Как работает конденсатор при переменном токе. Какие процессы происходят в цепи с конденсатором. Чем отличается поведение конденсатора в цепях постоянного и переменного тока. Какие характеристики имеет конденсатор в цепи переменного тока.
Принцип работы конденсатора в цепи переменного тока
В отличие от цепи постоянного тока, где конденсатор блокирует прохождение тока, в цепи переменного тока конденсатор пропускает переменный ток. Это происходит за счет того, что конденсатор периодически заряжается и разряжается под действием переменного напряжения.
Основные процессы, происходящие в цепи с конденсатором при переменном токе:
- В первую четверть периода конденсатор заряжается, ток в цепи максимален в начале и уменьшается к концу четверти периода
- Во вторую четверть периода конденсатор разряжается, ток меняет направление и возрастает
- В третью и четвертую четверти процессы повторяются с противоположной полярностью
Таким образом, через конденсатор проходит переменный ток, хотя напрямую заряды не перемещаются между обкладками.

Емкостное сопротивление конденсатора
При переменном токе конденсатор обладает так называемым емкостным сопротивлением Xc, которое зависит от емкости конденсатора C и частоты тока f:
Xc = 1 / (2πfC)
Емкостное сопротивление измеряется в Омах и характеризует противодействие конденсатора прохождению переменного тока. Чем больше емкость и частота, тем меньше емкостное сопротивление.
Сдвиг фаз между током и напряжением
Важной особенностью работы конденсатора в цепи переменного тока является сдвиг фаз между током и напряжением. В цепи с идеальным конденсатором:
- Ток опережает напряжение на 90° (π/2 радиан)
- Когда напряжение максимально, ток равен нулю
- Когда напряжение равно нулю, ток максимален
Этот сдвиг фаз приводит к тому, что в цепи с конденсатором присутствует реактивная мощность.
Применение конденсаторов в цепях переменного тока
Благодаря своим свойствам при переменном токе, конденсаторы широко применяются в различных устройствах:
- Фильтры высоких и низких частот
- Цепи развязки и блокировки
- Накопители энергии
- Компенсаторы реактивной мощности
- Элементы настройки колебательных контуров
Понимание принципов работы конденсатора в цепи переменного тока необходимо для грамотного проектирования и анализа электрических схем.

Сравнение работы конденсатора в цепях постоянного и переменного тока
Поведение конденсатора кардинально различается в цепях постоянного и переменного тока:
Характеристика | Постоянный ток | Переменный ток |
---|---|---|
Прохождение тока | Не пропускает (после заряда) | Пропускает |
Сопротивление | Бесконечно большое | Конечное (емкостное) |
Заряд/разряд | Только при включении/выключении | Постоянно в течение каждого периода |
Сдвиг фаз | Отсутствует | Ток опережает напряжение на 90° |
Эти различия обуславливают разные области применения конденсаторов в цепях постоянного и переменного тока.
Влияние частоты на работу конденсатора
Частота переменного тока оказывает существенное влияние на характеристики конденсатора в цепи:
- С увеличением частоты уменьшается емкостное сопротивление
- При высоких частотах конденсатор ведет себя почти как короткое замыкание
- При низких частотах конденсатор приближается по свойствам к разрыву цепи
Эта зависимость позволяет использовать конденсаторы для фильтрации сигналов разной частоты.

Мощность в цепи с конденсатором
В цепи переменного тока с идеальным конденсатором:- Активная мощность равна нулю
- Присутствует только реактивная мощность
- Энергия периодически запасается в электрическом поле конденсатора и возвращается в цепь
В реальных конденсаторах из-за потерь в диэлектрике присутствует небольшая активная мощность, но она обычно пренебрежимо мала.
Выбор конденсаторов для цепей переменного тока
При выборе конденсаторов для работы в цепях переменного тока необходимо учитывать следующие факторы:
- Рабочее напряжение (должно быть выше амплитуды переменного напряжения)
- Допустимый ток (зависит от частоты и емкости)
- Диэлектрические потери (тангенс угла потерь)
- Частотные характеристики (собственный резонанс)
- Температурная стабильность
Правильный выбор типа и параметров конденсатора обеспечивает его надежную и эффективную работу в цепи переменного тока.
Конденсатор в цепи переменного тока
Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.
Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).
Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.
В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.
После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.
Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.
С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.
Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.
Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.
В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.
Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.
Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны
Емкостное сопротивление конденсатора
Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС
Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.
Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.
Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.
Величина емкостного сопротивления определяется по следующей формуле:
где Хс — емкостное сопротивление конденсатора в ом;
f—частота переменного тока в гц;
ω — угловая частота переменного тока;
С — емкость конденсатора в ф.
При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.
Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.
Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.
Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.
Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.
Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.
Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.
Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.
Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.
В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.
В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.
Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.
Рисунок 3. а)Процессы в цепи переменного тока с конденсатором и б)сравнение конденсатора с пружиной.
Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.
Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.
И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.
При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.
А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
принцип работы устройства, реактивная электроэнергия
Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.
Принцип работы
Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.
У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.
Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.
Описание конденсатора постоянного тока
Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.
Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:
- Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
- Установить лампочку, рассчитанную на такое же напряжение.
- В сеть установить конденсатор.
Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.
Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.
Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.
Особенности устройства с переменным электротоком
Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.
Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.
Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:
- Источника тока. Он должен быть переменным.
- Конденсатора.
- Потребителя электротока. Лучше всего использовать лампу.
Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.
От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.
При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.
Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.
Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.
Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.
изменение силы тока в цепи
При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.
Конденсатор в цепи переменного тока
В отличии от постоянного переменный ток может идти и через цепь, в которой присутствует конденсатор. Рассмотрим следующий опыт.
Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения.
Подключим к ним с помощью переключателя цепь, состоящую из лампочки и конденсатора. Причем лампочка и конденсатор подключены последовательно.
рисунок
При включении питания от источника постоянного тока (АА’) лампочка не загорится. Если подключить цепь к источнику тока с переменным напряжением (BB’), то лампочка будет гореть. При условии, что емкость конденсатора достаточно велика.
В цепи происходит периодическая зарядка и разрядка конденсатора. В то время, когда конденсатор перезаряжается, ток проходит по цепи и нагревает нить накаливания лампочки.
Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.
рисунок
Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.
u = φ1-φ2 = q/C,
u = Um*cos(ω*t).
Имеем:
q/C = Um*cos(ω*t).
Выражаем заряд:
q = C*Um*cos(ω*t).
Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.
I = q’ = Um*C*ω*cos(ω*t+pi/2).
Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной pi/2. Получается, что колебания силы тока опережают по фазе колебания напряжения на pi/2. Это представлено на следующем рисунке.
рисунок
Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:
Im = Um*C*ω.
Введем следующее обозначение:
Xc = 1/(C*ω).
Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:
I = U/Xc.
Xc — величина, называемая емкостным сопротивлением.
Нужна помощь в учебе?
Предыдущая тема: Активное сопротивление: действующие значения силы тока и напряжения
Следующая тема:   Катушка индуктивности в цепи переменного тока: индуктивное сопротивление
Конденсатор в цепи переменного тока
Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока. Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора. В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.
Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:
По определению емкость на конденсаторе равна:
Следовательно, напряжение на конденсаторе:
Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:
Сила тока равна:
Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на . Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.
В течение периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.
Амплитуда силы тока (), исходя из выражения (5), равна:
Емкостное сопротивление конденсатора
Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением ():
Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:
где – амплитудное значение силы тока; – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):
На основании (9) говорят, что сопротивление конденсатора переменному току.
При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты уменьшается.
Примеры решения задач
Конденсатор в цепи переменного и постоянного тока: что это такое, виды
Элементная база для конструирования электронных устройств усложняется. Приборы объединяются в интегральные схемы с заданным функционалом и программным управлением. Но в основе разработок — базовые приборы: конденсаторы, резисторы, диоды и транзисторы.
Что такое конденсатор?
Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.
Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).
Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.
Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.
Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.
Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.
Где применяются конденсаторы?
Работа электронных, радиотехнических и электрических устройств невозможна без конденсаторов.
В электротехнике прибор используется для сдвига фаз при запуске асинхронных двигателей. Без сдвига фаз трехфазный асинхронный двигатель в переменной однофазной сети не функционирует.
Конденсаторы с ёмкостью в несколько фарад — ионисторы, используются в электромобилях, как источники питания двигателя.
Для понимания, зачем нужен конденсатор, нужно знать, что 10-12% измерительных устройств работают по принципу изменения электрической ёмкости при изменении параметров внешней среды. Реакция ёмкости специальных приборов используется для:
- регистрации слабых перемещений через увеличение или уменьшение расстояния между обкладками;
- определения влажности с помощью фиксирования изменений сопротивления диэлектрика;
- измерения уровня жидкости, которая меняет ёмкость элемента при заполнении.
Трудно представить, как конструируют автоматику и релейную защиту без конденсаторов. Некоторые логики защит учитывают кратность перезаряда прибора.
Ёмкостные элементы используются в схемах устройств мобильной связи, радио и телевизионной техники. Конденсаторы применяют в:
- усилителях высоких и низких частот;
- блоках питания;
- частотных фильтрах;
- усилителях звука;
- процессорах и других микросхемах.
Легко найти ответ на вопрос, для чего нужен конденсатор, если посмотреть на электрические схемы электронных устройств.
Принцип работы
В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.
Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.
При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.
Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.
Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.
В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.
В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.
В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.
«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.
Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Виды конденсаторов
Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.
Бумажные и металлобумажные конденсаторы
Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.
В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.
Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.
В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.
Электролитические конденсаторы
Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.
В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.
В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.
Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.
Алюминиевые электролитические
В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.
Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.
Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.
Танталовые электролитические
Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.
С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.
Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.
Полимерные
В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:
- увеличивается срок эксплуатации до 50 тыс. часов;
- сохраняются параметры при нагреве;
- расширяется диапазон допустимых пульсаций тока;
- сопротивление обкладок и выводов не шунтирует ёмкость.
Пленочные
Диэлектрик в этих моделях — пленка из тефлона, полиэстера, фторопласта или полипропилена.
Обкладки — фольга или напыление металлов на пленку. Конструкция используется для создания многослойных сборок с увеличенной площадью поверхности.
Пленочные конденсаторы при миниатюрных размерах обладают ёмкостью в сотни мкФ. В зависимости от размещения слоев и выводов контактов делают аксиальные или радиальные формы изделий.
В некоторых моделях номинальное напряжение 2 кВ и выше.
В чем отличие полярного и неполярного?
Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.
Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.
Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.
Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.
У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.
От чего зависит ёмкость?
Главная функция и роль конденсатора в цепи заключается в накоплении зарядов, а дополнительная — не допускать утечек.
Величина ёмкости конденсатора прямо пропорциональна диэлектрической проницаемости среды и площади пластин, и обратно пропорциональна расстоянию между электродами. Возникает 2 противоречия:
- Чтобы увеличить ёмкость, электроды нужны как можно толще, шире и длиннее. При этом размеры прибора увеличивать нельзя.
- Чтобы удерживать заряды и обеспечить нужную силу притяжения, расстояние между пластинами делают минимальным. При этом ток пробоя уменьшать нельзя.
Для разрешения противоречий разработчики применяют:
- многослойные конструкции пары диэлектрик и электрод;
- пористые структуры анодов;
- замену бумаги на оксиды и электролиты;
- параллельное включение элементов;
- заполнение свободного пространства веществами с повышенной диэлектрической проницаемостью.
Размеры конденсаторов уменьшаются, а характеристики становятся лучше с каждым новым изобретением.
Конденсатор в цепях переменного тока
Чтобы понять, как работает конденсатор в цепях переменного тока, вам потребуется хотя бы минимальное представление об этом самом переменном токе. Будем считать, что эти знания у вас есть, поэтому здесь приведём только информацию, касающуюся работы конденсатора.
На рис. 1 приведены графики изменения силы тока и напряжения во времени для ёмкостной нагрузки, то есть для конденсатора.
Рис. 1. Изменения силы тока и напряжения во времени для ёмкостной нагрузки.
Здесь Uc(t) — напряжение на конденсаторе, I(t) — ток в цепи, Ug(t) — напряжение на выходе источника переменного напряжения.
Итак, при подключении конденсатора к источнику переменного напряжения (перед подключением конденсатор разряжен), ток в цепи максимальный (см. рис. 1), а напряжение Uc на конденсаторе равно нулю. Ёмкость конденсатора влияет на ток, но нас пока это не интересует.
В первой четверти периода напряжение источника увеличивается, напряжение на конденсаторе также увеличивается. Конденсатор заряжается, а ток в цепи уменьшается. По прошествии 1/4 периода конденсатор полностью заряжен и ток в цепи равен нулю.
Во второй четверти происходит разряд конденсатора, ток в цепи увеличивается. И так далее.
Таким образом, ток, протекающий через конденсатор, отстаёт от напряжения на его обкладках на одну четверть периода.
Закон Ома для действующих значений имеет вид:
I = CUω = U / XcГде С — ёмкость конденсатора, Ф, U — напряжение, В, Хс — ёмкостное сопротивление цепи, Ом, которое равно
Xc = 1 /ωC = 1 / 2πfCГде f — частота переменного тока, Гц.
Отсюда можно сделать вывод, что ёмкостное сопротивление зависит не только от ёмкости конденсатора, но и от частоты переменного тока. Чем выше частота, тем меньше ёмкостное сопротивление конденсатора, и наоборот.
Исходя из вышесказанного напрашивается первое применение конденсатора в цепях переменного тока — работа в качестве гасящего элемента в делителях напряжения. Конечно, проще и удобнее использовать в качестве такого элемента резистор. Однако, если требуется существенное падение напряжения на гасящем резисторе, то даже небольшие токи потребуют применения резистора большой мощности и, соответственно, габаритов.
Конденсатор в цепях переменного тока не рассеивает энергию, а значит и не нагревается. Почему? Потому что, как мы выяснили, ток и напряжение в конденсаторе смещены относительно друг друга на 90o. То есть в момент, когда напряжение максимально, ток равен нулю, соответственно, и мощность равна нулю в этот момент (см. рис. 1). Работа не совершается, нагрев не происходит.
Именно поэтому вместо резистора часто применяют конденсаторы. Основной недостаток такого использования конденсатора заключается в том, что при изменении тока в цепи изменяется и напряжение на нагрузке. Второй недостаток (по сравнению с применением трансформаторов) — отсутствие гальванической развязки. По этим и другим причинам применение конденсаторов в качестве гасящих элементов ограничено и используется обычно в тех случаях, когда сопротивление нагрузки относительно стабильно. Например, в цепях питания нагревательных элементов.
Однако частотно-зависимые делители напряжения применяются очень широко. Свойства конденсаторов используются, например, при создании различных фильтров и резонансных схем.
Частотный фильтр — это устройство, которое пропускает сигналы одной частоты и не пропускает другие. Или наоборот — пропускает все частоты кроме одного диапазона. Работа частотных фильтров основана на способности конденсатора изменять ёмкостное сопротивление в зависимости от частоты. Например, нам нужно подавить в усилителе фон переменного тока частотой 50 Гц. В таком случае можно использовать фильтр — схему из конденсаторов и резисторов, которая будет подавлять сигнал с частотой 50 Гц и пропускать все остальные сигналы. Расчёт и конструирование фильтров — занятие непростое и здесь не рассматривается.
Резонансные схемы используют резонанс, который возникает при последовательном или параллельном включении конденсатора и катушки индуктивности. Поскольку сопротивление этих элементов зависит от частоты, то при некоторой частоте общее сопротивление цепи будет максимальным, а при некоторых — минимальным. Эти эффекты и используются в резонансных схемах. Например, резонанс используется в радиоприёмниках при настройке на станцию.
Конденсатор в цепи переменного и постоянного тока
Если конденсатор присутствует в цепи постоянного тока, то возникающий кратковременный импульс производит его зарядку до значения напряжения источника, после чего движение тока прекращается. Отключенный от источника тока, заряженный конденсатор под действием нагрузки будет очень быстро разряжаться. Его разрядка напоминает кратковременный импульс. При этом, лампа накаливания мигнет один раз и погаснет.
Использование конденсатора
Конденсатор в цепи переменного тока ведет себя совершенно иначе. Зарядка и разрядка чередуется с периодами колебаний переменного напряжения. Находящаяся в цепи лампа накаливания, соединенная последовательно, как и конденсатор будет визуально излучать непрерывный свет, поскольку промышленная частота колебаний не заметна для человеческого глаза.
Каждый конденсатор обладает емкостным сопротивлением, которое находится в обратной пропорциональной зависимости от его емкости и частоты циклов переменного тока. При таком сопротивлении, электрическая и магнитная энергия не превращается в тепловую. Таким образом, чем выше частота тока, тем ниже значение емкостного сопротивления и наоборот.
На основании этого важного свойства, конденсатор нашел практическое применение в цепях переменного тока, как гасящий элемент в делителях напряжения вместо резисторов. Это особенно актуально при значительном падении напряжения. В этом случае потребовались бы резисторы с большой мощностью и габаритами.
Конденсатор в цепи переменного тока не нагревается, поэтому и не происходит рассеивания энергии. Это связано со смещением напряжения и тока в конденсаторе между собой на 90 градусов. При максимальном напряжении ток равен нулю, при этом, мощность также равна нулю. Значит, никакой работы не совершается, и нагрев отсутствует.
Конденсатор вместо резистора
Это является основной причиной применения во многих случаях, конденсаторов вместо резисторов. Однако, при таком использовании, у конденсатора есть существенный недостаток, который нужно обязательно учитывать. В том случае, когда переменный ток в цепи изменяется, происходит изменение напряжения у нагрузки. Другой недостаток наблюдается, когда отсутствует гальваническая развязка. Поэтому, в целом, конденсаторы, как гасящие элементы, применяются достаточно ограничено. Они используются при относительно стабильном сопротивлении нагрузки. В качестве примера можно привести цепи питания в нагревательных элементах.
Тем не менее, конденсаторы нашли достаточно широкое применение при создании различных частотных фильтров и некоторых видов резонансных схем.
Как определить и заменить вышедший из строя конденсатор переменного тока
Сейчас лето — и это лучшее время для подрядчика по ОВК. Поскольку кондиционеры работают на полную мощность, звонки накапливаются, чтобы исправить те, которые вышли из строя или не работают должным образом. Одна из наиболее частых причин неисправности системы переменного тока — выход из строя конденсатора. Конденсаторы являются неотъемлемым компонентом системы переменного тока, передавая энергию компрессору, нагнетателю и внешнему вентилятору. Как подрядчик, вы можете искать по множеству признаков, чтобы определить причину проблемы с переменным током и при необходимости отключить конденсатор, прежде чем это станет более серьезной проблемой.
В то время как неисправный конденсатор довольно легко идентифицировать визуально, кондиционер будет проявлять определенные симптомы по мере разрушения конденсатора. Если в системе переменного тока клиента наблюдаются следующие симптомы, важно, чтобы конденсатор был отключен сразу же, прежде чем компрессор или вентилятор выйдет из строя или перестанет работать.
Симптомы применения
Первым признаком выхода из строя конденсатора часто является то, что кондиционер не подает холодный воздух. Также может потребоваться некоторое время для запуска кондиционера после включения, и компрессор будет издавать гудящий шум.Конденсатор также может издавать слышимый щелчок. Рост счетов за электроэнергию является еще одним показателем, поскольку системе переменного тока придется использовать больше энергии для работы в случае выхода из строя конденсатора. В конце концов, кондиционер перестанет работать или вообще не включится.
Если у клиента возникают какие-либо из перечисленных выше проблем с переменным током, визуальная проверка конденсатора может многое выявить. Независимо от типа конденсатора, все они будут иметь одинаковые визуальные признаки.
Визуальные признаки
По мере разрушения конденсатора он будет иметь выпуклый вид, а обычно плоский верх становится куполообразным.Это верный признак того, что конденсатор необходимо заменить. Если маслянистое вещество также просочилось через верхнюю часть, оставив липкий остаток, конденсатор достиг или приближается к концу своего срока службы.
Выпуклый конденсатор
Хороший конденсатор
Необходимые меры безопасности
Многие конденсаторы HVAC рассчитаны на высокое напряжение при полной зарядке, поэтому неправильное обращение может вызвать поражение электрическим током. При замене конденсатора необходимо соблюдать несколько правил безопасности:
- Никогда не прикасайтесь к клеммам конденсатора.
- Никогда не закорачивайте клеммы металлическими предметами. (Это может вызвать сильную искру, которая может вызвать возгорание при правильных условиях).
- Разряд должен осуществляться специалистом через резистивную нагрузку.
Шаги по замене конденсатора
Замена неисправного конденсатора до того, как он повредит двигатель, от которого он питается. Вот краткий обзор того, как заменить конденсатор.
- Отключите питание или отключите питание AC .
- Снимите съемную панель .
После снятия найдите и осмотрите старый конденсатор, чтобы выяснить, не является ли он причиной проблемы. - Обратите внимание на емкость и номинальное напряжение старого конденсатора .
Запишите марку и модель оборудования переменного тока, чтобы обеспечить правильную замену. Если вы замените конденсатор на конденсатор с более низким номинальным напряжением, на конденсатор будет оказана чрезмерная нагрузка, что значительно сократит срок его службы. - Разрядите и снимите старый конденсатор .
Перед демонтажем обязательно пометьте провода, чтобы убедиться, что вы подключаете новый конденсатор к правильным клеммам. - Установите новый конденсатор .
Установите новый конденсатор вместо старого и снова подключите провода к правильным клеммам. - Включите питание и проверьте .
Если он не работает, снова выключите питание, разрядите конденсатор и проверьте провода, чтобы убедиться, что они правильно подключены.
Установка качественного конденсатора на замену для вашего клиента будет иметь решающее значение.
Признаки неисправности конденсатора переменного тока (удобный список!)
Признаки неисправности конденсатора переменного тока (удобный список!)
Вы когда-либо сталкивались с тем, что кондиционер дует теплым воздухом или показывает проблемы с электричеством — в таком случае вы могли видеть симптомы неисправности конденсатора переменного тока.Системы кондиционирования воздуха состоят из множества компонентов, обеспечивающих работу системы. Отказ компонента сигнализирует домовладельцам о необходимости ремонта с такими симптомами, как нестабильная работа.
Одним из таких компонентов является конденсатор. В этом блоге мы расскажем о симптомах неисправного конденсатора переменного тока, которые вам необходимо знать. Мы также рассмотрим, что делает конденсатор переменного тока, как тестировать конденсаторы переменного тока и как конденсаторы выходят из строя в кондиционере.
Обзор: что такое конденсатор переменного тока? Как работает конденсатор переменного тока?Конденсатор переменного тока — это компонент наружного конденсаторного блока кондиционера или теплового насоса.Он передает мощность на двигатель, приводящий в действие систему кондиционирования воздуха. Конденсатор обеспечивает начальный всплеск энергии для включения системы, когда наступает время цикла охлаждения. Затем он поддерживает его непрерывную работу с электричеством до завершения цикла.
Начальный всплеск мощности составляет от 300 до 500 процентов от нормального количества электроэнергии, требуемого системой. Как только двигатель кондиционера достигает надлежащей рабочей скорости, конденсатор ограничивает избыточную мощность и подает постоянное количество в течение всего цикла охлаждения.В некотором смысле это похоже на батарею, которая накапливает энергию и распределяет ее во время использования.
Что вызывает плохие симптомы конденсатора переменного тока?Проблемы с конденсатором переменного тока мешают вашей системе кондиционирования воздуха работать должным образом. Признаки неисправности конденсатора переменного тока обычно вызываются следующими причинами:
- Перегрев схемы системы
- Короткие замыкания в системе охлаждения
- Скачки напряжения
- Удары молнии
- Чрезвычайно высокие наружные температуры
- Износ оборудования
Большинство из них прослужит 20 лет.Опять же, если ваш переменный ток перегружен, испытывает резкие перепады температуры или скачки, или если конденсатор имеет дефектную часть, он не прослужит так долго.
Проблемы, вызванные неисправными конденсаторами переменного токаВо-первых, неисправность конденсатора переменного тока вызывает проблемы с работой вашей системы кондиционирования воздуха. Плохой конденсатор мешает нормальному функционированию внешнего блока, что мешает процессу охлаждения в целом.
Во-вторых, неправильная подача напряжения на компоненты внешнего блока заставляет систему работать усерднее, поскольку она пытается выполнить свою работу.
Дополнительные компоненты часто выходят из строя из-за неисправного конденсатора. Наконец, ваши счета за электроэнергию могут стать выше из-за возросшего спроса на электроэнергию для охлаждения вашего дома.
Контрольный список симптомов неисправности конденсатора переменного токаПо мере развития проблемы система охлаждения продолжает работать, хотя и плохо, и домовладельцы могут этого не заметить сразу. В других случаях основным признаком неисправного конденсатора переменного тока, который замечает человек, является то, что кондиционер полностью отключается.
Эти признаки неисправности конденсатора переменного тока предупреждают о проблеме с системой охлаждения.Свяжитесь с нами для ремонта кондиционера, если заметите:
- Дым или запах гари от внешних компонентов кондиционера
- Гудящий шум кондиционера
- Вашему кондиционеру требуется некоторое время, чтобы начать цикл охлаждения после его включения
- Система кондиционирования отключается наугад
- Во время работы кондиционера в дом не поступает холодный воздух
- Система кондиционирования не включается вообще
- Ваши счета за электроэнергию без объяснения причин выше
HVAC используют инструмент, называемый мультиметром, для проверки конденсаторов переменного тока.Также известный как мультитестер или VOM, он объединяет несколько функций измерения в одном устройстве. Большинство мультиметров измеряют ток, напряжение и сопротивление. Аналоговые мультиметры используют микроамперметр с вращающейся стрелкой для отметки показаний.
Вот видео, показывающее два типа:
Когда наши специалисты обращаются к внутренней части вашего конденсаторного агрегата для поиска источника проблемы, эти признаки неисправности конденсатора переменного тока помогают специалистам изучить этот компонент дальше:
- Трещины
- Выпуклость
- Из конденсатора и печатной платы вытекает жидкость
- Недостаточно заряда при проверке мультиметром
Если у вас возникнут какие-либо из этих симптомов неисправности конденсатора переменного тока, немедленно позвоните в компанию Sanborn для ремонта кондиционера.Мы приступим к работе, чтобы диагностировать проблему и быстро произвести необходимый ремонт, чтобы уменьшить дискомфорт для вашей семьи.
Если вашему кондиционеру десять или более лет, возможно, пришло время подумать о новой установке переменного тока. Мы будем рады отправить кого-нибудь для проведения необходимых измерений, чтобы ваша система охлаждения подходила по размеру для вашего дома.
Мы предлагаем бесплатные оценки и варианты финансирования, чтобы вы сразу почувствовали себя комфортнее и эффективнее.
Свяжитесь с нами сегодня, чтобы запланировать обслуживание или запросить бесплатную смету для вашего дома Inland Empire.
Сколько стоит замена конденсатора переменного тока?
Конденсатор — это электрический компонент, который накапливает энергию и использует ее всякий раз, когда она нужна системе. Он запускается, когда вы включаете блок переменного тока. Этот компонент также теряет свою эффективность при длительном использовании. Поскольку это важная электрическая часть блока переменного тока, вам всегда следует обращаться за помощью к лицензированному специалисту для ее ремонта.
Итак, давайте узнаем больше о затратах, понесенных при замене компонентов кондиционера, включая конденсатор.
Средняя стоимость ремонта кондиционера
Стоимость ремонта разных компонентов кондиционера разная. Большинство домовладельцев платят около 165 и 575 долларов за ремонт кондиционера. Стоимость ремонта составляет от 35 до 200 долларов в час.
Многие подрядчики взимают с вас плату в зависимости от сложности ремонта, а не почасовой оплаты труда. Ниже приведена средняя стоимость ремонта, взимаемая авторизованными фирмами, предлагающими Ремонт переменного тока в MILL CREEK.
- В среднем по стране: 360 долларов
- Типичный диапазон: от 160 до 580 долларов США
- от низкого до высокого уровня: от 70 до 1900 долларов
Стоимость ремонта для общих проблем, возникающих в AC
Вот полный список того, сколько владелец кондиционера готов заплатить за устранение проблем с кондиционером.
- Обнаружение и устранение утечек в хладагенте — 220–1 500 долларов США
- Заправка хладагента переменного тока — от 110 до 850 долларов
- Замена печатной платы — 125–650 долларов
- Замена автоматических выключателей, реле и предохранителей — 20–350 долларов
- Замена термостата — 110 $ до 480 $
- Ремонтный комплект компрессора кондиционера — 120–270 долларов
- Замена конденсатора — от 95 $ до 470 $
- Замена домашнего воздушного компрессора — 1350-2300 долларов
- Замена змеевика испарителя — 630 долларов США на 1250 долларов США
- Замена электродвигателя вентилятора компрессорно-конденсаторного агрегата — от 100 до 700 долларов
Важно отметить, что специалисты по ремонту на установке AC Lynnwood, WA, определяют затраты на ремонт в зависимости от типа и размера устройства, которое необходимо отремонтировать.
Приблизительная стоимость ремонта переменного тока
Стоимость устранения неполадок службы переменного тока варьируется от 80 до 170 долларов. Он основан в основном на таких аспектах, как время года и географическое положение ремонта. Лето — время, когда стоимость ремонта будет максимальной. Почасовая ставка может даже доходить до 200 долларов в час.
Специалист по кондиционерам может взимать от 80 до 100 долларов за настройку системы. Это ежегодное обслуживание обеспечит вам душевный покой и значительную долгосрочную экономию.
Стоимость замены компрессора переменного тока
Компрессор — это крупный агрегат, который может повлечь за собой большие расходы. Сертифицированный профессионал может взимать от 1200 долларов и более за замену неисправного компрессора. Вот список возможных неисправностей кондиционера с указанием стоимости ремонта.
- Чтобы заменить поврежденный компрессор переменного тока, вы можете понести расходы в размере 100 и 250 долларов. Это долгосрочное решение проблемы.
- Стоимость ремонта утечки газа в кондиционере составляет от 220 до 1500 долларов.
- Возможно, вам придется заплатить от 120 до 475 долларов за замену конденсатора.
- Стоимость установки новой системы обработки воздуха составляет от 2200 до 3800 долларов.
- Стоимость замены фанкойла составляет около 2000 долларов.
- Стоимость замены предохранителя, реле или автоматических выключателей в сети переменного тока составляет от 15 до 300 долларов.
- Это стоит около 115 долларов и 250 долларов на замену термостата
- Чтобы установить новый конденсатор, вам, возможно, придется заплатить ок. 1 750 долл. США
- Стоимость установки новой системы отопления, вентиляции и кондиционирования воздуха и системы воздуховодов составляет от 9 200 до 12 300 долларов.
- Вы можете отремонтировать вентилятор кондиционера всего за 150 долларов. Однако стоимость может доходить до 300-800 долларов. Однако высококлассный вентиляторный двигатель будет стоить до 2000 долларов.
Нанять профессионала для замены конденсатора переменного тока. Мы в DVAC Heating & Air LLC позаботимся обо всех ваших услугах по кондиционированию воздуха. Позвоните нам по телефону (425) 908-0030 для получения квалифицированных услуг по ремонту, и мы вас не разочаруем!
Действительно ли вашему кондиционеру нужен новый конденсатор?
Рано или поздно это произойдет.
Ваш технический специалист HVAC приезжает для технического осмотра и находит деталь, которую необходимо заменить. На этот раз это большая батарейка. Он говорит, что это называется конденсатор. Он говорит, что его нужно заменить.
Есть?
Все конденсаторы переменного тока и теплового насоса со временем выходят из строя.
Конденсаторы — одна из наиболее распространенных частей, которые необходимо заменять в системах кондиционирования воздуха в жилых помещениях. Обычно они служат несколько лет, но вам нужно будет заменить их хотя бы один раз, если вы используете один и тот же кондиционер более десяти лет.
В вашей системе может быть один или несколько конденсаторов. Во многих наружных блоках есть пусковой конденсатор, который помогает подключиться к сети переменного тока, когда требуется охлаждение. Также есть рабочий конденсатор, который поддерживает работу системы после запуска. Однако в вашей системе может быть только один конденсатор в наружном блоке, а в некоторых моделях даже есть конденсатор для двигателя внутреннего вентилятора.
Конденсаторы или выглядят как большие батареи, но они подключаются к проводам внутри вашей системы кондиционирования воздуха.К сожалению, нельзя просто вставить конденсатор в слот и закрыть пластиковым колпачком. Так что это совсем не то же самое, что аккумулятор.
Пожалуйста, не пытайтесь заменить конденсатор самостоятельно.
Любой желающий может записать размер конденсатора для своей системы, купить еще один в Интернете и установить его. Однако мы рекомендуем , а не .
Конденсаторы могут быть опасными. Даже после отключения питания от сети переменного тока конденсатор все еще сохраняет большой заряд.Если вы прикоснетесь к нему, он может убить вас электрическим током. И это может очень сильно повредить вам.
Просто спросите сотрудника UC-Berkeley, у которого возник конденсатор при замене охлаждающего вентилятора. Конденсаторы могут отправить вас в отделение неотложной помощи, если вы не совсем уверены, что делаете.
СпециалистыHVAC знают, как обращаться с конденсаторами. Лучше позволить им заниматься своим делом.
Итак, откуда вы знаете, что
вам нужен новый конденсатор?Ваш парень, работающий с HVAC, говорит, что ваш конденсатор не работает.Вот как узнать, что он прав:
- Вольтметр говорит, что мало микрофарад. Все конденсаторы указаны в микрофарадах. Например, ваш может быть рассчитан на 35 микрофарад с диапазоном плюс или минус 10. Если он упадет ниже 25, вольтметр сообщит вашему специалисту по HVAC, что пора его заменить.
- Он раздулся, как воздушный шар. Когда конденсатор действительно далеко ушел (а к тому времени, когда мы их находим, они часто бывают), он разбухнет. Ваш конденсатор может быть плохим, даже если он не вздут, но плохой конденсатор обычно разбухает.Это будет выглядеть так, как будто кто-то набил слишком много материала в трубку, и она вздувается по бокам.
- Конденсатор протекает масло. Это случается не всегда, но из неисправных конденсаторов часто вытекает масло. Негерметичный конденсатор = конденсатор, который вышел из строя.
И готово! Вот как вы понимаете, что вам нужен новый конденсатор переменного тока.
Иногда старый, ржавый на вид конденсатор все равно будет читать на соответствующем уровне микрофарад. На самом деле все сводится к показаниям вольтметра, физическому вздутию и / или наличию масла.
Знаете, когда мы, скорее всего, обнаружим неисправный конденсатор?
Действительно два раза. Первый — когда ваш кондиционер отключается, и вы как сумасшедшие потеете в своем доме. Что-то не так и, о чудо, конденсатор. После замены кондиционер снова работает.
Другой раз — и это то, что вы хотите, чтобы произошло — во время технического осмотра в период охлаждения. Клиенты с соглашениями об обслуживании проходят эти проверки каждый год (на самом деле их две в год, хотя мы проверяем конденсаторы переменного тока только на одном из них), и мы всегда проверяем конденсаторы, пока находимся на месте.
Есть две причины, по которым неисправный конденсатор лучше заменить во время планового технического осмотра:
- Мы, вероятно, поймали неисправный конденсатор до того, как он полностью перестал работать. Так что пока что вы не лишены кондиционера.
- Вы получите большую скидку на новый конденсатор.
Если у вас есть договор на обслуживание, и мы уже находимся у вас дома, чтобы провести осмотр, мы заменим неисправный конденсатор со скидкой 50% — это сверх 15% скидки на запчасти, которую мы уже предлагаем в рамках договора.
Мы не можем предоставить эту скидку, если нас попросят починить неработающий переменный ток и заменить конденсатор. Но если у вас есть план обслуживания, и мы выявляем неисправный конденсатор во время рутинной настройки, такая экономия — одно из ваших преимуществ.
Теперь вы знаете, о чем спросить в следующий раз, когда техник HVAC скажет, что конденсатор необходимо заменить.
А если вы живете в Метро Атланта и у вас ломается кондиционер, позвоните нам! Кто-то из нашей команды определит проблему и порекомендует вам оптимальное решение в долгосрочной перспективе.
Могу ли я по-прежнему использовать кондиционер с неисправным конденсатором?
Распространенная проблема с кондиционерами в долине Сакраменто
Каждую весну и лето мы получаем много телефонных звонков от клиентов, которые говорят, что их кондиционер не работает. Значительная часть этих обращений связана с обычным ремонтом. Их конденсатор вышел из строя. Если ваш техник сказал вам, что ваш конденсатор переменного тока неисправен, это определенно один из тех элементов, которые вы захотите заменить. И в этом посте я расскажу почему.
Честное предупреждение
Я хочу честно предупредить всех, кто это читает. Если вы читаете это с намерением заменить свой собственный конденсатор, они несут намного большее напряжение, чем типичные 240 вольт, которыми питается кондиционер. Конденсаторы могут и будут шокировать вас даже при отключении питания.
Могут возникнуть серьезные травмы или смерть, так как высокое напряжение плохо сочетается с человеческим телом. Таким образом, это сообщение в блоге не предназначено для того, чтобы научить кого-либо устанавливать или заменять конденсатор.Есть другие создатели YouTube, которые вам это объяснят. Я рекомендую, чтобы этим ремонтом занимался настоящий специалист по HVAC, так как этот человек будет знать, как правильно разрядить конденсатор, чтобы никто не пострадал.
Что такое конденсатор?
Конденсатор — это накопитель электронов, который постоянно отдаёт себя двигателю, который он поддерживает. И они не делают их такими, как раньше! Конденсаторы 60-х, 70-х и 80-х годов были рассчитаны на длительный срок службы. Как технический специалист, я все еще сталкиваюсь с этими кондиционерами последних моделей, и я удивлен, что их конденсаторы все еще работают нормально.
В наши дни это неслыханно. Конденсаторы, производимые сегодня, обычно рассчитаны на срок службы от пяти до десяти лет. Определенно есть конденсаторы одних марок, которые сделаны лучше других, и ваш специалист по ОВКВ должен найти эти хорошие марки и использовать их в интересах вас, потребителя.
Разочарование
Я видел кепки, которые хватало всего на два года! Я знаю некоторые марки кондиционеров, которые устанавливаются совершенно новыми, и два или три года спустя мы заменяем конденсатор.Затем выходит компания HVAC и заменяет свою на более дешевую или менее проверенную марку, и она сдает в короткие сроки, без гарантии на изделие. Таким образом, покупатель должен купить еще один. Это неприятно для заказчика, но не для компании, занимающейся климатом. Они должны продолжать заряжать 200+ долларов, чтобы ваш кондиционер работал раз в два года.
Мы используем конденсаторы марки MARS, потому что они сделаны в Америке, и я лично считаю, что они служат дольше, чем другие. Есть несколько других брендов, которые можно использовать, но мы не переключаемся на них и не используем эти другие бренды только потому, что мы случайно находимся рядом с магазином оборудования для систем отопления, вентиляции и кондиционирования, где продаются более дешевые конденсаторы.
Мертвая распродажа
Большинство двигателей вашего кондиционера не могут работать без исправного конденсатора. Как я уже сказал, они поддерживают эти моторы. Они помогают двигателю запускаться и эффективно работать. Некоторые люди подошли к своему кондиционеру и заметили, что вентилятор на их кондиционере не вращается, как должно быть. Поэтому они берут палку или что-то в этом роде, чтобы добраться до кожуха вентилятора и пытаются вручную заставить лопасть вентилятора начать вращаться. И теперь это работает! Это классический признак того, что конденсатор для этого двигателя вентилятора плохой, и хороший пример для вас, демонстрирующий, почему эти двигатели не могут запускаться и работать эффективно без хорошего конденсатора.
И мы не можем просто вставить туда какой-либо старый конденсатор, потому что он должен быть точно такого размера, который рекомендован производителем. В противном случае двигатель может запуститься, но будет работать не в равновесии. Это вызывает неравномерное магнитное поле вокруг двигателя, что может сделать двигатель шумным, усложнить его работу (увеличивая затраты на его работу) или просто привести к полному сгоранию двигателя.
Другие усложняющие факторы
Существуют различия в типичном двойном рабочем конденсаторе, который обычно входит в вашу сеть переменного тока, и пусковом конденсаторе, который может быть добавлен в вашу систему либо производителем, либо техническим специалистом у вас дома.Я объясню это в другом сообщении блога и видео, когда сделаю их позже.
Но для целей этого блога я хотел ответить на вопрос, недавно заданный моим лучшим другом Мэттом. На самом деле это отличный вопрос для других людей.
Если конденсатор вышел из строя, не пытайтесь запустить эту часть системы. Это только приведет к еще большему повреждению системы, что может вынудить вас заменить более дорогую и более крупную деталь или всю систему. Так что будьте терпеливы.Надеюсь, у вашего техника уже есть такой на грузовике. Обычно они это делают.
Будьте осторожны
Некоторые из вас, ребята, меняют их самостоятельно, лучше будьте осторожны. Конденсаторы несут большую мощность и сработают раньше, чем вы об этом заметите. Итак, это лишь последнее предупреждение для тех, кто занимается самоделкой, если вы попытаетесь самостоятельно справиться с этим ремонтом.
Если вы покупаете эти детали в Интернете из-за цены, они могут быть дешевле, но это ничто по сравнению с травмой или возможным повреждением более дорогой детали из-за того, что вы неправильно ее подключили.Если вы платите среднюю цену от 100 до 300 долларов за конденсатор от своего технического специалиста (в зависимости от того, в какой части страны вы находитесь), это потому, что вы платите за то, чтобы у этой компании был нужный конденсатор. грузовик и установите его прямо сейчас.
Спасибо, что зашли, увидимся в следующем посте.
Как определить, неисправен ли у вас конденсатор переменного тока, и как его заменить
Все мы знаем это удивительное чувство, когда вы приходите из жаркого летнего дня в свой прекрасный кондиционер.Но однажды вы можете войти и обнаружить, что ваш дом не такой крутой, как вы ожидаете.
Некоторым людям также знакомо чувство опущения при поломке блока переменного тока. Однако знать, что вам предстоит дорогостоящий ремонт, не должно быть никому.
Летом становится жарче и Июнь 2021 года бьет рекорды, нужен рабочий кондиционер.
Перед тем, как пойти и заняться серьезной работой, вам, возможно, придется задать себе вопрос: «У меня плохой конденсатор переменного тока?».Если да, то есть хорошие новости — вы можете заменить его самостоятельно.
Ознакомьтесь с симптомами и руководством по замене, чтобы узнать, действительно ли это вы.
Предупреждения по безопасности
Многие блоки переменного тока имеют конденсаторы, которые несут довольно высокий заряд, поэтому вы должны быть абсолютно осторожны при их замене или проверке. Однако, если вы примете разумные меры предосторожности, у вас не должно возникнуть проблем.
- Никогда не касайтесь клемм на конце конденсатора
- Не используйте предметы с металлической ручкой для разряда конденсатора.Используйте отвертку с изолированной ручкой и приложите металлический стержень отвертки к C к HERM и C к FAN, чтобы разрядить конденсатор.
При работе с высоковольтным оборудованием, таким как блок переменного тока, всегда убедитесь, что оно выключено. Если ваш блок переменного тока является съемным, убедитесь, что вилка полностью отключена. Если ваш AC подключен к автоматическому выключателю, убедитесь, что он отключен или выключен.
Признаки неисправного или неисправного конденсатора
Блоки переменного тока с плохими конденсаторами могут вызывать несколько интересных симптомов.Хотя это не всегда стопроцентная гарантия неисправного конденсатора переменного тока, велика вероятность того, что у вас возникнут проблемы, если вы увидите что-либо из этого.
Вы можете заметить:
- Гудящие шумы
- Проблемы с включением или выключением
- Запах гари или электрического разряда
- Счета больше, чем обычно
- Агрегат может отключиться случайным образом
- Без охлаждения
- Щелчки или жужжание
Если что-то из этого звучит знакомо, есть большая вероятность, что с конденсатором переменного тока что-то не так, и вам следует подумать о его замене.
Если ни один из этих симптомов не подходит, обратитесь к нашему руководству по устранению неполадок, чтобы найти проблему.
Без охлаждения
Как только ваш кондиционер перестанет подавать холодный воздух, это верный признак того, что что-то не так. Возможно, это не долгосрочная проблема. Вы можете проверить, включив и снова выключив устройство, чтобы увидеть, исчезнет ли проблема.
Щелчки или жужжание
Это снова связано с двигателем. Когда двигатель пытается запуститься, но не может, он может издавать щелкающий или гудящий звук.Это хороший признак того, что конденсатор сломан.
Теперь, когда у вас есть хорошее представление о симптомах, которые вы можете увидеть, давайте узнаем немного о том, как работают конденсаторы. Таким образом, вы сможете понять, как их безопасно и эффективно заменить.
Счета за высокую энергию
Когда конденсатор переменного тока неисправен, двигатель вентилятора конденсатора должен работать больше и потреблять больше ампер. Поэтому, когда вы внезапно замечаете, что ваши счета за электроэнергию увеличиваются, у вас может быть плохой конденсатор. Чтобы понять, почему плохой конденсатор означает более высокий счет за электроэнергию, см. Раздел ниже о том, что делает конденсатор.
Случайные отсечки
Вы можете обнаружить, что ваш блок переменного тока отключается, и вы время от времени ничего не делаете.
Проблема с включением или выключением
Эта проблема почти всегда связана с плохим конденсатором. Когда система пытается сделать что-то, для чего требуется больше энергии, неисправный конденсатор может вызвать проблемы. Этот симптом также может проявляться в том, что устройству требуется много времени для начала работы после его включения. Конденсатор дает начальный заряд энергии, и когда он выходит из строя, блок переменного тока изо всех сил пытается запуститься.Обычный обходной путь, хотя иногда и опасный, — это толкать лопасть вентилятора палкой. Это может быть опасно и привести к повреждению устройства, поэтому следует делать это только в экстренных случаях.
Запах жжения или электрического разряда
Это немного сложнее, так как может быть много причин (ни одна из них не является хорошей), по которым ваш блок переменного тока может пахнуть гари. В вашем блоке переменного тока конденсатор приводит в движение двигатель. Когда конденсатор неисправен, двигатель имеет тенденцию к перегреву, и это может вызвать запах.
Что на самом деле делает конденсатор?
Если вы думаете о конденсаторе как о большом хранилище энергии, вы на правильном пути. Самый простой конденсатор состоит всего из нескольких компонентов. Это два проводника, которые пропускают электричество, и промежутки, которые блокируют поток электричества. Когда электричество проходит через конденсатор, электроны накапливаются в двух проводниках. Один проводник хранит отрицательно заряженные электроны, а другой — положительно заряженные.
Любой большой прибор, такой как блок переменного тока, требует много электроэнергии для работы. И когда компрессор и двигатель вентилятора запускаются, им требуется большое количество энергии. Вы не захотите постоянно платить за электроэнергию по высокой цене — здесь на помощь приходят конденсаторы.
Конденсаторы используют накопленную энергию, чтобы дать большой толчок мощности вашему компрессору и двигателю вентилятора при запуске. Возможно, вы слышали шум, когда начинается этот процесс.
После запуска устройства в конденсаторе больше нет необходимости, и он может снова накапливать энергию для следующего большого толчка.
Что такое номинал конденсатора
У конденсатора много разных номиналов, но для наших целей нас интересуют только два:
- Рабочее напряжение
- Значение емкости. На вашем конденсаторе переменного тока будет 2 значения емкости. Один приводит в движение компрессор, другой — двигатель вентилятора.
Рабочее напряжение
На самом деле это просто показатель того, какое напряжение может пройти через конденсатор. Одна из причин, по которой конденсатор может выйти из строя быстрее, чем ожидалось, — это нестабильная подача электроэнергии в вашем доме.При замене конденсатора вы можете увеличить напряжение, так как это максимальное напряжение, с которым он может работать. Как правило, вы увидите конденсаторы на 370 или 440 В, но многие производители увеличивают запасы только до 440 В.
Значение емкости
Измеряется в микрофарадах и показывает, сколько энергии может хранить конденсатор. Обычно это будет написано 50 + 5 MFD или 50 + 5 μ. Здесь есть и другие сложности, но все будет в порядке, если вы можете указать микрофарады.
Примеры этикеток конденсаторов. Обратите внимание, что некоторые производители используют МФД для отображения рейтинга микрофарад, тогда как другие используют символ μ.Как определить, неисправен ли конденсатор
Наиболее частым признаком неисправного конденсатора является гудение двигателя вентилятора конденсатора на внешнем блоке, или двигатель не запускается. В доме вы заметите, что холодный воздух не выходит из вентиляционных отверстий. Когда это происходит, конденсатор не работает и не может обеспечить достаточное количество накопленной энергии для работы двигателя вентилятора или компрессора.
Помимо всех симптомов из нашего списка, могут быть визуальные признаки того, что с конденсатором что-то не так. Если вы видите конденсатор на своем блоке переменного тока, его достаточно легко проверить на предмет повреждений или других функциональных проблем.
Визуальные признаки неисправного конденсатора
Внимательно посмотрите на конденсатор в вашем устройстве. Он выглядит гладким и безупречным? Если есть заметный прогиб или выпуклость, конденсатор необходимо заменить.Таким же образом, если масло выходит из верхней части конденсатора, срок его службы подошел к концу, и его необходимо заменить.
Пример неисправного конденсатора кондиционера: вздутие Пример неисправного конденсатора кондиционера: ржавчинаБудет ли кондиционер работать с неисправным конденсатором?
Скорее всего, вы услышите жужжащий звук, если конденсатор переменного тока неисправен и ваш переменный ток не работает. В аварийной ситуации электродвигатель вентилятора конденсатора переменного тока можно запустить с помощью джойстика до тех пор, пока не придет запасной конденсатор, однако мы не рекомендуем этого делать, поскольку вы можете вызвать дальнейшее повреждение лопасти вентилятора и / или змеевика конденсатора.Если змеевик конденсатора поврежден, тогда может потребоваться полная замена блока, поскольку стоимость ремонта будет слишком дорогостоящей.
Как проверить рабочий конденсатор с помощью мультиметра
Использование функции емкости на мультиметре
Включите счетчик
Поверните циферблат на функцию емкости (см. Ниже). В этом случае мы используем мультиметр Клейна, и мы должны нажимать кнопку выбора, пока не увидим, что это емкостной режим.
Установка емкости на мультиметреПроверка секции вентилятора конденсатора конденсатора
Поместите один щуп мультиметра на C (общий)
Поместите другой датчик на ВЕНТИЛЯТОР.
Считывание емкости секции двигателя вентилятора конденсатораПодождите несколько секунд, и вы должны увидеть значение емкости на дисплее. При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.
Проверка секции вентилятора компрессора конденсатора
Поместите один щуп мультиметра на C (общий)
Поместите другой зонд на HERM. (HERM — сокращение от герметичный, что означает герметичный компрессор)
Считывание емкости компрессорной секции конденсатораПодождите несколько секунд, и вы должны увидеть значение емкости на дисплее.При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.
Использование функции сопротивления на мультиметре
Конденсатор также можно проверить путем измерения сопротивления, но лучше всего это работает с аналоговым измерителем. Цифровые измерители обычно не показывают скачок вверх и вниз в омах, что указывает на исправный конденсатор.
Включите счетчик
Поверните циферблат на Ом. (Похоже на символ омега)
Быстрое считывание показаний сопротивления между клеммами
Наденьте датчик на C, а другой на ВЕНТИЛЯТОР.Вы должны увидеть значение сопротивления на стрелке прыжка и вернуться к бесконечности.
Переверните щупы и найдите такое же поведение на стрелке мультиметра.
Повторите это для C и HERM.
Измерьте сопротивление между выводами и корпусом конденсатора
Поместите один щуп на C, а другой на внешний металлический корпус конденсатора. Если вы получаете показания, указывающие на целостность цепи, то конденсатор неисправен.
Повторите это для терминала FAN и терминала HERM.
Проверка на короткое замыкание между выводами и корпусом конденсатораКак заменить конденсатор кондиционера
Замена конденсатора переменного тока несложна и в большинстве моделей может быть сделана своими руками. Каждая модель отличается, поэтому процесс может немного отличаться в зависимости от вашей марки.
Основные шаги:
- Выключите и отсоедините блок переменного тока
- Откройте или удалите панель, которая дает вам доступ
- Обычно находится на боковой стороне устройства и имеет маркировку .
- Проверить, какой номинал сломанного конденсатора
- Снимаем старый конденсатор
- Установить новый конденсатор
- Включите блок переменного тока и протестируйте его.
Хотя это относительно простая установка, мы рекомендуем прочитать инструкции до конца.У вас будет полное представление о том, что вы будете делать таким образом.
Шаг 1: Соберите Ваши инструменты
Вам нужна отвертка, чтобы снять панель доступа? Когда вы доберетесь до снятия конденсатора, вам могут понадобиться как отвертка 1/4 дюйма, так и отвертка 5/16.
Шаг 2: Выключите и отсоедините блок переменного тока
Убедитесь, что вы правильно выключили блок переменного тока. Мы рекомендуем выключить прерыватель, который идет к сети переменного тока, и извлечь блок предохранителей из коробки отключения кондиционера.
Шаг 3. Откройте или снимите панель доступа
Это должна быть маленькая распашная дверь. Обычно он появляется сбоку или снизу блока переменного тока. Для открытия некоторых панелей требуется отвертка, в то время как у других есть защелка. Будьте осторожны, открывая панель, чтобы у вас было безопасное место для ее хранения, если она полностью выйдет.
Шаг 4: Найдите конденсатор
Типичное расположение конденсатора в сплит-системеКонденсатор в вашем блоке переменного тока будет выглядеть как металлический цилиндр.Он будет иметь два или три контакта наверху и к нему должны быть подключены провода.
Шаг 5: Осмотрите конденсатор
Сделайте быстрый визуальный осмотр конденсатора. Вы видите выпуклость? Нет ли утечек масла по бокам? Если что-то в конденсаторе выглядит деформированным или странным, скорее всего, это плохо.
Это также хорошее время для проверки остальных компонентов шкафа переменного тока. Есть ли на контакторе следы ожогов или точечной коррозии? Пробка компрессора в хорошем состоянии?
Шаг 6. Проверьте номинал конденсатора
Внимательно посмотрите на конденсатор.Вот пример, показывающий этикетку. Сбоку на нем должна быть этикетка, на которой будет рассказано все, что вам нужно знать о нем. Кроме того, предоставив нам вашу модель и серийный номер, мы можем помочь вам найти подходящий конденсатор для вашего кондиционера. Помните, из того, что мы видели выше; нас интересуют два рейтинга:
- Рабочее напряжение
- Емкость
Номинальное рабочее напряжение
Обычно это печатается в верхней части этикетки, а после нее идут буквы VAC.Вы можете увидеть текст, похожий на «370VAC» или «440VAC».
Номинальная емкость
Обычно он печатается под номинальным напряжением и имеет после него буквы мкФ или мкФ. Вы можете увидеть текст, похожий на «50uF» или «40 + 5MFD».
Шаг 7: Снимите старый конденсатор
Сначала сфотографируйте старый конденсатор на месте. Это поможет вам позже, когда вы вставите новую. Разъемов должно быть три — HERM, вентилятор и С.Важно, чтобы, когда вы снова вставляете новый конденсатор, вы подключаете его таким же образом.
ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ: Не прикасайтесь к клеммам конденсатора, так как он все еще может удерживать заряд.
После того, как вы сфотографировали разъемы, осторожно отключите их. Отсоединенные провода следует отложить в сторону, чтобы они не мешали.
Конденсатор должен легко сниматься. Обычно для их удаления требуется всего один или два винта, а некоторые из них являются защелкивающимися.Если винты удерживают конденсатор, убедитесь, что вы храните их в безопасном месте.
Шаг 8: Установите новый конденсатор
Один за другим присоедините провода, как на старом конденсаторе. Убедитесь, что правильные провода идут к разъемам HERM, вентилятора и C. Перед тем, как продолжить, проверьте их правильность.
Как только вы убедитесь, что у вас есть подходящие разъемы в нужном месте, пора снова установить конденсатор. Возьмите ранее снятые винты и установите конденсатор, приложив твердое усилие.Будьте осторожны, чтобы не повредить винты при установке.
Если для установки конденсатора не используются винты, он должен просто снова встать на место.
Шаг 9: Закройте и закрепите панель доступа
Не забудьте ввернуть все винты, которые могли удерживать дверь закрытой. Панель с открытым доступом может быть опасной и должна быть закрыта должным образом.
Шаг 10: Включите блок переменного тока и проверьте
Пришло время вернуть все обратно.Если вы отключили прерыватель или нажали на него, подключите его снова. Если ваш блок переменного тока является вставным, снова вставьте вилку в розетку и включите ее.
Как только все вернется на свои места, вы можете включить кондиционер, как обычно, и посмотреть, работает ли он.
Шаг 11: Тестирование
Тестирование так же просто, как включение блока переменного тока и установка его на охлаждение.
Вы не должны слышать гудение или щелчки, а компрессор и двигатель вентилятора должны запускаться легко.Если эти два компонента все еще не запускаются, возможно, они были безвозвратно повреждены из-за неисправного конденсатора, который только что был заменен.
Вы должны увидеть заметную разницу. Теперь все должно работать должным образом, и ваша комната должна начать охлаждаться.
Замена конденсатора переменного тока стала проще
Итак, теперь, когда вы получили эту новую способность ремонтировать свой собственный блок переменного тока, что еще осталось? Что ж, для начала вам нужно хорошее и надежное место для замены неисправного конденсатора переменного тока.
К счастью, это действительно просто. Вы можете связаться с нашими специалистами по запасным частям или позвонить нам напрямую, чтобы поговорить с дружелюбным техником. Мы поможем вам определить, какой конденсатор вам нужен, исходя из вашей марки и модели или номинала конденсатора.
Как определить, что у вас плохой конденсатор переменного тока: симптомы неисправного конденсатора
Когда кондиционер не работает должным образом, на ум приходят всевозможные вопросы: Что теперь? Это легко исправить? Сколько это будет стоить?
Если вы относитесь к тому типу людей, которые любят пытаться решать проблемы самостоятельно, вы находитесь в хорошей компании.Вот почему так много сайтов DIY и видео на YouTube. Хотя хорошо научиться делать основной ремонт в доме, имейте в виду, что для решения более сложных проблем гораздо безопаснее (для вас и для вашего кондиционера) обращаться к специалисту по HVAC.
Теперь, когда это решено, давайте определим, вызвана ли ваша проблема с переменным током неисправным конденсатором.
Что такое конденсатор переменного тока?
Конденсатор переменного тока, также называемый рабочим конденсатором, представляет собой небольшой цилиндрический объект, который передает энергию двигателю, который питает систему кондиционирования воздуха.Конденсатор переменного тока дает вашей системе переменного тока начальное усиление, необходимое для включения, а также обеспечивает непрерывное питание для продолжения работы.
Конденсатор — это всего лишь один из компонентов системы кондиционирования воздуха. Эта небольшая, но мощная деталь — настоящая рабочая лошадка и, как и все части системы кондиционирования воздуха, не подвержена сбоям. Без исправного конденсатора ваша система не сможет работать должным образом.
Если вы подозреваете, что конденсатор вашей системы кондиционирования неисправен, вот все, что вам нужно знать об этой детали, а также о том, как устранить неисправность и заменить неисправный.
Признаки неисправности конденсатора переменного тока
Если ваш кондиционер не дует холодным воздухом, причиной может быть неисправный конденсатор.
Однако сначала ищите простые решения: возможно, вам нужно заменить воздушные фильтры, или это может быть одной из нескольких других причин.
После того, как вы исключите их, если ваше устройство все еще дует теплый воздух, проблема может заключаться в конденсаторе.
Наиболее распространенные признаки и симптомы неисправного конденсатора переменного тока включают:
Как проверить конденсатор переменного тока
Если указанные выше признаки относятся к вашей ситуации, выйдите на улицу к конденсатору кондиционера.
Посмотрите через вентиляционные отверстия для вентилятора в верхней части устройства. Если ваш вентилятор переменного тока не вращается, найдите длинный тонкий предмет (палку, отвертку, плоскогубцы). Вставьте его в вентиляционные отверстия и осторожно нажмите на одну из лопастей вентилятора. Если вентилятор начинает вращаться сам по себе и продолжает вращаться, у вас неисправный конденсатор.
Если кондиционер издает гудение, но не работает, вероятно, неисправен конденсатор.
Как заменить конденсатор переменного тока
Вы можете приобрести замену в хозяйственном магазине.Затем пора установить:
Шаг 1. Отключите питание вашей системы кондиционирования с помощью панели выключателя.
Шаг 2. Отвинтите боковую панель вашего конденсаторного блока, чтобы получить доступ к конденсатору.
Шаг 3. Найдите конденсатор и разрядите питание
Шаг 4. Снимите старый конденсатор и обратите внимание, как подключены провода
Шаг 5. Осторожно отсоедините провода от трех разъемов конденсатора, обозначенных ХЕРМ, Фан и К.Сделайте заметку или сфотографируйте, какие цветные провода подключаются к какому разъему, для дальнейшего использования.
Шаг 6. Установите новый конденсатор в соответствии с руководством.
Шаг 7. Привинтите боковую панель обратно к конденсаторному блоку.
Как выбрать конденсатор для замены
Если вы заменяете конденсатор переменного тока самостоятельно, вам нужно будет выбрать подходящую замену. Размер и форма конденсатора не имеют большого значения, когда дело доходит до замены, но вам нужно знать две вещи: номинальное напряжение и микрофарады (мкФ).
Номинальное напряжение не обязательно должно совпадать с вашим текущим конденсатором, но микрофарады должны совпадать. Напряжение и микрофарады указаны на конденсаторе и могут выглядеть примерно так: «35/5 мкФ и 370 В». Обязательно запишите это, а также марку и модель вашей системы кондиционирования воздуха, когда будете посещать местный магазин товаров для дома.