Люминесцентная лампа рассчитана на часов непрерывного свечения – Сравнение светодиодных ламп с люминесцентными, галогенными и лампами накаливания

Содержание

Сравнение лампы накаливания, люминесцентной и светодиодной ламп по световому потоку

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В связи с широким ассортиментом ламп у людей зачастую возникает вопрос о том, какие лампы выбрать?

Некоторые граждане все еще применяют лампы накаливания (ЛН), хотя их применение ограничено Федеральным законом №261 «Об энергосбережении», кто-то окончательно перешел на компактные люминесцентные лампы (КЛЛ), а кто-то уже довольствуется светодиодными лампами (LED).

Так что же выбрать? На этот вопрос мне частенько приходится отвечать, поэтому я решил написать несколько статей, где проведу сравнение лампы накаливания, компактной люминесцентной лампы (КЛЛ) и светодиодной лампы (LED) между собой по следующим критериям:

  • световой поток при разных уровнях напряжения
  • время розжига ламп
  • температура нагрева корпуса и колбы в рабочем режиме
  • потребляемая фактическая мощность (энергопотребление)

Для эксперимента возьму лампу накаливания мощностью 75 (Вт), ее эквивалент- компактную люминесцентную лампу (КЛЛ) мощностью 15 (Вт) «Navigator» («Навигатор») и светодиодную лампу (LED) мощностью 9 (Вт) EKF серии FLL-A.

У всех ламп стандартный цоколь Е27.

Лампы я подобрал с одинаковыми заявленными параметрами светового потока и цветовой температуры.

 

Заявленные характеристики ламп (по паспорту)

1. Лампа накаливания 75 (Вт)

Характеристики лампы накаливания:

  • номинальная мощность лампы — 75 (Вт)
  • напряжение питающей сети — 230-240 (В)
  • цветовая температура — 2700 (К) теплый белый свет
  • световой поток — 935 (Лм)
  • световая отдача — 12,5 (Лм/Вт)
  • индекс цветопередачи Ra — 100
  • срок службы — 1000 (часов)
  • экологичность — не содержит ртути и других вредных веществ
  • габариты (диаметр, высота) — 50 х 88 (мм)

Световую отдачу я рассчитал путем деления светового потока (по паспорту) на номинальную мощность лампы.

Для информации: можете почитать статью о 7 причинах быстрого перегорания ламп накаливания.

Лампы накаливания полностью совместимы со светорегулирующей аппаратурой (светорегуляторы-диммеры),  электронными выключателями (например, выключатель освещения по хлопку), датчиками движения для включения освещения, фотореле, различными таймерами и т.п.

2. Компактная люминесцентная лампа (КЛЛ) мощностью 15 (Вт) «Navigator»

Вот ее характеристики:

  • номинальная мощность лампы — 15 (Вт), аналог 75-Ваттной лампы накаливания
  • напряжение питающей сети — 220-240 (В)
  • цветовая температура — 2700 (К) теплый белый свет
  • световой поток — 1000 (Лм)
  • световая отдача — 66,6 (Лм/Вт)
  • срок службы — 8000 (часов)
  • температура эксплуатации — от -25°С до +40°С
  • экологичность — содержит пары ртути
  • габариты (диаметр, высота) — 38 х 151 (мм)

Лампа КЛЛ не совместима с устройствами, регулирующих яркость света, электронными стартерами и световыми датчиками.

Что делать, если Вы случайно разбили люминесцентную лампу? Об этом читайте здесь.

3. Светодиодная лампа (LED) мощностью 9 (Вт) EKF серии FLL-A60-9-230-2.7K-E27

Имеет следующие характеристики:

  • номинальная мощность лампы — 9 (Вт), эквивалент 75-Ваттной лампы накаливания и 15-Ваттной лампы КЛЛ
  • напряжение питающей сети — 170-240 (В)
  • цветовая температура — 2700 (К) теплый белый свет
  • световой поток — 800 (Лм)
  • световая отдача — 88,8 (Лм/Вт)
  • индекс цветопередачи Ra — больше 82
  • угол рассеивания — 240°
  • срок службы — 40000 (часов)
  • экологичность — не содержит ртути и других вредных веществ
  • отсутствие ультрафиолетового и инфракрасного излучений
  • габариты (диаметр, высота) — 60 х 110 (мм)
  • гарантия — 2 года

Светодиодная лампа (LED) EKF серии FLL-А не совместима со светорегуляторами, электронными выключателями и другими подобными устройствами.

Несколько слов расскажу об этой лампе.

На сегодняшний день светодиодная лампа LED EKF серии FLL-А является новинкой на рынке светотехнических изделий. Производители с уверенностью заявляют, что она имеет преимущества перед светодиодными лампами других компаний.

Во-первых, у EKF серии FLL-А сделан специальный композитный корпус, выполненный из алюминия и теплорассеивающего пластика, который обеспечивает хорошую теплоотдачу, а значит увеличивает срок службы лампы (в данном случае до 40000 часов). Если включать лампу лишь на 3 часа в день, то теоретически ее должно хватить на 36,5 лет.

Напомню, что срок службы у светодиодной лампы заканчивается тогда, когда ее световой поток уменьшился более, чем на 30% от первоначального.

Во-вторых, в ней используются высокоэффективные светодиоды типа SMD бренда Epistar (Тайвань), которые позволяют достичь высокого уровня световой мощности — в моем примере до 88,8 (Лм/Вт).

Кстати, лампа EKF серии FLL-А имеет привычную форму и габариты, соизмеримые с лампой накаливания (ЛН). Также световой поток имеет рассеивание на 240 градусов, что очень радует.

 

Световой поток (освещенность) лампы накаливания, КЛЛ и светодиодной ламп

Световой поток — это один из основных параметров для ламп, по которому можно анализировать мощность света (излучения), воспринимаемого человеком. Измеряется в «люменах» (Лм).

Освещенность — это отношение значения светового потока лампы к площади освещаемой поверхности. Измеряется в «люксах» (Лк). Именно по величине освещенности определяют интенсивность освещения той или иной лампы на разных точках поверхности.

1Лк = 1Лм/1кв.м, т.е. освещенность на поверхности равна 1 (Лк), если световой поток мощностью 1 (Лм) будет падать на поверхность площадью 1 (кв.м.)

Для каждого типа помещений, будь то производственные или бытовые, существуют свои нормы и требования по освещенности (см. СНиП 23-05-95 «Естественное и искусственное освещение»).

В своем эксперименте я буду измерять освещенность на поверхности рабочего стола в одной точке (строго по центру оси) от светильника, жестко закрепленного к этому же столу. Расстояние от светильника до поверхности стола составляет 65 (см).

Я знаю, что по методике освещенность измеряют несколько иначе и в разных точках, но при прочих равных условиях мне этого будет вполне достаточно.

В качестве люксметра я использую цифровой фотометр (люксметр – яркомер) ТКА – 04/3. Вот так он выглядит.

Суть измерения заключается в следующем. В светильник я поочередно буду вкручивать лампы и измерять освещенность на поверхности стола.

 

Измерение освещенности при номинальном напряжении 220 (В)

Сначала я буду измерять освещенность на поверхности стола от каждой лампы при номинальном питающем напряжении сети 220 (В).

Начну с лампы накаливания 75 (Вт).

Вкручиваю ее в светильник и с помощью люксметра фиксирую значение ее освещенности. Получилось 560 (Лк).

Следующая лампа КЛЛ «Навигатор» мощностью 15 (Вт), представленная, как эквивалент 75-Ваттной лампы накаливания.

Ее результат составил порядка 389 (Лк).

Светодиодная лампа EKF серии FLL-А мощностью 9 (Вт), представленная, как аналог 75-Ваттной лампы накаливания, показала результат 611 (Лк).

 

Измерение освещенности при пониженном напряжении 180 (В) и 198 (В)

Зачастую в частном секторе, где питающая воздушная линия (ВЛ) находится в неудовлетворительном состоянии или силовой трансформатор перегружен, уровень напряжения понижен и может составлять порядка 180-200 (В), особенно в зимние вечера. Как бороться с этим? Читайте в статье про стабилизатор напряжения для дома.

Меня в данный момент интересует то, как изменится световой поток ламп при уменьшении питающего напряжения. Проверим!!!

С помощью лабораторного автотрансформатора (ЛАТР) я уменьшу питающее напряжение до 198 (В). Это как раз является нижней границей предельно-допустимого напряжения от 220 (В).

Освещенность от лампы накаливания 75 (Вт) при напряжении 198 (В) составила 313 (Лк).

Освещенность от компактной люминесцентной лампы «Navigator» 15 (Вт) при напряжении 198 (В) составила 336 (Лк).

Освещенность от светодиодной лампы EKF 9 (Вт) при напряжении 198 (В) составила 611 (Лк).

Для интереса эксперимента я уменьшу напряжение сети до 180 (В). Посмотрим, как поведут себя лампы.

Освещенность от лампы накаливания 75 (Вт) при напряжении 180 (В) составила 224 (Лк).

Освещенность от компактной люминесцентной лампы «Navigator» 15 (Вт) при напряжении 180 (В) составила 313 (Лк).

Освещенность от светодиодной лампы EKF 9 (Вт) при напряжении 180 (В) составила 611 (Лк).

В принципе, с лампой накаливания и люминесцентной лампой все понятно, их световой поток уменьшается в зависимости от уровня снижаемого напряжения. Но обратите внимание на светодиодную лампу EKF серии FLL-А. Ее световой поток остается неизменным независимо от снижения напряжения.

Мне стало интересно и я снизил напряжение до 130 (В). Посмотрите результат.

Это просто ошеломляюще! Даже при 130 (В) световой поток лампы соответствует световому потоку, как при номинальном напряжении 220 (В).

 

Измерение освещенности при повышенном напряжении 242 (В)

Теперь наоборот увеличим напряжение сети. С помощью того же лабораторного автотрансформатора (ЛАТР) я увеличу напряжение до 242 (В). Это как раз является верхней границей предельно-допустимого напряжения от 220 (В).

Вот полученные результаты.

Освещенность от лампы накаливания 75 (Вт) при напряжении 242 (В) составила 666 (Лк). Какое «магическое» число получилось.

Освещенность от компактной люминесцентной лампы (КЛЛ) «Navigator» 15 (Вт) при напряжении 242 (В) составила 405 (Лк).

Освещенность от светодиодной лампы EKF серии FLL-A 9 (Вт) при напряжении 242 (В) составила 611 (Лк).

Для наглядности, полученные результаты по освещенности от рассматриваемых ламп при разных уровнях напряжения я занес в одну общую таблицу:

Из полученных результатов можно сделать следующие выводы:

1. Лампа накаливания 75 (Вт) при уменьшении питающего напряжения значительно уменьшает свой световой поток. Например, при снижении питающего напряжения на 10% (198 В) освещенность от лампы уменьшилась на 44%, а при снижении напряжения на 18% (180 В)  освещенность от лампы уменьшилась на 60%. И наоборот, при увеличении питающего напряжения на 10% (242 В), освещенность от лампы увеличилась на 19%.

2. Компактная люминесцентная лампа «Navigator» 15 (Вт) была заявлена эквивалентом 75-Ваттной лампы накаливания, но при номинальном напряжении 220 (В) значительно ей уступает по освещенности на целых 30%. Хотя по паспорту ее световой поток был заявлен больше всех — 1000 (Лм) против 935 (Лм) лампы накаливания и 800 (Лм) светодиодной лампы.

Получается, что рассматриваемая КЛЛ «Navigator» 15 (Вт) не является эквивалентом 75-Ваттной лампы накаливания, как это было заявлено в паспорте. Скорее всего она соответствует 40-Ваттной или 60-Ваттной лампам накаливания.

К сожалению, для меня это не новость.

Зачастую слышу, мол заменили в квартире все лампы накаливания на КЛЛ (эквивалентность по мощностям соблюдали), а в квартире стало «темно». Вот, данный эксперимент подтверждает мои предположения, поэтому при покупке ламп КЛЛ не забывайте про этот нюанс.

Также у КЛЛ при изменении питающего напряжения наблюдается изменение светового потока, но несколько меньше, чем у лампы накаливания. Например, при снижении питающего напряжения на 10% (198 В) освещенность уменьшилась примерно на 13,5%, а при снижении напряжения на 18% (180 В)  освещенность уменьшилась на 20%. И наоборот, при увеличении питающего напряжения на 10% (242 В), освещенность от лампы увеличилась всего на 4%.

3. Светодиодная лампа (LED) EKF серии FLL-А в этом эксперименте показала себя с самой лучшей стороны.

Во-первых, у нее лучшее значение по освещенности рабочего стола — на 8% больше, чем у лампы накаливания, и на 36% больше, чем у КЛЛ.

Во-вторых, при изменении питающего напряжения от 130 (В) до 242 (В) освещенность рабочего стола при этом нисколько не изменялась — оставалась на одном уровне. Производители утверждают, что используемый в этой лампе драйвер стабилизирует световой поток вне зависимости от понижения или повышения напряжения. И это наглядно подтверждается в проведенных опытах.

 

Время розжига лампы накаливания, люминесцентной и светодиодной ламп

Мы уже знаем освещенность рабочей поверхности от ламп из первого эксперимента. Поэтому сейчас произведем замер времени полного розжига ламп до 100% светового потока, т.е. определим время, через которое лампа выйдет на номинальный режим работы.

Полученные результаты:

  • лампа накаливания 75 (Вт) — мгновенно
  • КЛЛ «Navigator» — 2 минуты
  • светодиодная лампа (LED) EKF — мгновенно

Как видите, в этом эксперименте всем уступает компактная люминесцентная лампа «Navigator». Время ее розжига составил более 2 минуты.

У лампы накаливания и светодиодной лампы EKF световой поток с первых секунд выходит на номинальный режим работы.

 

Цветовая температура и индекс цветопередачи ЛН, КЛЛ и LED

Цветовая температура — это длина волны источника света в оптическом диапазоне. Измеряется в «Кельвинах».

Несколько примеров: 1500-2000 (К) — пламя свечи,  2000 (К) — лампы ДНаТ, 3400 (К) — солнце у горизонта, 7500 (К) — дневной свет.

Цветопередача — это зрительное восприятие одного и того же объекта, освещенного исследуемым источником света (в моем случае это лампа накаливания, КЛЛ и LED), по сравнению с эталонным источником света (Солнце или абсолютно «черное тело»). Безразмерная величина.

По паспортным данным цветовая температура всех трех ламп составляет 2700 (К) — теплый белый свет. Индекс цветопередачи у лампы накаливания равен Ra=100, у КЛЛ — Ra=70-80, а у LED — Ra=82.

Специальной аппаратуры (спектрофотометра) для измерения цветовой температуры и индекса цветопередачи у меня нет, поэтому ограничимся визуальным сравнением.

В любом случае предметы, освещенные лампой накаливания будут иметь более естественные цвета, нежели при КЛЛ или LED.

Видеоролик к данной статье:

P.S. Продолжение следует… В следующей статье с помощью тепловизора я произведу замер температуры нагрева корпусов и колб этих ламп в рабочем режиме, а также рассчитаю их потребляемую фактическую мощность. Не пропустите — подписывайтесь на рассылку.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Какие лампы наиболее приближены по спектру излучения к дневному свету?

В компанию «СТК Системы освещения» обратился клиент с запросом относительно ламп наиболее приближенных по спектру к дневному свету. На первый взгляд в самом вопросе кроется ответ — так называемые «лампы дневного света». Однако, давайте разберемся в этом вопросе более детально.

Что такое спектр излучения? Это энергия излучаемая источниками, в том числе источниками света, в различных диапазонах, длинах волн. Длина волн определяется в нанометрах, нм. Илучение энергии световыми приборами называют также оптическим излучением. Диапазон длин волн включает в себя воспринимаемый человеческим глазом видимый диапазон и два смежных: инфракрасный и ультрафиолетовый.

Видимое излучение определяется в диапазоне 380-780 нм. Ультрафиолетовое излучение имеет 3 диапазона: УФ-С 100-280 нм, УФ-В 280-315 нм, УФ-А 315-380 нм. Инфракрасное излучение имеет длину волн свыше 780 нм.
Самое вредоносное для человека УФ-С, хотя, при этом оно обладает бактерицидным эффектом. Лампы УФ-С используются в медучреждениях для обеззараживания помещений. УФ-В вырабатывает витамин Д, а УФ-А придает коже загар. При этом в неумеренных дозах они также опасны для человека. Поэтому и придумали солнцезащитные средства с УФ-А и УФ-В фильтрами.
Обычно, в лампах, используемых в помещениях, за исключением специальных, также есть УФ-фильтры для предотвращения вредного воздействия на кожу человека.
Солнце — естественный источник оптического излучения. Однако спектр такого излучения не постоянен. Состав спектра может меняться в зависимости от времени суток, времени года, местности. Именно поэтому точно определить спектр солнечного света невозможно. Для каждого случая он свой.
Конечно, солнечный или дневной свет всеже имеет более-менее определенный спектральный состав. В сети Интернет можно встретить несколько иллюстраций спектра солнечного света.

 

Недостаток этих картинок в ограниченности диапазонов 400-700 нм. Нет ни ультрафиолетовых диапазонов, которые как вам известно присутствуют в солнечном свете. Иначе, как бы мы с вами загорали, сгорали и зачем мазались бы солнцезащитными кремами.


В этой картинке уже больше правды. Слева — спектр солнечного света. Справа — спектр ламп дневного света.

Не знаю какие именно лампы дневного света брались за основу и откуда получена данная информация, но она отчасти совпадает с данными PHILIPS.
Как видите, спектр люминесцентных ламп отчасти повторяет спектр солнца, но солнечный спектр более ровный и насыщенный.

Примерно такая же ситуация и с газоразрядными лампами. Спектр некоторых из них распространяется на все видимые диапазоны и отчасти захватывает смежные ултрафиолетовый и инфракрасный.

Почему вопросу соответствия спектра искуственных источников света с естественным солнечным уделяется много внимания? Исследования в области физиологии человека доказали влияние спектрального состава света на жизнедеятельность и показатели нашего организма.

Именно поэтому нашему клиенту после проведения аттестации рабочих мест в помещениях без естественного освещения были предложены следующие мероприятия: использовать газоразрядные источники света со спектральным составом, близким к спектру естественного света; для компенсации ультрафиолетовой недостаточности предусматривать использование ультрафиолетовых облучательных установок длительного действия(совмещенных с осветительными установками).

С.Исполатов
СТК Системы освещения.

www.svetstk.ru

Засветились! Результаты испытаний 11 моделей лампочек c цоколем E27

Сводная таблица результатов испытаний

Экономичность

Ресурсный тест

Температура и масса

Ресурсные испытания — выдерживают не все

Стенд подключен через стабилизатор напряжения для обеспечения корректного электропитания. Отсутствие стабилизатора могло бы спровоцировать досрочный выход ламп из строя из-за перепадов в электросети.

Автоматизированный стенд управляется цифровым программируемым таймером с внешним реле. Для достоверной фиксации времени выхода образцов из строя ночью и в выходные дни ведется видеозапись. Конструкция стенда изначально проектировалась в расчете на значительные нагрузки. Предусмотрена возможность одновременного тестирования 11 моделей лампочек (в тесте участвует по 2 образца каждого наименования) с цоколем E27 или E14.

Потребление энергии: покупателей обманывают?

Функциональность

Экономичность

Нагрев и масса

Какие лампы предпочесть?

  • Лучший выбор для современного жилища — светодиодные лампы. Правда, модели с яркостью свыше 800 лм (эквивалент лампы накаливания 75Вт) имеют неадекватный ценник, поэтому в светильниках, от которых требуется высокая отдача, имеет смысл использовать люминесцентные решения мощностью 15-25 Вт, что равноценно лампочкам накаливания 75-150 Вт.
  • Качественные люминесцентные лампы способны пережить в среднем от 5000-7000 включений, поэтому их лучше использовать в тех помещениях, которым освещение требуется почти постоянно либо изредка.
  • Использование традиционных лампочек накаливания сегодня сложно оправдать. Выручить они могут разве что в домах с заметными перепадами напряжения, хотя и на этот случай существуют современные аналоги со встроенным стабилизатором напряжения. Важно, что лампочки накаливания в итоге обходятся дороже всех остальных, поскольку энергии потребляют в разы больше и чаще перегорают.
  • При выборе люминесцентных ламп отдавайте предпочтение уважаемым маркам. Такая продукция лишь немного дороже, зато заявленный ресурс, как правильно, вырабатывает. В отличие от изделий эконом-класса, которые дешевле в магазине, но выходят из строя подчас со скоростью лампочек накаливания. И обращайте внимание на название: за написанной по-русски маркой чаще всего скрывается недорогой продукт из Китая.

Холодный или теплый?

Приглушите свет, пожалуйста!

Поделиться с друзьями

Подписка

Подпишитесь на полезные статьи

Каждую неделю мы рассказываем о новых сравнительных тестах продуктов
питания и бытовой техники. Коротко и по делу.

roscontrol.com

Светить всегда? Ресурсный тест 11 моделей энергосберегающих ламп

Среди светодиодных моделей, протестированных осенью 2016, эта оказалась самой «честной», показав минимальное расхождение измеренной и заявленной мощности. Ресурсный тест пройден успешно обоими образцами, лишь модный нынче «турбо-старт» светодиода может повлиять на его долговечность.

89

Результаты теста

Ресурсный тест

100

Конструкция и функциональность

73

Экономичность

94

Подробнее

Измеренная мощность Космос 7W LED A60 E2745 на 9% оказалась ниже заявленной, но в остальном модель не вызвала серьезных нареканий и успешно выдержала ресурсное испытание. Опасение вызывает лишь «турбо-старт» светодиода, что может повлиять на его долговечность.

89

Результаты теста

Ресурсный тест

100

Конструкция и функциональность

73

Экономичность

93

Подробнее

Типовая люминесцентная лампочка, которая может применяться в помещениях, где свет включается и выключается часто (например, в санузлах). Из недостатков отметим включение с задержкой и с малой яркостью. Не лучший вариант, если свет нужен сразу, но в остальном – хорошая модель.

74

Результаты теста

Ресурсный тест

94

Конструкция и функциональность

46

Экономичность

81

Подробнее

Измеренная мощность оказалась ниже заявленной, хотя разброс не фатальный. Кроме того, модель не лучшим образом переносит частые включения, поэтому в санузлах и настольных лампах ее лучше не применять. Но при использовании в режиме постоянного свечения может прослужить довольно долго.

74

Результаты теста

Ресурсный тест

94

Конструкция и функциональность

46

Экономичность

81

Подробнее

Модель бюджетная, однако явных недостатков по итогам ресурсных испытаний мы не выявили. Яркость постоянного свечения за 1000 часов работы не снизилась, стойкость к частным включениям отличная, само включение происходит без задержки.

74

Результаты теста

Ресурсный тест

95

Конструкция и функциональность

46

Экономичность

84

Подробнее

Эту люминесцентную лампочку можно смело применять там, где свет выключается и выключается часто (например, в санузлах или настольных лампах). Лампочка включается без задержки, хотя и не на полную яркость. По совокупности показателей – достойная модель.

70

Результаты теста

Ресурсный тест

100

Конструкция и функциональность

31

Экономичность

80

Подробнее

Для качественной светодиодной лампы 1000 часов работы — пустяк. Отрадно, что и у Camelion LED Ultra LED7.5-G45 деградации показателей за этот период не случилось. Однако заявленное энергопотребление оказалось значительно выше измеренного, а ведь LED-лампочку нередко выбирают именно по мощности.

89

Товар с замечаниями

Ресурсный тест

100

Конструкция и функциональность

73

Экономичность

95

Подробнее

По ходу испытаний претензия к модели Эра LED smd B35 7w-827- E27-Cler возникла лишь одна, зато серьезная: измеренная мощность оказалась на четверть ниже заявленной! Кроме того, опасение вызывает «турбо-старт» светодиода, что может повлиять на его долговечность.

89

Товар с замечаниями

Ресурсный тест

100

Конструкция и функциональность

73

Экономичность

96

Подробнее

Оба образца модели jazzway PLED-SP выдержали ресурсный тест без нареканий. Но экспертов насторожил «турбо-запуск», способный сократить время службы светодиода, а также тот факт, что заявленная мощность оказалась на 20% выше измеренной.

89

Товар с замечаниями

Ресурсный тест

100

Конструкция и функциональность

73

Экономичность

95

Подробнее

Несмотря на то, что формально эта модель выдержала ресурсные испытания, сделала это едва-едва: стойкость к частым включениям ниже, чем у конкурентов, а потеря яркости за время непрерывной работы всего 1000 часов составила 7%. И огромная разница между измеренной мощностью и заявленной.

64

Товар с замечаниями

Ресурсный тест

78

Конструкция и функциональность

40

Экономичность

87

Подробнее

Модель gauss elementary 23217A формально выдержала ресурсный тест, однако за время непрерывной работы в течение всего лишь 1000 часов (4% от заявленного ресурса) потеря яркости негасимого образца составила 17%. Кроме того, измеренная мощность оказалась заметно ниже заявленной.

63

Товар с замечаниями

Ресурсный тест

49

Конструкция и функциональность

73

Экономичность

94

Подробнее

roscontrol.com

Компактная люминесцентная лампа – КЛЛ — Help for engineer

Компактная люминесцентная лампа – КЛЛ

В конце 1980-х годов на рынках появилась альтернатива лампам накаливания. Компактные люминесцентные лампы начали продавать с широким размахом, превознося над как бы «устаревшими», невыгодными лампами накаливания.

Лампа КЛЛ представляет собой люминесцентную лампу изогнутой формы со встроенным электронным балластом. Измененная форма дает возможность более широкого и удобного применения, появилась возможность использовать в меньших светильниках, а так же заменять лампочки накаливания (ввинчивается в цоколи бытовых светильников).

Цоколи компактных люминесцентных ламп разнообразны: 2D, G53, G24Q1, G24Q2, G24Q3, G23, 2G7. А так же Е14 (миньон), Е27 и Е40, которые широко применяются в стандартных светильниках (бытовых патронах). Из-за наличия встроенной ЭПРА, габариты КЛЛ такие же, как и у ламп накаливания при одинаковом световом потоке.

Рисунок 1 — Компактная люминесцентная лампа

Применение встроенного электронного балласта (ЭПРА) увеличивает габариты КЛЛ, но при этом не требует установки никакой дополнительной пусковой аппаратуры. С помощью ЭПРА люминесцентная лампа избавляется от нескольких своих недостатков:

— отсутствует жужжание лампы;

— пропадает видимое человеческому глазу мерцание в связи с повышением частоты питающего напряжения.

Принцип работы КЛЛ ничем не отличается от принципа действия люминесцентной лампы.

Очень часто компактные люминесцентные лампы называют энергосберегающими или же экономичными. Действительно ли их использование способствует экономии денег? Для решения данного вопроса приведем сравнительную таблицу показателей КЛЛ и ЛН (лампы накаливания):

Исходя из приведенных данных видно, что при гораздо меньшей мощности компактной люминесцентной лампы, ее световой поток такой же, как и у лампы накаливания. Эффективность или КПД их находится в примерном соотношении 1:5. То есть, при применении КЛЛ экономия электрической энергии будет приблизительно 80%. А вот ее цена может в десяток раз превосходить ЛН.

Условия эксплуатации очень сильно влияет на срок службы лампочки:

— качество питающей электроэнергии;

— частые пуски крайне вредны – 2-3 минуты ей необходимо для того, чтоб выйти на номинальный режим работы;

— наружная температура не должна быть большой, что делает невозможным использование в закрытых плафонах;

Заявленный производителем срок службы компактной люминесцентной лампы колеблется в районе 3000-15000 часов.

Таким образом, при использовании дома этих лампочек, выход их из эксплуатации из-за поломки происходит раньше заявленного производителем срока и зачастую не превышает времени работы лампочки накаливания. И в итоге, мы не получаем на практике никакой экономии денег: на одной чаше весов высокая цена, несоблюдения правил эксплуатации (ранний выход из строя) и потенциальная опасность паров ртути при повреждении стеклянного сосуда лампы (5-7мг ртути содержится в лампе средней мощности), а на другой — высокая светоотдача при потреблении малой мощности.

На самом деле экономичными или энергосберегающими называются не только лампы КЛЛ, но и светодиодные, и линейные люминесцентные лампы пониженного диаметра трубки с уменьшеным содержанием ртути.

Маркировка ламп выполняется так же, как и у линейных люминесцентных.

Если во вмонтированном пусковом балласте компактной люминесцентной лампочки не применена компенсирующая емкость, то коэффицент мощности — cos(фи) будет примерно равен 50%, что крайне негативно повлияет на напряжение сети.

Использование диммеров, которые последовательно подключаются с компактными люминесцентными лампами невозможно. Для регулирования яркости свечения таких ламп применяют диммеры специального исполнения и требуется дополнительное прокладывание проводов.

Нанесение люминофора в компактных люминесцентных лампах неравномерно, толщина слоя, направленного к цоколю, больше для осуществления направленности свечения.

Ультрафиолетовое излучение увеличивается со временем, происходит старение люминофора, УФ в больших дозах вреден.

Включение ламп КЛЛ в основном происходит с задержкой на 0,5-1с (некоторое неудобство), которая вызвана необходимостью нагрева элементов. Может производится и холодных пуск, но его использование сокращает срок службы лампы с каждым ее включением.

Линейчатый спектр КЛЛ не только ухудшает цветопередачу, но и вызывает усталость глаз.

Особым исполнением КЛЛ являются лампы непрерывного спектра, температура их свечения более 6000К. Улучшается светопередача и считается, что их использование оказывает благоприятное влияние на здоровье человека.

Возможны периодические вспышки компактной люминесцентной лампы в выключенном состоянии. Это явление вызвано наличием большого конденсатора, который при малой утечке тока способен заряжаться и, в какой-то момент времени, разрядившись, на миг вызвать зажигание лампы. Это негативное явление сокращает срок службы и крайне редко оглашается производителями. Может быть вызвано:

— наличием в выключателе «огонька»;

— неправильно установленным выключателем, если разрывается не фаза, а ноль;

Избавиться от эффекта периодической вспышки можно следующими способами:

— в параллель лампочке поставить конденсатор (напряжением не ниже 400В на 0,4-0,7 мкФ);

— если в люстре несколько ламп, установить одну лампу накаливания.

Добавить комментарий

h4e.ru

7. Источники света и их характеристики с точки зрения способности активации светящейся краски.

Основные характеристики света

  • Свет и излучение. Под светом понимают электромагнитное излучение, вызывающее в глазу человека зрительное ощущение. При этом речь идет об излучении в диапазоне от 360 до 830 нм, занимающем мизерную часть всего известного нам спектра электромагнитного излучения.
  • Световой поток Ф. Единица измерения: люмен [лм]. Световым потоком Ф называется вся мощность излучения источника света, оцениваемая по световому ощущению глаза человека.
  • Сила света I. Единица измерения: кандела [кд]. Источник света излучает световой поток Ф в разных направлениях с различной интенсивностью. Интенсивность излучаемого в определенном направлении света называется силой света I.
  • Освещенность Е. Единица измерения: люкс [лк]. Освещенность Е отражает соотношение падающего светового потока к освещаемой площади. Освещенность равна 1 лк, если световой поток 1 лм равномерно распределяется по площади 1м2
  • Яркость L. Единица измерения: кандела на квадратный метр [кд/м2]. Яркость света L источника света или освещаемой площади является главным фактором для уровня светового ощущения глаза человека.
  • Световая отдача. Единица измерения: люмен на Ватт. Световая отдача показывает с какой экономичностью потребляемая электрическая мощность преобразуется в свет.

Характеристики источников света / Формулы

 

   Сила света,

     I [кд]   

 

Световой поток в телесном углу / Телесный угол [ср]

 

 

    Световой            поток, 

     Ф [лм]

.

Сила света [кд] x Телесный угол [ср]

 

 Освещенность,

     E [лк]

.

Сила света [кд] / [Расстояние в метрах [м]]2

 

    Яркость,

     L [кд/м2]

Cила света [кд] / Видимая светящаяся поверхность [м]2

   Световая            отдача,        

     [лм/Вт]

Генерируемый световой поток [лм] / Потребляемая электрическая мощность [Вт]

Технические характеристики светильников

Цветовая температура. Единица измерения: Кельвин [K]. Цветовая температура источника света определяется путем сравнивания с так называемым «черным телом» и отображается «линией черного тела». Если температура «черного тела» повышается, то синяя составляющая в спектре возрастает, а красная составляющая убывает. Лампа накаливания с тепло-белым светом имеет, например, цветовую температуру 2700 K, а люминесцентная лампа с цветностью дневного света — 6000 K.

Цветность света. Цветность света очень хорошо описывается цветовой температурой. Существуют следующие три главные цветности света: тепло-белая < 3300 K, нейтрально-белая 3300 — 5000 K, белая дневного света > 5000 K. Лампы с одинаковой цветностью света могут иметь весьма различные характеристики цветопередачи, что объясняется спектральным составом излучаемого им света.

Цветопередача. В зависимости от места установки ламп и выполняемой ими задачи искусственный свет должен обеспечивать возможность наиболее лучшего восприятия цвета (как при естественном дневном свете). Данная возможность определяется характеристиками цветопередачи источника света, которые выражаются с помощью различных степеней «общего коэффициента цветопередачи» Ra.

Коэффициент цветопередачи отражает уровень соответствия естественного цвета тела с видимым цветом этого тела при освещении его эталонным источником света. Для определения значения фиксируется Ra сдвиг цвета с помощью восьми указанных в DIN 6169 стандартных эталонных цветов, который наблюдается при направлении света тестируемого источника света на эти эталонные цвета. Чем меньше отклонение цвета излучаемого тестируемой лампой света от эталонных цветов, тем лучше характеристики цветопередачи этой лампы. Источник света с показателем цветопередачи Ra = 100 излучает свет, оптимально отражающий все цвета, как свет эталонного источника света. Чем ниже значение Ra, тем хуже передаются цвета освещаемого объекта.

КПД светильника. КПД светильника является важным критерием оценки энергоэкономичности светильника. КПД светильника отражает отношение светового потока светильника к световому потоку установленной в нем лампы.

Источники света как источник зарядки светящейся краски.

Чтобы люминофор светился, его надо возбуждать, т.е. подводить энергию. Делать это можно

разными способами. Самый распространенный способ возбуждения – светом (видимым

— солнечным, искусственным комнатным  или невидимым — ультрафиолетовым, инфракрасным).

Опытами Ньютона было установлено, что солнечный свет имеет сложный характер. Подобным же

образом, т. е. анализируя состав света при помощи призмы, можно убедиться, что свет большинства

других источников (лампа накаливания, газоразрядная лампа, дуговой фонарь и т. д.) имеет такой же

характер. Сравнивая спектры этих светящихся тел, обнаружим, что соответственные участки

спектров обладают различной яркостью, т. е. в различных спектрах энергия распределена по

разному. 

Для обычных источников эти различия в спектре не очень значительны, однако их можно без труда

обнаружить. Наш глаз даже без помощи спектрального аппарата обнаруживает различия в качестве

белого света, даваемого этими источниками. Так, свет свечи кажется желтоватым или даже

красноватым по сравнению с лампой накаливания, а эта последняя заметно желтее, чем солнечный

свет. 

Еще значительнее различия, если источником света вместо раскаленного тела служит трубка, наполненная газом, светящимся под действием электрического разряда. Такие трубки употребляются в настоящее время для светящихся надписей или освещения улиц. Некоторые из

этих газоразрядных ламп дают ярко желтый (натриевые лампы) или красный (неоновые лампы)

свет, другие  светятся беловатым светом (ртутные), ясно отличным по оттенку от солнечного.

Спектральные исследования  света подобных источников показывают, что в их спектре имеются

только отдельные более или менее узкие цветные участки.

В искусственных источниках света предназначенных для помещений используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света.

Источники света, наиболее часто применяемые для искусственного освещения, делят на три основные группы: 1) газоразрядные лампы, 2) лампы накаливания и 3) светодиоды.

Стандартные лампы накаливания.

Принцип действия — вольфрамовая спираль, помещенная в колбу, из которой откачан воздух,

разогревается под действием электрического тока. За более чем 120-летнюю историю ламп

накаливания их было создано огромное множество — от миниатюрных ламп для карманного фонарика

до полукиловаттных прожекторных. Типичная для ЛН световая отдача 10-15 Лм/Вт выглядит очень

неубедительно на фоне рекордных достижений ламп других типов. ЛН в большей степени

нагреватели, чем осветители: львиная доля питающей нить накала электроэнергии превращается не

в свет, а в тепло. В связи с этим сплошной спектр лампы накаливания имеет максимум в

инфракрасной области и плавно спадает с уменьшением длины волны. Такой спектр определяет

теплый тон излучения (Тцв=2400-2700 К) при отличной цветопередаче (Ra=100).

Срок службы ЛН, как правило, не превышает 1000 часов, что, по временным меркам, очень немного.

Итак — по причине крайне низкой световой отдачи, для быстрой (в течение 10-15 минут) активации

фотолюминесцентных композиций подходит в самую последнюю очередь. Для наблюдения более-

менее приличной фотолюминесценции потребуется не менее 40 минут активации от двухрожковой

люстры с лампами накаливания в 100 Ватт каждая.

Галогеновые лампы накаливания.

Главным недостатком стандартной лампы накаливания является ее малая светоотдача и её короткий

срок службы. При наполнении ее галогенными соединениями (к группе галогенов относятся

неметаллические химические элементы фтор, хлор, бром, йод и астатин) можно избежать

образования сажи на внутренней стороне стеклянной колбы, так что лампа в течение всего срока

службы будет излучать постоянную световую энергию (люмен). Полезный эффект достигается за

счет того, что пары галогенов способны соединяться с испаряющимися частицами вольфрама, а

затем под действием высокой температуры распадаться, возвращая вольфрам на спираль.

Вылетающие с раскаленной спирали атомы вольфрама, таким образом, не долетают до стенок колбы

лампы (за счет чего и снижается почернение), а возвращаются обратно химическим путем. Это

явление получило название галогенного цикла.

За счет этого светоотдача и срок службы лампы значительно улучшаются. В то время, как

стандартная лампа накаливания достигает светоотдачи 10 лм/ватт, галогенная лампа накаливания

играючи достигает 25 лм/ватт. Кроме того, галогенные лампы накаливания имеют более компактную

конструкцию и пригодны для изящных и специальных светильников.

В специализированных магазинах сегодня имеются в продаже галогенные лампы накаливания для

работы с напряжением сети 220 вольт и лампы для низковольтного режима работы: на 6,12, 24

вольта. Для низковольтных галогенных ламп дополнительно требуется трансформатор.

Для декоративного акцентного освещения все больше используются галогенные отражающие лампы

мощностью 10-50 ватт, а также рефлекторные лампы с отражателями тлеющего свечения 20-75

ватт. При этих лампах 2/3 образующегося тепла отводится назад через отражатель, пропускающий

инфракрасные лучи, так что освещаемые этими лампами объекты не очень сильно нагреваются.

Стандартным сроком службы сетевых и многих низковольтных галогенных ламп принято считать

период в 2000 часов. Как и у обычных ламп накаливания, механические воздействия на лампы в

процессе эксплуатации (в особенности, для линейных ламп с большой длиной спирали), а также

частые включения сокращают их срок службы.

Цветовая температура галогенных ламп, как и реальная температура их нити накала, выше, чем у

традиционных ламп накаливания и составляет 3000-3200 К. Этот параметр можно изменить при

помощи встроенных или внешних светофильтров, а также подбором толщины интерференционного

отражающего слоя в зеркальных лампах. Индекс цветопередачи Ra галогенных ламп, как и у всех

тепловых источников света, максимален и равен 100, причем за счет более высокой температуры

накала (по сравнению с обычными лампами накаливания) свет галогенных ламп лучше

воспроизводит сине-зеленые цвета.

На сегодняшний день галогенные лампы остаются единственным сравнительно экономичным и при

этом недорогим видом источника света с «теплым» спектром. Этим объясняется их богатый

ассортимент, имеющий тенденцию к расширению. В первую очередь лампы данного вида находят

применение в бытовом и функционально-декоративном освещении.

Итак — лампы в целом сопоставимы по своим способностям к активации фотолюминофоров со

светодиодными лампами. Тем более, что светоотдача такая же.

Люминесцентные лампы.

Из всех типов ламп люминесцентные лампы имеют самую высокую светоотдачу. Так называемые

трёхленточные люминесцентные лампы при очень хорошей светопередаче достигают до 96 люменов/

ватт, т.е. почти в 10 раз больше, чем лампа накаливания. Поэтому люминесцентные лампы являются

хорошими источниками сбережения энергии, а значит и экономичными. Основная область

применения: промышленные зоны (мастерские, офисы, заводские цеха и т.д.)

В люминесцентных лампах свет производится с помощью ртути и нанесенного на внутренней

стороне колбы лампы люминесцентного слоя.

В качестве люминофоров служат инертные газы, например, неон, аргон или гелий. Возбуждаемые

электронами атомы ртути производят внутри колбы лампы невидимое для человека

ультрафиолетовое излучение, которое люминофоры преобразует в видимый свет, при этом

различные люминофоры имеют различные цвета света и свойства цветопередачи.

Светоотдача различных люминофоров также отличается друг от друга. Точно также как и компактные

люминесцентные лампы или энергосберегающие лампы, так и стандартные люминесцентные лампы

функционируют только с пускорегулирующим аппаратом. И в этом случае Вы должны приобретать

лампы только с электронным пускорегулирующим аппаратом.

Люминесцентные лампы рассчитаны на так называемую оптимальную окружающую температуру,

которая обычно совпадает с комнатной (18-25°С). При меньших или больших температурах

светоотдача лампы падает. Если окружающая температура ниже +5°С, зажигание лампы вообще не

гарантируется. С этой особенностью связаны ограничения, накладываемые на применение этих ламп

в наружном освещении.

Срок службы люминесцентных ламп определяется многими факторами и в основном зависит от

качества их изготовления. Физическое перегорание лампы происходит в момент разрушения

активного слоя либо обрыва одного из ее электродов. Наиболее интенсивное распыление электродов

наблюдается при зажигании лампы, поэтому полный срок службы сокращается при частых

включениях. Полезным сроком службы принято считать период, в течение которого лампа дает не

менее 70% от начального светового потока. Этот период может истекать задолго до перегорания

лампы как такового. Средний полезный срок службы современных люминесцентных ламп в

зависимости от модели составляет 8000-15000 ч.

Люминесцентные лампы охватывают практически весь диапазон цветовых температур от 2700 до

10000 К. Существуют также цветные лампы. Индекс цветопередачи Ra меняется от 60 для ламп со

стандартными люминофорами до 92…95 у ламп с очень хорошей цветопередачей. Улучшение

цветопередачи сопровождается некоторым снижением световой отдачи.

Эксплуатационными особенностями люминесцентных ламп являются мерцание светового потока с

частотой питающей сети и его спад в течение срока службы. Мерцание лампы незаметно глазу,

однако сказывается на утомляемости зрительной доли мозга. Подобное освещение непригодно для

напряженной зрительной работы (чтения, письма и т.п.) и может вызывать стробоскопический

эффект на вращающихся предметах. Электронные балласты полностью исключают эту проблему, так

что на сегодняшний день их можно рекомендовать для большинства применений.

Люминесцентный свет в настоящее время абсолютно доминирует на рынке внутреннего освещения

общественных зданий. Несмотря на стремительно развивающегося конкурента — светодиодные

системы — традиционные люминесцентные лампы будут удерживать свои позиции еще много лет. В

последнее время наблюдается также тенденция активного проникновения люминесцентного света в

бытовые и дизайнерские применения. Ранее этот процесс сдерживался в основном

несовершенством конструкции и не вполне удачной цветовой гаммой старого модельного ряда ламп.

Итак — наиболее оптимальный вариант  для активации фотолюминесцентов. Для помещения в 30

кв.м. достаточно лампы мощностью 40 Ватт, чтобы наш фотолюминесцентный рисунок был

активирован в течение 10-15-ти минут (использование лампы 60 Ватт позволит фотолюминесценту

заряжаться в течение 5-ти минут)

Разрядные лампы высокого давления.

Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке

под действием дуговых электрических разрядов. Дуговые разрядные лампы намного старше ламп

накаливания, в прошлом году электрической дуге исполнилось 200 лет. Два основных разряда

высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно

узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому

цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать

лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов

позволило создать новый класс источников света — металлогалогенные лампы (МГЛ), отличающиеся

очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100

Лм/Вт), хорошая и отличная цветопередача Ra=80-98, диапазон Тцв от 3000 К до 6000 К, средний

срок службы около 15 000 часов.

Один из немногих недостатков МГЛ — невысокая стабильность параметров в течение срока службы —

успешно преодолевается с изобретением ламп с керамической горелкой. МГЛ успешно и

разнообразно применяются в архитектурном, ландшафтном, техническом и спортивном освещении.

Еще более широко применяются натриевые лампы. На сегодняшний день это один самых

экономичных источников света (до 150 Лм/Вт).

Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве

натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не

всегда уместно из-за проблем с цветопередачей.

Итак — высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98,

диапазон цветовых температур от 3000 К до 6000 К (оптимальна 4200 К) делают эти лампы весьма

подходящими для быстрой зарядки фотолюминесцентов в архитектурном, ландшафтном,

техническом и спортивном освещении..

Светодиодные лампы и ленты.

Полупроводниковые светоизлучающие приборы — светодиоды — называют источниками света

будущего. Если говорить о современном состоянии «твердотельной светотехники», можно

констатировать, что она выходит из периода младенчества. Достигнутые характеристики

светодиодов (для белых светодиодов световая отдача от 15-ти до 25 Лм/Вт при мощности прибора

до 5 Вт, Ra=80-85, срок службы 100 000 часов) уже обеспечили лидерство в светосигнальной

аппаратуре, автомобильной и авиационной технике. Светодиодные источники света стоят на пороге

вторжения на рынок общего освещения, и это вторжение нам предстоит пережить в ближайшие годы.

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в

электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной

лампе с холодным катодом.

Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных

составляющих).

Длительный срок службы. Но и он не бесконечен — при длительной работе и/или плохом охлаждении

происходит «отравление» кристалла и постепенное падение яркости.

Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и

передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет

только лазер.

Малая инерционность. Малый угол излучения — также может быть как достоинством, так и

недостатком.  Низкая стоимость. Безопасность — не требуются высокие

напряжения. Нечувствительность к низким и очень низким температурам. Однако, высокие

температуры противопоказаны светодиоду, как и любым полупроводникам.

Итак — светоотдача у светодиодных ламп или лент составляет от 15-ти до 25 Лм/Вт, что только чуть-

чуть  лучше, чем светоотдача у ламп накаливания (10-15 Лм/Вт). Спектр излучения у светодиодов

белого цвета, как известно, крайне узок, что даже при хорошей совокупной мощности (15-20 Ватт)

будет увеличивать время выдержки, необходимое для активации фотолюминофоров..

По причине низкой световой отдачи, для быстрой (в течение 10-15 минут) активации

фотолюминесцентных композиций подходит условно.

Для наблюдения более- менее приличной фотолюминесценции в помещении 30 кв.м. нам

потребуется не менее 30-40 минут активации от двухрожковой люстры со светодиодными

лампами мощностью не менее 5 Вт каждая. Лучше использовать более мощные лампы.

В случае использования светодиодной ленты белого цвета, тождественным будет 30-40-минутное

использование не менее 2-х погонных метров ленты, каждый из которых имеет мощность 4,8 Ватт.

При использовании светодиодной ленты 5-ти или 10-ти метровой длины, наклееной «под потолком»

по контуру комнаты, результат станет пропорционально лучше. 

Энергосберегающие ламы.

Энергосберегающие лампы состоят из колбы, наполненной порами ртути и аргоном, и

пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено

специальное вещество, называемое люминофор. Люминофор, это такое вещество, при воздействии

на которое ультрафиолетовым излучением, начинает излучать видимый свет. Когда мы включаем

энергосберегающую лампочку, под действием электромагнитного излучения, поры ртути,

содержащиеся в лампе, начинают создавать ультрафиолетовое излучение, а ультрафиолетовое

излучение, в свою очередь, проходя через люминофор, нанесенный на поверхность лампы,

преобразуется в видимый свет.

Люминофор может иметь различные оттенки, и как результат, может создавать разные цвета

светового потока. Конструкции существующих энергосберегающих ламп делают под существующие

стандартные размеры традиционных ламп накаливания. Диаметр цоколя у таких ламп составляет 14

или 27 мм. Благодаря чему вы можете использовать энергосберегающие лампы в любом

светильнике, бра или люстре, для которых вы раньше применяли лампу накаливания.

а) Преимущества энергосберегающих ламп

Коэффициент полезного действия у энергосберегающей лампы очень

высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания.

Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный

световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению

энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь

освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной

лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой

нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.

Долгий срок службы. По сравнению с  лампами накаливания, настоящие (фирменные)

энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят

из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую

конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в

среднем 5-15 раз.

Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется

производителем и указывается на упаковке). 

Низкая теплоотдача. Благодаря высокому коэффициенту полезного действия у энергосберегающих

ламп, вся затраченная электроэнергия преобразуется в световой поток, при

этом энергосберегающие лампы выделяют очень мало тепла. 

Большая светоотдача. В обычной лампе накаливания свет идет только от вольфрамовой спирали.

Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от

энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше

распространяется по помещению.

Выбор желаемого цвета. Благодаря различным оттенкам люминофора покрывающего корпус

лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть

мягкий белый свет, холодный белый, дневной свет, и т.д.;

б) Недостатки энергосберегающих ламп

Единственным и значительным недостатком энергосберегающих ламп по сравнению с

традиционными лампами накаливания является их высокая цена. 

в) Мощность

Энергосберегающие лампы изготавливают с различной мощностью. Диапазон мощностей

варьируется от 3 до 90 Вт. Следует учитывать, что коэффициент полезного действия у

энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у

традиционной лампочки накаливания. Поэтому при выборе энергосберегающей лампы, надо

придерживаться правила — делить мощность обычной лампы накаливания на пять. Если вы в своей

люстре или светильнике применяли обычную лампочку накаливания мощностью 100 Вт, вам будет

достаточно приобрести энергосберегающую лампочку мощностью 20 Вт.

г) Цвет света

Энергосберегающие лампы способны светить разным цветом. Данная характеристика определяется

цветовой температурой энергосберегающей лампы.

·2700 К — теплы белый свет.

·4200 К — дневной свет.

·6400 К — холодный белый свет.

д) По поводу ультрафиолетовой составляющей энергосберегающих ламп. 

Свечение люминофора, которым покрыта трубка лампы, происходит в ультрафиолетовом свете,

люминофор просто увеличивает светоотдачу и исправляет спектр свечения (невидимое УФ

излучение преобразует в видимое).

Но ультрафиолетовое излучение не проходит через обычное силикатное стекло (из которого и

сделаны трубки ламп). Оно проходит только через кварцевое. Поэтому, даже с учетом того, что

трубки сделаны из очень тонкого стекла, говорить о данных лампах, как об источнике интенсивного УФ

излучения некорректно.

Тем более, если лампы установлены в светильники со стеклянными плафонами, УФ излучение не

может проходить через них вообще.

Итак — светоотдача сопоставимая с люминесцентными лампами «дневного света». Спектр

соответствующий цветовой температуре 4200К является наилучшим. Понижение цветовой

температуры или её повышение сдвигают спектр (хоть так — хоть так) в менее эффективную для

зарядки фотолюминофора область.

Для помещения 30 кв.м. оптимальная мощность для активации фотолюминофора в течение 10-15

минут составляет 26-27 Ватт.

Ультрафиолетовые лампы и светодиодные ленты.

 

 

В начале XIX в. было обнаружено, что н же (по длине волны) фиолетовой части спектра

видимого света находится невидимый ультрафиолетовый участок спектра.

Длины волн ультрафиолетового излучения заключены в пределах от 4·10-7 до 6·10-9 м. Наиболее

характерным свойством этого излучения является его химическое и биологическое действие.

Ультрафиолетовое излучение вызывает явление фотоэффекта, свечение ряда веществ

(флуоресценцию и фосфоресценцию). Оно убивает болезнетворные микробы, вызывает появление

загара и т.д. Но это не всё!

Уникальность ультрафиолетовой подсветки заключается в том что и без того яркие при

дневном свете флуоресцентные краски, или изделия в которые

были добавлены флуоресцентные пигменты, под такой лентой будут светиться в темноте! Это может

быть что угодно: одежда, детали интерьера, белый потолок и другое…

В то же время, наилучшим излучением для активации фотолюминесцентных пигментов является

диапазон 220-440 нм, с пиком на длине волны 356 нм.

Именно поэтому любой рисунок сделаный фотолюминесцентными красками (вне зависимости от

длительности свечения фотолюминофора на базе которого они сделаны) в ультрафиолетовом

излучении будет находиться в состоянии постоянной подзарядки, а процессы затухания яркости

свечения наблюдаться не будут.

Современная ультрафиолетовая лампа работает по тому же принципу, что и

обычная люминесцентная лампа: ультрафиолетовое излучение образуется в колбе вследствие

взаимодействия паров ртути и электромагнитных разрядов. Газоразрядная трубка изготавливается

из специального кварцевого или увиолевого стекол, имеющих способность пропускать УФ-лучи.

Увиолевое стекло является более «прогрессивным» решением, именно оно дает возможность снизить

образование озона, который в больших концентрациях может быть вреден для человека.

В России для интерьерной подсветки фотолюминесцентной или флуоресцентной росписи наилучшим

образом себя зарекомендовали ультрафиолетовые лампы компании «Philips™» с колбой из

увиолевого стекла и лампы компании «Camelion™».

По мощности эти лампы варьируются от 6 Ватт (малые мебельные светильники или карманные

детекторы банкнот) и до 400 Ватт (сценические прожекторы).

По мощности на эти лампы распространяется то же правило, что и для люминесцентных ламп (ламп

дневного света).

По форме бывают стандартной грушевидной (как лампы накаливания), могут быть внешне как

энергосберегающие лампы, или как мебельные и  настенные люминесцентные светильники

(размером от 33 см в длину, до 120 см — стандартный типоразмер большой люминесцентной лампы).

Наиболее популярен комнатный вариант лампы мощностью 26 Ватт под стандартный цоколь Е27

(форма лампы соответствует энергосберегающим лампам).

К минусам относят постепенное снижение интенсивности свечения лампы (одной лампы хватает не

более чем на три-четыре месяца активной эксплуатации), наличие стеклянной колбы (бьется, в

результате чего лампа выходит из строя), но главное — это невозможность использовать эти лампы

на улице в условиях высокой влажности (светильники не герметичны) и в условиях пониженых

температур (они просто не зажгутся). К тому же запитываются они ттолько от 220 Вольт.

Итак, для активации фотолюминофора в помещении 30 кв.м. в течение 5 минут, нам будет

достаточно лампы 26 Ватт (цоколь Е27).

Помните люминесцентные ультрафиолетовые лампы в клубах? А как часто такие лампы

бились!?

Ультрафиолетовую светодиодную ленту невозможно разбить!

Ультрафиолетовые светодиодные ленты предназначены специально для подсветки деталей

интерьера, клубов, баров и барных стоек, а также для подсветки кинотеатров!

Малые размеры светодиодной ленты позволяют встраивать её в любую доступную нишу, например –

алюминиевый порожек мебельного гарнитура или торец стекла!

Лента самоклеящаяся,  прекрасно переносит перепады температур от -30 С до +50 С. а в

силиконовом исполнении может использоваться на улице в любую погоду.

Допускается даже наматывать её на деревья и кустарники, прилегающие к фасадам зданий, для

подсветки флуоресцентной наружной рекламы. 

В отличие от УФ-ламп, запитка УФ-ленты возможно от любого источника 12 Вольт, даже

автомобильного аккумулятора.

При необходимости её можно нарезать на отрезки от 5 см до 0,3 или 0,5 метра и разместить их так

как необходимо в интерьере или на улице.

Итак — в случае использования ультрафиолетовой светодиодной ленты, 2-х погонных метров ленты  

(каждый из которых имеет мощность 4,8 Ватт) будет достаточно  для активации фотолюминофора в

течение 5 минут.

Оптические характеристики

·         Общая яркость ленты: 300 lumen

·         Тип светодиода: 3528 SMD светоотдача 5 lumen мощность 0.08 ватт

·         Угол света: 120 градусов

Конструкция ленты

·         Лента состоит из 60 SMD светодиодов.

·         Кратность резки 5 см (3 светодиода)

·         Лента выполнена на самоклеящейся основе «3M» и не требует дополнительного крепежа

·         Световой поток для катушки

           в 5 погонных метров: ширина 8 м, высота 3 м глубина не менее 4 м

Потребляемый ток

·         Мощность: 4,8 W

·         Питание: 12V DC

·         Рабочий ток: 0,4 А

 Скачать инструкцию IAMLED UV 60

xn--h1afdfbaeasmui9j.xn--p1ai

Люминесцентная лампа – энциклопедия VashTehnik.ru

Люминесцентная лампа – источник света низкого давления, где ультрафиолетовое излучение, как правило, ртутного разряда преобразуется слоем люминофора, нанесённого на стенки колбы прибора, в видимое. Рассмотрим, в чем отличие устройств от галогенных и прочих схожих.

Люминесцентный источник света

История развития люминесцентных ламп

Явления флюоресценции начали изучать в 19 веке. Среди учёных мужей выделим Майкла Фарадея, Джеймса Максвелла и Джорджа Стокса. Самым примечательным изобретением называют колбу Гисслера. Этот учёный попытался откачать воздух при помощи ртутного насоса. Разряжение в колбе достигло высокого уровня – прежде не удавалось создать подобные условия. Одновременно освобождённый объем заполнился парами ртути. Гисслер обнаружил, что, располагая электроды по двум концам длинной колбы и прикладывая к ним напряжение, он лицезреет зелёное свечение.

Это тлеющий разряд, положенный сегодня в основу приборов. При низком давлении внутри образуется электронный луч между катодом и анодом. Местами элементарные частицы сталкиваются с малочисленными ионами газа, отдавая энергию. За счёт переходов электронов на новые уровни образуется свечение, цвет зависит от применяемого химического элемента и прочих условий. Трубки Гисслера с 80-х годов 19 века поставлены в массовое производство. Преимущественно для развлекательных и прочих сопутствующих целей. К примеру, известные неоновые вывески.

Причины флюоресценции различались. Часто эффект провоцировался электромагнитным излучением. Известный предприниматель Томас Эдисон экспериментировал с нитями из кальция, возбуждая их рентгеновскими лучами. Аналогичными работами занимался Никола Тесла.

Разновидности люминесценции

Согласно причинам, порождающим явление, люминесценция делится на классы:

  1. Катодолюминесценция, происходит в трубках Гисслера.
  2. Фотолюминесценция: свечение веществ под действием волн близких к видимому диапазону.
  3. Радиолюминесценция идентична предыдущей, возбуждающие волны сильно пониженной частоты.
  4. Термолюминесценция: свечение образуется за счёт нагрева тела.
  5. Электролюминесценция заметна на примере светодиодов.
  6. Биолюминесценция. Ярким примером класса служит население дна океана.

Биолюминесцентная лампа

Люминесцентная лампа

Люминесцентные лампы относятся к разрядным, обсуждение начнём с процесса ионизации. Иначе окажется неинтересно из-за незнания базиса. До появления светодиодов разрядные лампы обнаруживали высокую светоотдачу. Они до 80% экономнее, нежели приборы с нитями накала. В среде газа, пара или смеси образуется тлеющий разряд. Когда среда уже ионизирована, сложностей нет, но на старте приходится использовать крайне высокие напряжения, достигающие единиц кВ.

Разрядная лампа за малым исключением – в отвёртках-индикаторах – работает в паре со стартером. Иногда эту часть неправильно называют балластом. Это разные вещи:

  1. Стартером (пускорегулирующим аппаратом) называется часть схемы, где формируется высокое напряжение для розжига дуги. В результате резкого скачка толща газа или пара пробивается, ионизируется и проводит ток. Потом необходимость в поддержании на электродах высокого напряжения пропадает. Пускорегулирующий аппарат работает исключительно на старте.
  2. Балластом именуется совокупность приспособлений, призванных скомпенсировать отрицательное сопротивление люминесцентной лампы. Когда ток растёт, проводимость между электродами увеличивается. Этот процесс не принимает лавинообразный характер, исключает выход оборудования из строя благодаря балласту, включённому последовательно в цепь. Он ограничивает рост тока до конкретного уровня.

Балласт и пускорегулирующее устройство сложно разделимы. К примеру, дроссель создаёт резкий скачок напряжения в нужный момент, его импеданс одновременно ограничивает и величину тока.

Устройство лампы

Принцип розжига дуги и конструкция разрядной лампы

Люминесцентная лампа состоит из длинной стеклянной колбы, на концах которой контактные площадки с электродами. Особенность конструкции такова, что параллельно с лампой приходится включать часть балласта. Электрод имеет два выхода наружу, напоминая вольфрамовую подкову. Отличие люминесцентных ламп: на стенки стеклянной колбы нанесено специальное вещество, светящееся под действием ультрафиолетового излучения. Напомним, внутри находятся пары ртути или вещество, способное при относительно низком напряжении старта поддерживать в объёме тлеющий разряд с нужной частотой волны.

Разберёмся, как работает зажигание. Параллельно люминесцентной лампе включается биметаллическое реле. Через него питается напряжением сети небольшой разрядник. Он представляет сильно уменьшенную копию главной лампы и для ионизации хватает 220 В. Тлеющий разрядник постепенно подогревает биметаллическое реле, производящее питание. По мере повышения температуры контакты размыкаются. В результате разрядник гаснет, а биметаллическое реле, спустя некий период, снова замыкается. Циклический процесс по времени занимает 1-2 сек.

Посмотрим, как при помощи описанного приспособления разжечь люминесцентную лампу. Действующего значения напряжения 220 В не хватает, чтобы ионизировать газ в колбе. Конструкторы пошли на оригинальный ход – использовали дроссель. Это катушка индуктивности с двумя обмотками на общем сердечнике. Намотаны так, чтобы при резком пропадании формировать скачок напряжения большой амплитуды. Описание работы в комплексе:

  • Люминесцентная лампа питается через дроссель, они включены последовательно. Стартер включён параллельно колбе через подковообразные электроды.
  • В результате при наличии напряжения в начальный момент времени зажигается разрядник и греет реле. Сопротивление контактов мало, 220 В прикладываются к дросселю. Там начинается процесс запасания реактивной мощности.
  • Когда разрядник сильно нагревает контакты биметаллического реле, оно разрывает цепь. Как следствие, питание на дросселе пропадает, в результате образуется резкий скачок напряжения. Это вызывает ответную реакцию, амплитуда импульса многократно возрастает (до единиц кВ).
  • Разница потенциалов на электродах люминесцентной лампы становится настолько большой, что ионизирует газ в колбе. Стартует процесс тлеющего разряда.
  • В результате напряжение на стартере падает, разрядник более не зажигается.

Так происходит розжиг дуги люминесцентной лампы в стандартном режиме.

Схема люминесцентной лампы

Систему называют предварительным подогревом электродов. Ток по мере нагревания биметаллического реле проходит через вольфрамовые подковы, повышая температуру и облегчая процесс розжига. Если в помещении слишком холодно, с первого раза процесс терпит неудачу. Тогда цикл повторяется, температура вольфрамовых электродов становится чуть выше. Выглядит, как быстрое моргание света при замыкании выключателя.

Как зажечь сгоревшую люминесцентную лампу

Чаще у люминесцентной лампы сгорает вольфрамовый электродов в форме подковы. Тогда через него уже нельзя подать питание на стартер, включённый параллельно колбе. Используется схема, приведённая на рисунке ниже. На электродах лампы постоянно поддерживается высокое напряжение (выше 600 В). Этим обеспечивается тлеющий разряд. Режим работы люминесцентной лампы становится напряжённым, и долго устройство функционировать не сможет.

Схема сгоревшей лампы

Обратите внимание, снаружи оба выхода каждого электрода замыкаются накоротко. Этим обеспечивается работа оставшихся внутри огрызков вольфрамового электрода. Диоды служат для правильной коммутации каждой полуволны питающего напряжения, конденсаторы доводят уровень разницы потенциалов до заданного.

Отличие люминесцентной лампы от разрядной

Главной особенностью рассматриваемых устройств становится наличие люминофора на стенках колбы. Явление люминесценции наблюдалось с древних времён. Наиболее известно указанное свойство у фосфора.

Многие кристаллы под действием ультрафиолета начинают лучиться, но температура не меняется. Напомним закон Вина для абсолютно чёрного тела. Он гласит, что максимум излучения зависит от температуры и увеличивается с её повышением. Чтобы тело стало красным, его поверхность становится горячей, 500 градусов и выше. Прочие цвета по спектру идут выше, значит, и температура поднимается больше.

Но явления люминесценции проявляется при нормальных условиях, даже мороз не помеха. Известно, что при температуре абсолютного нуля непрерывный спектр излучения некоторых тел становится просто дискретным. Вместо хаотичного потока квантов намечается упорядоченность. Явление люминесценции не пропадает. Это объясняется простым образом:

  1. При повышенной температуре электроны переходят между уровнями совершенно хаотичным образом. Каждое тело светится при нагревании в зависимости от конкретной температуры. К примеру, прочные металлы легко доходят до нужной кондиции, а дерево вначале чернеет, активно окисляясь кислородом воздуха.
  2. В основе явления люминесценции лежит принцип поглощения телом волн определённой частоты. Чаще это инфракрасный или ультрафиолетовый диапазоны. Проще всего привести пример с шариковой «ручкой для шпионов». Её чернила характерно светятся при облучении волнами ультрафиолетового диапазона. Хотя прежде бумага выглядит белой.

Аналогичным образом каждое тело демонстрирует спектр поглощения, а излучение происходит на пониженной волне. Это объясняется тем, что часть падающей на материал энергии рассеивается в виде тепла. Говорят, что тело излучает в стоксовой (от имени учёного) области спектра. Встречаются вещества, у которых волна люминесценции выше возбуждающей. Тогда говорят, что тело светится в антистоксовой области спектра. Наконец, встречаются материалы, проявляющие оба вида свойств.

В случае люминесцентных ламп волна возбуждения образуется тлеющим разрядом паров ртути и лежит в ультрафиолетовом диапазоне. Свет, излучаемый люминофором, видимый. И здесь приходим к важной характеристике – цветовой температуре. Если люминофор даёт яркий белый свет, говорят, оттенок холодный. Это хорошо для создания рабочего ритма мозга. А лампы носят название дневного света. Чаще и встречаются на практике.

vashtehnik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *