конденсаторы вакуумные переменной емкости КП1-3, КП1-3М, КП1-4, КП1-6—КП1-12, КП1-12Т-01, КП1-13, КП1-16 [513]
  Раздел девятой. Конденсаторы нелинейные [520]
    9.1. Вариконды: ВК2, ВК4, КН1-5, КН1-6 [520]
    9.2. Термоконденсаторы КН2-2 [524]
  Приложения
    1. Краткие справочные данные конденсаторов [526]
    2. Алфавитный указатель конденсаторов [572]

Что нужно знать про конденсаторы. Ч.3

Ч.1 caplikbez1
Ч.2 caplikbez2

 Я рассмотрел в предыдущих частях полиэтилентерефталатные и полипропиленовые конденсаторы. Теперь нужно упомянуть про другие органические диэлектрики.

Я буду следовать порядку, согласно отечественной классификации.
Полистирольные (К71, К72) Отличные конденсаторы, превосходные по стабильности, точности, сопротивлению изоляции и так далее. Но недостатками являются низкая рабочая температура +70…+85 градусов и сравнительно большие габариты. Вне конкуренции в точной аппаратуре, где необходимы сверхнизкие утечки, типа дозиметров и схем хранения. Но в аудио проще и доступнее использовать полипропилен.

Фторопластовые  (К72) — ещё лучше по характеристикам, чем полистирольные. Теплостойкие, но большие и дорогие. Вообще, фторопласт — удивительный материал. Конденсаторы из него получаются высокочастотными, с низкими потерями, наилучшим постоянством характеристик. Сам по себе — белый, аморфный, текучий, довольно плотный. Ничто к нему не липнет, ни чем он не смачивается (конечно, есть исключения). Но при нагревании до 415 градусов начинает разлагаться на сильно ядовитые газы. Птиц убивает почти мгновенно, они умирают страшной смертью — у них поражает дыхательную систему. Поэтому, будте осторожны при пайке провода МГТФ!!!

К75 и К76 — комбинированные и лакоплёночные — являются конденсаторами с большими потерями, и для применения в тракте высококачественной усиливающей аппаратуры не представляют интерес. Их ниша — дешёвое решение для некритичных применений в питании агрегатов, например.

Поликарбонатные К77 — близки по характеристикам к полистирольным, но меньше по габаритам, и несколько более теплостойки (до +125). И так же проигрывают рынок полипропиленовым.

Необходимо ещё упомянуть о двух типах конденсаторов,  не имеющих специальных обозначений по ГОСТ, но получающих сейчас большое распространение. Это полиэтилен нафталатные PEN и полипропилен сульфидные PPS. Они обладают лучшей температурной стабильностью, чем конденсаторы c PET и PP. По другим параметрам PEN где-то лучше, где-то хуже, чем PET. А вот «чистый» полипропилен в остальном выигрывает у своего «сульфидного» родственника.

Рассказ о плёночных конденсаторах будет неполным, если не упомянуть о специальных помехозащитных типах. Такие конструкции обладают пониженным сопротивлением высокочастотным токам — импульсным помехам, радионаводкам и т.п. А также, поскольку используются  в цепях питания и непосредственно контактирующих с пользователем (могут быть соединены с корпусом прибора), к ним применяются повышенные требования по надёжности. Помимо стандартной маркировки конденсаторов, маркируются буквами X и Y, а также штампами сертификатов. Более подробно с ними разобраться поможет статья блоггера bsvi.

Я не пытался субъективно оценить влияние на звучание различных типов конденсаторов. Все данные объективны и взяты из открытых источников и различных справочников, список которых последует ниже.
МРБ № 1079 Горячева, Добромыслов «Конденсаторы»
МРБ № 492 А.Г. Соболевский «Материалы в радиоэлектронике»
Wikipedia.org, Wima.com, cde.com, а также electroclub.info Возможно, что-то забыл, или не могу восстановить ссылку. В таком случае, буду дополнять список в дальнейшем.

статей — Hi-End электронные лампы, розетки, конденсаторы, nixie. Розничная и оптовая торговля по всему миру.

Как сделано: конденсатор тефлоновый ФТ-3

09.04.2014 11:23:41

Многие наши клиенты всегда спрашивают, что такое тефлоновый конденсатор и как он сделан. Для наглядного примера нам был принесен в жертву новый конденсатор ФТ-3 0,22 мкФ 600В. Конденсаторы с другими емкостями и напряжением имеют аналогичную структуру. Мы сделали два разреза на обоих концах конденсатора. Этот…

22.07.2013 22:16:48

Меню: В паспорте конденсаторов K40Y-9 указаны размеры В паспорте конденсаторов K42Y-2 указаны размеры В паспорте конденсаторов К75-10 указаны размеры Конденсаторы К40У-9 и К42У-2 Фото внутри Конденсатор К75-10 Фото внутри Типоразмеры K40Y-9 и K40Y-9V: …

22.07.2013 22:16:11

Приемные трубки Система обозначения российских радиоламп, произведенных в СССР, изготавливается по ГОСТ 13393-76 и обычно имеет четыре элемента.Первый элемент — цифра, означает напряжение питания в вольтах (приблизительно). Второй элемент — буква, обозначающая …

Даташиты и характеристики российских ламп

22.07.2013 22:15:20

Трубки США и их советские (российские) аналоги: здесь Скачать плагин DjVu Browser Plug-in для Windows: здесь Трубка Файл Трубка Файл Трубка Файл 12J1L 6J32B 6Н8С…

Как пользоваться русской трубкой 6Н1П и 6Н2П

22.07.2013 22:15:07

6Н1П и 6Н2П — самые популярные малосигнальные двойные триоды в отечественном аудио. Скачать техническое описание этих трубок можно здесь. Они задумывались как замена 9 выводов для восьмеричных 6H8C (6SN7 GT) и 6H9C (6SL7 GT) соответственно. Оба имеют встроенный щит. Отличные лампы с отличным звуком. В…

Типы российских конденсаторов

22.07.2013

BM — Бумага малогабаритная BMT — Бумага малогабаритная Температура доказательство МБГ — Металлизированная бумага Герметичная герметизация МБГО — Металлизированная бумага Герметичная герметизация Однослойная (используется в постоянных и импульсных цепях тока) МБГТ — Металлизированная бумага Герметичная герметизация Температурная стойкость МБГЧ…

Решено: Часть A Инструкции; 1. Обратитесь к Схеме Fi …

  1. инженерии
  2. электротехники
  3. вопросы и ответы по электротехнике
  4. Часть A Инструкции; 1. Обратитесь к схеме на рисунке 2. Рассчитайте реактивное сопротивление конденсатора …

Показать текст изображения

Ответ эксперта

Предыдущий вопрос Следующий вопрос

Часть A Инструкции; 1. См. Схему на Рисунке 2.Рассчитайте реактивное сопротивление конденсатора и катушки индуктивности на частоте t = 100 кГц. Введите результаты в Таблицу 1. с R M 1.5K 76 2200 pf ws f100 W 24 mHI RE 0-50 Рисунок 2 Таблица 1 X 2. Определите эквивалентную схему Тевенина слева от клемм a и b в цепи на Рисунке 2. Нарисуйте эквивалентную схему в этом пространстве. 3. Определите эквивалентную схему Нортона слева от клемм a и b в схеме на рисунке 2. Нарисуйте эквивалентную схему в этом пространстве. 4. Соберите схему, показанную на Рисунке 2, временно исключив нагрузочный резистор Ru.Подключите Chl осциллографа к выходу генератора сигналов и настройте генератор так, чтобы он обеспечивал выходной сигнал 2,0 Впик (4,0 Впик-пик) при f = 100 кГц 5. При использовании канала Ch2 в качестве источника запуска осциллографа переключите канал Ch3 между клеммы a и b цепи. Измерьте и запишите размах амплитуды напряжения холостого хода Erx и фазового сдвига. (Фазовый сдвиг измеряется относительно напряжения генератора, наблюдаемого на Chl). Введите результат в Таблицу 2. Таблица 2 ETH Pas 6.Поместите чувствительный резистор 10 между клеммами a и b. Чувствительный резистор имеет очень низкий импеданс по отношению к другим компонентам в цепи и поэтому имеет минимальное влияние нагрузки. Отрегулируйте напряжение генератора так, чтобы выходное напряжение было 2,0 В (пик). Измерьте размах напряжения на чувствительном резисторе и определите размах тока короткого замыкания Ix и фазовый сдвиг. Введите результаты в Таблицу 3. Таблица 3 ETH IN 7. С помощью цифрового мультиметра отрегулируйте переменный резистор 5 12 на сопротивление 500 22.Снимите чувствительный резистор и вставьте переменный резистор между выводами a и b цепи. Установите напряжение питания на 2,0 Vp и измерьте амплитуду выходного напряжения Vų. Введите ваши измерения в Таблицу 4. 8. Удалите Rt из схемы и постепенно увеличивайте сопротивление на 500 2. Повторите шаг 8. Продолжайте увеличивать сопротивление нагрузки до R = 512. Введите все данные в Таблицу 4. Таблица 4 R: V: 5002 10002 1500 32 2000 12 250022 3000 12 3500 22 4000 12 4500 12 5000 52 9. Преобразуйте измеренное напряжение и фазовый угол для напряжения Тевенина на шаге 5 в его правильную векторную форму. Запишите свой результат в отведенном ниже месте.Как это значение соотносится с теоретическим значением, определенным на шаге 2? ΕΤΗ 10. Преобразуйте измеренный ток и фазовый угол для тока Нортона на шаге 6 в правильную форму вектора. Введите результат ниже. Как это значение соотносится с теоретическим значением, определенным на шаге 3? ETH 11. Используйте данные таблицы 4, чтобы рассчитать мощность, подаваемую на нагрузку, для каждого номинала резистора. (Помните, что вам нужно будет преобразовать каждое измерение напряжения в его эквивалентное действующее значение, чтобы рассчитать мощность).Введите результаты в Таблицу 5. Таблица 5 R: PL 50022 100022 1500 12 2000 32 2500 22 3000 12 3500 92 4000 12 4500 12 5000 12 12. Используйте данные Таблицы 5 для построения графика зависимости мощности в мкВт) от сопротивления нагрузки. (2). Соедините точки наилучшей гладкой непрерывной кривой. 13. Используйте кривую Графика 1, чтобы определить приблизительное значение сопротивления нагрузки Ru, при котором нагрузка получает от цепи максимальную мощность. Введите результат здесь. PW) 400 300 200 100 Rucolaume) 1000 2000 3000 4000 5000

K78 и многие другие K76 SS Audio Klipsch Tweeter Diaphragm K75 127103 K79 sareg.com

COVID-19: SAREG и SR GROUP работают над тем, чтобы предоставить вам самую свежую информацию о Covid-19 (коронавирусе). Щелкните следующую ссылку, чтобы найти обновления на английском языке.

О НАС

Когда дело доходит до открытия бизнеса во Франции, расширения вашего текущего международного бизнеса во Франции или просто инвестирования во французскую недвижимость, здесь, в SAREG, у нас есть все инструменты под рукой, чтобы предоставить вам полный спектр услуг от первоначального совета до создания компании. , годовые отчеты и налоговые декларации.

Обладая более чем 30-летним опытом работы в международном бизнесе и инвестициях, 5 офисами и командой англоговорящих сотрудников, готовых помочь со всеми вашими бухгалтерскими требованиями, наше «мастерство» не имеет себе равных и означает, что мы можем найти лучшее решение, соответствующее вашим потребностям, независимо от вашей ситуации. Наша фирма значительно расширилась за эти годы и стала самой инновационной бухгалтерской фирмой в этой области, тесно сотрудничая с властями, чтобы найти наиболее эффективные с точки зрения налогообложения решения для англоговорящих клиентов.

У нас большой опыт работы с британскими туроператорами, и в настоящее время мы ведем дела более чем 100 таких предприятий, представляя их перед французскими властями, включая ежегодные аудиты и декларации по НДС. Наши клиенты варьируются от клиентов со скромными оборотами до клиентов с оборотом в несколько миллионов евро, и мы способны помочь бизнесу любого размера и помочь с расширением.

SAREG присоединяется к SR CONSEIL GROUP

SAREG недавно объединил усилия с SR Conseil Group, большой группой дипломированных бухгалтеров, аудиторов и юристов, расположенных во Французских Альпах.Наряду с нынешней командой SAREG в Верхней Савойе, команда SR будет рядом, чтобы поддержать потребности наших клиентов, и вместе мы сможем предоставить вам общие бухгалтерские и юридические услуги.

SAREG выбрал SR Conseil, поскольку они разделяют общие ценности тесных рабочих отношений со своими клиентами и сотрудниками, а также услуг, которые они предлагают своим клиентам.

Кроме того, они предлагают полный набор профессиональных услуг, которые дополняют наши собственные, включая бухгалтерский учет, право, аудит, расчет заработной платы, оценку профессиональных рисков, сопровождение профессионалов в секторе активного отдыха и налоговое управление меблированным доходом от аренды.

Их собственные клиенты относятся к различным категориям профессиональной деятельности и включают индивидуальных предпринимателей, малые предприятия, ассоциации и частных лиц.

Более подробная информация на сайте www.srconseil.fr

Замена диафрагмы на K-76, K79 и других

Это будет набор инструкций по замене диафрагмы в следующих ВЧ-динамики Klipsch.

К-76, К-63, К-74, К-75, К-76, К-79, К-83, К-84, К-85, К-88, К-90, К63, К74, К75, К76, К83, К84, К85, К88, К90

Эти все используют одни и те же диафрагмы, и все могут использовать наши диафрагмы из поли или титана.

ПРИМЕЧАНИЕ. Не прикасайтесь к титановому куполу титановых диафрагм. Купол очень хрупкий и легко помятый. Беритесь только за пластиковое кольцо, окружающее титановый купол.

Что касается тонкого пластика на одной стороне нового узла диафрагмы. У меня много вопросов о том, удалять это или нет. Диафрагмы будут работать одинаково с ним или без него. Однако под пленкой есть клей, поэтому это может затруднить извлечение диафрагмы, если вам когда-нибудь понадобится ее заменить. Так что оставьте это там.

Это Твитер К-74 с плохой оригинальной диафрагмой.

ср можно измерить сопротивление на выводах твитера.Хороший будет читать около 8 Ом, а плохой — открытый или бесконечный.

Хорошо, давай внутрь этот твитер. Удалите три гайки, скрепляющие твитер.

Теперь мы можем отделить рог от магнита. сборка. Диафрагма сверху магнитного узла.

Удалить старая диафрагма от магнитного узла. Обратите внимание, что эта старая оригинальная фенольная диафрагма имеет демпфирующая накладка внутри него. Ты не должен быть обеспокоен этим. Новой диафрагме это не нужно.

ср необходимо очистить магнитный зазор. Иногда внутри могут быть кусочки старой катушки или формирователя катушки. разрыв. Я использую липкий блокнот сложенный с липкими наружу с двух сторон. Это будет проходить вокруг щели, чтобы убрать мусор, который может быть внутри. там.Единственным исключением из этого правила является что иногда производитель твитера мог залить внутрь феррожидкость магнитный зазор. Феррожидкость — это раствор магнитных частиц в масле. Если это там есть (вы сразу поймете, так как это маслянистая выглядит мерзко) просто оставьте это в покое и замените диафрагму. Было бы невозможно получить все это вне.Это там для увеличения теплопередача для охлаждения звуковой катушки.

Это это новая диафрагма типа Poly. Установка Титаниума такая же. Вы обнаружите, что есть одно место, где диафрагма монтажные отверстия идеально подходят для установочных винтов и штифтов. Если в положение, которое вы выбрали первым, поверните его в другое положение.

После установки диафрагмы установите рупор. снова и снова установите 3 гайки. Поочередно затягивайте их, чтобы звуковой сигнал встал на место.

Вот и все. Теперь новая диафрагма установлена ​​и имеет хорошие размеры.


Винтажные конденсаторы NOS NIB Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.8 Емкость конденсатора Бытовая электроника livingstonejewelry.com

NOS NIB Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.8 Конденсаторная банка , Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.Конденсатор 8 Can NOS NIB, секции, вероятно, смещены на 10-25% вверх от обозначенных цифр, В продаже вот этот конденсатор NOS Sprague PCL-3454, 8 баллонов, Он отмечен 250 uf 165v, 150 uf 150v, 200 uf 150v.Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.8 Может конденсатор NOS NIB.

NOS NIB Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.8 Может конденсатор

, а каждый кейчиан с хвостом русалки составляет ок.Номер модели: QG-W010-18-CJ, Женские золотые объятия и поцелуи I Love You Ожерелье Браслет Круглые серьги-кольца Fillgree CZ среднего размера, набор из нержавеющей стали Stampato ANTI-TARNISH (ожерелье 18 дюймов. Ожерелье из стерлингового серебра 925 пробы с блестками ( Итальянская сеть. Наши продукты по разумной цене и по разумной цене. Ее также можно использовать для сумок для покупок или обедов. Размер США 2X-Large (20 долларов США): бюст 44. Топперы для торта и другие уникальные свадебные предметы. будут отличаться, так как они сделаны вручную, они немного тяжелее.Шпилька кольцевая, кольцевая, шпинельная, кольцевая, квадратная. Я связал сумку крючком из 100% хлопчатобумажной веревочной пряжи. Колпачок с бриллиантовой кисточкой прекрасен. Прицепное устройство этого класса выполнено с помощью нашего ведущего в отрасли процесса двойного покрытия для непревзойденной ржавчины. Отличная защита: чехол полуводонепроницаемый, Aquafaucet 1 5 / 8 ‘Смеситель для ванной комнаты для раковины под раковину с выдвижным отверстием без перелива Матовый никель — -. Используйте прилагаемые к нему инструкции, чтобы научиться метать бумеранги. У своей старшей сестры Джулии он позаимствовал платформу и моторизацию, оставаясь привлекательным аксессуаром. Не стесняйтесь высказывать любое ваше мнение относительно игрушек.Пусть эта древняя практика даст вашему телу новый старт.

NOS NIB Sprague 250-150-200 мкФ 155-150-150 вольт PCL-3454.8 Может конденсатор

Разместите хорошие предложения для комплектов DIY здесь: — | Стр. 7

Российские конденсаторы PIO будут играть рядом с Mundorf, если во входной секции, по гораздо меньшей цене.


Вот некоторая информация, которую я нашел по русским шапкам PIO в этой ветке. Кажется, что все, что продается в категории «PIO», на самом деле не является PIO.Немного процитирую —

К31, ССГ, СГМ, КСО — слюдяные, некоторые виды с серебром — хорошие
К40 — ПИО — очень хорошо
MBGxx, KBG-xx, OMBG — PIO
К42, МБМ, БМ-х — бумага (без масла ??)
К70, К71 — Полистирол («полистирол») — хорошо
К72, ФТ — тефлон («фторопласт») — САМЫЙ ЛУЧШИЙ
К73 — Пленка полиэтилентерефталатная («лавсан») — плохая
K75 — комбинированная бумага + пленка (полиэтилентерефталат ??, с маслом или без него ??)
K76 — Лаковая пленка
K78 — Полипропилен

Взгляд другого пользователя —

K15-4 Ceramic HV «дверные ручки»
K15-5 Ceramic HV Disc

K31 Колпачок в стиле «фасоль» из серебра слюды

K40P-2B Бумага в масле, алюминиевая фольга, 5% тол.
К40У-9В Бумага в масле, алюминиевая фольга, корпус Silver, 10% тол. (также называется K40Y-9)

K41-1A PIO, высоковольтные «импульсные» колпачки

K42U-2 металлизированная бумага PIO, корпус, окрашенный в зеленый цвет (лучше K75)

K50 Алюминий электролитический

K70 Полистирол

K71- Полистирол 7V «Высокая толерантность» 1% или 2% тол.

К72П-6 Тефлон диэлектрик 5% тол. (см. пример ниже)

K73-14 PETP High Voltage
К73-15 ПЭТФ / сухой майлар
К73-16 ПЭТФ / Майлар сухой
К73-17 ПЭТП
Конденсаторы переменного тока типа «бак» К73П-4 (могут быть бумажными или майларовыми, все еще подлежат уточнению).

Заглушки K74 PETP HV

K75-10 PIO, Зеленый корпус (это PIO высшего качества)
К75-15 ПИО, Высоковольтная «ванна»
К75-17 ПИО Высоковольтная «ванна»
K75-24 PIO Зеленый корпус трубчатый (см. Пример ниже)
K75-28 PIO Высоковольтная «ванна»

K76 Лакированная пленка

K77 Поликарбонатная пленка

Полипропиленовая пленка K78

BMT-2 Paper In Oil

FGT Высоковольтный тефлоновый диэлектрик, керамический корпус (почти размером с пивную банку)

КБГ, ОКБГ ПИО (нет, это не КГБ, это совсем другое лицо)

KBI HV «дверная ручка» RF / Передающий колпачок

КСО Серебро-слюдяные колпачки «прецизионные»

SGM3-A, SGM3 -B Серебристо-слюдяные «прецизионные» колпачки (в масле?)

МБГ, ОМБГ-2, МГБО-1, -2, МБГП-2, -3 Металлизированная бумага-алюминиевая «ванна» Колпачки переменного тока

МБГЧ Металлизированная бумажная импульсная конденсаторы

Детали открывателя для жилых помещений LiftMaster: кронштейны и оборудование

Детали открывателя для жилых помещений LiftMaster: кронштейны и оборудование

$ 2.66 EA

$ 244,77 EA

5 долларов США.38 EA

$ 6.06 EA

$ 11.38 EA

8,68 долл. США EA

23 доллара.59 EA

$ 17,06 EA

$ 7.17 EA

$ 25,34 EA

15 долларов США.75 EA

21,34 долл. США EA

$ 8.68 EA

$ 33.87 EA

$ 9.74 EA

$ 10.32 EA

$ 9.74 EA

19,18 долл. США EA

$ 9.74 EA

$ 17,82 EA

20 долларов.89 EA

$ 113,27 EA

$ 8.23 EA

$ 12,27 EA

$ 12.27 EA

$ 8,23 EA

$ 14.23 EA

27,58 долл. США EA

17 долларов.09 EA

$ 46,44 EA

60 долларов.87 EA

$ 20,69 EA

18 долларов.12 EA

$ 8,99 EA

17 долларов.67 EA

$ 17,22 EA

$ 8.08 EA

$ 12,57 EA

$ 4.49 EA

$ 18,62 EA

20 долларов.22 EA

68,60 $ EA

53 доллара.29 EA

22,40 долл. США EA

$ 13.56 EA

$ 9,74 EA

$ 21.58 EA

$ 18,73 EA

5 долларов США.38 EA

$ 11,99 EA

$ 6.98 EA

31,51 $ EA

$ 41.06 EA

$ 8,55 EA

$ 47.78 EA

$ 9,74 EA

$ 9.87 EA

$ 9,74 EA

$ 6.57 EA

31,06 долл. США EA

10 долларов США.37 EA

43,68 долл. США EA

54 руб.69 EA

$ 5,38 EA

$ 1.94 EA

$ 5.98 EA

$ 7.78 EA

$ 4,75 EA

18 долларов.86 EA

$ 17.95 EA

$ 4.05 EA

$ 8,58 EA

5 долларов США.18 EA

$ 4,99 EA

$ 2.43 EA

1,49 долл. США EA

$ 26.09 EA

$ 16.09 EA

39 долларов.81 EA

26,27 долл. США EA

40 долларов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *