Конденсаторы плоские и цилиндрические: Емкость плоского и других конденсаторов

Содержание

Емкость плоского и других конденсаторов

Конфигурация конденсатора такова, что поле, которое создается зарядами, локализовано между обкладками. В общем случае электроемкость конденсатора равна:

\[C=\frac{q}{{\varphi }_1-{\varphi }_2}=\frac{q}{U}\left(1\right),\]

где ${\varphi }_1-{\varphi }_2=U$ — разность потенциалов обкладок, которую называют напряжением и обозначают $U$. Емкость по определению считается положительной величиной. Она зависит только от геометрии обкладок конденсатора их взаиморасположения и диэлектрика. Форму обкладок и их расположение подбирают так, чтобы внешние поля минимально влияли на внутреннее поле конденсатора. Силовые линии поля конденсатора начинались на проводнике с положительным зарядом и заканчивались на проводнике с отрицательным зарядом. Конденсатор может быть проводником, который помещен в полость, окруженную замкнутой оболочкой.

В соответствии с конфигураций конденсаторов можно выделить три большие группы: плоские, сферические и цилиндрические (по форме обкладок). Вычисление емкости конденсатора сводится к определению $напряжения$ конденсатора при известном заряде на его обкладках.

Плоский конденсатор

Плоский конденсатор (рис.1) — это две разноименно заряженные пластины, разделенные тонким слоем диэлектрика. Формула для расчета емкости такого конденсатора представляет собой выражение:

\[С=\frac{\varepsilon {\varepsilon }_0S}{d}\left(2\right),\]

где $S$ — площадь обкладки, $d$ — расстояние между обкладками, $\varepsilon $ — диэлектрическая проницаемость вещества. Чем меньше $d$, тем больше совпадает расчётная емкость конденсатора (2), с реальной емкостью.

Рисунок 1

Рис. 1

Электроемкость плоского конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равна $d_i$, диэлектрическая проницаемость этого слоя ${\varepsilon }_i$ вычисляется по формуле:

\[C=\frac{{\varepsilon }_0S}{\frac{d_1}{{\varepsilon }_1}+\frac{d_2}{{\varepsilon }_2}+\dots +\frac{d_N}{{\varepsilon }_N}}\ \left(3\right).\]

Сферический конденсатор

В том случае, если внутренний проводник шар или сфера, внешняя замкнутая оболочка — концентрическая ему сфера, то конденсатор является сферическим. Сферический конденсатор (рис.2) состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком. Емкость его можно рассчитать по формуле:

\[C=4\pi \varepsilon {\varepsilon }_0\frac{R_1R_2}{R_2-R_1}\ \left(4\right),\]

где $R_1{\ и\ R}_2$ — радиусы обкладок.

Рисунок 2

Рис. 2

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равна:

\[C=\frac{2\pi \varepsilon {\varepsilon }_0l}{{ln \left({R_2}/{R_1}\right)\ }}\left(5\right),\]

где $l$ — высота цилиндров, $R_1$ и $R_2$ — радиусы обкладок. Этот вид конденсаторов представляет собой две коаксиальных (соосных) проводящих цилиндрических поверхности (рис.3).

Рисунок 3

Рис. 3

Еще одной, но не маловажной характеристикой всех конденсаторов является пробивное напряжение ($U_{max}$)— это напряжение, при котором происходит электрический разряд через слой диэлектрика. $U_{max}$ зависит от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Помимо одиночных конденсаторов применяют их соединения. Для того чтобы увеличить емкость используют параллельное соединение конденсаторов (соединение одноименными обкладками). В этом случае результирующая емкость такого соединения может быть найдена как сумма${\ С}_i$ где $С_i$ — емкость конденсатора с номером i:

\[C=\sum\limits^N_{i=1}{С_i}\ \left(6\right).\]

Если конденсаторы соединить последовательно (обкладками с разными знаками заряда), то суммарная емкость соединения будет всегда меньше, чем минимальная емкость любого конденсатора, который входит в систему. В этом случаем для того чтобы рассчитать результирующую емкость складывают величины, обратные к емкостям отдельных конденсаторов:

\[\frac{1}{C}=\sum\limits^N_{i=1}{{\frac{1}{C_i}}_i}\left(7\right).\]

Пример 2

Задание: Какова напряженность электростатического поля сферического конденсатора на расстоянии x=1 см=${10}^{-2}м$ от поверхности внутренней обкладки, если внутренний радиус обкладки конденсатора $R_1=$1 см${=10}^{-2}м$, внешний $R_2=$ 3 см=${3\cdot 10}^{-2}м$. Напряжение на обкладках равно ${10}^3В$.

Решение:

Напряженность поля, которое создается проводящей заряженной сферой, вычисляется в соответствии с формулой:

\[E=\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r^2}\ \left(2.1\right),\]

где $q$ — заряд внутренней сферы (обкладки конденсатора), $r=R_1+x$ —расстояние от центра сферы.

Заряд сферы найдем из определения емкости конденсатора (С):

\[q=CU\ \left(2.2\right).\]

Емкость сферического конденсатора определяется как:

\[C=4\pi \varepsilon {\varepsilon }_0\frac{R_1R_2}{R_2-R_1}\ \left(2.3\right),\]

где $R_1{\ и\ R}_2$ — радиусы обкладок конденсатора.

Подставим выражения (2.2) и (2.3) в (2.1), получим искомую напряженность:

\[E=\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{U}{{(x+R_1)}^2}4\pi \varepsilon {\varepsilon }_0\frac{R_1R_2}{R_2-R_1}=\frac{U}{{(x+R_1)}^2}\frac{R_1R_2}{R_2-R_1}.\]

Так как все данные в задаче уже переведены в систему СИ, проведем вычисления:

\[E=\frac{{10}^3}{{{(1+1)}^2\cdot 10}^{-4}}\cdot \frac{{{10}^{-2}\cdot 3\cdot 10}^{-2}}{{3\cdot 10}^{-2}-{10}^{-2}}=\frac{3\cdot {10}^{-1}}{8\cdot 10^{-6}}=3,75\cdot {10}^4\left(\frac{В}{м}\right).\]

Ответ: $E=3,75\cdot {10}^4\frac{В}{м}.$

14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создавается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостьюконденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками:  (1) 

Найдем емкость плоского конденсатора, который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если считать, что расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами на пластинах можно пренебречь и поле между обкладками считать однородным. Его можно найти используя формулу потенциала поля двух бесконечных параллельных разноименно заряженных плоскостей φ12=σd/ε0. Учитывая наличие диэлектрика между обкладками:  (2) 

где ε — диэлектрическая проницаемость. Тогда из формулы (1), заменяя Q=σS, с учетом (2) найдем выражение для емкости плоского конденсатора:   (3) 

Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r1 и r2(r2 > r1), один вставлен в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов   (4) 

Подставив (4) в (1), найдем выражение для емкости цилиндрического конденсатора:   (5) 

Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов   (6) 

Подставив (6) в (1), получим   

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к 

разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

 где — заряд— потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса 

Rравна (в системе СИ):

где ε0 — электрическая постояннаяε — относительная диэлектрическая проницаемость.

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком иливакуумом, — к конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь одной обкладки (подразумевается, что они равны), d — расстояние между обкладками, ε — относительная диэлектрическая проницаемость среды между обкладками, 

ε0 = 8.854·10−12 Ф/м — электрическая постоянная.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Ёмкость цилиндрического конденсатора | Все Формулы

    \[ \]

Ёмкость цилиндрического конденсатора — характеристика плоского конденсатора, мера его способности накапливать электрический заряд.

    \[\Large C=2\pi \varepsilon \varepsilon _0\frac{l}{ln(\frac{R_2}{R_1})}\]

Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r1 и r2 (r2 > r1), один вставлен в другой, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками, так же пренебрегаем краевыми эффектами. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l. При наличии диэлектрика между обкладками разность потенциалов

    \[ \Large \varphi _1-\varphi _2=\frac{\tau}{2\pi\varepsilon \varepsilon _0 }ln\frac{r_2}{r_1}=\frac{q}{2\pi\varepsilon \varepsilon _0 }ln\frac{r_2}{r_1} \]

Подставим в формулу электроемкости конденсатора и у нас получится формула для цилиндрического конденсатора:

    \[\large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =2\pi \varepsilon \varepsilon _0\frac{l}{ln(\frac{R_2}{R_1})}\]

Так же есть:

Энергия цилиндрического конденсатора:

    \[\large W_p=\frac{U q}{2}=\frac{q^2}{2C}=\frac{CU^2}{2}\]

Ёмкость конденсатора :

    \[\large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =\varepsilon \varepsilon _0\frac{S}{d}\]

Ёмкость плоского конденсатора :

    \[\large C=\varepsilon \varepsilon _0\frac{S}{d} = \frac{q}{U}\]

Емкость сферического конденсатора :

    \[\large  C=4\pi \varepsilon \varepsilon _0(\frac{1}{R_1} - \frac{1}{R_2})^{-1}\]

В формуле мы использовали:

C — Ёмкость цилиндрического конденсатора

    \[ τ \]

— Линейная плотность

    \[\varepsilon \]

— Относительная диэлектрическая проницаемость

    \[ \varepsilon _0 = 8.854185\times 10^{-12} \]

— Электрическая постоянная

l — Длина цилиндрического конденсатора

    \[ R_2\]

— Больший радиус (от центра, до края конденсатора)

    \[ R_1\]

— Малый радиус (Его может и не быть — это пустота)

    \[\varphi \]

— Потенциал проводника

q — Точечный заряд

U — Напряжение

Электроемкость. Емкость заряженного конденсатора (плоского, циллиндрического и коаксиального провода, сферического, двухпроводной линии). Энергия.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Электростатика.  / / Электроемкость. Емкость заряженного конденсатора (плоского, циллиндрического и коаксиального провода, сферического, двухпроводной линии). Энергия.

Поделиться:   

Электроемкость. Емкость заряженного конденсатора (плоского, циллиндрического и коаксиального провода, сферического, двухпроводной линии). Энергия кондесатора. Емкость конденсатора.

  • Два проводника, между которыми имеется электрическое поле, все силовые линии которого начинаются на одном проводнике и заканчиваются на другом, называют конденсатором, а сами проводники — обкладками конденсатора.
  • В простом конденсаторе величины зарядов на обкладках равны по величине, но противоположны по знаку.
  • Различают по форме проводящих поверхностей плоские, цилиндрические и сферические (шаровые) конденсаторы.

Емкость плоского конденсатора в системах СГС и СИ:

    • где
      • S — величина поверхности одной пластины (меньшей, если они не равны)
      • d — расстоян

Глава 17 Конденсатор Фролова. Новые космические технологии

Глава 17 Конденсатор Фролова

Первые эксперименты, в домашней лаборатории, были проведены мной в 1991–1992 годах, как ни странно, еще до знакомства с работами Брауна. В то время, я поставил задачу получения движущей силы путем создания асимметрии кулоновских сил. Опубликовав результаты экспериментов в 1994 году, я получил много писем, отзывов и информации по аналогам, в том числе, по работам Томаса Т. Брауна.

Первоначально, мной была предложена схема, показанная на рис. 72. Это схема «конденсатора Фролова» из публикации 1994 года [32].

Рис. 72. Конденсатор Фролова, 1994 год. Асимметрия взаимодействия заряженных тел

В данном варианте, элементы конструкции (пластины) заряжены разноименно, и размещены так, как показано на рис. 72. Между ними возникают асимметричные силы электростатического притяжения. Сумма сил F12, действующих на вертикальный заряженный элемент, при векторном суммировании, равна нулю. Сумма сил F21, действующих на горизонтальные электроды, а через них, на корпус движителя, не равна нулю, и это обеспечивает движущую силу.

Важно учесть, что силы действуют между плоскими электростатически заряженными элементами. В электростатике, кулоновские силы всегда направлены перпендикулярно плоской поверхности.

Позже, была опубликована [33] другая схема асимметричного конденсатора Фролова, ее вариант показан на рис. 73. В классическом плоском конденсаторе (слева на рис. 73), платы расположены параллельно и притягиваются друг к другу с равными и противонаправленными силами. Сумма сил, действующая на систему в целом, равна нулю.

Рис. 73. Обычный конденсатор (слева) и конденсатор Фролова (справа)

В «конденсаторе Фролова» с Т-образным диэлектриком, показанном на рис. 73, два разноименно заряженных взаимодействующих тела (плоские или сферические) расположены в одной плоскости, и разделены «диэлектрической стеной», чтобы исключить электрический пробой вдоль минимального расстояния между электродами. Благодаря этому, формируется ненулевой суммарный вектор силы взаимодействия заряженных тел. Сферические или полусферические (выгнутые) заряженные тела удобнее, поскольку уменьшается утечка зарядов. У плоских электродов, происходит утечка зарядов с острых ребер пластин. Хорошие эффекты дает применение цилиндрических электродов, с закругленными торцами. Впрочем, торцы электродов можно изолировать, для уменьшения утечки.

Наблюдать эффект взаимного притяжения в «конденсаторе Фролова» интереснее, если два взаимодействующих заряженных тела закреплены на диэлектрическом основании с помощью упругих элементов, способных растягиваться. В такой конструкции, при включении источника разности потенциалов, заряженные тела сдвигаются по направлению к перегородке и заметно поднимаются, что делает эффект (наличие подъемной силы) очевидным.

Таким образом, геометрия диэлектрика, или особая геометрия и расположение заряженных элементов конструкции, обеспечивают условия создания активной движущей силы. При конструировании таких устройств, необходимо учесть, что эти силы электростатического взаимодействия всегда перпендикулярны заряженной поверхности.

В настоящее время, «конденсатор Фролова» более известен, как сочетание двух плоских кольцевых металлических электродов, разделенных цилиндрической диэлектрической перегородкой, рис. 74. В английском языке, этот вариант конструкции называют «Frolov’s Hat» – «шапка Фролова». Отметим, что диэлектрический диск и цилиндрическая перегородка должны быть выполнены из цельного куска диэлектрического материала, иначе, между электродами может произойти пробой через щель. Размеры устройства зависят от используемого напряжения между электродами. Повышение напряжения более 10 кВ нежелательно, так как это увеличивает потери на ионизацию, растет ток потребления.

Рис. 74. Вариант конденсатора Фролова с цилиндрической перегородкой

В развитие данной темы, предлагается вариант конструкции, которую могут выполнить современные производители микроэлектроники, с небольшими размерами элементов, например, менее одного миллиметра, рис. 75.

Рис. 75. Миниатюризация и пакетирование элементов

Известно, что электрический пробой наступает в воздушном зазоре при напряжении около 1000 Вольт на миллиметр. Малые размеры позволят работать при малых напряжениях, без ионизации воздуха. Кроме того, кулоновские силы быстро растут при уменьшении расстояния между телами, квадратичная зависимость. Для оптимизации схем, показанных на рис. 73 – рис. 75, можно использовать жидкий диэлектрик.

Ошибочно полагать, что заряженные элементы конструкции могут быть только металлическими электродами, как у Брауна. В большинстве предлагаемых мной конструкций электрокинетических движителей, могут применяться заряженные диэлектрики или электреты. Металлические элементы тоже дают некоторые силовые эффекты, но заряды с них быстро «стекают в воздух». Данный побочный процесс реактивный, и именно он искажает основную идею получения активной силы. Он может быть сильнее основного эффекта. Необходимо избегать этого побочного процесса конструктивными методами, например, придавая электродам сферическую или цилиндрическую форму, обеспечивая полировку поверхности и т. п.

На рис. 76 показан вариант конструкции, предложенной в 1994 году [32].

Рис. 76. Движитель Фролова с одноименно заряженными цилиндрическими элементами

В данном случае, мы рассматриваем кулоновские силы между несколькими диэлектрическими одноименно заряженными элементами: плоским электродом (основанием) и множеством цилиндрических заряженных элементов (трубок). Благодаря тому что силы, действующие на поверхность электрически заряженного диэлектрика, всегда перпендикулярныы поверхности, силы F21, действующие на пластину – основание, сонаправлены и суммируются. В то же время, силы, действующие на каждый цилиндрический элемент F12, с разных сторон, взаимно компенсируются. Эти особенности предлагается использовать для конструирования электрических движителей, создающих активную силу за счет ненулевой векторной суммы кулоновских сил.

Современные нанотехнологии позволяют реализовать концепцию, показанную на рис. 76, с помощью диэлектрических элементов малого размера, 100–200 нм. При таких размерах, кулоновские силы будут эффективно действовать на малых расстояниях при небольших напряжениях.

В примитивных экспериментах, которые были проведены в моей лаборатории, была обнаружена небольшая сила, на уровне 10-5 (N). В 1996–1998 годах я докладывал об данных результатах на конференциях, отправлял документы по данному проекту в ЦНИИ имени Хруничева, но не нашел интереса российских организаций к данной теме. В 1998 году, в Санкт-Петербург приезжали представители авиационного департамента корпорации Тойота, которые были ознакомлены с предлагаемым принципом и экспериментами. Позже, после 2002 года, мою лабораторию ООО «ЛНТФ» в Санкт-Петербурге посещали представители российского военного исследовательского института, но мои примитивные эксперименты с «заряженными шариками» не убедили их в перспективности предлагаемого метода. Буду рад развитию данной темы с заинтересованным заказчиком, имеющим собственную научно-техническую базу.

Наиболее интересен тот факт, что подъемная (движущая) сила сохраняется при выключенном источнике питания, постепенно спадая, по мере саморазряда конденсатора. Минимизируя токи утечки через диэлектрик, а также, снижая рабочее напряжение за счет миниатюризации элементов конструкции, мы можем устранить эффекты ионизации и потерь заряда. Сохранение разности потенциалов обеспечивает наличие движущей силы. Электреты, как особый тип диэлектрика, могут использоваться в таких конструкциях. Это позволит получать активную силу без затрат мощности от первичного источника, пока электреты сохраняют свой заряд. Современные электреты могут сохранять заряд годами. Перспективы интересные!

В Природе, встречается сочетание статического электричества и удивительных аэродинамических качеств, например, у бабочек, пчел, шмелей и т. п. Кстати, материал, из которого сделана их конструкция, не имеет металлических элементов, а является диэлектриком, и обладает электретными свойствами. Электрический заряд на поверхности «живого диэлектрика», в данном случае, обусловлен трением движущихся частей, и движением воздуха.

Вернемся к идеям Брауна. Задача создания движущей силы решается им не только за счет геометрической асимметрии элементов конструкции. Сила, как писал Браун, действует «в сторону большей интенсивности силовых линий электрического поля». Именно этот эффект показан на рис. 69.

В патенте Брауна № 3187206, есть упоминание о том, что движущую силу можно получить за счет асимметрии электродов, а также, «за счет прогрессивно изменяющийся диэлектрической проницаемости материала, находящегося между электродами». Браун также отметил возможность использования градиента электрической проводимости и полупроводниковых материалов, но эти методы создания движущей силы более энергозатратные, чем «градиентная электростатика».

Метод, основанный на градиенте свойств диэлектрика, представляется мне более технологичным и перспективным, чем геометрическая асимметрия, показанная на рис. 72 – рис. 76. Рассмотрим данный вопрос подробнее.

В курсе теории диэлектриков, есть интересное замечание о силе, действующей на частицы вещества, находящихся на границе раздела двух диэлектриков, имеющих различную диэлектрическую проницаемость, рис. 77. Различные свойства диэлектрической среды задают разное по величине электрическое поле E1 и E2, в области между двумя пластинами конденсатора.

Рис. 77. Граница раздела двух сред с разной диэлектрической проницаемостью

Эта сила F действует в сторону максимальной напряженности электрического поля E1, и «направлена по нормали к поверхности раздела диэлектриков», как пишет Б.М. Тареев в учебнике по диэлектрикам [34].

Учитывая это важное замечание по поводу нормального направления вектора силы, можно конструировать силовые установки активного (нереактивного) типа, в которых создается ненулевой суммарный вектор действующих электрических сил.

Напряженность электрического поля, как известно, есть градиент электрического потенциала, убывающего с увеличением расстояния от поверхности заряженного тела. Естественный градиент электрического потенциала, в частности, создаваемый вокруг заряженного шарика, показан на рис. 78. Частица бумаги, например, притягивается в поверхности заряженного шарика, именно благодаря этому градиенту электрического потенциала: она движется в сторону большей интенсивности силовых линий.

Рис. 78. Притяжение частицы к заряженному шарику в естественном электрическом поле

Создавая искусственный градиент потенциала, за счет свойств среды, окружающей заряженное тело, представляется возможным получить интересные эффекты.

На рис. 79 показан вариант предлагаемой конструкции, в которой выпуклая поверхность высоковольтного электрода покрыта градиентным диэлектриком, в котором послойно или плавно меняется величина диэлектрической проницаемости, при удалении от поверхности электрода. Наружный слой диэлектрика, для наших целей, должен иметь минимальное значение диэлектрической проницаемости, а внутренний слой – максимальное значение. В таком случае, около электрода величина потенциала будет минимальная, а при удалении от поверхности электрода, значение потенциала будет не уменьшаться, а увеличиваться. Это создает эффект «обратного электрического поля».

Рис. 79. Элемент активного движителя с градиентным диэлектриком

Напомню, что чем меньше диэлектрическая проницаемость среды, тем сильнее в данной области пространства напряженность электрического поля. При определенных условиях, на частицу, находящуюся в области градиентного диэлектрика, действует сила, направленная в сторону диэлектрика с меньшей величиной диэлектрической проницаемости. В обычном электрическом поле, как мы рассмотрели на рис. 78, частицы притягиваются к электроду, стремясь перейти в область максимальной напряженности поля. В «обратном электрическом поле», рис. 79, частицы вещества диэлектрика будут стремиться прочь от электрода, так как искусственно созданный градиент электрического потенциала заставляет их смещаться в сторону большей интенсивности силовых линий.

Уменьшение величины диэлектрической проницаемости, которое может быть создано плавно или слоями, в толще диэлектрика, с увеличением расстояния от поверхности электрода. Особые условия состоят в том, что мы должны не только уменьшить или компенсировать естественное уменьшение величины электрического потенциала, а добиться того, чтобы с расстоянием от заряженной поверхности изменение напряженности поля происходил быстрее, чем происходит естественное уменьшение потенциала, при удалении от электрода. Как писал Томас Браун, необходимо создать «прогрессивно изменяющуюся» диэлектрическую проницаем, ость.

Как известно, закон Кулона имеет квадратичную функцию. Следовательно, функция изменений потенциала с расстоянием от электрода, которую мы задаем с помощью конструктивного изменения диэлектрической проницаемости вещества диэлектрика, должна иметь крутизну более, чем квадратичная функция. В таком случае, для частиц диэлектрика, находящихся в толще диэлектрика, направление увеличения электрического потенциала будет обращено в сторону от заряженной поверхности. При такой ситуации, на них будет действовать сила, направленная в сторону максимальной величины потенциала, то есть, наружу от электрода.

Технологическая задача создания многослойного диэлектрика, или материала с прогрессивным градиентом диэлектрической проницаемости, достаточно сложная, но перспективная. Применение данной технологии в энергетике и оборонной промышленности имеет большие перспективы. Такие материалы, по моим расчетам, могут обеспечить активные действующие силы величиной около 100 тонн на квадратный метр поверхности специального конденсатора, при напряженности электрического поля около 10 киловольт. Такие мощные силовые эффекты, без учета побочной ионизации воздуха, должны объясняться некоторой работоспособной теорией.

Коротко по теории процесса. Существует несколько теоретических подходов, и все они опираются на предположение о наличии среды в вакууме, которая, при воздействии на нее, может приобретать некоторую структуру, поскольку она имеет определенные физические свойства, в том числе, плотность энергии.

Закон Кулона в квантовой электродинамике описывается, как обмен энергией виртуальных фотонов, происходящий между заряженными частицами. Аналогичные идеи рассматривает Берден [28]. На рис. 80 показана схема взаимодействия двух электрически заряженных тел, с точки зрения эфиродинамики. Поделитесь на страничке

Следующая глава >

Ёмкость сферического конденсатора | Все Формулы

    \[ \]

Электроемкость сферического конденсатора — характеристика плоского конденсатора, мера его способности накапливать электрический заряд.

    \[\Large  C=4\pi \varepsilon \varepsilon _0(\frac{1}{R_1} - \frac{1}{R_2})^{-1}= 4\pi \varepsilon \varepsilon _0\frac{r_1r_2}{r_2-r_1}\]

Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов будет выглядеть так:

    \[\Large\varphi _1-\varphi _2=\frac{q}{4\pi \varepsilon \varepsilon _0}(\frac{1}{r_1}-\frac{1}{r_2})\]

Подставим данное выражение в формулу электроемкости конденсатора и получим емкость конденсатора для сферического тела:

    \[\Large  C=4\pi \varepsilon \varepsilon _0(\frac{1}{R_1} - \frac{1}{R_2})^{-1}= 4\pi \varepsilon \varepsilon _0\frac{r_1r_2}{r_2-r_1}\]

При малой величине зазора, то есть

    \[r_2-r_1\ll r_1 \]

, а следовательно можно считать, что

    \[r_1\approx r_2\approx r\]

емкость сферического конденсатора будет равна

    \[\frac{4\pi r^2\varepsilon \varepsilon _2}{d}\]

Площадь сферы

    \[S=4\pi r^2\]

следовательно формула будет совпадать с формулой емкости плоского конденсатора

    \[\varepsilon \varepsilon _0\frac{S}{d}\]

Так же есть:

Энергия конденсатора:

    \[\large W_p=\frac{U q}{2}=\frac{q^2}{2C}=\frac{CU^2}{2}\]

Ёмкость конденсатора :

    \[\large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =\varepsilon \varepsilon _0\frac{S}{d}\]

Ёмкость цилиндрического конденсатора :

    \[\large C=2\pi \varepsilon \varepsilon _0\frac{l}{ln(\frac{R_2}{R_1})} \]

Емкость плоского конденсатора :

    \[\large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =\varepsilon \varepsilon _0\frac{S}{d}\]

В Формуле мы использовали :

C — Электроемкость сферического конденсатора

    \[\varepsilon\]

— Относительная диэлектрическая проницаемость

    \[ \varepsilon _0 = 8.854185\times 10^{-12}\]

— Электрическая постоянная

    \[r_2\]

— Больший радиус (от центра, до края конденсатора)

    \[ r_1\]

— Малый радиус (Его может и не быть — это пустота)

Емкость плоского конденсатора — Студопедия

Напряженность поля внутри конденсатора (рис. 5.11):

Рис. 5.11

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

  . (5.4.7)  

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε0:

  (5.4.8)  

.

Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора, .

Рис. 5.12

Тогда, так как , получим

  (5.4.9)  

Понятно, что зазор между обкладками мал: то есть

Тогда

 

Емкость шарового конденсатора (рис. 5.13)

Рис. 5.13

Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

Тогда, так как , получим

.

Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.

В шаровом конденсаторе – расстояние между обкладками. Тогда

  (5.4.11)  

27. Диэлектрики в электрическом поле. Поляризация диэлектрика. Диэлектрическая проницаемость. Электрическое смещение.


Диэлектрик (изолятор) — вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.


· Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Диэлектри́ческая проница́емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимость электрической индукции от напряжённости электрического поля.

Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Различают относительную и абсолютную диэлектрические проницаемости.

ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ

индукция электрическая, — векторная величина D, характеризующая электрич. поле. В нек-рой точке поля Э. с. равно геом. сумме напряжённости электрического поля Е, умноженной на электрическую постоянную ЕС, и поляризованности Р: D = е0Е + Р. Если среда изотропна, то D = ее0Е, где е — относит. диэлектрическая проницаемость среды. Во многих случаях, например, если однородный и изотропный диэлектрик заполняет всё пространство, где имеется электрич. поле, или часть его, ограниченную эквипотенциальными поверхностями, Э. с. не зависит от диэлектрич. проницаемости е и совпадает с Э. с. в этой же точке для электрич. поля, создаваемого в вакууме той же системой свободных зарядов. Единица Э. с. (в СИ) — кулон на квадратный метр(Кл/м2).

28. Постоянный ток. Стационарное электрическое поле. Закон Ома для однородного участка цепи.

Постоя́нный ток, (англ. direct current) — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток Переменный синусоидальный ток Пульсирующий ток, форма импульсов близка к пилообразной Произвольно изменяющийся ток

Стационарное электрическое поле — электрическое поле неизменяющихся электрических токов при условии неподвижности проводников с токами.

Стационарное электрическое поле связано с наличием электрического тока, и это упрощает измерения разности потенциалов между любыми двумя точками поля — для этого достаточно прикоснуться к этим точкам щупами, которые подключены к гальванометру. Стационарное электрическое поле, создаваемое системой неподвижных зарядов, называется электростатическим полем. Стационарное электрическое поле в проводнике, как и электрическое поле неподвижных зарядов, характеризуется напряженностью электрического поля, которая неизменна по времени в любой из точек проводника.

Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.

В своей оригинальной форме он был записан его автором в виде :

Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника напряжения, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r.

В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает

29. Электродвижущая сила. Закон Ома для полной (замкнутой) цепи.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

Закон Ома для полной цепи:

где:

· — ЭДС источника напряжения,

· — сила тока в цепи,

· — сопротивление всех внешних элементов цепи,

· — внутреннее сопротивление источника напряжения.

Из закона Ома для полной цепи вытекают следствия:

· При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения

· При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Часто[2] выражение

где есть напряжение или падение напряжения, (или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

30. Закон Ома для неоднородного участка. Законы Кирхгофа.

Закон Ома для неоднородного участка цепи имеет вид:

где R — общее сопротивление неоднородного участка.

ЭДС может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то < 0.

Законы Кирхгофа.

Формулы и калькуляторы емкости

На этой странице представлены формулы и калькуляторы емкостей конденсаторы различной формы или типа. Это также полезно, если вы собираетесь использовать свой конденсатор в Танк LC резонансный цепь.

Емкость конденсаторов с параллельными пластинами

Конденсатор с параллельными пластинами состоит из двух плоских параллельных пластин, которые — электроды, разделенные диэлектрик или изолятор.Для формулы и калькулятора здесь пластины могут быть любой формы, если они плоские, параллельны и вы знаете площадь пластины или что-то еще, что нужно, чтобы найти этот район.

Конденсатор с параллельными пластинами — пластины прямоугольной формы.
Конденсатор с параллельными пластинами — круглые пластины.

Формула для определения емкости конденсатора с параллельными пластинами:

Куда:

  • ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
  • ε 0 = 8.854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства

На схемах показаны конденсаторы с параллельными пластинами различной формы. пластины, одна прямоугольная и одна круглая. Формула для расчета площадь прямоугольника:

а формула для вычисления площади круга:

Где π — это число пи, равное 3,14159.

Емкость цилиндрических конденсаторов

Цилиндрический конденсатор состоит из двух цилиндров, также называемых пластины, которые являются электродами, разделены диэлектрик или изолятор.

Цилиндрический конденсатор.

Формула емкости цилиндрического конденсатора:

Куда:

  • ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
  • ε 0 = 8,854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства
.Формула для цилиндрического конденсатора

| Конденсатор с диэлектрической плитой

Цилиндрический конденсатор

Конденсатор используется для хранения большого количества электрического тока в небольшом пространстве. Цилиндрический конденсатор включает полый или сплошной цилиндрический проводник, окруженный концентрическим полым сферическим цилиндром. Конденсаторы широко используются в электродвигателях, мельницах, электрических соковыжималках и других электрических инструментах. Разность потенциалов между конденсаторами разная.Существует множество электрических цепей, в которых конденсаторы должны быть сгруппированы соответствующим образом, чтобы получить желаемую емкость. Есть два общих режима, включая последовательно включенные конденсаторы и параллельные конденсаторы. Единица измерения емкости — Фарад (Ф).

Цилиндрический конденсатор

Часто используется для хранения электрического заряда. Цилиндрический конденсатор — это тип конденсатора, который имеет форму цилиндра, имеющего внутренний радиус как a и внешний радиус как b.

Формула цилиндрического конденсатора

Где,

C = емкость цилиндра

L = длина цилиндра

a = внутренний радиус цилиндра,

b = внешний радиус цилиндра

= диэлектрическая проницаемость свободного пространства ()

Решенный пример

Пример 1: Цилиндрический конденсатор длиной 8 см состоит из двух концентрических колец с внутренним радиусом 3 см и внешним радиусом 6 см.Найдите емкость конденсатора.

Ответ:

Дано:

Длина L = 8 см

внутренний радиус a = 3 см

внешний радиус b = 6 см

Формула для цилиндрического конденсатора

Следите за обновлениями BYJU’S, чтобы получить больше такой интересной информации.

.

LC контур (он же бак или резонансный контур)

LC-цепь состоит из катушки и конденсатора, которые резонируют. друг с другом, передавая энергию вперед и назад между ними (цепь показано ниже). это происходит на определенной частоте, называемой резонансной частотой. L — это символ индуктивности, которая является свойством катушки. C — это символ емкости, которая является свойством конденсатора. Примеры на фотографиях ниже показывают кристаллические радиоприемники, каждый со своими катушка и конденсатор соединены параллельно.

Принципиальная схема
LC.
LC-схема в кристаллическом радиоприемнике с цилиндрическим конденсатором.
LC-схема в кристаллическом радиоприемнике с плоским конденсатором.

LC-схемы используются для различных целей, например для генерации сигналов на резонансной частоте и для выбора конкретного частота (резонансная частота) из многочастотного контура.Выбор определенной частоты — вот что происходит в кристаллическом радио где катушка и конденсатор подключены параллельно.

На самом деле сопротивление тоже играет роль, но часто при выполнении в расчетах мы игнорируем сопротивление. При включении сопротивления, вместо этого мы говорим о схеме RLC, где R представляет сопротивление.

Как работает LC-цепь

Индуктивность катушки (L) и емкость конденсатора (C) равны выбраны так, чтобы они резонировали как определенная частота.Формула дается раздел ниже, показывающий, как. Как показано в анимации они обмениваются энергией назад и вперед с этой частотой. Во время прохождения тока через катушку либо увеличиваясь или уменьшаясь, вокруг него создается магнитное поле. По мере увеличения тока магнитное поле усиливается. По мере уменьшения тока магнитное поле ослабевает. Когда нет больше тока, больше нет магнитного поля. Конденсатор делает противоположное по отношению к току.Пока ток увеличивается, конденсатор разряжается. Пока ток уменьшается, конденсатор заряжается. Когда ток пропадает, конденсатор полностью заряжен.

LC-контур резонирует.
Кривые заряда / разряда конденсаторов.

Все это имеет смысл.Если ток все еще течет, конденсатор не будет полностью заряжен — его заряд будет меняться. Но как только он заряжен, его уже ничто не держит. этот заряд циркулирует обратно по цепи, обеспечивая ток. Конденсатор не разряжается с постоянной скоростью (см. График). Это начинается разрядка медленно и быстро ускоряется, что означает, что ток также начинается медленно и быстро ускоряется. Ток, проходящий через катушку, создает магнитное поле, и поэтому, пока конденсатор разряжается, магнитное поле становится сильнее.Но когда больше нет заряда на конденсаторе больше нет тока, поэтому магнитный поле схлопывается. Изменяющееся магнитное поле индуцирует ток до течет по контуру, и пока поле схлопывается, оно меняется. Итак, в цепи течет ток. Этот ток заряжает конденсатор снова, и мы начинаем заново.

Вычислитель резонансной частоты

LC и варианты

Вот калькулятор для расчета резонансной частоты.В формулы приведены ниже, если вам интересно.

Однако иногда вы знаете нужную частоту и либо не знаете, знайте, что емкость или индуктивность вам нужна, чтобы получить эту частоту. Ниже приведены калькуляторы для этих двоих.


Расчет резонансной частоты ЖК

Формула, необходимая для расчета резонансной частоты параллельный LC-контур выглядит следующим образом:

L в приведенной выше формуле резонансной частоты — это индуктивность катушка.Если вы не знаете индуктивность, вы можете ее вычислить. с помощью онлайн-калькулятора или формулы на эта страница о конструкции катушки и индукция.

C в приведенной выше формуле резонансной частоты — это емкость конденсатор. Для этого трудно дать формулу, так как Конденсаторы бывают разных форм и имеют разные формулы, но вы можете найти онлайн-калькуляторы и формулы для некоторых из них на эта страница насчет емкости.

Видео — LC-цепь (параллельная): выбор катушки и конденсатора

На этом видео показано магнитное поле катушки и заряд конденсаторов. в действии, объясняя все это. Здесь также приводится пример используя формулы и калькуляторы для выбора индуктивности и емкость для получения желаемого диапазона резонансных частот для контура LC. Используемый пример представляет собой кристалл радио.

.

55 м цилиндрическая алюминиевая электролитическая оболочка с плоской нижней канавкой

Корпус алюминиевого электролитического конденсатора с плоским дном, 55 м, цилиндрический алюминиевый корпус

Описание продукта

Корпус алюминиевого электролитического конденсатора

Материал: чистый алюминий (чистота> 99,7%)

Диаметр , высота: 30 мм ~ 450 мм

Доступные формы для корпуса цилиндра: Диаметр 35,40,45,50,55,65,76,86,96,106,116, 126, 136….
Овальный корпус доступные формы: Диаметр 31,5 * 51,5,45 * 71,48 * 90
шпилька M8 * 10, M12 * 16, M16 * 25

Поверхность: Чистая, анодированная …. согласно вашим требованиям.

Применение: кондиционер / холодильник / стиральная машина / микроволновая печь

000

Принадлежности

Особые характеристики и преимущества

1.Применение с высоким пульсирующим током и сверхвысоким напряжением

2. Высокая надежность, длительный срок службы в течение 20 000 часов применения номинального пульсирующего тока при + 85C

3. Диапазон напряжений от 6,3 В до 450 В

4. Высокая эффективность, стабильность и надежность характеристики

5. Подходит для использования в электронных схемах для соединения, развязки, байпаса и фильтрации

6. Надежное качество и низкая цена

7. Соответствует директиве RoHS (2002/95 / EC)

8.Противоударный пакет

9. Низкий ESR

Применение продукта

Может использоваться в стиральных машинах, холодильниках, компьютерах, кондиционерах и других бытовых электроприборах.

Приложение:

1. Инверторный сварочный аппарат

2. Инверторные приводы электродвигателей

3. Высокоскоростные импульсные преобразователи и преобразователи мощности

4. Промышленный источник питания для коммутации и электросвязи

5. Электропитание для гальваники

6.Зарядка и разрядка аккумуляторов постоянного тока

7. Медицинское оборудование

8. Управление высокочастотным индукционным нагревом

9. Обработка лазерной промышленностью

Информация о компании

Информация о компании:

Компания Shanghai Nanen расположена в Шанхае, Китай. Мы являемся профессиональным производителем алюминиевой упаковочной продукции, в основном мы производим алюминиевые корпуса конденсаторов, алюминиевые корпуса для бутылок, алюминиевые банки, алюминиевые крышки и т. Д.

FAQ

Q: Почему выбирают NANSEN?

A: Профессионально предоставляем комплексные решения для клиентов из более чем 20 стран.
Q: Чего нам ожидать от NANSEN?
A: Превосходное качество, разумная цена, эксклюзивный сервис и хорошая послепродажная гарантия.
Q: Можете ли вы сделать индивидуальный дизайн и размер?
A: Да, ODM и OEM доступны.

В: Можно мне образцы?
A: Конечно, образцы бесплатны (1-3 шт.) При наличии на складе.
Q: Когда мы можем получить образцы и товары?
A: Образцы будут отправлены немедленно, если есть на складе, изготовление нового займет 2-3 дня.
Товары будут отправлены в течение 30 дней после подтверждения заказа.
Q: Какой вид оплаты вы можете предложить?
A: Мы можем предложить T / T, Western Union, Paypal и т. Д.

Мы согласны с гибкими условиями оплаты и гибким режимом транзакций. Если вам нужна помощь или вопросы, свяжитесь с нами, мы ответим вам в течение 24 часов.

NANSEN INDUSTRY CO., LTD
Тел .: 0086-21-20249001
Факс: 0086-21-20375798
Электронная почта: jessie at nansencn dot com
Skype: Nansen.monica
Веб-сайт: www.nansen-packing.com



.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *