Что такое кибернетика. Кто ввел термин «кибернетика». Каковы основные принципы кибернетики. Какие области науки охватывает кибернетика. Как развивалась кибернетика в XX веке.
Что такое кибернетика: определение и ключевые понятия
Кибернетика — это междисциплинарная наука, изучающая общие закономерности процессов управления и передачи информации в системах различной природы: технических, биологических, социальных. Основные понятия кибернетики:
- Управление — целенаправленное воздействие на объект для достижения определенного результата
- Обратная связь — влияние результатов функционирования системы на характер ее дальнейшего функционирования
- Информация — сведения, уменьшающие неопределенность в системе
- Система — совокупность взаимосвязанных элементов, образующих определенную целостность
Термин «кибернетика» происходит от древнегреческого слова «кибернетес», означающего «рулевой», «кормчий». В современном понимании термин «кибернетика» ввел американский математик Норберт Винер в 1948 году.

История возникновения и развития кибернетики
Основные вехи в истории кибернетики:
- 1830 г. — французский физик Андре-Мари Ампер впервые использовал термин «кибернетика» для обозначения науки об управлении государством
- 1940-е гг. — формирование кибернетики как междисциплинарной науки
- 1948 г. — выход книги Норберта Винера «Кибернетика, или управление и связь в животном и машине»
- 1950-60-е гг. — расцвет кибернетики, применение ее идей в различных областях
- 1970-80-е гг. — развитие «новой кибернетики», изучающей сложные самоорганизующиеся системы
На становление кибернетики большое влияние оказали работы Клода Шеннона по теории информации, Уильяма Эшби по теории систем, Джона фон Неймана по теории автоматов и другие исследования середины XX века.
Основные направления и области применения кибернетики
Кибернетика охватывает широкий спектр научных направлений:
- Теория информации
- Теория алгоритмов
- Теория автоматов
- Теория оптимального управления
- Исследование операций
- Теория распознавания образов
- Теория игр
- Системный анализ
Кибернетические методы и подходы применяются в самых разных областях:

- Техника — создание систем автоматического управления
- Биология — изучение механизмов саморегуляции в живых организмах
- Медицина — разработка систем диагностики заболеваний
- Экономика — моделирование экономических процессов
- Социология — анализ социальных систем
- Психология — исследование процессов мышления
Кибернетика и искусственный интеллект
Кибернетика сыграла важную роль в становлении искусственного интеллекта (ИИ) как научного направления. Основные взаимосвязи кибернетики и ИИ:
- Кибернетика заложила теоретические основы для создания интеллектуальных систем
- Методы кибернетики используются при разработке алгоритмов машинного обучения
- Принципы обратной связи применяются в нейронных сетях
- Теория распознавания образов нашла применение в компьютерном зрении
- Исследования по автоматизации рассуждений способствовали развитию экспертных систем
В то же время современный ИИ во многом вышел за рамки классической кибернетики, используя новые подходы, такие как глубокое обучение.
Вклад отечественных ученых в развитие кибернетики
Значительный вклад в развитие кибернетики внесли советские и российские ученые:

- А.Н. Колмогоров — работы по теории информации и алгоритмов
- А.И. Берг — исследования в области технической кибернетики
- В.М. Глушков — разработки по теории цифровых автоматов
- А.А. Ляпунов — труды по математической теории управления
- Н.Н. Моисеев — применение методов кибернетики в экологии
- Л.В. Канторович — использование кибернетических подходов в экономике
В СССР в 1950-60-е годы кибернетика пережила период гонений, но затем получила официальное признание и активно развивалась.
Современное состояние и перспективы кибернетики
В настоящее время кибернетика продолжает развиваться, взаимодействуя с другими научными дисциплинами. Основные тенденции:
- Изучение сложных самоорганизующихся систем
- Исследование когнитивных процессов
- Развитие теории сложных сетей
- Применение методов кибернетики в нанотехнологиях
- Разработка биоподобных систем управления
Перспективные направления кибернетики связаны с решением глобальных проблем человечества, созданием интеллектуальных робототехнических комплексов, моделированием социально-экономических процессов.

Заключение: значение кибернетики в современном мире
Кибернетика остается одной из ключевых междисциплинарных наук, объединяющих естественнонаучное, техническое и гуманитарное знание. Ее идеи и методы находят применение в самых разных сферах — от проектирования технических систем до управления бизнес-процессами. Развитие кибернетики способствует прогрессу в области искусственного интеллекта, робототехники, биоинженерии и других перспективных направлений. В эпоху цифровизации значение кибернетических подходов к управлению сложными системами продолжает возрастать.
Кибернетика | это… Что такое Кибернетика?
Киберне́тика (от др.-греч. κυβερνητική — «искусство управления»[1]) — наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.
Содержание
|
Обзор
Термин «кибернетика» изначально ввел в научный оборот в 1830 году Андре-Мари Ампер, который в своем фундаментальном труде «Опыт о философии наук» (1834—1843) определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. А в современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, впервые был предложен Норбертом Винером в 1948 году
Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи [3]. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.
Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.
Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия»[4]. Новое определение было предложено Льюисом Кауфманом (англ.): «Кибернетика — исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».
Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.
Современная кибернетика зарождалась как междисциплинарные исследования, объединяя области систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии.
Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, — теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.
Сфера кибернетики
Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею.
Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:
- Теория передачи сигналов
- Теория управления
- Теория автоматов
- Теория принятия решений
- Синергетика
- Теория алгоритмов
- Распознавание образов
- Теория оптимального управления
Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.
Особенно велика роль кибернетики в психологии труда и таких ее отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.
Направления
Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.
Чистая кибернетика
Чистая кибернетика изучает системы управления как понятие, пытаясь обнаружить основные её принципы.
ASIMO использует датчики и интеллектуальные алгоритмы, чтобы избежать препятствий и перемещаться по лестнице
- Искусственный интеллект
- Кибернетика второго порядка
- Компьютерное зрение
- Системы управления
- Эмерджентность
- Обучающиеся организации
- Новая кибернетика
- Interactions of Actors Theory
- Теория общения
В биологии
Кибернетика в биологии — исследование кибернетических систем в биологических организмах, прежде всего сосредотачиваясь на том, как животные приспосабливаются к их окружающей среде, и как информация в форме генов передаются от поколения к поколению. Также имеется второе направление — киборги.
Термический снимок холоднокровноготарантула на теплокровной руке человека
- Биоинженерия
- Биологическая кибернетика
- Биоинформатика
- Бионика
- Медицинская кибернетика
- Нейрокибернетика
- Гомеостаз
- Синтетическая биология
- Системная биология
Теория сложных систем
Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.
Способ моделирования сложной адаптивной системы
- Сложная адаптивная система
- Сложные системы
- Теория сложных систем
В компьютерной науке
Компьютерная наука напрямую применяет концепты кибернетики для управления устройствами и анализа информации.
- Робототехника
- Система поддержки принятия решений
- Клеточный автомат
- Симуляция
В инженерии
Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.
Искусственное сердце, пример биомедицинской инженерии.
- Адаптивная система
- Инженерная кибернетика
- Эргономика
- Биомедицинская инженерия
- Нейрокомпьютинг
- Техническая кибернетика
- Системотехника
В экономике и управлении
- Кибернетическое управление
- Экономическая кибернетика
- Исследование операций
- Системотехника
В математике
- Динамическая система
- Теория информации
- Теория систем
В психологии
- Психологическая кибернетика
В социологии
- Меметика
- Социальная кибернетика
История
В древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми.
Слово фр. «cybernétique» использовалось практически в современном значении в 1834 году французским физиком и систематизатором наук Андре Ампером (фр. André-Marie Ampère, 1775—1836), для обозначения науки управления в его системе классификации человеческого знания:
Андре Мари Ампер
«КИБЕРНЕТИКА. Отношения народа к народу, изучаемые <…> предшествующими науками, — лишь небольшая часть объектов, о которых должно печься правительство; его внимания также непрерывно требуют поддержание общественного порядка, исполнения законов, справедливое распределение налогов, отбор людей, которых оно должно назначать на должности, и всё, способствующее улучшению общественного состояния. Оно постоянно должно выбирать между различными мерами, наиболее пригодными для достижения цели; и лишь благодаря глубокому изучению и сравнению разных элементов, предоставляемых ему для этого выбора знанием всего, что имеет отношение к нации, оно способно управлять в соответствии со своим характером, обычаями, средствами существования процветания организацией и законами, которые могут служить общими правилами поведения и которыми оно руководствуется в каждом особом случае.
Итак, только после всех наук, занимающихся этими различными объектами, надо поставить эту, о которой сейчас идёт речь и которую я называю кибернетикой, от слова др.-греч. κυβερνητιχη; это слово, принятое в начале в узком смысле для обозначения искусства кораблевождения, получило употребление у самих греков в несравненно более широком значении искусства управления вообще».[5]
Джеймс Уатт
Первая искусственная автоматическая регулирующая система, водяные часы, была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна — на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику (они считали это областью инженерного дела), Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века, когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А. Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года. В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я. Икскюль применил механизм обратной связи в своей модели функционального цикла (нем. Funktionskreis) для объяснения поведения животных.
XX век
Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.
Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в MIT Sloan School of Management (англ.). Также Форрестер известен как основатель системной динамики.
У. Деминг, гуру комплексного управления качеством, в чью честь Япония в 1950 году учредила свою главную индустриальную награду, в 1927 году был молодым специалистом в Bell Telephone Labs и, возможно, оказался тогда под влиянием работ в области сетевого анализа). Деминг сделал «понимающие системы» одним из четырёх столпов того, что он описал как глубокое знание в своей книге «Новая экономика».
Многочисленные работы появились в смежных областях. В 1935 году российский физиолог П. К. Анохин издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943 году. Этими работами были «Поведение, цель и телеология» А.Розенблюта (англ.), Норберта Винера и Дж.Бигелоу (англ.) и работа «Логическое исчисление идей, относящихся к нервной активности» У. Мак-Каллока и У. Питтса (англ.).
Кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У. Р. Эшби и У. Г. Уолтер (англ.).
Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.
Весной 1947 года Винер был приглашён на конгресс по гармоническому анализу, проведённому в Нанси, Франция. Мероприятие было организовано группой математиков Николя Бурбаки, где большую роль сыграл математик Ш. Мандельбройт.
Норберт Винер
Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался Ratio Club (англ.).
В начале 1940-х Джон фон Нейман, более известный работами по математике и информатике, внёс уникальное и необычное дополнение в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже компьютерным вирусам, является дальнейшим доказательством универсальности кибернетических исследований.
Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950).
Одним из главных центров исследований в те времена была Биологическая компьютерная лаборатория в Иллинойском университете, которой в течение почти 20 лет, начиная с 1958 года, руководил Х. Фёрстер.
Кибернетика в СССР
Основная статья: Кибернетика в СССР
Развитие кибернетики в СССР, было начато в 1940-х годах.
В «Философский словарь» 1954 года издания попала характеристика кибернетики как «реакционной лженауки»,
В 60-е и 70-е на кибернетику, как на техническую, так и на экономическую, уже стали делать большую ставку.
Упадок и возрождение
В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.
Франциско Варела
Стюарт А.Амплеби
В 1970-х новая кибернетика проявилась в различных областях, но особенно — в биологии. Некоторые биологи под влиянием кибернетических идей (Матурана и Варела, 1980; Варела, 1979; (Атлан (англ.), 1979), «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа. Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе — организаций, не изобретённых им самим»[6]. Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов.
В экономике в рамках проекта Киберсин попытались ввести кибернетическую административно-командную экономику в Чили в начале 1970-х. Эксперимент был остановлен в результате путча 1973 года, оборудование было уничтожено.
В 1980-х новая кибернетика, в отличие от её предшественницы, интересуется «взаимодействием автономных политических фигур и подгрупп, а также практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе самих себя»[7].
Голландские учёные-социологи Гейер и Ван дер Зоувен (нидерл.) в 1978 году выделили ряд особенностей появляющейся новой кибернетики. «Одной из особенностей новой кибернетики является то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, если смотреть на это с точки зрения наблюдателя. Другая особенность новой кибернетики — её вклад в преодоление проблемы редукции (противоречий между макро- и микроанализом). Таким образом, это связывает индивидуума с обществом»[8]. Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом»[9] .
Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области[10].
Известные ученые
- Ампер, Андре Мари (1775—1836)
- Вышнеградский, Иван Алексеевич (1831—1895)
- Норберт Винер (Norbert Wiener) (1894—1964)
- Уильям Эшби (Ashby) (1903—1972)
- Хайнц фон Фёрстер (1911—2002)
- Клод Шеннон (1916—2001)
- Грегори Бейтсон (1904—1980)
- Клаус, Георг (1912—1974)
- Ляпунов Алексей Андреевич (1911—1973)
- Глушков Виктор Михайлович (1923—1982)
- Бир Стаффорд (1926—2002)
- Берг, Аксель Иванович
- Кузин, Лев Тимофеевич (1928—1997)
- Поваров, Геллий Николаевич (1928—2004)
- Пупков, Константин Александрович (род.
1930)
- Тихонов, Андрей Николаевич (1906—1993)
См. также
- Информация
- Управление
- Кибернетический подход
- Винер, Норберт
- Бир, Энтони Стаффорд
- Платон
Литература
- Винер Н. Кибернетика. — М.: Советское радио, 1968.
- Винер Н. Некоторые моральные и технические последствия автоматизации.
- Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
- Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
- Пекелис В.Д. (сост.) Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
- Пекелис В.Д. (сост.) Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
- Пекелис В.Д. (сост.) Кибернетика. Итоги развития, Наука, 1979, 200 с.
- Пекелис В.Д. (сост.) Кибернетика. Современное состояние, Наука, 1980, 208 с.
- Марков А. А.
Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, 1964
- Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971
- Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, 1973
- В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
- Герович В. А. Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
- Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
- Грэхэм, Л. Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М.: Политиздат, 1991. — 480 с.
- Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л.
Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.
- Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.
- Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25 000 экз.
- Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, 1977.
- Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
- Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
- Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.
Ссылки
- Наука организации жизнеспособных систем
- Уроки Стаффорда Бира // Компьютерра — № 36 — 2004
- «Principia Cybernetica Project» (PCP) (англ.).
- Организации
- The Cybernetics Society — Кибернетическое общество (англ.
)
Примечания
- ↑ Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — С. 259. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5
- ↑ Norbert Wiener (1948), Cybernetics or Control and Communication in the Animal and the Machine, (Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948)
- ↑ Kelly, Kevin Out of control: the new biology of machines, social systems and the economic world. — Boston: Addison-Wesley, 1994. — ISBN 0-201-48340-8
- ↑ Couffignal, Louis, «Essai d’une définition générale de la cybernétique», The First International Congress on Cybernetics, Namur, Belgium, June 26-29, 1956, Gauthier-Villars, Paris, 1958, pp. 46—54
- ↑ Цитируется по сборнику «Кибернетика ожидаемая. Кибернетика неожиданная».
— М.: Наука, 1968. — стр. 152.
- ↑ Jean-Pierre Dupuy, «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
- ↑ Peter Harries-Jones (1988), «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
- ↑ Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.
- ↑ Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis
- ↑ Kevin Kelly (1994) «Out of control: The new biology of machines, social systems and the economic world» Addison-Wesley ISBN 0-201-48340-8
Кибернетика | это… Что такое Кибернетика?
Киберне́тика (от др. -греч. κυβερνητική — «искусство управления»[1]) — наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.
Содержание
|
Обзор
Термин «кибернетика» изначально ввел в научный оборот в 1830 году Андре-Мари Ампер, который в своем фундаментальном труде «Опыт о философии наук» (1834—1843) определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. А в современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, впервые был предложен Норбертом Винером в 1948 году[2].
Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи [3]. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.
Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.
Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия»[4]. Новое определение было предложено Льюисом Кауфманом (англ.): «Кибернетика — исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».
Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.
Современная кибернетика зарождалась как междисциплинарные исследования, объединяя области систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).
Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, — теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.
Сфера кибернетики
Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.
Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:
- Теория передачи сигналов
- Теория управления
- Теория автоматов
- Теория принятия решений
- Синергетика
- Теория алгоритмов
- Распознавание образов
- Теория оптимального управления
Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.
Особенно велика роль кибернетики в психологии труда и таких ее отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.
Направления
Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.
Чистая кибернетика
Чистая кибернетика изучает системы управления как понятие, пытаясь обнаружить основные её принципы.
ASIMO использует датчики и интеллектуальные алгоритмы, чтобы избежать препятствий и перемещаться по лестнице
- Искусственный интеллект
- Кибернетика второго порядка
- Компьютерное зрение
- Системы управления
- Эмерджентность
- Обучающиеся организации
- Новая кибернетика
- Interactions of Actors Theory
- Теория общения
В биологии
Кибернетика в биологии — исследование кибернетических систем в биологических организмах, прежде всего сосредотачиваясь на том, как животные приспосабливаются к их окружающей среде, и как информация в форме генов передаются от поколения к поколению. Также имеется второе направление — киборги.
Термический снимок холоднокровноготарантула на теплокровной руке человека
- Биоинженерия
- Биологическая кибернетика
- Биоинформатика
- Бионика
- Медицинская кибернетика
- Нейрокибернетика
- Гомеостаз
- Синтетическая биология
- Системная биология
Теория сложных систем
Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.
Способ моделирования сложной адаптивной системы
- Сложная адаптивная система
- Сложные системы
- Теория сложных систем
В компьютерной науке
Компьютерная наука напрямую применяет концепты кибернетики для управления устройствами и анализа информации.
- Робототехника
- Система поддержки принятия решений
- Клеточный автомат
- Симуляция
В инженерии
Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.
Искусственное сердце, пример биомедицинской инженерии.
- Адаптивная система
- Инженерная кибернетика
- Эргономика
- Биомедицинская инженерия
- Нейрокомпьютинг
- Техническая кибернетика
- Системотехника
В экономике и управлении
- Кибернетическое управление
- Экономическая кибернетика
- Исследование операций
- Системотехника
В математике
- Динамическая система
- Теория информации
- Теория систем
В психологии
- Психологическая кибернетика
В социологии
- Меметика
- Социальная кибернетика
История
В древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми.
Слово фр. «cybernétique» использовалось практически в современном значении в 1834 году французским физиком и систематизатором наук Андре Ампером (фр. André-Marie Ampère, 1775—1836), для обозначения науки управления в его системе классификации человеческого знания:
Андре Мари Ампер
«КИБЕРНЕТИКА. Отношения народа к народу, изучаемые <…> предшествующими науками, — лишь небольшая часть объектов, о которых должно печься правительство; его внимания также непрерывно требуют поддержание общественного порядка, исполнения законов, справедливое распределение налогов, отбор людей, которых оно должно назначать на должности, и всё, способствующее улучшению общественного состояния. Оно постоянно должно выбирать между различными мерами, наиболее пригодными для достижения цели; и лишь благодаря глубокому изучению и сравнению разных элементов, предоставляемых ему для этого выбора знанием всего, что имеет отношение к нации, оно способно управлять в соответствии со своим характером, обычаями, средствами существования процветания организацией и законами, которые могут служить общими правилами поведения и которыми оно руководствуется в каждом особом случае.
Итак, только после всех наук, занимающихся этими различными объектами, надо поставить эту, о которой сейчас идёт речь и которую я называю кибернетикой, от слова др.-греч. κυβερνητιχη; это слово, принятое в начале в узком смысле для обозначения искусства кораблевождения, получило употребление у самих греков в несравненно более широком значении искусства управления вообще».[5]
Джеймс Уатт
Первая искусственная автоматическая регулирующая система, водяные часы, была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна — на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику (они считали это областью инженерного дела), Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века, когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А. Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года. В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я. Икскюль применил механизм обратной связи в своей модели функционального цикла (нем. Funktionskreis) для объяснения поведения животных.
XX век
Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.
Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в MIT Sloan School of Management (англ.). Также Форрестер известен как основатель системной динамики.
У. Деминг, гуру комплексного управления качеством, в чью честь Япония в 1950 году учредила свою главную индустриальную награду, в 1927 году был молодым специалистом в Bell Telephone Labs и, возможно, оказался тогда под влиянием работ в области сетевого анализа). Деминг сделал «понимающие системы» одним из четырёх столпов того, что он описал как глубокое знание в своей книге «Новая экономика».
Многочисленные работы появились в смежных областях. В 1935 году российский физиолог П. К. Анохин издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943 году. Этими работами были «Поведение, цель и телеология» А.Розенблюта (англ.), Норберта Винера и Дж.Бигелоу (англ.) и работа «Логическое исчисление идей, относящихся к нервной активности» У. Мак-Каллока и У. Питтса (англ.).
Кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У. Р. Эшби и У. Г. Уолтер (англ.).
Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.
Весной 1947 года Винер был приглашён на конгресс по гармоническому анализу, проведённому в Нанси, Франция. Мероприятие было организовано группой математиков Николя Бурбаки, где большую роль сыграл математик Ш. Мандельбройт.
Норберт Винер
Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался Ratio Club (англ.).
В начале 1940-х Джон фон Нейман, более известный работами по математике и информатике, внёс уникальное и необычное дополнение в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже компьютерным вирусам, является дальнейшим доказательством универсальности кибернетических исследований.
Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950).
Одним из главных центров исследований в те времена была Биологическая компьютерная лаборатория в Иллинойском университете, которой в течение почти 20 лет, начиная с 1958 года, руководил Х. Фёрстер.
Кибернетика в СССР
Основная статья: Кибернетика в СССР
Развитие кибернетики в СССР, было начато в 1940-х годах.
В «Философский словарь» 1954 года издания попала характеристика кибернетики как «реакционной лженауки»,
В 60-е и 70-е на кибернетику, как на техническую, так и на экономическую, уже стали делать большую ставку.
Упадок и возрождение
В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.
Франциско Варела
Стюарт А.Амплеби
В 1970-х новая кибернетика проявилась в различных областях, но особенно — в биологии. Некоторые биологи под влиянием кибернетических идей (Матурана и Варела, 1980; Варела, 1979; (Атлан (англ.), 1979), «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа. Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе — организаций, не изобретённых им самим»[6]. Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов.
В экономике в рамках проекта Киберсин попытались ввести кибернетическую административно-командную экономику в Чили в начале 1970-х. Эксперимент был остановлен в результате путча 1973 года, оборудование было уничтожено.
В 1980-х новая кибернетика, в отличие от её предшественницы, интересуется «взаимодействием автономных политических фигур и подгрупп, а также практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе самих себя»[7].
Голландские учёные-социологи Гейер и Ван дер Зоувен (нидерл.) в 1978 году выделили ряд особенностей появляющейся новой кибернетики. «Одной из особенностей новой кибернетики является то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, если смотреть на это с точки зрения наблюдателя. Другая особенность новой кибернетики — её вклад в преодоление проблемы редукции (противоречий между макро- и микроанализом). Таким образом, это связывает индивидуума с обществом»[8]. Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом»[9] .
Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области[10].
Известные ученые
- Ампер, Андре Мари (1775—1836)
- Вышнеградский, Иван Алексеевич (1831—1895)
- Норберт Винер (Norbert Wiener) (1894—1964)
- Уильям Эшби (Ashby) (1903—1972)
- Хайнц фон Фёрстер (1911—2002)
- Клод Шеннон (1916—2001)
- Грегори Бейтсон (1904—1980)
- Клаус, Георг (1912—1974)
- Ляпунов Алексей Андреевич (1911—1973)
- Глушков Виктор Михайлович (1923—1982)
- Бир Стаффорд (1926—2002)
- Берг, Аксель Иванович
- Кузин, Лев Тимофеевич (1928—1997)
- Поваров, Геллий Николаевич (1928—2004)
- Пупков, Константин Александрович (род.
1930)
- Тихонов, Андрей Николаевич (1906—1993)
См. также
- Информация
- Управление
- Кибернетический подход
- Винер, Норберт
- Бир, Энтони Стаффорд
- Платон
Литература
- Винер Н. Кибернетика. — М.: Советское радио, 1968.
- Винер Н. Некоторые моральные и технические последствия автоматизации.
- Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
- Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
- Пекелис В.Д. (сост.) Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
- Пекелис В.Д. (сост.) Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
- Пекелис В.Д. (сост.) Кибернетика. Итоги развития, Наука, 1979, 200 с.
- Пекелис В.Д. (сост.) Кибернетика. Современное состояние, Наука, 1980, 208 с.
- Марков А. А.
Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, 1964
- Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971
- Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, 1973
- В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
- Герович В. А. Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
- Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
- Грэхэм, Л. Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М.: Политиздат, 1991. — 480 с.
- Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л.
Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.
- Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.
- Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25 000 экз.
- Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, 1977.
- Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
- Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
- Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.
Ссылки
- Наука организации жизнеспособных систем
- Уроки Стаффорда Бира // Компьютерра — № 36 — 2004
- «Principia Cybernetica Project» (PCP) (англ.).
- Организации
- The Cybernetics Society — Кибернетическое общество (англ.
)
Примечания
- ↑ Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — С. 259. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5
- ↑ Norbert Wiener (1948), Cybernetics or Control and Communication in the Animal and the Machine, (Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948)
- ↑ Kelly, Kevin Out of control: the new biology of machines, social systems and the economic world. — Boston: Addison-Wesley, 1994. — ISBN 0-201-48340-8
- ↑ Couffignal, Louis, «Essai d’une définition générale de la cybernétique», The First International Congress on Cybernetics, Namur, Belgium, June 26-29, 1956, Gauthier-Villars, Paris, 1958, pp. 46—54
- ↑ Цитируется по сборнику «Кибернетика ожидаемая. Кибернетика неожиданная».
— М.: Наука, 1968. — стр. 152.
- ↑ Jean-Pierre Dupuy, «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
- ↑ Peter Harries-Jones (1988), «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
- ↑ Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.
- ↑ Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis
- ↑ Kevin Kelly (1994) «Out of control: The new biology of machines, social systems and the economic world» Addison-Wesley ISBN 0-201-48340-8
Бионика | Определение и факты
- Похожие темы:
- биоинженерия кибернетика
Просмотреть весь связанный контент →
бионика , наука о создании искусственных систем, обладающих некоторыми характеристиками живых систем. Бионика — это не специализированная наука, а межнаучная дисциплина; ее можно сравнить с кибернетикой. Бионику и кибернетику называют двумя сторонами одной медали. Оба используют модели живых систем, бионику, чтобы найти новые идеи для полезных искусственных машин и систем, кибернетику, чтобы найти объяснение поведения живых существ.
Таким образом, бионика отличается от биоинженерии (или биотехнологии), которая представляет собой использование живых существ для выполнения определенных промышленных задач, таких как выращивание дрожжей на нефти для получения пищевых белков, использование микроорганизмов, способных концентрировать металлы из сорт руды и переваривание отходов бактериями в биохимических батареях для получения электроэнергии.
Мимикрия природы — старая идея. Многие изобретатели моделировали машины по образцу животных на протяжении веков. Копирование с натуры имеет явные преимущества. Большинство живых существ, живущих сейчас на Земле, являются продуктом двух миллиардов лет эволюции, и создание машин для работы в среде, напоминающей среду обитания живых существ, может извлечь выгоду из этого огромного опыта. Хотя может показаться, что самым простым способом является прямое подражание природе, это часто бывает трудно, если не невозможно, среди прочего, из-за разницы в масштабе. Исследователи бионики обнаружили, что лучше понять принципы работы вещей в природе, чем рабски копировать детали.
Следующий шаг — общий поиск вдохновения у природы. Живые существа можно изучать с нескольких точек зрения. Мышцы животных представляют собой эффективный механический двигатель; солнечная энергия запасается растениями в химической форме почти со 100-процентной эффективностью; передача информации в нервной системе сложнее, чем в крупнейших телефонных станциях; решение задач человеческим мозгом намного превосходит возможности самых мощных суперкомпьютеров. Они иллюстрируют две основные области бионических исследований — обработку информации и преобразование и хранение энергии.
Общая схема информационной сети живых организмов такова: ощущения окружающей среды воспринимаются органами чувств и затем кодируются в сигналы, которые по нервам передаются в центры обработки и запоминания мозга. У гадюк подсемейства Crotalinae (в которое входят гремучие змеи), например, есть термочувствительный механизм, расположенный в ямке между ноздрями и глазами. Этот орган настолько чувствителен, что может обнаружить мышь на расстоянии нескольких метров. Хотя существуют гораздо более чувствительные искусственные инфракрасные детекторы, бионика все еще может извлечь выгоду из изучения гадюк. Во-первых, было бы интересно и потенциально полезно понять принцип преобразования энергии, происходящего в инфракрасной ямке гремучей змеи, а также процесс, посредством которого нервы стимулируются в отсутствие усиливающего механизма. Другим ярким примером является орган обоняния 9.0021 шелкопряд, Bombyx mori . Самец может обнаружить химическое вещество, выделяемое самкой, в количестве всего нескольких молекул.
В проводнике, таком как телефонный провод, сигнал затухает по мере прохождения по проводу, и для его усиления необходимо размещать усилители через определенные промежутки времени. Это не относится к аксону нерва животных: нервный импульс, исходящий от органов чувств, не ослабевает при прохождении по аксону. Этот импульс может распространяться только в одном направлении. Эти свойства делают нервный аксон способным к логическим операциям. В 1960 был разработан полупроводниковый прибор, названный нейристором, способный распространять сигнал в одном направлении без затухания и способный выполнять числовые и логические операции. Нейристорный компьютер, вдохновленный естественной моделью, имитирует динамическое поведение естественных нейронных информационных сетей; каждая цепь может служить последовательно для различных операций, подобно нервной системе.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас
Еще один вопрос, представляющий интерес для бионики, — как живая система использует информацию. В меняющихся обстоятельствах люди оценивают альтернативные варианты действий. Каждая ситуация так или иначе напоминает ситуацию, пережитую ранее. «Распознавание образов», важный элемент человеческой деятельности, имеет значение для бионики. Одним из способов создания искусственной машины, способной распознавать образы, является использование процессов обучения. Разработаны опытные варианты такой машины; они учатся, устанавливая и изменяя связи между большим количеством возможных альтернативных маршрутов в сети путей. Это обучение, однако, все еще находится в зачаточном состоянии и далеко от человеческого.
Первое существенное различие между существующими электронными компьютерами и человеческим мозгом заключается в способе организации их памяти. Как в памяти живого существа, так и в памяти машины основная проблема заключается в извлечении информации после ее сохранения. Метод, который используют компьютеры, называется «адресация». Память компьютера можно сравнить с большим набором ячеек, каждая из которых имеет определенный номер или адрес (местоположение). Определенную часть информации можно найти, если известен адрес, то есть номер ячейки. Человеческая память работает совсем по-другому, используя ассоциации данных. Информация извлекается в соответствии с ее содержанием, а не в соответствии с искусственно добавленным внешним адресом. Это различие качественное и количественное. Созданные руками человека устройства памяти сейчас строятся по ассоциативным принципам, и в этой области заложен большой потенциал.
Второе основное различие между электронными компьютерами и человеческим мозгом заключается в способе обработки информации. Компьютер обрабатывает точные данные. Люди принимают нечеткие данные и выполняют операции, которые не являются строго строгими. Кроме того, компьютеры выполняют только очень простые элементарные операции, производя сложные результаты, выполняя огромное количество таких простых операций с очень высокой скоростью. Напротив, человеческий мозг работает с низкой скоростью, но параллельно, а не последовательно, производя несколько одновременных результатов, которые можно сравнивать (9).0022 см. также искусственный интеллект).
В живом мире энергия запасается в виде химических соединений; его использование всегда сопровождается химическими реакциями. Солнечная энергия запасается растениями посредством сложных химических процессов. Энергия мышечного движения получается из химических изменений. Свет, производимый такими живыми организмами, как грибы, светлячки и некоторые рыбы, имеет химическое происхождение. В любом случае преобразование энергии значительно эффективнее по сравнению с тепловыми двигателями.
Положено начало пониманию того, как эти преобразования происходят в живом материале, и природы той сложной роли, которую играют живые мембраны. Возможно, некоторые ограничения, связанные со сложностью и хрупкостью молекул, можно было бы преодолеть с помощью созданных человеком машин с искусственной энергией и добиться лучших результатов, чем с природными мембранами.
Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена Адамом Августином.
Этимология, происхождение и значение кибернетики по etymonline
Реклама
«теория или исследование связи и управления», придуманный в 1948 году американским математиком Норбертом Винером (1894–1964), с -ics + латинизированная форма греческого kybernetes «рулевой» (метафорически «проводник, губернатор»), от kybernan «управлять или управлять кораблем, руководить как лоцман», образно говоря, «направлять, управлять», происхождение которого неясно. Бикс соглашается с тем, что «это слово не имеет родственных слов», и заключает, что «вероятно иностранное происхождение». Конструкция, возможно, основана на французской кибернетике 1830-х годов, «искусстве управления».
Будущее дает очень мало надежды тем, кто ожидает, что наши новые механические рабы предложат нам мир, в котором мы сможем отдохнуть от размышлений. Они могут помочь нам, но ценой высочайших требований к нашей честности и интеллекту. [Норберт Винер, «God and Golem, Inc.,» 1964]
Обновлен 10 июня 2018 г.
Реклама
Реклама
Встречи в словаре возле
CyberneticsCyanotype
Cybernetics
9009 9009 90090008 cyber-
cybercafe
cybernetic
cybernetics
cyberspace
cyborg
cycad
cyclamen
cycle
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- 85 .
