Логические пробники: Простые логические пробники | Кое-что из радиотехники

Содержание

Простые логические пробники | Кое-что из радиотехники

   Для проверки схем, в которых используются цифровые интегральные микросхемы, необходимы устройства, определяющие напряжения высокого и низкого уровней ( соответственно логические 1 или 0 ). Для их индикации используют разнообразные логические пробники, т. е. пробники, реагирующие лишь на уровни напряжений логических сигналов.


   На Рис.1 изображена схема самого простого логического пробника. В нём всего лишь один транзистор и светодиод, включённый в коллекторную цепь транзистора.
   Если на щупы ХР2 и ХР3 подано напряжение питание, но щуп ХР1 никуда не подключен, светодиод горит “вполнакала”. Такой режим обеспечивается подбором резистора R2, задающим напряжение смещения на базе транзистора. Когда же щуп ХР1 будет касаться вывода микросхемы, на которой логический 0, транзистор закроется и светодиод погаснет. И, наоборот, при подключении этого щупа к цепи с логической 1 транзистор откроется настолько, что светодиод вспыхнет ярким светом.


   Данные режимы справедливы, если прибор питается от измеряемой схемы. Если пробник имеет автономное питание, например батарея 3336, щуп ХР3 дополнительно соединяют с общим проводом конструкции.
   Пробник можно использовать и для “прозвонки” монтажа; тогда его питают от батареи, а щупом ХР1 и проводником, соединяющим с щупом ХР3, касаются нужных участков проверяемых цепей. Если между ними есть соединение, светодиод гаснет.
   В пробнике можно использовать любой маломощный кремниевый транзистор со статическим коэффициентом передачи тока не менее 100. Вместо АЛ102Б подойдёт любой светодиод серий АЛ102, АЛ307. Резистор R2 подбирают таким сопротивлением, чтобы светодиод горел “вполнакала”.


   Другая конструкция простого пробника ( Рис.2 ) содержит два светодиода. Пробник позволяет не только контролировать логические уровни в разных цепях устройства, но и проверять наличие импульсов, а также приблизительно оценивать их скваженность ( отношение периода следования импульсов к их длительности ). Кроме того, он позволяет фиксировать и “третье состояние”, когда логический сигнал находится между 0 и 1. В этих целях в пробнике в пробнике установлены диоды разного свечения: зелёного (HL1) и красного (HL2).
   На транзисторе VT1 выполнен усилитель, повышающий входное сопротивление пробника. Далее следуют электронные ключи на транзисторах VT2 и VT3, управляющие диодами соответствующим свечением..
   Если напряжение на щупе ХР1 относительно общего провода ( минус источника питания ) более 0,4 В, но менее 2,4 В (“третье состояние”), транзистор VT2 открыт, светодиод HL1 не горит. В то же время транзистор VT3 закрыт, поскольку падение напряжения на резисторе R3 недостаточно для полного открывания диода VD1 и создания нужного смещения на базе транзистора. Поэтому светодиод HL2 также не светится.

   Как только напряжение на входном щупе пробника станет менее 0,4 В транзистор VT2 закроется и загорится светодиод HL1, индицируя логический 0. При напряжении на щупе ХР1 более 2,4 В открывается транзистор VT2, загорается светодиод HL2 – он индицирует логическую 1.
   В случае поступления на вход пробника импульсного напряжения скваженность импульсов приблизительно оценивают по яркости свечения того или другого светодиода.
   Кроме указанных на схеме транзисторов можно применить транзисторы серий КТ312, КТ201 (VT1, VT3), КТ203 (VT2), любой кремниевый диод (VD1), светодиоды серий АЛ102, АД307, АЛ314 соответственного свечения.
   Налаживая пробник, подбором резистора R1 добиваются отсутствия свечения светодиодов в исходном состоянии – при отключённом щупе
ХР1
. Подав же на этот щуп напряжение 2,4 В ( относительно щупа ХР3 ), подбором резистора R6 добиваются зажигания свечения светодиода HL2. Яркость свечения, а значит предельно допустимый ток через светодиод, ограничивают резисторами R4 и R7.

ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.13 – 14.

Похожее

СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА

   Всем привет. Сегодня хочу представить вам логический пробник, которым пользуюсь уже пару лет. Не всегда радиолюбитель может позволить приобрести себе необходимые приборы, предназначенные для диагностики и настройки радиоэлектронных устройств. Вот и приходится придумывать разнообразные приставки к уже имеющимся в домашней радиолаборатории измерительным приборам, или паять собственные приборы, позволяющие проводить измерения или только регистрацию уровней необходимой величины.

Принципиальная схема логического пробника

Принципиальная схема логического пробника

Печатная плата логического пробника

Печатная плата логического пробника

   Часто использование пробников даже более оправдано, чем измерительных приборов, поскольку бывает достаточно проконтролировать лишь наличие сигнала, а его точное значение и параметры необязательно. Получается, что в подобных ситуациях точная измерительная техника только зря отнимает внимание и время.

СХЕМА собранного самодельного ЛОГИЧЕСКОГО ПРОБНИКА

   Пробник может использоваться для настройки или наладки цифровых радиоэлектронных устройств, и проверки, есть ли сигнал на входе и выходе того или иного прибора (например для различных мигалок, мультивибраторов, сирен). Он имеет небольшие габариты, у меня тестер поместился в коробочке из-под тик-так

.

 ЛОГИЧЕСКИЙ ПРОБНИК

   Логический пробник позволяет отображать состояние логического нуля и логической единицы, наличие импульса и превышение допустимого уровня логического сигнала. Информация выдается на 2 светодиода зеленого ( 1 ) и красного ( 0 ) цвета. Пробник может требовать небольших настроек резистором R5. Я использовал микросхему К561ЛА7, у кого таких нет, то рядом со схемой написаны аналоги микросхем, которые можно использовать. Но именно ЛА7, по моему мнению, лучше всего использовать. Пробник работает от 3 до 15 вольт.

Щуп для ЛОГИЧЕСКОГО ПРОБНИКА

   Пользоваться им довольно легко. Нужно подключиться крокодильчиками к плюсу и минусу платы, которую нам нужно диагностировать. Затем щупом касаться до контрольных точек и смотреть, есть ли сигнал на выходе микросхем. Светодиоды на пробнике должны переключаться между собой с той частотой, которую выдает генератор импульсов.

Как своими руками спаять ЛОГИЧЕСКИЙ ПРОБНИК

   Если импульсов нет, то на вход микросхемы не подается сигнал или микросхема вышла из строя. Если кто не знает что такое контрольные точки — это те точки, из которых выходит сигнал из микросхемы, они обозначаются кружочком.

Пример схемы испытываемого устройства

Пример измерения логического пробника

   Вот на примере рассмотрим схему: точки обведены красным цветом — это выход сигнала с генератора. К ним нужно подключаться щупом, и тогда светодиоды на пробнике будут переключаться — значит генератор импульсов работает. И микросхема в этом случае так же работает. Спасибо за внимание, автор материала Игорь М.

   Форум по микросхемам

   Обсудить статью СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА


ЛОГИЧЕСКИЕ ПРОБНИКИ | Техника и Программы

Логический пробник, разработанный С. Бирюковым, предназначен для инди­кации импульсов, амплитуда которых имеет «нормальную» величину, т. е. напряже­ния вершин превышают 2,4 В, а основания лежат ниже 0,4 В. Индикация осуществ­ляется в виде знаков «0» и «1», которые указывают соответствующие уровни. Точка индицирует наличие импульсов.

Схема пробника приведена на рис. 1. На входе включен резистор R1, предохра­няющий пробник от перегрузок. Эмиттерные повторители V1 и V2 служат для уменьшения нагрузки на проверяемый каскад, а также для сдвига порога переклю­чения логических элементов D1.1 и D1.2. Дополнительный сдвиг достигается включением кремниевого диода V3 и германиевого V5. В результате при входном напряжении выше 2,4 В элемент D1.1 включается и зажигается сегмент d семи­сегментного индикатора Н1, индицируется знак «1» (при боковом положении инди­катора). При напряжении ниже 2,4 В элемент D1.1 закрывается, сегмент d гаснет. При снижении входного напряжения ниже 0,4 В выключается элемент D1.2, вклю­чается D1.3 и зажигаются четыре сегмента (a, b, g, f) индикатора и индицируется знак «0».

Рис. 2

При наличии импульсов на входе пробника триггер на элементах D2.1 и D1.4 переключается в моменты достижения напряжения на входе пороговых величин (0,4 и 2,4 В). В момент перехода напряжения на входе пробника из состояния «1» в состояние «0» на входе элемента совпадения D2.2 кратковременно появляются две логические «1», элемент D2.2 включается и короткий (порядка 70 нс) отрица­тельный импульс .с его выхода запускает ждущий мультивибратор на элементах D2.3 и D2.4. Выходной сигнал мультивибратора вызывает свечение точки инди­катора.

Если амплитуда входных импульсов ниже нормальной, триггер не переключает­ся и точка индикатора не светится.

Диод Обслужит для защиты микросхем при включении питания в неправильной полярности.

Пробник смонтирован на печатной плате с размерами 7,5×80 мм (рис. 2). Выво­ды большинства элементов, расположенных на одной стороне печатной платы, загнуты через край платы и подпаяны к контактным площадкам, находящимся с обратной стороны платы. Игла-щуп впаяна в паз печатной платы. Конденсатор С2 состоит из двух соединенных параллельно конденсаторов К53-16 по 10 мкФ.

В пробнике можно применить транзисторы КТ361 и КТ373 с любыми буквенны­ми индексами, возможно применение и других кремниевых высокочастотных тран­зисторов соответствующего типа проводимости. Диоды можно заменить на любые маломощные кремниевые (V3t V4) и германиевые (V5, V6), микросхемы — на ана­логичные других ТТЛ серий.

Исследовать логические устройства в статическом и динамическом режимах позволяет пробник, предложенный Н. Пастушенко и А, Жижченко. Принципиаль­ная схема пробника изображена на рис. 3.

При отсутствии сигнала на входе элемента D1.1 — низкий логический уровень, на входах элементов D1.2,D1.3, D1.4 — высокий. Сегменты индикатора не светят­ся. Если на вход пробника поступает уровень, соответствующий логической «1», то на выходе элемента D1.1 будет логический «0», на выходе D1.2 — логическая «1», элементы D1.3 и 01.4 остаются в первоначальном состоянии. При этом све­тятся сегменты Ь и с и индицируется цифра «1». Когда на входе пробника будет логический «0», то на выходе элементов D1.2, D1.3 и D1.4 будет высокий логичес­кий уровень и будут светиться сегменты а, Ь, с, d, е, f.

56

Рис. 5

При подаче на вход пробника импульсов с частотой до 25 Гц чередование цифр «0» и «1» различимо глазом. При частотах свыше 25 Гц начинает сказываться влия­ние конденсатора С1. В результате яркость свечения сегмента d резко уменьшает­ся и индицируется буква «П», обозначающая последовательность импульсов с вы­сокой частотой на входе пробника.

Пробник питается непосредственно от испытуемого устройства. При наличии питания +5 В светится сегмент h (точка).

В пробнике использованы резисторы МЛТ-0,125, конденсатор К50-6. Вместо микросхемы К133ЛА8 можно применить микросхему К155ЛА8.

На рис. 4 изображено расположение деталей на печатной плате из двусторон­него фольгированного стекло текстолита, а на рис. 5 — чертежи обеих сторон пе­чатной платы.

Пробник с достаточно большим входным сопротивлением и высокой четкостью срабатывания при определенных уровнях входного напряжения предложен

В. Пиратинским и Со Шахновским. Зона перехода из состояния, при котором ин­дикаторный светодиод горит с полной яркостью, в состояние, при котором свето­диод не горит, составляет 30 мВ для верхней границы логического уровня «0»’ (0,4 В) и 80 мВ для нижней границы логического уровня «1» (2,4 В).

Пробник отличается малой потребляемой энергией от источника питания про­веряемого устройства, составляющей не более 12 мА.

На рис. 6 приведена принципиальная электрическая схема пробника. Она со­стоит из двух независимых пороговых схем, одна из которых соответствует уровню «0», а другая — уровню «1».

Когда напряжение на входе пробни­ка имеет величину 0…0.4 В, транзисто­ры V7 и V8 пороговой схемы «1» закры­ты и красный светодиод V5 не горит. В пороговой схеме «0» транзистор V9 закрыт, а транзистор V10 открыт и го­рит зеленый светодиод V6, индицируя наличие логического уровня «О».

Пробник собран на двусторонней печатной плате из фольгированного стекло­текстолита толщиной 1,5 мм. Расположение проводников со стороны деталей по­казано на рис. 8,а с противоположной стороны — на рис. 8,6.

В пробнике применены микросхемы серии К155, резисторы МЛТ-0,125, кон­денсаторы КМ5а (С2, СЗ), КМ6 (С7, С4) и К53-4 (С5, С6).

Журнал«Радио»,1980,№3, с. 30

Источник: Измерительные пробники. Сост. А. А. Халоян.— М.: ИП РадиоСофт, ЗАО «Журнал «Радио», 2003.— 244 с: ил.— (Радиобиблиотечка. Вып. 20)

Простой логический пробник | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Для наладки тактового генератора появилась необходимость в логическом пробнике. На просторах интернета ничего толкового не нашел, так как схемы, которые я брал с сайтов, не работали, а если и работали, то не так как это было необходимо. Поэтому было решено разработать свою схему логического пробника, внешний вид которого Вы видите на фото ниже.

Внешний вид логического пробника

Щуп логического пробника

Индикация логического пробника

Схема пробника реализована на Советских микросхемах К176ИЕ8 (СD4017) и К155ЛА3 (SN7400), которые у меня оказались в наличии.

Микросхемы К155ЛА3 и К176ИЕ8

Микросхема К155ЛА3 состоит из четырех элементов 2И-НЕ, питающихся от общего источника постоянного тока, при этом каждый из элементов работает как самостоятельная микросхема. Все четыре элемента имеют по три вывода, где каждый элемент определяется по номерам выводов. Так, например, входные выводы 1, 2 и выходной вывод 3 относятся к первому элементу, а входные выводы 4, 5 и выходной 6 – ко второму элементу и т.д.

Выводы 7 и 14 микросхемы, служащие для подачи питания, на схемах не обозначают, так как ее элементы могут находиться в разных участках схемы устройства. На принципиальных схемах каждый элемент обозначают буквенно-цифровым индексом: DD1, DD2, DD3, DD4.

Цоколевка выводов микросхемы К155ЛА3

Микросхема К176ИЕ8 представляет собой десятичный счетчик с дешифратором и имеет три входа R, CN, СР и девять выходов Q0…Q9.

Вход R (вывод 15) служит для установки счетчика в исходное состояние;
На вход CN (вывод 14) подают счетные импульсы отрицательной полярности;
На вход СР (вывод 13) подают счетные импульсы положительной полярности;
Выхода Q0…Q9 (выводы 1 – 7 и 9 — 11) являются выходами счетчика. В исходном состоянии на выходах Q1…Q9 находится лог. 0, а на Q0 лог. 1;
Плюс питания подается на вывод 16, а минус – на вывод 8.

Цоколевка выводов микросхемы К176ИЕ8

Установка счетчика микросхемы в 0 происходит при подаче на вход R логической единицы (лог.1), при этом на выходе Q0 появляется лог.1, а на выходах Q1 — Q9 – логический 0 (лог.0). Например. Требуется, чтобы счетчик считал только до третьего разряда Q2 (вывод 4). Для этого соединяем вывод 4 с выводом 15. При достижении счета до третьего разряда счетчик автоматически перейдет на отсчет с начала.

Переключение состояний (выходов) счетчика происходит по спадам импульсов отрицательной полярности, подаваемых на вход CN. При этом на входе СР должен быть логический 0. Можно также подавать импульсы положительной полярности на вход СР, тогда переключение будет происходить по их спадам. При этом на входе CN должна быть логическая единица.

Принципиальна схема логического пробника приведена на рисунке ниже.

Принципиальная схема логического пробника

Работа схемы очень простая.
При поступлении положительных импульсов на вход СР микросхемы DD2 происходит переключение выходов счетчика, индицируемое светодиодами. По миганию светодиодов наблюдают процесс работы проверяемого генератора или любого другого цифрового устройства.

Если на вход приходит напряжение меньше 2/3 напряжения питания, или его вообще нет, счетчик работает нестабильно. При этом переключение светодиодов происходит хаотично и такое состояние можно считать логическим 0. При подаче на вход логической 1 происходит четкое переключение счетчика, и пробник подает звуковой сигнал. Звуковой генератор собран на элементах DD1.1 и DD1.2 микросхемы К155ЛА3 и транзисторе VT1 КТ361Б.

В пробнике я применил четыре светодиода и считаю, что этого вполне достаточно для визуализации процесса. При этом даже имеется некоторое удобство при измерении, которое дает небольшую паузу при переключении счетчика в начальное состояние. Если кто захочет использовать большее количество светодиодов, то вывод 15 микросхемы DD2 подключают к следующему по порядку выходу. В моем варианте вывод 15 соединен с выводом 1 счетчика.

Пробник можно использовать и без звуковой сигнализации. Для этого из схемы исключаем звуковой генератор, собранный на элементах DD1, VT1 КТ361Б, R1, R2, C1, звуковой сигнализатор ЗП-22. В этом случае измеряемый уровень сигнала подается только на вход СР счетчика.

Пробник питается от проверяемого устройства, что очень удобно.

Схема собрана на односторонней плате и имеет небольшие размеры, что позволяет сделать прибор компактным. Светодиоды можно использовать любые низковольтные. Корпус пробника выполнен от футляра для очков.

Плата логического пробника со стороны деталей

Вид платы пробника со стороны деталей

Вид платы пробника со стороны дорожек

Щупом послужил кусочек медного провода сечение 3мм и длиной 5см. В рабочем варианте пробника входная часть выполнена без диода и транзистора, которые по этой причине не показаны на принципиальной схеме. Как показала практика, такое изменение существенно увеличило чувствительность логического пробника.

Также посмотрите видеоролик, в котором показывается работа пробника.

Плату в формате lay можно скачать по этой ссылке.

До встречи на страницах сайта!
Анатолий Тихомиров (picdiod), г. Рига
Удачи!

Литература:

С.А Бирюков «Цифровые устройства на МОП-интегральных микросхемах».

РадиоКот :: Универсальный логический пробник

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Универсальный логический пробник

Однажды пытаясь отладить конструкцию на логических МС встал вопрос о том, что же таки происходит на лапах, простите, выводах этих самых микросхем. Под рукой, как всегда, оказался мультиметр, но удобство работы с ним оказалось весьма сомнительным. Тут, естественно, пришла мысль о логическом пробнике. Основные требования, которые выдвигались к этому устройству, были следующие:

— возможность работы с логическими уровнями ТТЛ и КМОП;

— простота схемы;

— доступность элементной базы;

— отсутствие МК;

— миниатюрность.

При раскопках Интернета была найдено несколько схем, но по результатам отбора прошла только приведенная ниже.

Питание пробника осуществляется от того же источника, что и проверяемое устройство, т. е. от 5-и вольт для микросхем серии 155, 555; 9-и вольт для микросхем К176 и Uпит. для микросхем К561, К564.

Светодиоды включены встречно-параллельно. При подаче на вход Х1 пробника уровня логического нуля, транзистор VT1 закрыт, а транзистор VT2 открыт за счет тока, протекающего в базовой цепи через резисторы R2, R3. Транзистор VT2 открывается, вызывая свечение зеленого светодиода HL2. При подаче на вход пробника Х1 логической единицы, открывается транзистор VT1, а транзистор VT2 закрывается, т. к. прекращается его базовый ток. Открывание транзистора VT1 вызывает свечение красного светодиода HL1, а зеленый светодиод HL2 соответственно тухнет. Если на входе логического пробника будет присутствовать смена логических уровней с довольно высокой частотой, то будут светиться оба светодиода.

В качестве корпуса был выбран старый маркер. Монтаж схемы был выполнен «в воздухе». SMD cветодиоды для наиболее удобного размещения в корпусе маркера были напяны на кусочек текстолита и присоединены к схеме отдельными проводами МГТФ. В корпусе маркера, напротив светодиодного модуля было проделано отверстие и вставлена заглушка из оргстекла. Свечение светодиодов отчетливо видно даже при ярком свете. Щуп изготовлен из контакта разъема ШР. Фотографии схемы, деталей и готового устройства представлены ниже. 



Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Простой логический пробник — схема

В этой статье рассматривается простой логический пробник, который является полезным инструментом  в ремонте и отладке различных цифровых устройств. Как известно простым тестером нельзя отследить процессы, протекающие в импульсных цепях и определить характер функционирования всего устройства в комплексе. Да и осциллограф не у каждого есть.

Как раз в такой ситуации описываемая схема логического пробника может оказать неоценимую помощь. Аналогичных приборов в радиотехнической литературе было приведено немало, но все они имеют различные показатели и порой  некоторые экземпляры непонятны в работе.

Данная схема простого логического пробника, зарекомендовала себя с надежной стороны и с ней удобно работать. Главное чем отличается эта схема от схожих, это наличием небольшого числа радиокомпонентов при довольно больших функциональных возможностях. Пробник обладает вторым логическим входом, что позволяет отслеживать цифровые сигналы без применения осциллографа.

Описание работы схемы логического пробника

Питание пробника в 5 вольт  выполняется от цепи питания исследуемой схемы. Для повышения входного сопротивления, изучаемый сигнал вначале идет на базы транзисторов VT1, VT2. Затем через диоды VD1, VD2 он подается на логические элементы (И-НЕ) D1.2, D1.3, D1.4 микросхемы К155ЛА3, которые и включают красный и зеленый светодиоды в зависимости от уровня сигнала на входе пробника.

Способы работы с логическим пробником

Уровню логической единицы (от 2,4 до 5,0 вольт) соответствует свечение красного светодиода, а логическому нулю (от 0 до 0,4 вольта) – свечение зеленого. Если щуп пробника «висит в воздухе», то оба светодиода не светятся. Если вход “B” подключен к схеме и ни один светодиод не светится, это говорит о том, что есть неисправность в работе исследуемого устройства.

Помимо отображения логических 1 и 0, пробник способен фиксировать присутствия импульсов на его входе. Для этого предназначен двоичный счетчик К155ИЕ2, к его выходам подключены светодиоды желтого цвета. С поступлением каждого импульса  состояние счетчика повышается на единицу. Если исследуемый сигнал имеет невысокую частоту, то данные светодиоды будут мигать даже при очень коротких импульсах.

По типу свечения зеленого и красного светодиодов можно ориентировочно дать оценку форме импульсов. Если сила свечения красного и зеленого светодиодов равна, то длительность паузы (лог.0). равна продолжительности импульса (лог.1). Более яркое свечение зеленого сообщает о том, что продолжительность паузы (лог.0) больше, чем продолжительность импульса (лог.1). То же самое относится и к красному светодиоду, но логические уровни будут противоположны.

Отношение паузы и импульса может быть таким, что видно горение либо красного, либо зеленого светодиода. Но в тоже время счетчик все так, же фиксирует импульсы.  Для обнуления счетчика применяется кнопка SA1. Если после ее нажатия и отпускания желтые светодиоды погасли и больше не горят, это свидетельствует об отсутствии импульсов.

Детали логического пробника

Диоды VD1, VD2 можно поменять на другие импульсные диоды, предварительно проверив эти диоды мультиметром. Следует обратить внимание, что диод VD2 обязательно должен быть германиевым, а VD1 кремниевым,  поскольку они делят уровень нуля и единицы. Транзисторы можно заменить на КТ3107 и КТ3102.

Источник: «Энциклопедия начинающего радиолюбителя»,  Никулин С.А.

Логический пробник для наладки и ремонта ZX-Spectrum

4 / 17 124

Версия для печати

Для наладки и ремонта ZX-Spectrum совместимых компьютеров полезным приспособлением является логический пробник. По сути это прибор, отображающий логический уровень сигнала на входе (лог.0 или лог.1). Так как в зависимости от типа используемых микросхем (ТТЛ, КМОП) логические уровни могут быть разными, пробник в идеале должен быть настраиваемым для использования совместно с разными типами сигналов.

В ZX-Spectrum’ах почти всегда используются микросхемы с ТТЛ входами/выходами, поэтому будет уместно рассмотреть схему логического пробника с учётом уровней сигнала ТТЛ.

Тут я немного повторю прописные истины, которые и без того известны всем заинтересованным… Величины напряжений лог.1 и лог.0 для ТТЛ видны из следующего схематичного рисунка:

Как видно крайние уровни лог.0 и лог.1 для входов и выходов несколько отличаются друг от друга. Для входа лог.0 будет при напряжении от 0,8В и менее. А выходной уровень лог.0 — это 0,4В и менее. Для лог.1 это будет 2,0В и 2,4В соотвественно.

Это сделано для того, чтобы крайние уровни лог.0 и лог.1 для выходов гарантированно попадали в диапазон напряжений для входов. Поэтому и сделана такая небольгшая «разбежка» в уровнях входов и выходов.

Всё, что попадает в диапазон напряжений между лог.0 и лог.1 (от 0,8В до 2,0В) логическим элементом не распознаётся как один из логических уровней. Если бы не было такой разбежки в уровнях (2-0,8=1,2В) любая помеха расценивалась бы как смена уровня сигнала. А так логический элемент устойчив к действиям помех с амплитудой до 1,2В, что согласитесь, очень неплохо.

У ТТЛ-входов есть интересная особенность: если вход никуда не подключен, то микросхема «считает», что на него подана лог.1. Конечно же такое «неподключение» — это очень нехорошо, хотя бы потому, что при этом висящий «в воздухе» вход микросхемы «ловит» все помехи, в результате чего возможны ложные срабатывания. Однако нас интересует другое — на «висящем в воздухе» входе всегда присутствует некоторое напряжение, величина которого попадает в неопределённый промежуток между логическими уровнями:

Определение величины напряжения на неподключенных входах микросхемы

Такой уровень называют «висящая единица», т.е. как бы единица есть (расценивается микросхемой как лог.1), но на самом деле её нет :)

Применительно к процессу ремонта и наладки компьютеров понятие «висящей единицы» полезно тем, что в случае обрыва проводника на плате или отгорания выхода какой-либо микросхемы на входы связаных с ними микросхем не подаётся сигнал, а следовательно, там будет «висящая единица», и этот момент можно зафиксировать, т.к. примерные уровни напряжения в таком состоянии микросхемы нам уже известны (порядка от 0,9В и вплоть до 2,4В).

То есть если, допустим, по схеме вход микросхемы куда-то должен быть подключен, а на нём в реальности не 0 и не 1, а «висящая единица», то что-то тут не так. В плане процесса ремонта это очень полезно!

Исходя из всего вышесказанного можно сформулировать техническое задание на создание логического пробника:
— Напряжение от 0 до 0,8В включительно считаются как лог.0;
— Напряжение от 2,0В до 5,0В считаем как лог.1;
— Напряжения от 0,9В до 2,4В считаем как «висящую единицу».

Различные конструкции логических пробников

Схем логических пробников очень много. Достаточно поискать в любом поисковике забить фразу «логический пробник». Однако по разным критериям данные схемы мне не подходят:
— Вывод ведётся на семисегментный индикатор, яркость которого никак не позволяет определить примерную скважность импульсов;
— Нет определения «висящей единицы»;
— Другие критерии типа «просто не понравилась схема» 🙂

Схема самого простого пробника был опубликована в журнале «Радиолюбитель» №9 за 1995 год:

Немного более «продвинутый» вариант этой схемы:

Таким пробником я пользовался около 18 лет. Несмотря на простоту этот пробник показывает всё: лог.0, лог.1. Даже «висящую единицу» показывает — при этом светодиод (лог.1) еле светится. Можно определять скважность импульсов по яркости свечения светодиодов. Этот пробник даже не выгорает при подаче на его входы напряжений -5В, +12В и даже выше! При подаче на пробник -5В светодиод (лог.0) горит с очень большой яркостью. При +12В на входе горит с большой яркостью светодиод (лог.1). Короче, неубиваемая схема :)

Для регистрации коротких импульсов, которые не видны глазом (например, импульс выбора порта) я приделал к пробнику «защёлку» на половинке триггера ТМ2:

Внешний вид пробника:

Логический пробник

Логический пробник

Свой вариант логического пробника

Мной предпринимались попытки сделать логический пробник с индикацией «висящей единицы» на компараторах. В статике всё работало и определялось, но в динамике пробник оказался неработоспособен. Проблема кроется в быстродействии компараторов. Доступные мне компараторы (LM339, К1401СА1, КР554СА3 и т.п.) довольно «тормозные» и не позволяют работать на частоте выше 1,5-2МГц. Для работы со схемой ZX-Spectrum это совершенно не годится. Какой толк от пробника, если он не может даже показать тактовую частоту процессора?

Но совсем недавно на Youtube на глаза попалась видео-лекция по работе логического пробника:

Лекция по принципам работы логического пробника

Лекция очень интересная и познавательная. Посмотрите её полностью!

Данная конструкция пробника меня очень заинтересовала, и я решил её повторить и проверить. По схеме из лекции всё заработало за исключением каскада для определения уровня «висящей» единицы. Однако это не является проблемой, и я сделал каскад на компараторе. Вопрос быстродействия тут не стоит, т.к. термин «висящая единица» применим к статическому состоянию микросхемы.

В итоге получился пробник со следующей схемой:

Схема логического пробника (увеличивается по клику мышкой)

Схема логического пробника (увеличивается по клику мышкой)

P.S. Схема пробника не самая идеальная, и при желании наверняка можно сделать проще и лучше.

Описание схемы и процесс наладки логического пробника

Входные каскады пробника выполнены на эмиттерных повторителях на транзисторах VT1 и VT2. В исходном состоянии (когда на вход пробника ничего не подано) транзисторы закрыты, поэтому на входы DD1.1 подан лог.0 через резистор R4, светодиод VD1 не горит. Точно так же закрыт транзистор VT2, и через резистор R5 на входы DD1.2 подаётся лог.1, светодиод VD3 не горит.

При подаче сигнала с уровнем лог.0 (0…0,8В) открывается транзистор VT2, на входы DD1.2 подаётся лог.0, светодиод VD3 загорается.

При подаче сигнала с уровнем лог.1 (2…5В) открывается транзистор VT1, на входы DD1.1 подаётся лог.1, светодиод VD1 загорается.

Резисторами R2-R3 на входе пробника устанавливается напряжение порядка 0,87-0,9В. Т.е. необходимо, чтобы это напряжение было в промежутке 0,8..0,9В, чтобы при никуда не подключенном входе пробника не горел светодиод VD3.

На компараторе DA3 сделана схема определения «висящей единицы». Резисторами R6-R7 устанавливается напряжение порядка 0,92..0,95В, при котором компаратор определит, что на входе находится уровень «висящей единицы», и загорится светодиод VD2. Напряжение на входе 2DA2 подбирается такой величины, чтобы при никуда не подключенном входе пробника не горел светодиод VD2.

Цвет свечения светодиодов можно выбрать таким, чтобы лог.0 показывался зелёным светом, лог.1 — красным, «висящая единица» — желтым. Не знаю как вам, а мне так удобнее. Светодиоды VD1 и VD3 лучше всего брать прозрачные (не матовые), чтобы хорошо был виден кристалл, и по возможности яркие, чтобы легче было заменить, если светодиод хоть чуть-чуть светится.

На микросхеме DD3 выполнен счётчик импульсов, поступающих на вход пробника. При коротких имульсах, не видных глазу, светодиоды VD4-VD7 будут исправно показывать количество импульсов в двоичной форме 🙂 Кнопкой SB1 счётчик сбрасывается с погасанием всех светодиодов.

Инверторы микросхемы DD2 используются для того, чтобы активным уровнем (когда зажигается светодиод) был лог.0, т.к. ТТЛ-выход при лог.0 способен отдать в нагрузку ток до 16 мА. При выходной лог.1 выход способен отдать ток 1 мА, и если мы к нему подключим светодиод (чтобы он зажигался при лог.1 на выходе) мы перегрузим выход. Токоограничивающие резисторы подобраны так, чтобы максимальный ток, протекающий через светодиоды, не превышал 15 мА.

Пробник питается от отдельного блока питания (я использовал источник питания от магнитофона «Беларусь»). На плате пробника расположен стабилизатор напряжения DA2. Учивая не слишком большой ток потребления пробника микросхема стабилизатора используется без дополнительного теплоотвода, и при этом не перегревается.

Входные цепи пробника VT1, VT2, DA3 питаются от отдельного источника опорного напряжения DA1. Сделано это потому, что при изменении тока потребления пробника (например, когда горит большинство светодиодов) выходное напряжение стабилизатора DA2 несколько меняется, при этом соответственно будут меняться все опорные напряжения, что недопустимо.

К проверяемой конструкции от пробника отдельно подключается «общий» провод (GND).

Быстродействия микросхем пробника хватает для индикации импульсов вплоть до частоты 10 МГц. При частоте 12МГц уже пропадает индикация лог.0, но лог.1 показывается. По этой же причине вход счётчика подключен именно к DD1.1 — при проверке частоты выше 10 МГц счётчик будет считать импульсы с индикацией на светодиодах VD4..VD7.

Пробник собран на макетной плате:

Плата логического пробника

Плата логического пробника

Плата подобрана по размеру, чтобы поместиться в корпус от пришеднего в негодность маркера:

Плата логического пробника в корпусе от маркера

Плата логического пробника в корпусе от маркера

Плата логического пробника в корпусе от маркера

Логический пробник с источником питания

Логический пробник с источником питания

Процесс работы с пробником на плате компьютера «Байт» можно посмотреть на видео:

Работа с логическим пробником


Цифровой тестер

»Примечания по электронике

Логические пробники

— это дешевые и простые в использовании цифровые тестеры, способные проверять логические уровни медленно движущихся сигналов.


Учебное пособие по логическому пробнику Включает:
Основы логического пробника Как использовать логический пробник


Логические пробники очень дешевы и просты в использовании в качестве простых цифровых тестеров во многих приложениях. Логические пробники могут предоставить простой способ тестирования медленных цифровых логических уровней и сигналов.

Поскольку эти цифровые логические пробники очень дешевы, они идеальны для экспериментаторов, но их редко можно найти в профессиональной лаборатории электроники из-за их ограниченных измерительных возможностей и наличия более совершенного испытательного оборудования, такого как логические пробники или осциллографы смешанных сигналов или другие виды электронного испытательного оборудования.

Что такое логический пробник?

Логический пробник или цифровой тестер, как правило, представляет собой недорогой переносной пробник, заключенный в трубку в форме ручки с индикаторами, показывающими состояние проверяемой линии.

Logic probe tester Тестер простых логических пробников

Обычно логические пробники используются для тестирования цифровых схем, например, использующих логику TTL или CMOS. У них часто есть три световых индикатора на корпусе, чтобы указать состояние линии. Такие логические пробники представляют собой очень простые формы цифровых тестеров, способных проверять состояние только одной линии, но они могут быть полезны во многих приложениях.

Логический пробник обычно получает питание от тестируемой цепи — обычно имеются выводы с зажимами типа «крокодил» / «крокодил», которые можно прикрепить к земле и питанию тестируемой цепи.

Измерения логическим датчиком

У логического пробника ограничено количество измерений, которые он может выполнять по сравнению с другими измерительными приборами, но, тем не менее, он может использоваться для множества цифровых измерений:

  • Состояние высокого логического уровня: Логический пробник / тестер цифровой логики может обнаруживать линии, которые находятся в цифровом или высоком логическом состоянии. Логический пробник обычно указывает на это с помощью светодиода, который часто имеет красный цвет.
  • Низкий логический уровень: Логический пробник также может указывать на логический или цифровой низкий уровень.Обычная индикация — использование светодиода зеленого цвета.
  • Цифровые импульсы: Логический пробник может включать в себя какую-либо схему обнаружения импульсов. Когда линия активна и пульсирует третьим цветом, возможно, будет отображаться желтый цвет. Логический пробник может включать в себя схему для обнаружения очень коротких импульсов и, таким образом, индикации активности линии. Иногда длину импульсов можно определить по яркости светодиода.
  • Линия с тремя состояниями: Некоторые логические пробники также могут определять, когда линия была переведена в трехступенчатый режим.Это когда выход устройства вывода выключен и реальное логическое состояние не определено. Многие логические пробники могут указать это состояние, и они могут сделать это, отключив все индикаторы.

Логические датчики различаются от одного производителя к другому, поэтому необходимо точно проверить, какие измерения можно проводить и как отображаются результаты.

Преимущества и недостатки логического пробника

Как и в случае с любым другим испытательным оборудованием, у использования тестера логических пробников есть преимущества и недостатки, которые необходимо учитывать перед покупкой или использованием.

Преимущества логического датчика —

  • Низкая стоимость: Логический пробник не содержит много схем, а дисплей очень примитивен. Поэтому стоимость производства очень низкая — их обычно можно купить дешевле, чем стоимость самого простого мультиметра. Логические анализаторы и осциллографы смешанных сигналов стоят во много раз дороже логических пробников.
  • Простота использования: Для использования логического пробника обычно требуется подключение силовых проводов, а затем подключение пробника к требуемой точке цепи.

Недостатки логического датчика —

  • Очень грубое измерение: Природа логического пробника означает, что может быть обнаружено только индикация наличия логического сигнала. Он не заменяет такой измерительный прибор, как осциллограф.
  • Плохой дисплей: Логический пробник использует только несколько светодиодов, чтобы указать характер логического сигнала. В результате может отображаться мало информации о природе обнаруженного логического сигнала.

Тестер логических пробников — очень дешевый и простой элемент испытательного оборудования. Он может обеспечить быстрый, но очень простой тест для многих логических схем. Однако он далеко не такой гибкий, как осциллограф или логический анализатор.

Логический пробник можно использовать для быстрого тестирования, тогда как для более глубокого тестирования необходимо более сложное испытательное оборудование. Следует помнить, что он не подходит для многих высокоскоростных логических схем. Обычно это полезно только для базовых испытаний основных схем.

Типовые характеристики логического пробника

Хотя все модели логических пробников могут незначительно отличаться, можно дать некоторое представление о типичных характеристиках пробника.

Обычно логические пробники предназначены только для базового тестирования и поэтому предлагают относительно базовый уровень производительности. Тем не менее, они могут быть неоценимы при поиске неисправностей во многих ситуациях.

Типичная спецификация может быть:

Типовые характеристики логического пробника
Параметр Спецификация
Логика 1
Уровень входного сигнала
TTL:> 2.3 В ± 0,02 В
CMOS:> 70% Vcc ± 10%
Логика 0
Уровень входного сигнала
TTL: <0,08 В ± 0,02 В
CMOS: <30% Vcc ± 10%
Максимальное выдерживаемое напряжение питания 20 В
Диапазон питания 5-15 В
Входной импеданс сигнала 1 МОм
Макс.частота входного сигнала 20 МГц
Минимальная обнаруживаемая ширина импульса 30 нс

Технические характеристики варьируются от одного тестера логических пробников к другому, но они дают приблизительный идеал ожидаемых характеристик.

Логический пробник может быть очень полезным простым тестером и сэкономить на покупке более дорогих форм электронного испытательного оборудования. Если понять их ограничения, то они могут оказаться очень полезными во многих случаях с простыми электронными схемами.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.

Рекомендации и советы »Примечания к электронике


Учебное пособие по логическому пробнику Включает:
Основы работы с логическим пробником Как использовать логический пробник


Одним из преимуществ тестера логических пробников является то, что он очень прост и удобен в использовании. Он может очень быстро дать базовое представление о работе логической схемы.

Хотя логический пробник очень прост в использовании, он имеет множество ограничений и может давать только базовые измерения, и это следует помнить при принятии решения об использовании логического пробника.

Если требуется более полное тестирование логики, может потребоваться более совершенное электронное испытательное оборудование, такое как логические анализаторы или осциллографы смешанных сигналов.

Как использовать логический пробник: основы

Понять, как использовать логический пробник, очень просто. Существует множество различных продуктов с логическими пробниками, которые немного отличаются друг от друга, но все они соответствуют одному и тому же базовому обзору их функций и работы, например, некоторые из них имеют как звуковые, так и визуальные индикаторы, а другие — нет.

Соответственно, можно дать некоторые базовые рекомендации о том, как использовать логический пробник, но будут небольшие различия в способе их использования в зависимости от конкретного используемого логического пробника.

Подключения логических датчиков

Перед использованием логического пробника необходимо разобраться в подключениях.

Как видно, есть три подключения к логическому датчику:

  1. Черный провод с зажимом типа «крокодил»: Есть два провода, которые обычно выходят из конца инструмента, противоположного самому металлическому щупу.Черный провод соединен с отрицательной землей и также используется как обратный провод.
  2. Красный провод с зажимом «крокодил»: На этом проводе где-то будет красный провод, возможно, только на зажиме «крокодил» / «крокодил», и он используется для подключения к источнику питания. Будьте осторожны, подключая его к источнику питания логики, который обычно составляет +5 В, а для некоторых семейств КМОП — до 15 В. Прочтите инструкции, чтобы узнать, в каком диапазоне будет работать пробник — использование напряжения выше указанного может привести к повреждению логического пробника.
  3. Зонд: Зонд, как показано на схеме, представляет собой металлическую точку, используемую для проверки цепи. При использовании будьте осторожны, чтобы зонд не соскользнул и не вызвал короткое замыкание, которое может повредить тестируемую цепь.

Первым требованием перед использованием логического пробника является подключение силовых соединений к цепи. Помимо обеспечения правильного напряжения, точки, используемые для подключения зажимов типа «крокодил», должны быть доступны и обеспечивать надежное соединение без риска прикосновения к любым соседним компонентам или другим соединениям.

Примечание: Если возможно, подключите силовые соединения к тестируемому устройству, когда оно выключено. Таким образом сводится к минимуму риск повреждения из-за короткого замыкания и т. Д.

Начальные настройки для использования логического пробника

Перед использованием логического пробника необходимо выбрать требуемые настройки на переключателях. В зависимости от производителя и модели логического пробника, может потребоваться установка ряда опций:

  1. TTL / CMOS: Необходимо выбрать семейство логики.Обычно предлагаются два варианта, а именно CMOS и TTL. Поскольку высокое и низкое состояния этих двух логических семейств немного отличаются, необходимо выбрать правильный вариант. Обычно логические пробники допускают использование только базовых 5-вольтовых версий CMOS и TTL. Другие семейства, такие как те, которые используют 3,3 В или другие шины, вряд ли будут размещены.
  2. MEM / PULSE: Используется для выбора рабочего режима логического пробника. Положение Pulse используется для нормальной работы для определения пульса или уровня.MEM или позиция памяти используется для захвата импульса. Например, если необходимо определить, появился ли пульс или нет.

Примечание: В наши дни некоторые устройства для поверхностного монтажа используют шины питания напряжением 3,3 В или меньше. Большинство логических пробников не будут работать с этими ИС, поскольку логические уровни обычно не поддерживаются. Кроме того, часто бывает трудно исследовать платы для поверхностного монтажа, так как существует реальная опасность короткого замыкания контактов.


Исследования и результаты

Когда питание подается на тестируемую цепь и логический пробник, можно использовать его для проверки различных точек схемы.

Можно легко найти драйвер транзистора. Баллон транзистора часто подключается к его коллектору, образуя место, где сигнал может быть легко доступен.

Логический пробник укажет, какие линии являются высокими, низкими или передающими сигнал.

Затем нужно интерпретировать результаты в соответствии со схемой, чтобы выяснить, правильно ли они действуют.

Краткий порядок использования логического датчика может быть:

  1. Подключите черный зажим или провод к земле или к общей линии тестируемой цепи.Это предполагает, что 0 В и земля / общий одинаковые.
  2. Во-вторых, подсоедините красный зажим или оставьте его к плюсовому проводу цепи.
  3. Выберите логику семейства CMOS или TTL. TTL обычно работает от источника питания 5 В, тогда как CMOS обычно составляет 5-15 В.
  4. Используйте зонд для подключения к нужным точкам мониторинга. В этот момент соответственно загорятся светодиоды и может прозвучать зуммер, если он есть.
  5. Установка переключателя MEM в положение MEM позволит логическому пробнику улавливать любые короткие импульсы.Для обозначения этого может быть отдельный светодиод.

Один намек состоит в том, что часто полезно проверить, как использовать логический пробник в заведомо исправной цепи. Таким образом вы лучше поймете его работу и узнаете, что искать.

Хотя логический пробник является очень простым средством тестирования, он может помочь найти проблемы во многих схемах, если вы знаете, как использовать логический пробник, и понимаете его ограничения.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.Логический пробник

| Hackaday

Попытка исследовать современную электронную схему с помощью крошечных SMD-компонентов, не выпуская при этом волшебный дым, может быть довольно сложной задачей. Тем более, что мы, хакеры, еще не разработали количество выступов, необходимых для удержания 3 разных пробников на месте при работе как с осциллографом, так и с компьютером. [Джузеппе Финициа] решил эту проблему с помощью 3D-печатного приспособления для измерения печатной платы, в котором используются иглы для акупунктуры.

В рамках дневной работы [Джузеппе] в качестве инженера в лаборатории электронной криминалистики он проводит технические расследования изъятых устройств, что включает в себя довольно много зондирования.Приспособление состоит из базовой пластины с прорезями, в которые вставляются держатели печатных плат различной конфигурации, чтобы удерживать печатные платы всех форм и размеров. По окружности пластины имеется несколько положений для регулируемых зондирующих «кранов», каждое из которых удерживает иглу для акупунктуры, обжатую или припаянную к проводу. Каждый иглодержатель имеет небольшой изгиб, что позволяет ему поддерживать давление вниз для положительного соединения.

Изготовление одноразовых инструментов и приспособлений, возможно, является одним из лучших приложений для 3D-печати, и это прекрасный пример.Вы можете, конечно, припаять провода или использовать тестовые крючки, если вам есть за что ухватиться, но для легкого исследования нескольких точек на любой печатной плате это выглядит чертовски хорошим решением. Если вы пытаетесь отследить одиночный сигнал, вам может пригодиться прецизионный пантограф или вы можете добавить к осциллографу ножной переключатель для быстрой проверки схемы вручную.

[Джонатон Оксер] с YouTube-канала SuperHouse сделал очень хорошее видео о приспособлении и внес некоторые небольшие изменения. Посмотрите видео после перерыва.

Мы живем в те дни, когда покупать осциллографы очень недорого, особенно осциллографа со скромными характеристиками, который подключается к ноутбуку. Однако было время, когда даже избыточный объем был недоступен для многих людей, которые любили строить вещи. Распространенной альтернативой был логический зонд. На нижнем уровне это мог быть инвертор и светодиод, хотя чаще использовалась небольшая дополнительная схема, чтобы на самом деле сравнивать с эталонным напряжением и отображать некоторую индикацию быстрых импульсов — вы, возможно, не сможете определить частота часов, но можно было сказать, что она не зависла.Конечно, сегодня с микроконтроллером можно сделать очень сложный пробник с меньшим количеством схем, чем классический пробник. Мы видели несколько вариантов этого, и последняя из них — DigiLogicProbe от [TheRadMan].

Пробник — это просто плата ATtiny85 с горсткой компонентов. Резистор и диод помогают защитить зонд и тестируемую цепь. Также есть несколько светодиодов и зуммер. Остальная часть проекта — программное обеспечение.

Читать далее «Возвращение логического зонда» →

Мы только что провели последний час, просматривая видео, вложенное ниже, которое является наиболее полной сокровищницей информации по предмету, о котором мы все должны знать больше, — поиску логических сигналов.Конечно, это длинное видео, но [Джоэл] из [OpenTechLab] не оставляет камня на камне.

В центре видео — логический анализатор сигрока с открытым исходным кодом. Это здорово, потому что он поддерживает широкий спектр недорогих аппаратных платформ, включая логику Salae и ее клоны. Логика — это то, что нужно, но она даже регистрирует данные с определенных осциллографов, мультиметров, источников питания и многого другого. Sigrok может не только декодировать необработанные напряжения в биты, но также может интерпретировать биты, используя плагины декодера протоколов, написанные на Python.Все это означает, что однажды он все расшифрует. Бесплатно.

[Джоэл] кое-что знает о сигроке, потому что он запустил для него невероятно красивый GUI-проект PulseView, но это не мешает ему проводить вас через интерфейс командной строки, который действительно полезен для автоматического сбора и анализа данных. , если это тебе нравится. И то, и другое стоит знать.

Но на самом деле это видео показывает детали аппаратного обеспечения. Он разбирает все логические пробники на своем стенде, указывает на их достоинства и недостатки конструкции и использует эту основу, чтобы объяснить, какую производительность можно ожидать за 20 долларов или около того.Вы получите глубокое понимание всей цепочки инструментов, от граббер-зондов до графических интерфейсов пользователя.
Читать далее «Все, что вам нужно знать о логических пробниках» →

Логические пробники — простые, но удобные инструменты, которые можно купить за пару долларов. Возможно, они не самые привлекательные и не самые универсальные, но у них есть свое место, и создание собственного логического зонда — отличный способ понять сильные и слабые стороны этого инструмента.

Логический пробник

[Jxnblk] основан на схеме [Тони ван Роон].Дизайн восходит к более простым временам и основан на компонентах, которые когда-то было легко найти в любой Radio Shack. Логическая секция сосредоточена на почтенном 7400 quad 2-входном логическом элементе NAND в классическом 14-контактном формате DIP. Затворы освещают отдельные светодиоды для высокого и низкого логических уровней, а микросхема таймера 555 в однократной конфигурации действует как расширитель импульсов для улавливания переходных процессов. Пакеты DIP поддаются быстрой и грязной конструкции «мертвого жучка», и все это хорошо помещается в выброшенную маркерную ручку.

Это простая конструкция и хороший форм-фактор для полезного инструмента, но для еще более тонкого корпуса, такого как старый шприц, вам, вероятно, придется использовать компоненты SMD. А когда вы перестанете использовать простой логический пробник, вы, возможно, захотите проверить возможности этого интеллектуального пробника.

[Евгений] хотел использовать свою винтажную Leica M4 в качестве цифровой камеры, и у него была неиспользованная цифровая камера Canon EOS 350D. Поэтому он Франкенштейн соединил их и добавил цифровую заднюю часть к оптическому интерфейсу Leica.

Звучит просто, правда? Все, что вам нужно сделать, это отрубить заднюю часть EOS 350D, отшлифовать цифровой сенсор до нужного места на плоскости пленки, приклеить его к дополнительной задней дверце Leica M4, и все готово. . Просто немного предельно точного взлома. Но все не так просто.

Попутно [Юджин] перепроектировал сигналы затвора и зеркальной коробки EOS 350D (с помощью датчика Salae Logic), а затем воспроизвел эти сигналы, когда затвор Leica сработал, вставив Arduino MiniPro в старый корпус мотозарядки Leica. .Arduino прослушивает сигнал лампочки Leica, чтобы определить, когда срабатывает камера, а затем отправляет правильные коды в EOS. Сладкий.

Есть еще несколько нерешенных деталей. Скорость затвора ограничена задержкой при получении сигнала от Leica на 350D назад, поэтому он застрял на выдержках дольше 1/8 секунды. Кроме того, анти-ИК-фильтр Canon не подошел, но он заказал новый. Если отбросить эти придирки, пока что это прекрасный прием.

Что делает красивое произведение еще красивее? Совместное использование исходного кода и схем.Оба они доступны на его Github.

Конечно, если вы не против полностью выпотрошить камеру, вы всегда можете превратить свою старую Leica в точку и снимать.

[Марк] был на нашей «танцевальной карточке», которую люди могли найти на Maker Faire. Но прежде чем мы смогли его выследить, он наткнулся на нас, которые держали в одной руке TIQ Probe, а в другой — тестовую коробку. TIQ задуман в форм-факторе традиционного логического пробника, но благодаря Cypress PSoC 5LP внутри он намного, намного умнее, чем настольные инструменты десятилетней давности.Конечно, он может сказать вам, является ли этот вывод uC 1 или 0, но он также может определить, какой тип сигнала он исследует, и имеет встроенную защиту от перенапряжения.

Назначение инструмента — устранить разрыв между вещами, которые можно было бы измерить с помощью цифрового мультиметра, и теми, которые измеряются с помощью подходящего осциллографа. Мы думаем, что он неплохо поработал, включив в него то, что может понадобиться тому, кто только начинает заниматься без дорогостоящего стендового оборудования. Например, вы можете настроить его на запуск по распространенным протоколам данных, таким как i2c, и использовать сам зонд как элементарный генератор импульсов.

Большую часть подробностей о зонде можно найти на его странице на Kickstarter (осталось всего несколько дней). Вас также может заинтересовать страница его компании. Нам интересно узнать, что внутри испытательного стенда, который он возил. [Марк] является постоянным читателем, поэтому, надеюсь, он оставит ниже комментарий с подробностями об этом черном ящике.

Читателю Hackaday [JumperOne] требовался логический пробник, который он мог бы использовать, чтобы надежно проверить какой-нибудь крошечный.Выводы IC с шагом 5 мм. Зонд, который прилагался к его осциллографу, был слишком большим и недостаточно острым, чтобы справиться с этой задачей, но он решил, что шприц вполне может помочь.

Он просверлил небольшое отверстие рядом с рабочим концом шприца, через которое пропустил отрезанный кабель витой пары. Затем [JumperOne] припаял пару контактов к небольшому куску коаксиального кабеля, прикрепив противоположный конец к витой паре, уже находящейся в шприце. Осторожно намотав тонкий кабель на иглу, он закрепил коаксиальный кабель и его контакты на месте небольшим количеством горячего клея.

[JumperOne] говорит, что его импровизированный логический пробник работает очень хорошо, и острая игла легко проткнет любую окисленную или припойную маску, которая встанет на ее пути. Еще одно преимущество использования шприца в качестве зонда заключается в том, что они идут в комплекте с крышками, которые помогают защитить оба конца хрупкого инструмента.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *