L c фильтр: Что такое LC-фильтр, как он работает, формулы и схемы

Что такое LC-фильтр, как он работает, формулы и схемы

Из чего состоит LC-фильтр и как он работает, формулы для расчетов, принципиальные схемы LC-фильтров, статья для начинающих радиолюбителей. Во многих электронных устройствах применяются LC-фильтры, как видно по названию, эти фильтры состоят из индуктивности (L) и емкости (С).

Самый простой LC-фильтр

Самый простой LC-фильтр - это колебательный контур, включенный так как показано на рис. 1. Входное переменное напряжение поступает на контур через резистор R1, а выходное снимается с самого контура.

Схема LC-фильтра

Рис. 1. Схема LC-фильтра.

Вообще это очень похоже на делитель напряжения на двух резисторах, но вместо одного из резисторов здесь контур. В сущности дела оно так и есть.

На резонансной частоте реактивное сопротивление контура сильно возрастает, а значит, коэффициент деления такого делителя уменьшается.

Эта схема (рис.1) действует как узкополосной полосовой фильтр, центральную частоту которого можно рассчитать по известной формуле:

формула расчета центральной частоты узкополосного полосового фильтра

, где частота в Гц, индуктивность в Гн, емкость в Ф.

Сопротивление контура на резонансной частоте:

Сопротивление контура на резонансной частоте - выражение для расчета

где р - характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора. Величину р можно рассчитать по формуле:

характеристическое сопротивление - формула для расчета

А вот рассчитать добротность Q значительно сложнее. Эта величина зависит от потерь в контуре. Так как конденсатор обычно вносит минимум потерь, то добротность контура чаще всего практически равна добротности индуктивности, входящей в состав этого контура.

Резонансную частоту и добротность можно определить измерениями. Нужно собрать схему по рисунку 2. Это практически такая же схема как на рис.1.

Переменное напряжение, соответствующее по частоте расчетному значению, подают от генератора «Г» на контур через сопротивление R1. Подстраивая генератор находят такую частоту, при которой возникает резонанс, то есть, при которой вольтметр переменного тока Р1 показывает наибольшую величину.

Схема для измерения резонансной частоты и добротности

Рис. 2. Схема для измерения резонансной частоты и добротности.

Эта частота и будет реальной резонансной частотой. Она может отличаться от расчетной из-за погрешностей величин емкости и индуктивности. В идеале - равна расчетной.

На частоте резонанса R1 и резонансное сопротивление контура Ro образуют делитель напряжения, поэтому выходное напряжение Uвых = Uвх * Ro / (R1+Ro).

Измерив входное напряжение Uвх и выходное Uвых из этой формулы можно найти резонансное сопротивление контура Ro, ну а потом, зная величину характеристического сопротивления, из формулы

выражение для расчета

можно из формулы Ro=pQ найти добротность Q. Другой параметр LC-фильтра - это полоса пропускания выражение для расчета

где формула для расчета - это отклонение частоты входного напряжения от резонанса в ту или другую сторону, при которой выходное напряжение, соответствующее резонансу (Uвых), уменьшается до 0,7Uвых. Зная величину полосы пропуская можно найти добротность по формуле Q = Fo/(2*дельтаF).

Таким образом становится ясно, что полоса пропускания LC-фильтра прежде всего зависит от добротности контура. При этом нужно учесть, что таким образом будет определена не собственная добротность контура, а величина меньше, из-за шунтирующего действия резистора R1.

Недостаток фильтра по рисунку 1 в том, что на него оказывает сильное влияние величина выходного сопротивления источника входного переменного напряжения.

Автотрансформаторное и трансформаторное включение

Желая получить более острую резонансную кривую, можно использовать трансформаторное (рис.3) или автотрансформаторное (рис.4) включение для подачи входного напряжения.

Трансформаторное включение

Рис. 3. Трансформаторное включение.

Автотрансформаторное включение

Рис. 4. Автотрансформаторное включение.

Число витков катушки связи (рис.З) или число витков отвода (считая от заземленного конца катушки) можно определить из формулы: R1 = Ro(N/No)^2 , где R1 - это фактически и есть выходное сопротивление источника входного переменного напряжения, Ro - сопротивление контура на резонансной частоте, N - число витков катушки связи (или число витков, от которых сделан отвод), No - число витков контурной катушки (или общее число витков катушки, если по рис.4).

Емкостный автотрансформатор

Рис. 5. Емкостный автотрансформатор.

Совсем не обязательно делать отвод именно от катушки, можно сделать отвод и от конденсатора, вернее от емкостной составляющей контура. Так получится - емкостный автотрансформатор (рис. 5).

А соотношение емкостей для определенной величины выходного сопротивления источника сигнала можно определить из формулы: R1 = Ro * C1^2 / (C1+C2)^2.

На контур может оказывать шунтирующее влияние не только выходное сопротивление источника Uвх, но и входное сопротивление каскада, на который с контура поступает выходное напряжение Uвых (R2 на рис. 6). Особенно если входное сопротивление каскада (R2) невелико (сопоставимо или даже меньше Ro).

Схема фильтра

Рис. 6. Схема фильтра.

В этом случае необходимо сначала вычислить новое значение Ro, уменьшенное параллельным включением сопротивления R2. Расчет производить по известной формуле параллельных сопротивлений:

R = (RoR1) / (Ro+R2).

А потом уже рассчитывать согласование (взяв полученную величину R как Ro в формулах).

Контуры с индуктивной и емкостной связью

Параметры узкополосного фильтра можно существенно улучшить, используя в нем несколько контуров. Связь между этими контурами может быть индуктивной (рис. 7) или емкостной (рис. 8).

Контуры с индуктивной связью

Рис. 7. Контуры с индуктивной связью.

При индуктивной связи коэффициент взаимной индукции выбирается в Q раз меньше индуктивности катушек, а емкость конденсатора связи - в Q раз меньше емкостей контурных конденсаторов.

Контуры с емкостной связью

Рис. 8. Контуры с емкостной связью.

Подача сигнала последовательно

Сигнал на контур можно подавать не только параллельно, но и последовательно, как показано на рис. 9. При этом, в отличие от схемы на рис. 6, сопротивление R1 (сопротивление источника сигнала) для получения острой характеристики нужно выбирать как можно меньше, а вот входное сопротивление каскада (R2) должно быть как и на рис. 6, как можно больше.

Последовательная подача сигнала на контур

Рис. 9. Последовательная подача сигнала на контур.

Если в схеме на рис. 9 соблюсти зависимость: R1 = R2 = p, то получается согласованный ФНЧ (фильтр нижних частот), коэффициент передачи которого постоянен на всех частотах от нуля, до резонансной частоты контура, и равен -6dB, но выше частоты резонанса коэффициент передачи начинает резко падать по 12 dB на октаву.

Это соответствует фильтру второго порядка.

Т-образный и П-образный фильтры

Для получения более крутых скатов характеристики можно два таких фильтра, как на рис. 9 («Г»-образных) соединить и получить «Т»-образный фильтр (рис. 10).

Т-образный фильтр

Рис. 10. Т-образный фильтр.

Обратите внимание, - конденсатор должен быть двойной емкости по сравнению с рис.9. Либо сделать «П»-образный фильтр (рис. 11), в котором двойное значение должна иметь индуктивность. Это будет уже ФНЧ третьего порядка.

П-образный фильтр

Рис. 11. П-образный фильтр.

Возможно и дальнейшее наращивание, например, на рисунке 12 показан ФНЧ пятого порядка обладающий спадом характеристики на частотах выше резонансной 30 dB на октаву.

Схема ФНЧ пятого порядка

Рис. 12. Схема ФНЧ пятого порядка.

Фильтры высших частот ФВЧ отличаются тем, что ослабляют частоты ниже частоты резонанса. ФВЧ можно сделать, если в показанных на рисунках 9-12 индуктивности и емкости поменять местами.

Андреев С. РК-06-17.

Литература: РК-08-2009.

Расчёт LC - фильтров. Онлайн калькулятор ПФ, ФВЧ, ФНЧ.

LC - фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра - колебательного контура.

Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√LС.
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р - характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √L/C.

Рис.1

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо - либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L - длина в метрах, d - диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.

К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности - не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как - потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану - будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора - 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу   ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления - 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.


А если надо рассчитать L и C при известных значениях Fср и ρ ?   Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.


Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы - катушками.

Широкополосные полосовые LC - фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.

 

LC-фильтр для FPV | RCDetails Blog

LC-фильтр — это один из базовых фильтров в электронике, в простейшем виде он состоит из одной индуктивности и одного конденсатора. Эта схема очень часто используется в FOV хобби для снижения электрических шумов от регуляторов скорости и моторов.

Оригинал: LC Filter and FPV

Что такое LC-фильтр?

LC-фильтр состоит из катушки индуктивности (L) и конденсатора (C). Всё просто.

Индуктивность создает сопротивление изменению тока, проходящего через неё, а конденсатор сопротивляется изменению напряжения. Описание более серьезного фильтра смотрите тут (англ).

Обычно это фильтр нижних частот (ФНЧ), он пропускает сигналы с небольшими частотами, и создает сопротивление высокочастотным сигналам.

Где купить LC-фильтры?

Вот несколько фильтров подходящих для радиоуправляемых моделей.

Перед покупкой убедитесь, что выбранный фильтр подходит по напряжению и току.

Как LC-фильтр улучшает видеосигнал

В коптерах моторы и регуляторы скорости создают шум по линиям питания, он может влиять на качество видео.

Во время полета скорость вращения моторов постоянно меняется. При изменении скорости вращения меняется потребляемый ток и появляются скачки напряжения, что по сути и есть шум.

Чаще всего шум выражается в полосах на изображении.

LC-фильтр может подавить шум в линии питания вашего FPV оборудования (видеопередатчик, камера). Иногда такой фильтр нужен, иногда нет. Некоторые стабилизаторы (DC-DC преобразователи) уже имеют встроенные фильтры, но отдельный LC-фильтр может улучшить ситуацию.

LC-фильтры и конденсаторы с низким ESR

Меня часто спрашивают о том, что лучше использовать: LC-фильтр или Low ESR конденсатор? Должен заметить, что они нужны для разных целей.

LC-фильтр в основном используется для того, чтобы устранить шум в FPV оборудовании, он не устраняет шум, который есть в основной сети (до стабилизатора). С другой стороны, Low ESR конденсатор должен снизить шум доходящий до всех потребителей.

Дополнительная информация: что такое конденсаторы с низким ESR и как их использовать в миникоптерах (англ.)

У LC-фильтров есть максимально допустимый ток, который определяется параметрами катушки индуктивности (дросселя), следовательно, они используются в схемах с небольшим током. В полетных контроллерах очень часто можно увидеть LC-фильтры в цепях питания 5 и 12 вольт, также они бывают и на PDB (тоже для питания FPV оборудования). Обычно LC фильтры более эффективны, чем отдельный конденсатор.

При использовании только LowESR конденсатора нужно проверить только допустимое напряжение.

Делаем свой LC-фильтр

Значение емкости и индуктивности меняет частоту среза. Если вы знаете частоту шума, то сможете подавить его более эффективно. Однако, даже при использовании произвольной индуктивности и конденсатора, вы все равно получите какую-нибудь фильтрацию 🙂

Хорошо, если вы знаете какая вам нужна емкость конденсатора и индуктивность катушки! Если нет, то не парьтесь, не ракету же строим, всё будет нормально.

Вот схема соединения конденсатора и дросселя.

При выборе конденсатора, убедитесь, что он подходит по напряжению, т.е. если вы подключаете LC-фильтр напрямую к LiPo аккумулятору, то конденсатор должен быть на напряжение не ниже (а лучше на 5-10 вольт выше, прим. перев), чем напряжение аккума. Что касается ёмкости, то, чем больше, тем лучше, думаю подойдёт 100 — 2000 мкФ.

Дроссель можно купить или сделать самому, для этого нужно ферритовое кольцо (англ.) и немного провода. Важно правильно выбрать диаметр и длину провода. В идеале нужно сделать как минимум полдюжины витков. А диаметр проводов выбирается исходя из максимальной силы тока.

Если вы сами наматываете катушку, то наматывайте только плюсовой провод. При намотке на ферритовое кольцо НЕ ЗАКАНЧИВАЙТЕ намотку на той же стороне где начали, выход должен быть с другой стороны.

Конденсатор подойдет любой электролитический. Их легко можно найти в старой аппаратуре или в компах. Или купите какой-нибудь на eBay, они очень дешевые. Лучше всего использовать конденсатор lowESR.

Проверьте, что подключили конденсатор со стороны выхода, там, где подключается нагрузка в виде камеры или видеопередатчика.

Заключение

LC-фильтры великолепны, их просто сделать и легко купить (они очень дешевые). Если у вас есть помехи в виде линий на видеосигнале с коптера, фильтр может снизить шум или даже полностью его убрать. Использование только конденсатора не всегда может решить проблему, так что лучше ставить LC-фильтр.

История изменений

  • Февраль 2014 — первая версия статьи
  • Июнь 2018 — обновление статьи, добавлены разные LC-фильтры
Калькулятор расчёта полосно-заграждающих режекторных фильтров на LC цепях

Что такое режекторный фильтр (он же полосно-заграждающий, он же - фильтр-пробка) и с чем его едят, мы определились на предыдущей странице, рассматривая пассивные и активные режекторные RC-фильтры.

Так же, как и в случаях с НЧ, ВЧ и полосовыми собратьями, LC режекторные фильтры обладают рядом достоинств, таких как: высокая стабильность, низкий уровень собственных шумов, а также возможность работы с широким спектром сигналов, включая СВЧ диапазоны.

Простейший представитель режекторного LC-фильтра 2-го порядка представлен на Рис.1.

Рис.1 Рис.2

Логика работы такого фильтра предельно проста.
На резонансной частоте fо= 1/2π√LС сопротивление параллельного колебательного контура, образованного катушкой индуктивности L и конденсатором C, принимает максимальное значение, соответственно максимальное значение принимает и коэффициент подавления сигнала на этой частоте.
Глубина режекции (подавления частоты fo) этого фильтра при работе на согласованную нагрузку, равную характеристическому сопротивлению колебательного контура ρ = √L/C , достигает 45 дБ.

На Рис.2 представлена схема Г-образного режекторного фильтра 4-го порядка.
Принцип работы этого фильтра основан на использовании резонансов напряжений и токов в последовательных и параллельных колебательных контурах. На частоте резонанса сопротивление параллельного плеча оказывается максимальным, а последовательного – минимальным, что и соответствует наибольшему затуханию цепи.
Глубина режекции в данной схеме уже может составлять величину 90 дБ.

Приведём таблицу для расчёта элементов этих фильтров.
Не забываем, что характеристическое сопротивление фильтра ρ должно равняться Rг =Rн.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ РЕЖЕКТОРНЫХ LC- ФИЛЬТРОВ 2-го и 4-го ПОРЯДКОВ

Для получения больших значений подавления центральной частоты (глубины режекции) используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено, или П-образное звено.
На Рис.3 приведены схемы типовых полосно-заграждающих LC-фильтров 6-го порядка Т-образной (слева) и П-образной (справа) структур с глубиной режекции - около 130 дБ.

Рис.3

Ничего не изменилось - последовательная ветвь обладает минимальным полным сопротивлением и оказывает шунтирующее воздействие на центральной частоте диапазона. Ее полное сопротивление начинает увеличиваться по обе стороны от частоты резонанса.
Параллельная же ветвь на центральной частоте имеет максимальное сопротивление, и оно уменьшается по обе стороны резонанса.

Центральная частота режекции равна fо= 1/2π√LС, характеристическое сопротивление ρ = √L/C , а значения частотозадающих элементов рассчитываются исходя из следующих равенств:
L1 = L3 = L/2,  L2 = L,  C1 = C3 = C×2,  C2 = C для Т-образного фильтра,
L1 = L3 = L×2,  L2 = L,  C1 = C3 = C/2,  C2 = C для П-образного фильтра.

Приведём таблицу для расчёта элементов и этих фильтров.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ РЕЖЕКТОРНЫХ Т- и П-образных LC- ФИЛЬТРОВ

Ширина полосы задержания представленных режекторных LC-фильтров составляет величину, примерно равную 50% от значения центральной частоты fo.

 

Сглаживающие фильтры выпрямителей блоков питания. Схемы, онлайн расчёт

Ёмкостные, индуктивно-ёмкостные, активные сглаживающие фильтры.
Схемы, свойства, онлайн калькулятор.

Потолковали мы основательно на предыдущей странице про разные виды диодных выпрямителей, перебросились парой фраз на тему простейших ёмкостных фильтров, а вопрос достижения параметра коэффициента пульсаций Кп   в пределах 10-5... 10-4 так и повис в воздухе - уж очень немалым получается номинал ёмкости сглаживающего конденсатора.

Коэффициент пульсаций выпрямленного напряжения Кп является важнейшим параметром выпрямителя. Его численное значение равно отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Напомню выдержку из печатного издания, приведённую на предыдущей странице:

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой "чистоты":
10-3... 10-2   (0,1-1%) - малогабаритные транзисторные радиоприёмники и магнитофоны,
10-4... 10-3   (0,01-0,1%) - усилители радио и промежуточной частоты,
10-5... 10-4  (0,001-0,01%) - предварительные каскады усилителей звуковой частоты и микрофонных усилителей.»

Помимо этого в характеристиках выпрямителей может использоваться и понятие коэффициента фильтрации (коэффициента сглаживания).
Коэффициент фильтрации, он же коэффициент сглаживания - величина, численно равная отношению коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра Кс = Кп-вхп-вых .
Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

В слаботочных цепях вопрос снижения пульсаций решается легко и кардинально - применением интегральных стабилизаторов. Параметр подавления пульсаций (Ripple Rejection) у подобных массовых ИМС составляет не менее 50дБ (в 360раз по напряжению), что при высокой "чистоте" выходного напряжения позволяет уменьшить ёмкости электролитов в 5-10 раз.

Если же у разработчика нет возможности (либо желания) включать в состав устройства стабилизаторы напряжения, то реальным подспорьем окажутся индуктивно-ёмкостные или активные сглаживающие фильтры.

Начнём с фильтров, выполненных из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов.
Индуктивно-ёмкостные  LC сглаживающие фильтры
Рис.1

На Рис.1а приведена схема простейшего ёмкостного сглаживающего фильтра. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку.

Для того чтобы не ограничиваться 50-ти герцовыми блоками питания, но и иметь возможность расчёта фильтров импульсных ИБП, приведу универсальные формулы, учитывающие частоту входного сигнала F:
С1 = Iн/(3,14×Uн×F×Кп) для однополупериодных выпрямителей и
С1 = Iн/(6,28×Uн×F×Кп) - для двухполупериодных.
Кп   - это коэффициент пульсаций, равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей, а
F   - частота переменного напряжения на входе диодного выпрямителя.

Переходим к индуктивно-ёмкостным LC фильтрам.
ВНИМАНИЕ!!!
Потребность в такого рода цепях возникает исключительно в случаях необходимости получить низкий уровень пульсаций в достаточно мощных сетевых блоках питания, либо в высокочастотных импульсных ИБП. Связано это с тем, что для эффективной работы LC-фильтра, индуктивное сопротивление катушки XL на частоте подавления стремятся сделать значительно больше Rн. А это, в свою очередь, приводит к тому, что в условиях низких частот и малых токов (высоких Rн) индуктивность дросселя получается необоснованно высокой.

Г-образный индуктивно-ёмкостной LC фильтр 2-го порядка (Рис.1б) обладает значительно лучшими фильтрующими свойствами по сравнению с обычным ёмкостным.
Произведение LC (Гн*мкФ) зависит от необходимого коэффициента сглаживания фильтра и определяется по приближенной формуле:
L1(Гн)×С1(МкФ) = 25000/(F2(Гц)×Кп) для однополупериодных выпрямителей и
L1×С1 = 12500/(F2×Кп) - для двухполупериодных, где
С1(МкФ)/L1(мГн) = 1000/Rн2(Ом).

Схема П-образного LC-фильтра приведена на Рис.1в. Сглаживающее действие П-образного LC-фильтра можно упрощённо представить как совместное действие двух фильтров, описанных выше, а коэффициент сглаживания - как произведение коэффициентов сглаживания звеньев: ёмкостного и Г-образного индуктивно-ёмкостного.
Наилучшими фильтрующими свойствами обладают LC-фильтры Чебышева. Напишем формулу, исходя из рекомендаций, изложенных на странице   ссылка на страницу:
С1 = С2 ;   С1(МкФ)/L1(мГн) = 1176/Rн2(Ом).

Уменьшить напряжение пульсаций на выходе однозвенного П-образного LC-фильтра можно, включив параллельно дросселю L1 неполярный конденсатор С3 (Рис.1г), который вместе с индуктивностью катушки образует режекторный фильтр. Если ёмкость конденсатора С3 выбрать такой, чтобы резонансная частота контура L1-С3 равнялась частоте пульсаций (F при однополупериодном выпрямлении или 2F при двухполупериодном), то большая часть напряжения пульсаций задержится этим контуром и лишь незначительная перейдёт в нагрузку.
Итак:    С3 = 1/(39,44×L1×F2) для однополупериодных выпрямителей и
С3 = 1/(9,86×L1×F2) - для двухполупериодных.
Все остальные номиналы элементов - такие же, как в предыдущей схеме.

Давайте сдобрим пройденный материал онлайн таблицей.

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ СЛАЖИВАЮЩЕГО ФИЛЬТРА БЛОКА ПИТАНИЯ.

Транзисторные фильтры по сравнению с ёмкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций. Они позволяют уменьшить в десяток раз (при том же уровне пульсаций) номинал сглаживающего конденсатора, либо уменьшить в аналогичное количество раз амплитуду пульсаций при неизменном значении ёмкости.
Активные транзисторные сглаживающие фильтры
Рис.2

На Рис.2а представлена схема наиболее распространённого транзисторного фильтра.

Напряжение с высокой амплитудой пульсаций, поступающее на коллектор транзистора, по сути, является напряжением питания эмиттерного повторителя, образованного Т1.
В это же самое время цепь базы питается через резисторы смещения и интегрирующую цепь R1C1, которая сглаживает пульсации напряжения на базе. Чем больше постоянная времени T=R1C1, тем меньше пульсации напряжения на базе, а так как устройство представляет собой эмиттерный повторитель, то на выходе фильтра пульсации будут столь же малыми, как и на базе.
Для того, чтобы снизить зависимость напряжения на выходе фильтра от уровня передаваемой мощности, ток через делитель R1R2 выбирают в 5…10 раз большим, чем ток, ответвляющийся в базу при минимальном сопротивлении нагрузки.
При расчёте номиналов элементов делителя, следует исходить из напряжения на базе транзистора:
Uб = Uвх - Uвх пульсаций - (2,5...3В) .
В этом случае будет обеспечена работа регулирующего транзистора в активном режиме, а падение напряжения на нём составит величину:
Uкэ = Uвх пульсаций + (3,1...3,6В) .
Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Из формулы видно, что для обеспечения высокого КПД активного сглаживающего фильтра, на вход устройства следует подавать уже отфильтрованное до определённого уровня напряжение.
На практике это делается включением на вход простейшего ёмкостного фильтра (Рис.1а), уровень пульсаций которого можно посчитать на приведённом выше калькуляторе.

Эффективность активных сглаживающих фильтров напрямую зависит от величины коэффициента усиления транзистора. Чем выше h31 полупроводника, тем больших величин можно выбрать номиналы резисторов R1, R2 - тем лучшими фильтрующими свойствами будет обладать схема. Поэтому в данной ситуации не стоит даже рассматривать транзисторы с h31

Для дальнейшего улучшения фильтрующих свойств сглаживающего фильтра можно применить двухзвенный RC-фильтр в цепи базы транзистора (Рис.2б).
Здесь сумма значений сопротивления резисторов R1 и R2 равна сопротивлению резистора R1 в предыдущем устройстве, а сопротивление резистора R3 равно сопротивлению резистора R2 в фильтре (Рис.2а).

Ещё эффективней будет работать транзисторный фильтр, у которого в цепь базы транзистора вместо R2 (Рис.1а), либо R3 (Рис.1б) включить стабилитрон с напряжением пробоя, равным значению, рассчитанному для резистивного делителя.

Активные транзисторные сглаживающие фильтры

 

1.3. Описание lc-фильтров

Фильтры более высокого качества реализуются на основе катушек индуктивности и конденсаторов. В LC-фильтр могут входить также и резисторы. Связь входной и выходной цепей большинства LC-фильтров соответственно с источником сигнала и с нагрузкой производится таким образом, чтобы значения их реактивных или полных сопротивлений были равны.

На рис. 4 приведена схема и амплитудно-частотная характеристика типового Г - образного LC-фильтра нижних частот.

Рис. 4. Схема и АЧХ Г - образного низкочастотного фильтра.

Расчет такого фильтра производится по следующим формулам:

Все LC-фильтры обладают тем преимуществом, что на переменном токе конденсаторы и катушки индуктивности работают взаимообратно, т.е. при увеличении частоты сигнала индуктивное сопротивление возрастает, а емкостное падает. Таким образом, в LC-фильтре нижних частот реактивное сопротивление параллельного элемента при увеличении частоты сигнала уменьшается и этот элемент шунтирует высокочастотные сигналы. На низких частотах реактивное сопротивление параллельного элемента достаточно высокое. Последовательный элемент обеспечивает прохождение низкочастотных сигналов, а для сигналов высоких частот его реактивное сопротивление велико.

Простой Г - образный фильтр не обеспечивает достаточную крутизну амплитудно-частотной характеристики. Для увеличения крутизны в основную Г-образную структуру вводят дополнительную катушку индуктивности, как показано на рис. 5. Такой фильтр называется Т-образным.

Рис. 5. Т - образный НЧ LC-фильтр.

В Т - образном фильтре значение конденсатора С такое же, как и в исходной Г-образной структуре, и все ее расчетные формулы сохраняются. Суммарная индуктивность катушек L1 и L2 должна быть эквивалентна индуктивности единственной катушки исходной Г-образной структуры. Обычно требуемая общая индуктивность распределяется между двумя этими катушками поровну таким образом, чтобы каждая из катушек в Т - образном фильтре нижних частот имела индуктивность в два раза меньше, чем катушка в Г - образном фильтре.

Крутизну амплитудно-частотной характеристики можно увеличить также путем введения в цепь дополнительного конденсатора. Такой фильтр называется П-образным (рис. 6.).

Рис. 6. П-образный низкочастотный LC-фильтр.

В П - образном фильтре значение индуктивности L такое же, как и в исходной Г-образной структуре, тогда как суммарная емкость конденсаторов С1 и С2 должна быть эквивалентна емкости конденсатора исходной Г - образной структуры. Обычно требуемая общая емкость распределяется между двумя этими конденсаторами поровну таким образом, чтобы каждый из конденсаторов в П - образном фильтре имел емкость, равную половине емкости конденсатора в Г - образном фильтре.

На рис. 7 приведена схема и амплитудно-частотная характеристика типового Г - образногоLС-фильтра верхних частот.

Рис. 7. Схема и АЧХ высокочастотного Г-образного LC-фильтра.

Расчет Г - образного LС-фильтра верхних частот производится по следующим формулам:

В этом фильтре при увеличении частоты сопротивление последовательного элемента уменьшается. Он пропускает высокочастотные сигналы, а для сигналов низких частот его реактивное сопротивление велико. Параллельный элемент оказывает шунтирующее влияние на сигналы низких частот, а для высокочастотных сигналов его реактивное сопротивление велико.

Для увеличения крутизны амплитудно-частотной характеристики в Г - образную структуру можно ввести дополнительный конденсатор, как показано на рис. 8.

Рис. 8. Т - образный высокочастотный LC-фильтр.

Такой фильтр имеет Т - образную структуру. В Т - образном фильтре значение индуктивности L не отличается от ее значения в исходной Г - образной структуре и все расчетные формулы остаются такими же. Суммарная емкость конденсаторов С1 и С2 должна быть эквивалентна емкости одиночного конденсатора исходной Г-образной структуры. Обычно эта требуемая общая емкость распределяется поровну между двумя конденсаторами так, что Т - образном фильтре верхних частот каждый конденсатор имеет емкость, равную удвоенному значению емкости в Г - образной структуре.

Крутизну амплитудно-частотной характеристики фильтра можно также повысить путем введения в схему дополнительной катушки индуктивности, как показано на рис. 9, образуя П - образный фильтр.

Рис. 9. П-образный высокочастотный LC-фильтр.

В П - образном LC-фильтре значение емкости конденсатора не изменяется, а суммарная индуктивность катушек L1 и L2 должна быть эквивалентна индуктивности одиночной катушки исходной Г-образной структуры. Обычно требуемая общая индуктивность распределяется поровну между двумя катушками так, что каждая из них имеет индуктивность, равную удвоенному значению индуктивности Г - образной структуры.

Работа полосно-заграждающего (режекторного) фильтра основана на различии зависимостей полных сопротивлений параллельной и последовательной резонансных цепей от частоты. Полное сопротивление параллельной LC-цепи на резонансной частоте максимально, тогда как у последовательной цепи оно минимально. Эти две LC-цепи, соединенные определенным образом (рис. 10), образуют Г - образный режекторный фильтр.

Рис. 10. Г - образный режекторный LC-фильтр.

На центральной частоте требуемого диапазона полное сопротивление последовательной LC-цепи (она включена параллельно нагрузке) минимально, и она оказывает шунтирующее воздействие и ослабляет сигналы. Полное сопротивление параллельной LC-цепи (которая включена последовательно с нагрузкой) на центральной частоте требуемого диапазона максимально, и она препятствует прохождению сигналов.

Т-образные и П-образные полосно-пропускающие фильтры (рис. 11) обладают более высокой крутизной амплитудно-частотной характеристики.

Расчет полосно-пропускающих LC-фильтров производится по следующим формулам:

Рис.11. Полосовые П- и Т-образные LC – фильтры.

Сглаживающий фильтр — Википедия. Что такое Сглаживающий фильтр

Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока. Простейшим сглаживающим фильтром является электролитический конденсатор большой ёмкости, включённый параллельно нагрузке. Нередко параллельно электролитическому конденсатору устанавливается плёночный (или керамический) ёмкостью в доли или единицы микрофарада для устранения высокочастотных помех.

Общие сведения

В любой схеме выпрямления на выходе выпрямленное напряжение помимо постоянной составляющей содержит переменную, называемую пульсацией напряжения[1]. Пульсация напряжения столь значительна, что непосредственно питание нагрузки от выпрямителя возможно относительно редко (при зарядке аккумуляторных батарей, для питания цепей сигнализации, электродвигателей и т. д.) — там, где приёмник энергии не чувствителен к переменной составляющей выпрямленного напряжения. Пульсация напряжения резко ухудшает, а чаще вообще нарушает работу радиоэлектронных устройств. Для уменьшения переменной составляющей выпрямленного напряжения, то есть для ослабления пульсации, между выпрямителем и нагрузкой устанавливается сглаживающий фильтр, который обычно состоит из реактивных сопротивлений (то есть тех, которые включают в себя индуктивность и ёмкость). Данный фильтр действует как фильтр нижних частот[2][3], обрезая лишние гармоники.

Переменная составляющая выпрямленного напряжения в общем случае представляет собой совокупность ряда гармоник с различными амплитудами, сдвинутых по отношению к первой на разные углы (см. Ряд Фурье). При этом первая гармоника имеет амплитуду, во много раз превосходящую амплитуды высших гармоник. В зависимости от назначения аппаратуры предъявляют различные требования к величине и характеру пульсации выпрямленного напряжения. Чаще всего для радиотехнической аппаратуры качество сглаживания характеризуется величиной максимально допустимой амплитуды переменной составляющей. В этом случае фильтры рассчитывают на максимальное подавление основной гармоники.

Псофометрический коэффициент помех

При оценке помех, проникающих из цепей питания в телефонные каналы, необходимо учитывать не только амплитуду напряжения данной гармоники, но и такой параметр, как частота. Это объясняется тем, что микротелефонные цепи и ухо человека обладают различной чувствительностью к колебаниям разной частоты, даже если их амплитуда одинакова. В связи с этим вводят понятие псофометрического коэффициента помех a k {\displaystyle a_{k}} [4], который зависит от частоты и величина которого определяется экспериментально с учётом микротелефона и человеческого уха.

Эффективное значение псофометрического напряжения пульсации U на выходе выпрямителя будет равно:

U = 0 , 5 [ ( U 01 m ⋅ a 1 ) 2 + ( U 02 m ⋅ a 2 ) 2 + . . . + ( U 0 k m ⋅ a k ) 2 ] {\displaystyle U={\sqrt {0,5[(U_{01m}\cdot a_{1})^{2}+(U_{02m}\cdot a_{2})^{2}+...+(U_{0km}\cdot a_{k})^{2}]}}}

где

a 1 . . . , a k {\displaystyle a_{1}...,a_{k}}  — псофометрические коэффициенты для соответствующих гармоник;
U 1 . . . , U k {\displaystyle U_{1}...,U_{k}}  — амплитуды соответствующих гармоник выпрямленного напряжения.

Коэффициент сглаживания

Основным параметром сглаживающих фильтров является коэффициент сглаживания, которым называется отношение коэффициента пульсации на входе ( K B x ) {\displaystyle (K_{Bx})} к коэффициенты пульсации на выходе ( K H ) {\displaystyle (K_{H})} , то есть на нагрузке.

K C = K B x / K H a = {\displaystyle K_{C}=K_{Bx}/K_{Ha}=} ( U 01 m / U 0 ) / ( U H 1 m / U H ) {\displaystyle (U_{01m}/U_{0})/(U_{h2m}/U_{H})}

где U 01 m , U H 1 m {\displaystyle U_{01m},U_{h2m}} -это амплитуды первой гармоники напряжений на входе и выходе фильтра соответственно; U 0 , U H {\displaystyle U_{0},U_{H}}  — постоянные составляющие напряжений на входе и выходе фильтра.

Виды сглаживающих фильтров

Индуктивный сглаживающий фильтр

Индуктивный фильтр состоит из дросселя, включенного последовательно с нагрузкой. Под дросселем подразумевается обычная катушка, характеризующаяся определённой индуктивностью[5]. Сглаживающее действие такого фильтра основано на возникновении в дросселе ЭДС самоиндукции, препятствующей изменению выпрямленного тока. Дроссель выбирается так, чтобы индуктивное сопротивление его обмотки ( X L = m w c L {\displaystyle X_{L}=mw_{c}L} ) было больше сопротивления нагрузки R H {\displaystyle R_{H}} . При выполнении этого условия большая часть переменной составляющей падает на обмотке дросселя. На сопротивлении нагрузки выделяется в основном постоянная составляющая выпрямленного напряжения U 0 {\displaystyle U_{0}} и переменная составляющая, величина которой намного меньше переменной составляющей напряжения, падающего на обмотке дросселя.

Коэффициент сглаживания такого фильтра равен K C = {\displaystyle K_{C}=} ( R H ) 2 + ( m w c L ) 2 R H {\displaystyle {\sqrt {(R_{H})^{2}+(mw_{c}L)^{2}}} \over R_{H}}

где у нас

R H {\displaystyle R_{H}}  — сопротивление нагрузки

L {\displaystyle L}  — индуктивность обмотки дросселя

w c {\displaystyle w_{c}}  — угловая частота

m {\displaystyle m}  — коэффициент зависящий от схемы выпрямителя и показывающий, во сколько раз частота основной гармоники выпрямленного напряжения больше частоты тока сети.

Ёмкостной сглаживающий фильтр

m Ёмкостной сглаживающий фильтр.
С — фильтрующий конденсатор, R — сопротивление нагрузки.

Ёмкостной фильтр обычно анализируют не отдельно, а совместно с выпрямителем. Его сглаживающее действие основано на накоплении электрической энергии в электрическом поле конденсатора[6] и его разряде при отсутствии тока через выпрямитель (вентиль) в моменты времени, когда мгновенное напряжение на выходе выпрямителя ниже напряжения на конденсаторе, через сопротивление нагрузки ( R ) {\displaystyle (R)} . Причём конденсатор подключается параллельно к нагрузке.

Конденсатор имеет реактивное сопротивление:

X C = 1 / ( ω ⋅ C ) {\displaystyle X_{C}=1/(\omega \cdot C)} ,

где C {\displaystyle C}  — ёмкость конденсатора.

Коэффициент сглаживания такого фильтра будет следующим:

K C = {\displaystyle K_{C}=} K 1 K 2 {\displaystyle K_{1} \over K_{2}} = {\displaystyle =} ( 2 m 2 − 1 {\displaystyle 2 \over m^{2}-1} ) / {\displaystyle /} ( H r C {\displaystyle H \over rC} )

где

K 1 {\displaystyle K_{1}}  — коэффициент пульсаций на входе выпрямителя при отсутствии ёмкости

K 2 {\displaystyle K_{2}}  — коэффициент пульсаций на выходе выпрямителя при наличии ёмкости.

При увеличении m {\displaystyle m} коэффициент сглаживания индуктивного фильтра увеличивается, а ёмкостного уменьшается. Поэтому ёмкостной фильтр выгодно применять при выпрямлении однофазных[7], а индуктивный при выпрямлении многофазных токов.

При увеличении R H {\displaystyle R_{H}} сглаживающее действие ёмкостного фильтра увеличивается, а индуктивного уменьшается. Поэтому ёмкостной фильтр выгодно применять при малых, а индуктивный фильтр — при больших токах нагрузки.

LC-фильтр

Наиболее широко используют Г-образный индуктивно-ёмкостной фильтр. Для сглаживания пульсаций таким фильтром необходимо, чтобы ёмкостное сопротивление конденсатора для низшей частоты пульсации было много меньше сопротивления нагрузки, а также много меньше индуктивного сопротивления дросселя для первой гармоники.

При выполнении этих условий, пренебрегая активным сопротивлением дросселя, коэффициент сглаживания такого Г-образного фильтра будет равен

K c = m 2 ω c 2 L C − 1. {\displaystyle K_{c}=m^{2}\omega _{c}^{2}LC-1.}

Так как 1 / L C = ω 0 {\displaystyle 1/{\sqrt {LC}}=\omega _{0}}  — собственная частота фильтра, то

K c = ( m ω c / ω 0 ) 2 − 1. {\displaystyle K_{c}=(m\omega _{c}/\omega _{0})^{2}-1.}

Одним из основных условий выбора L {\displaystyle L} и C {\displaystyle C} является обеспечение индуктивной реакции фильтра. Такая реакция необходима для большей стабильности внешней характеристики выпрямителя, а также в случаях использования в выпрямителях германиевых, кремниевых[8] или ионных вентилей.

Для обеспечения индуктивного импеданса необходимо выполнение неравенства:

L > 2 R H / ( m 2 − 1 ) m ω c . {\displaystyle L>2R_{H}/(m^{2}-1)m\omega _{c}.}

При проектировании фильтра необходимо также обеспечить такое соотношение реактивных сопротивлений дросселя и конденсатора, при которых не мог бы возникнуть резонанс на частоте пульсаций выпрямленного напряжения и частоте изменения тока нагрузки.

{\displaystyle L>2R_{H}/(m^{2}-1)m\omega _{c}.} П-образный LC-фильтр.

П-образный L C {\displaystyle LC} фильтр можно представить в виде двухзвенного, состоящего из ёмкостного фильтра с ёмкостью C 0 {\displaystyle C_{0}} и Г-образного с L {\displaystyle L} и C 1 {\displaystyle C_{1}} .

Коэффициент сглаживания такого фильтра будет равен:

K c = {\displaystyle K_{c}=} 2 r C 0 ( m 2 − 1 ) H {\displaystyle 2rC_{0} \over (m^{2}-1)H} ( m 2 ω c 2 L C 1 − 1 ) . {\displaystyle (m^{2}\omega _{c}^{2}LC_{1}-1).}

В П-образном фильтре наибольшей величины коэффициент сглаживания достигает при равенстве ёмкостей C 1 = C 0 . {\displaystyle C_{1}=C_{0}.}

При необходимости обеспечения большого коэффициента сглаживания целесообразно применение многозвенного фильтра, — фильтра, составленного из двух и более однозвенных фильтров. Коэффициент сглаживания такого фильтра будет равен:

K c = {\displaystyle K_{c}=} K c 1 ⋅ K c 2 ⋅ K c 3 ⋅ . . . ⋅ K c n , {\displaystyle K_{c1}\cdot K_{c2}\cdot K_{c3}\cdot ...\cdot K_{cn},}

то есть, общий коэффициент сглаживания будет равен произведению коэффициентов сглаживания всех последовательно соединённых фильтров.

Если все звенья фильтра состоят из одинаковых элементов ( C 1 = C 2 = . . . = C n {\displaystyle C_{1}=C_{2}=...=C_{n}} и L 1 = L 2 = . . . = L n {\displaystyle L_{1}=L_{2}=...=L{n}} ), что практически наиболее целесообразно, то:

K c 1 = K c 2 = . . . = K c n {\displaystyle K_{c1}=K_{c2}=...=K_{cn}} и K c = K z v n = ( m ω c ) 2 n ( L z v C z v ) n {\displaystyle K_{c}=K_{zv}^{n}=(m\omega _{c})^{2n}(L_{zv}C_{zv})^{n}}

где K z v {\displaystyle K_{zv}}  — коэффициент сглаживания каждого звена; C z v {\displaystyle C_{zv}} , L z v {\displaystyle L_{zv}}  — соответственно индуктивность и ёмкость каждого звена; n {\displaystyle n}  — число звеньев.

RC-фильтр

В выпрямителях[9] малой мощности в некоторых случаях применяют фильтры, в состав которого входит активное сопротивление и ёмкость. В таком фильтре относительно велико падение напряжения и потери энергии на резисторе R {\displaystyle R} , но габариты и стоимость такого фильтра меньше, чем индуктивно-ёмкостного. Коэффициент сглаживания такого фильтра будет равен:

K c = {\displaystyle K_{c}=} m w c C R {\displaystyle mw_{c}CR} R H R H + R {\displaystyle R_{H} \over R_{H}+R}

Значение сопротивления фильтра R {\displaystyle R} определяется исходя из оптимальной величины его коэффициента полезного действия. Оптимальное значение КПД лежит в пределах от 0,6 до 0,8. Расчёт П-образного активно-ёмкостного фильтра производится так, как и в случае П-образного LC-фильтра, путём разделения этого фильтра на ёмкостной и Г-образный RC-фильтры.

Сглаживающий реактор

Статическое электромагнитное устройство, предназначенное для использования его индуктивности в электрической цепи с целью уменьшения содержания высших гармоник (пульсаций) в выпрямленном токе. Применяется на тяговых подстанциях постоянного тока, на электроподвижном составе (электровозы, электропоезда) переменного тока. Сглаживающий реактор обычно соединяется последовательно с выпрямителем, таким образом, через него протекает весь ток нагрузки.

Примечания

Литература

  • Китаев В. Е.,Бокуняев А. А., Колканов М. Ф. Электропитание устройств связи. — М.: «Связь», 1975. — С. 328.
  • Бушуев В. М., Деминский В. А., Захаров Л. Ф. Электропитание устройств и систем телекоммуникаций. — М.: «Связь», 2009. — С. 383.
  • Раймонд Мэк. Импульсные источники питания. — М.: Издательский дом «Додэка XXI», 2008. — С. 272.
  • Митрофанов А. В., Щеголев А. И. Импульсные источники вторичного электропитания в бытовой радиоаппаратуре. — М.: Радио и Связь, 1985. — С. 37.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.

См. также

Ссылки

Полезные статьи

Видео

Примечания

Все сглаживающие фильтры применяются в зависимости от мощности нагрузки

LC- () »:



,, LC- () ().

,,,,,,.

-.-, - - ().

- LC-

-, L C. - (L C), L C.

L C, 100,.

, 0,7, (). ,

, L C,.

,.

, 0,7. 0,3 / 0,7,.

, LC-,. LC-,. LC-.

- LC-

, -. -,.

- LC-,, ().

- LC-

-,,, -. , - (),.

(-),.

.

:

:

Telegram

Facebook:

.

LC

:
:
:
-.: F = 1 / (2π (LC)), L, C -

,

,
,

,

,
,

,

,
.

Отправить ответ

avatar
  Подписаться  
Уведомление о