Максимальное постоянное обратное напряжение: Технические характеристики диодов

Содержание

Технические характеристики диодов

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 3 – Полупроводниковые приборы
  1. Книги / руководства / серии статей
  2. Основы электроники и схемотехники. Том 3. Полупроводниковые приборы

Добавлено 4 февраля 2017 в 22:50

Сохранить или поделиться

В дополнение к прямому падению напряжения и максимальному обратному напряжению есть много других технических параметров диодов, важных при разработке схем и выборе компонентов. Производители полупроводниковых приборов предоставляют подробные спецификации своих продуктов (в том числе, и диодов) в публикациях, известных как технические описания (datasheets, «даташиты»). Технические описания для широкого спектра полупроводниковых приборов могут быть найдены в справочниках и интернете. В качестве источника спецификаций компонентов я предпочитаю интернет, так как данные, полученные от производителей, более актуальны.

Типовые технические описания диодов содержат данные для следующих параметров:

Максимальное повторяющееся (импульсное) обратное напряжение (Uобр.и.п.макс, VRRM)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения при повторяющихся импульсах. В идеале, эта величина была бы бесконечной.
Максимальное постоянное обратное напряжение (Uобр.макс, VR, VDC)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения на постоянной основе. В идеале, эта величина была бы бесконечной.
Максимальное прямое напряжение (Uпр, VF)
Обычно указывается при номинальном прямом токе диода. В идеале эта величина была бы равна нулю: диод не оказывает никакого сопротивления прямому току. В реальности прямое напряжение описывается уравнением Шокли для диода.
Максимальный (средний) прямой ток (Iпр.ср.макс
, IF(AV))
Максимальная средняя величина тока, которую ток может проводить в режиме прямого смещения. Является принципиальным тепловым ограничением: насколько может нагреться PN переход, учитывая что рассеиваемая мощность равна току (I), умноженному на напряжение (U), а прямое напряжение зависит и от тока, и от температуры перехода. В идеале, эта величина была бы бесконечной
Максимальный (пиковый или импульсный) прямой ток (Iпр.и.макс, IFSM, if(surge))
Максимальная пиковая величина тока, которую диод может проводить в режиме прямого смещения. Опять же, этот параметр ограничивается рассеиваемой мощностью диода и, как правило, намного выше максимального среднего тока из-за тепловой инерции (дело в том, что диоду необходимо определенное количество времени, чтобы достигнуть максимальной температуры при заданном токе). В идеале, эта величина была бы бесконечной.
Максимальная общая рассеиваемая мощность(Pд
, PD)
Величина мощности (в ваттах), допустимая для рассеивания диодом, учитывая рассеивание P = IU (ток через диод, умноженный на падение напряжения на диоде) и рассеивание P = I2R (ток в квадрате, умноженный на сопротивление). Фундаментально ограничивается тепловой емкостью диода (способностью выдерживать высокие температуры).
Рабочая температура перехода (Tп.макс, TJ)
Максимальная допустимая температура для PN-перехода диода, как правило, дается в градусах Цельсия (°C). Тепло является «ахиллесовой пятой» полупроводниковых приборов: они должны оставаться холодными как для правильного функционирования, так и для более долгого срока службы.
Диапазон температур хранения
Диапазон температур, допустимых для хранения диода (без подачи питания). Иногда дается в сочетании с рабочей температурой перехода (Tп.макс, TJ), так как значения максимальной температуры хранения и максимальной рабочей температуры часто одинаковы. Хотя, на самом деле, значение максимальной температуры хранения будет больше значения максимальной рабочей температуры.
Тепловое сопротивление (RT, R(Θ)), тепловое сопротивление для разности температур перехода и окружающего воздуха (RTпер–окр, RΘJA), тепловое сопротивление для разности температур перехода и выводов/корпуса (RTпер–кор, RΘJL) при определенной рассеиваемой мощности
Выражаются в единицах градусов Цельсия на ватт (°C/Вт). В идеале, этот показатель был бы равен нулю, что означало бы, что корпус диода был идеальным теплопроводником и радиатором, способным передать всю тепловую энергию от перехода в окружающий воздух (или к выводам) без разницы температур по всей толщине корпуса диода. Высокое тепловое сопротивление означает, что диод будет наращивать чрезмерную температуру в переходе (в своем самом критически важном месте), несмотря на все усилия по охлаждению с внешней стороны диода, и, таким образом, будет ограничиваться максимальная рассеиваемая мощность.
Максимальный обратный ток (Iобр.макс, IR)
Величина тока через диод в режиме обратного смещения с приложенным максимальным обратным напряжением (Uобр.макс, VR, VDC). Иногда называется током утечки. В идеале, этот показатель был бы равен нулю, так как идеальный диод при обратном смещении будет блокировать весь ток. В реальности, он очень мал по сравнению с максимальным прямым током.
Типовая емкость перехода (Cпер, CJ)
Типовая величина емкости, свойственной переходу из-за обедненной области, действующей как диэлектрик, разделяющий соединения анода и катода. Как правило, она очень мала и измеряется в диапазоне пикофарад (пФ).
Время восстановления (tвос.обр trr)
Количество времени, необходимое диоду «выключиться», когда напряжение на нем меняет полярность с прямого смещения на обратное. В идеале, этот показатель был бы равен нулю: диод останавливает проводимость
сразу
после изменения полярности. Для типовых выпрямительных диодов время восстановления находится в диапазоне десятков микросекунд; для «быстрых коммутирующих» диодов оно может составлять всего несколько наносекунд.

Большинство из этих параметров зависит от температуры и других условий эксплуатации, и поэтому одно значение не в полной мере описывает любой из этих показателей. Поэтому производители предоставляют графики показателей компонентов в зависимости от других переменных (например, температура), благодаря чему разработчик схем имеет лучшее представление о том, на что способно устройство.

Оригинал статьи:

Теги

Время восстановленияДиодЕмкость переходаОбратное напряжениеОбратный токОбучениеПрямое напряжение
Прямой токРассеиваемая мощностьТемпература переходаТепловое сопротивлениеТермическое сопротивлениеЭлектроника

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.


Основные параметры диодов, прямой ток диода, обратное напряжение диода


Основные параметры диодов — это прямой ток диода (Iпр) и максимальное обратное напряжение диода (Uобр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток, который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода — это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.


Рис. 1

Как мы говорили ранее, напряжение на выходе выпрямителя (на конденсаторе) равно действующему напряжению вторичной обмотки трансформатора, умноженному на √2. В однополупериодном выпрямителе (рис. 1), когда напряжение на аноде диода имеет положительный потенциал относительно земли, конденсатор фильтра заряжается до напряжения, превышающего действующее напряжение на входе выпрямителя в 1.4 раза. Во время следующего полупериода напряжение на аноде диода отрицательно относительно земли и достигает амплитудное значения, а на катоде — положительно относительно земли и имеет такое же значение. В этот полупериод к диоду приложено обратное напряжение, которое получается благодаря последовательному соединению обмотки трансформатора и заряженного конденсатора фильтра. Т.е. обратное напряжение диода должно быть не меньше двойного амплитудного напряжения вторички трансформатора или в 2.8 раза выше его действующего значения. При расчёте таких выпрямителей надо выбирать диоды с максимальным обратным напряжением в 3 раза превышающим действующее значение переменного напряжения.


Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.


Рис. 3

По другому обстоит дело в случае мостового двухполупериодного выпрямителя. Как можно видеть на рис. 3, в каждый из полупериодов удвоенное напряжение прикладывается к двум непроводящим, последовательно соединённым диодам.

Максимальное обратное напряжение — Большая Энциклопедия Нефти и Газа, статья, страница 1

Максимальное обратное напряжение

Cтраница 1

Максимальное обратное напряжение Uo6pmax — это максимальное напряжение, которое может быть приложено к диоду в обратном непроводящем направлении и без его пробоя.  [1]

Максимальное обратное напряжение Чертах — ЭТО такое максимальное анодное напряжение обратной полярности, при котором еще не наступает пробой промежутка между анодом и катодом. Оно зависит от электрической прочности диода и лежит в пределах от десятков вольт до десятков киловольт.  [2]

Максимальное обратное напряжение — напряжение, соответствующее точке или области загиба обратной ветви вольтамперной характеристики тиристора, когда при небольшом приращении напряжения резко увеличивается обратный ток.  [3]

Максимальное обратное напряжение зависит как от напряжений на вторичных обмотках трансформатора, так и от типа используемой схемы выпрямления. Для демонстрации этого положения на рис. 3.17 показаны три основные схемы выпрямления с конденсаторными фильтрами.  [4]

Максимальное обратное напряжение на закрытом вентиле в трехфазных схемах с выводом нулевой точки и мостовой одинаково.  [5]

Максимальное обратное напряжение обртах — напряжение, соответствующее области загиба обратной ветви в.  [6]

Максимальное обратное напряжение в каждой ветви этих блоков составляет 500 В.  [8]

Максимальное обратное напряжение на диоде, например на VD1 ( рис. 57, б, ж), определяется максимальным напряжением между концами вентильной обмотки, так как к аноду диода VD1 приложено напряжение верхнего конца вентильной обмотки, в данный момент отрицательное, а к катоду через диод VD2, который проводит ток, приложено положительное напряжение нижнего конца вентильной обмотки.  [9]

Максимальное обратное напряжение на вентиль равно 2 8 Uz. Схема выгодна для высоковольтного питания маломощных установок.  [11]

Максимальное обратное напряжение является суммой напряжения постоянного обратного смещения и напряжения, наводимого от СВЧ мощности.  [12]

Максимальное обратное напряжение на вентиле, например на В, определяется максимальным напряжением между концами вторичной обмотки, так как к аноду вентиля В приложено напряжение верхнего конца вторичной обмотки, в данный момент отрицательное, а к катоду через вентиль 82, проводящий ток, приложено напряжение нижнего конца вторичной обмотки.  [13]

Максимальное обратное напряжение на эмиттерном переходе не должно превышать допустимого ыэбд во избежание обратного пробоя эмиттерного перехода.  [14]

Максимальное обратное напряжение на вентиле, например на Д ( р.и.с. 62, б, ж), определяется максимальным напряжением между концами вторичной обмотки, так как к аноду вентиля Д приложено напряжение верхнего конца вторичной обмотки, в данный момент отрицательное, а к катоду через вентиль Да, который проводит ток, приложено положительное напряжение нижнего конца вторичной обмотки.  [15]

Страницы:      1    2    3    4

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

ГОСТ 25529-82 Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров / 25529 82

Термин

Буквенное обозначение

Определение

русское

международное

1. Постоянное прямое* напряжение диода

D. Durchlassgleichspannung der Diode

E. Forward continuous voltage

F. Tension directe continue

Uпр

UF

Постоянное значение прямого напряжения при заданном прямом токе полупроводникового диода

2. Импульсное прямое напряжение диода

D. Spitzendurchlassspannung der Diode

E. Peak forward voltage

F. Tension directe de crête

Uпр.и

UFM

Наибольшее мгновенное значение прямого напряжения, обусловленное импульсным прямым током диода заданного значения

3. Постоянное обратное напряжение диода

D. Sperrgleichspannung der Diode

E. Reverse continuous voltage

F. Tension inverse continue

Uобр

UR

4. Импульсное обратное напряжение диода

D. Spitzensperrspannung der Diode

E. Peak reverse voltage

F. Tension inverse de crête

Uобр.и

URM

Наибольшее мгновенное значение обратного напряжения диода

5. Среднее прямое напряжение диода

D. Mittlere Durchlassspannung der Diode

E. Average forward voltage

F. Tension directe moyenne

Uпр.ср

UF(AV)

Среднее за период значение прямого напряжения диода при заданном среднем прямом токе

6. Пробивное напряжение диода

D. Durchbruchspannung der Diode

E. Breakdown voltage

F. Tension de claquage

Uпроб

U(BR)

Значение обратного напряжения, вызывающее пробой перехода диода, при котором обратный ток достигает заданного значения

7. Постоянный прямой ток диода

D. Durchlassgleichstrom der Diode

E. Forward continuous current

F. Courant direct continu

Iпр

IF

8. Импульсный прямой ток диода

D. Spitzendurchlassstrom der Diode

E. Peak forward current

F. Courant direct de crête

Iпр.и

IFM

Наибольшее мгновенное значение прямого тока диода, исключая повторяющиеся и неповторяющиеся переходные токи

9. Средний прямой ток диода

D. Mittlerer Durchlassstrom der Diode

E. Average forward current

F. Courant durect moyen

Iпр.ср

IF(AV)

Среднее за период значение прямого тока диода

10. Постоянный обратный ток диода

D. Sperrgleichstrom der Diode

E. Reverse continuous current

F. Courant inverse continu

Iобр

IR

11. Импульсный обратный ток диода

D. Spitzensperrstrom der Diode

E. Peak reverse current

F. Courant inverse de crête

Iобр.и

IRM

Наибольшее мгновенное значение обратного тока диода, обусловленного импульсным обратным напряжением

12. Прямая рассеиваемая мощность диода

D. Durchlassverlustleistung der Diode

E. Forward power dissipation

F. Dissipation de puissance en direct

Pпр

PF

Значение мощности, рассеиваемой диодом при протекании прямого тока

13. Обратная рассеиваемая мощность диода

E. Reverse power dissipation

F. Dissipation de puissance en inverse

Pобр

PR

Значение мощности, рассеиваемой диодом при протекании обратного тока

14. Средняя рассеиваемая мощность диода

D. Mittlere Verlustleistung der Diode

E. Average power dissipation

Pср

PR

Среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного токов

15. Импульсная рассеиваемая мощность диода

D. Spitzenverlustleistung der Diode

E. Peak power dissipation

Pи

PM

Наибольшее мгновенное значение мощности, рассеиваемой диодом

16. Общая емкость диода

D. Gesamtkapazität der Diode

E. Terminal capacitance

F. Capasité aux bornes

Cд

Ctot

Значение емкости между выводами диода при заданном режиме

17. Емкость перехода диода

D. Sperrschichtkapazität der Diode

E. Junction capacitance

F. Capacité de jonction

Cпер

Cj

Общая емкость диода без емкости корпуса.

Примечание. В случае, когда диод имеет p-i-n структуру, допускается использовать термин «емкость структуры» и буквенное обозначение «Cстр»

18. Емкость корпуса диода

D. Gehäusekapazität der Diode

E. Case capacitance

Cкор

Ccase

Значение емкости между выводами корпуса диода при отсутствии кристалла

19. Дифференциальное сопротивление диода

D. Differentieller Widerstand der Diode

E. Differential resistance

F. Résistance différentielle

rдиф

r

Отношение малого приращения напряжения диода к малому приращению тока в нем при заданном режиме

20. Последовательное сопротивление потерь диода

D. Serienwiderstand der Diode

E. Total series equivalent resistance

F. Résistance série totale équivalente

rп

rs

Суммарное эквивалентное активное сопротивление кристалла, контактных соединений и выводов диода

21. Тепловое сопротивление диода

D. Wärmewiderstand

E. Thermal resistance

F. Résistance thermique

RΘ

Rth

Отношение разности эффективной температуры перехода и температуры в контрольной точке к рассеиваемой мощности диода в установившемся режиме

22. Импульсное тепловое сопротивление диода

RΘи

R(th)P

Отношение разности эффективной температуры перехода и температуры в контрольной точке к импульсной мощности диода

23. Тепловое сопротивление переход — окружающая среда диода

RΘпер-окр

Rthja

Тепловое сопротивление диода в случае, когда температурой в контрольной точке является температура окружающей или охлаждающей среды

24. Тепловое сопротивление переход — корпус диода

Е. Thermal resistance junction to case

RΘпер-кор

Rthjc

Тепловое сопротивление диода в случае, когда температурой в контрольной точке является температура корпуса диода.

Примечание. Если полупроводниковый кристалл имеет многослойную структуру, может быть использован термин «тепловое сопротивление структура - окружающая среда» или термин «тепловое сопротивление структура — корпус»

25. Тепловая емкость диода

Е. Thermal capacitance

CΘ

Cth

Отношение тепловой энергии, накопленной в диоде, к разности эффективной температуры перехода и температуры в контрольной точке

26. Переходное тепловое сопротивление диода

Е. Transient thermal impedance

ZΘ

Z(th)t

Отношение разности изменения температуры перехода и температуры в контрольной точке в конце заданного интервала времени, вызывающего изменение температуры, к скачкообразному изменению рассеиваемой мощности диода в начале этого интервала.

Примечание. Непосредственно перед началом этого интервала времени распределение температуры внутри диода должно быть постоянным во времени

27. Переходное тепловое сопротивление переход — окружающая среда диода

Е. Transient thermal impedance junction to ambient

ZΘперокр

Z(th)ja

Переходное тепловое сопротивление диода в случае, когда температурой в контрольной точке является температура окружающей или охлаждающей среды

28. Переходное тепловое сопротивление переход — корпус диода

Е. Transient thermal impedance junction to case

ZΘперкор

Z(th)jc

Переходное тепловое сопротивление диода в случае, когда температурой в контрольной точке является температура корпуса диода

29. Индуктивность диода

D. Induktvität der Diode

E. Total series equivalent inductance

F. Inductance série totale équivalente

Lп

Ls

Последовательная эквивалентная индуктивность диода при заданных условиях

30. Эффективное время жизни неравновесных носителей заряда диода

Е. Effective excess minority lifetime

τэфф

τn

τp

Величина, характеризующая скорость убывания концентрации неравновесных носителей заряда диода вследствие рекомбинации как в объеме, так и на поверхности полупроводника

31. Накопленный заряд диода

E. Stored charge

F. Charge stockée

Qик

Qs

Заряд электронов или дырок в базе диода или i-области p-i-n структуры, накопленный при протекании прямого тока

32. Заряд восстановления диода

Ндп. Заряд переключения

D. Sperrerholladung der Diode

E. Recovered charge

F. Charge recouvrée

Qвос

Qr

Полный заряд диода, вытекающий во внешнюю цепь при переключении диода с заданного прямого тока на заданное обратное напряжение.

Примечания:

1. Заряд восстановления включает накопленный заряд и заряд емкости обедненного слоя.

2. Заряд восстановления является суммой зарядов запаздывания и спада

33. Время обратного восстановления диода

Ндп. Время восстановления обратного сопротивления

D. Sperrerholungszeit der Diode

E. Reverse recovery time

F. Temps de recouvrement inverse

tвос,обр

trr

Время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое, значение до момента, когда обратный ток, уменьшаясь от максимального импульсного значения, достигает заданного значения обратного тока

34. Время прямого восстановления диода

Ндп. Время восстановления прямого сопротивления

D. Durchlasserholungszeit der Diode

E. Forward recovery time

F. Temps de recouvrement direct

tвос.пр

tfr

Время, в течение которого происходит включение диода и прямое напряжение на нем устанавливается от значения, равного нулю, до заданного установившегося значения

35. Рабочее импульсное обратное напряжение выпрямительного диода

Е. Working peak reverse voltage

Uобр.и.р

URWM

Наибольшее мгновенное значение обратного напряжения выпрямительного диода без учета повторяющихся и неповторяющихся переходных напряжений

36. Повторяющееся импульсное обратное напряжение выпрямительного диода

D. Periodische Spitzensperrspannung der Diode

E. Repetitive peak reverse voltage

F. Tension inverse de pointe répétitive

Uобр.и.п

URRM

Наибольшее мгновенное значение обратного напряжения выпрямительного диода, включая повторяющиеся переходные напряжения, но исключая неповторяющиеся переходные напряжения.

Примечание. Повторяющееся напряжение обычно определяется схемой и параметрами диода

37. Неповторяющееся импульсное обратное напряжение выпрямительного диода

D. Nichtperiodische Spitzensperrspannung der Diode

E. Non-repetitive (surge) reverse voltage

F. Tension inverse de pointe non-répétitive

Uобр.и.нп

URSM

Наибольшее мгновенное значение неповторяющегося переходного обратного напряжения выпрямительного диода.

Примечание. Неповторяющееся переходное напряжение обусловливается обычно внешней причиной и предполагается, что его действие исчезает полностью до появления следующего переходного напряжения

38. Пороговое напряжение выпрямительного диода

D. Schleusenspannung der Diode

E. Threshold voltage

F. Tension de seuil

Uпор

U(то)

Значение постоянного прямого напряжения выпрямительного диода в точке пересечения с осью напряжений прямой линии, аппроксимирующей вольт-амперную характеристику в области больших токов

39. Повторяющийся импульсный прямой ток выпрямительного диода

D. Periodischer Spitzendurchlassstrom der Diode

E. Repetitive peak forward current

F. Courant direct de pointe répétitif

Iпр.и.п

IFRM

Наибольшее мгновенное значение прямого тока выпрямительного диода, включая повторяющиеся переходные токи и исключая все неповторяющиеся переходные токи

40. Ударный прямой ток выпрямительного диода

Iпр.уд

IFSM

Ток, при протекании которого превышается максимально допустимая эффективная температура перехода, но который за время срока службы выпрямительного диода появляется редко с ограниченным числом повторений и вызывается необычными условиями работы схемы

41. Действующий прямой ток выпрямительного диода

Е. RMS forward current

Iпр.д

IF(RMS)

Действующее значение прямого тока выпрямительного диода за период

42. Ток перегрузки выпрямительного диода

E. Overload forward current

F. Courant direct de surcharge prévisible

Iпрг

I(OV)

Значение прямого тока выпрямительного диода, длительное протекание которого вызвало бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается.

Примечание. За время эксплуатации диода число воздействий током перегрузки не ограничивается

43. Защитный показатель выпрямительного диода

i2dt

I2dt

i2dt

I2dt

Значение интеграла от квадрата ударного прямого тока выпрямительного диода

44. Повторяющийся импульсный обратный ток выпрямительного диода

E. Repetitive peak reverse current

F. Courant inverse de pointe répétitif

Iобр.и.п

IRRM

Значение обратного тока выпрямительного диода, обусловленного повторяющимся импульсным обратным напряжением

45. Средний обратный ток выпрямительного диода

D. Mittlerer Sperrstrom der Diode

E. Average reverse current

F. Courant inverse moyen

Iобр.ср

IR(AV)

Среднее за период значение обратного тока выпрямительного диода

46. Средний выпрямленный ток диода

D. Mittlerer Richtstrom der Diode

E. Average output rectified current

F. Courant moyen de sortie redressé

Iвп.ср

IO

Среднее за период значение прямого и обратного токов выпрямительного диода

47. Средняя прямая рассеиваемая мощность выпрямительного диода

Е. Average forward power dissipation

Pпр.ср

PF(AV)

Произведение мгновенных значений прямого тока и прямого напряжения выпрямительного диода, усредненное по всему периоду

48. Средняя обратная рассеиваемая мощность выпрямительного диода

Е. Average reverse power dissipation

Pобр.ср

PR(AV)

Произведение мгновенных значений обратного тока и обратного напряжения выпрямительного диода, усредненное по всему периоду

49. Ударная обратная рассеиваемая мощность лавинного выпрямительного диода

Е. Surge (non-repetitive) reverse power dissipation

Pобр.и, нп

PRSM

Значение мощности, рассеиваемой выпрямительным диодом, при воздействии одиночных импульсов тока в режиме пробоя

50. Повторяющаяся импульсная обратная рассеиваемая мощность выпрямительного диода

Е. Repetitive peak reverse power dissipation

Pобр.и, п

PRRM

Значение мощности, рассеиваемой выпрямительным диодом, при воздействии периодических импульсов

51. Рассеиваемая мощность выпрямительного диода при обратном восстановлении

Е. Total instantaneous turn-off dissipation

F. Dissipation totale instantanée à la coupure du courant

Pвос.обр

PRQ

Мгновенное значение мощности, рассеиваемой выпрямительным диодом при переключении с заданного прямого тока на заданное обратное напряжение

52. Импульсная рассеиваемая мощность выпрямительного диода при обратном восстановлении

Е. Peak turn-off dissipation

F. Dissipation de pointe à la coupure du courant

Pвос.обр, и

PRQM

Наибольшее мгновенное значение мощности, рассеиваемой выпрямительным диодом при переключении с заданного прямого тока на заданное обратное напряжение

53. Средняя рассеиваемая мощность выпрямительного диода при обратном восстановлении

Е. Average turn-off dissipation

F. Dissipation moyene à la coupure du courant

Pвос. обр, ср

PRQ(AV)

Среднее за период значение мощности выпрямительного диода при обратном восстановлении

54. Рассеиваемая мощность выпрямительного диода при прямом восстановлении

E. Total instantaneous turn-on dissipation

F. Dissipation totale instantanée a l’etablissement du courant

Рвос.пр

PFT

Мгновенное значение мощности, рассеиваемой выпрямительным диодом при переключении с заданного обратного напряжения на заданный прямой ток

55. Импульсная мощность выпрямительного диода при прямом восстановлении

E. Peak turn-on dissipation

F. Dissipation de pointe a l’etablissement du courant

Рвос.пр, и

PFTM

Наибольшее мгновенное значение мощности, рассеиваемой выпрямительным диодом при переключении с заданного обратного напряжения на заданный прямой ток

56. Средняя рассеиваемая мощность выпрямительного диода при прямом восстановлении

E. Average turn-on dissipation

F. Dissipation moyenne a l’etablissement du courant

Pвос.пр, ср

PFT(AV)

Среднее за период значение мощности выпрямительного диода при прямом восстановлении

57. Энергия прямых потерь выпрямительного диода

Е. Forward energy loss

Wпр

Eпр

WF

EF

Значение энергии потерь выпрямительного диода, обусловленной прямым током

58. Энергия обратных потерь выпрямительного диода

Е. Reverse energy loss

Wобр

Eобр

WR

ER

Значение энергии потерь выпрямительного диода, обусловленной обратным током

59. Общая энергия потерь выпрямительного диода

Е. Total energy loss

Wд

Eд

Wtot

Etot

Сумма средних значений энергий прямых и обратных потерь выпрямительного диода

60. Энергия потерь при обратном восстановлении диода

Е. Reverse recovery energy loss

Wвос.обр

Eвос.обр

Wrr

Err

Значение энергии потерь выпрямительного диода при переключении с заданного прямого тока на заданное обратное напряжение

61. Динамическое сопротивление выпрямительного диода

D. Dynamischer Widerstand der Diode

E. Slope resistance

F. Résistance apparente directe

rдин

rT

Сопротивление, определяемое наклоном прямой, аппроксимирующей прямую вольт-амперную характеристику выпрямительного диода

62. Заряд запаздывания выпрямительного диода

Qзп

Qe

Заряд, вытекающий из выпрямительного диода за время запаздывания обратного напряжения

63. Заряд спада выпрямительного диода

Qсп

Qf

Заряд, вытекающий из выпрямительного диода за время спада обратного тока

64. Время запаздывания обратного напряжения выпрямительного диода

tзп

ts

Интервал времени между моментом, когда ток проходит через нулевое значение, изменяя направление от прямого на обратное, и моментом, когда обратный ток достигает амплитудного значения

65. Время спада обратного тока выпрямительного диода

tсп

tf

Интервал времени между моментом, когда ток, изменив направление от прямого на обратное и пройдя нулевое значение, достигает амплитудного значения и моментом окончания времени обратного восстановления выпрямительного диода

66. Пиковый ток туннельного диода

D. Höckerstrom der Tunneldiode

E. Peak point current

F. Courant de pic

Iп

IP

Значение прямого тока в точке максимума вольт-амперной характеристики туннельного диода, при котором значение дифференциальной активной проводимости равно нулю

67. Ток впадины туннельного диода

D. Talstrom der Tunneldiode

E. Valley point current

F. Courant de vallée

Iв

IV

Значение прямого тока в точке минимума вольт-амперной характеристики туннельного диода, при котором значение дифференциальной активной проводимости равно нулю

68. Отношение токов туннельного диода

D. Höcker-Talstrom-Verhälthis der Tunneldiode

E. Peak to valley point current ratio

F. Rapport de dénivellation du courant

Iп / Iв

IP / IV

Отношение пикового тока к току впадины туннельного диода

69. Напряжение пика туннельного диода

D. Höckerspannung der Tunneldiode

E. Peak point voltage

F. Tension de pic

Uп

UP

Значение прямого напряжения, соответствующее пиковому току туннельного диода

70. Напряжение впадины туннельного диода

D. Talspannung der Tunneldiode

E. Valley point voltage

F. Tension de vallée

Uв

UV

Значение прямого напряжения, соответствующее току впадины туннельного диода

71. Напряжение раствора туннельного диода

D. Projezierte Höckerspannug

E. Projected peak point voltage

F. Tension isohypse

Uрр

UЗЗ

Значение прямого напряжения на второй восходящей ветви вольт-амперной характеристики туннельного диода, при котором ток равен пиковому

72. Отрицательная проводимость туннельного диода

D. Negativer Leitwert der Tunneldiode

E. Negative conductance of the intrinsic diode

F. Conductance négative de la diode intrinséque

gпер

gj

Дифференциальная проводимость перехода на падающем участке прямой ветви вольт-амперной характеристики туннельного диода

73. Предельная резистивная частота туннельного диода

D. Entdämpfungs-Grenzfrequenz der Tunneldiode

E. Resistive cut-off frequency

F. Fréquence de coupure résistive

fR

fг

Значение частоты, на которой активная составляющая полного сопротивления туннельного диода на его выводах обращается в нуль

74. Шумовая постоянная туннельного диода

D. Rauschfaktor der Tunneldiode

E. Noise factor

F. Facteur de bruit

Nш

Nn

Величина, определяемая соотношением:

где Iр — ток в рабочей точке туннельного диода,

gпер — отрицательная проводимость туннельного диода

75. Энергия импульсов туннельного диода

Wи

W

Энергия коротких импульсов тока, воздействующих на туннельный диод

76. Добротность варикапа

D. Gütefaktor der Kapazitätsdiode

E. Quality factor

Qв

Qeff

Отношение реактивного сопротивления варикапа на заданной частоте к сопротивлению потерь при заданном значении емкости или обратного напряжения

77. Температурный коэффициент емкости варикапа

D. Temperaturkoeffizient der Kapazität der Kapazitätsdiode

E. Temperature coefficient of capacitance

αCв

αCtot

Отношение относительного изменения емкости варикапа к вызвавшему его абсолютному изменению температуры окружающей среды

78. Предельная частота варикапа

D. Gütefrequenz der Kapazitätsdiode

E. Cut-off frequency

F. Fréquence de coupure

fпред.в

fco

Значение частоты, на которой реактивная составляющая проводимости варикапа становится равной активной составляющей его проводимости при заданных условиях

79. Температурный коэффициент добротности варикапа

D. Temperaturkoeffizient des Gütefaktors der Kapazitätsdiode

E. Temperature coefficient of quality factor

αCв

αQeff

Отношение относительного изменения добротности варикапа к вызвавшему его абсолютному изменению температуры окружающей среды

80. Коэффициент перекрытия по емкости варикапа

KC

Kc

Отношение общих емкостей варикапа при двух заданных значениях обратного напряжения

81. Напряжение стабилизации стабилитрона

D. Z-Spannung der Z-Diode

E. Working voltage (of voltage regulator diode)

F. Tens on de régulation

Uст

Uz

Значение напряжения стабилитрона при протекании тока стабилизации

82. Ток стабилизации стабилитрона

D. Z-Strom der Z-Diode

E. Continuous current within the working voltage range

F. Courant continu inverse pour la gamme des tensions de régulation

Iст

Iz

Значение постоянного тока, протекающего через стабилитрон в режиме стабилизации

83. Импульсный ток стабилизации стабилитрона

Iст.и

IZM

Наибольшее мгновенное значение тока стабилизации стабилитрона

84. Дифференциальное сопротивление стабилитрона

D. Z-Widerstand der Z-Diode

E. Differential resistance within the working voltage range

F. Résistance différentielle dans la zone des tensions de régulation

rст

rz

Дифференциальное сопротивление при заданном значении тока стабилизации стабилитрона

85. Температурный коэффициент напряжения стабилизации стабилитрона

D. Temperaturkoeffizient der Z-Spannung der Z-Diode

E. Temperature coefficient of working voltage

F. Coefficient de temperature de la tension de régulation

αUст

αГz

Отношение относительного изменения напряжения стабилизации стабилитрона к абсолютному изменению температуры окружающей среды при постоянном значении тока стабилизации

86. Время включения стабилитрона

D. Einschaltzeit der Z-Diode

E. Turn-on time

tвкл

tоп

Интервал времени, определяемый с момента переключения стабилитрона из состояния заданного напряжения до момента достижения установившегося напряжения стабилизации

87. Временная нестабильность напряжения стабилизации стабилитрона

D. Zeitliche Instabilitat der Z-Spannung der Z-Diode

E. Working voltage long-term instability

F. Instabilité à long terme de la tension de régulation

δUст

δUZ

Отношение наибольшего изменения напряжения стабилизации стабилитрона к начальному значению напряжения стабилизации за заданный интервал времени

88. Время выхода стабилитрона на режим

D. Stabilisierungszeit der Z-Diode

E. Transient time of working voltage

tвых

tг

Интервал времени от момента подачи тока стабилизации на стабилитрон до момента, начиная с которого напряжение стабилизации не выходит за пределы области, ограниченной 28

89. Несимметричность напряжения стабилизации стабилитрона

Hст

Разность напряжений стабилизации при двух равных по абсолютному значению и противоположных по знаку токах стабилизации стабилитрона

89а. Температурный уход напряжения стабилизации стабилитрона

ΔUΘ

ΔUΘ

Максимальное абсолютное изменение напряжения стабилизации стабилитрона от изменения температуры в установленном диапазоне температур при постоянном токе стабилизации

89б. Нелинейность температурной зависимости напряжения стабилизации стабилитрона

βст

βz

Отношение наибольшего отклонения напряжения стабилизации стабилитрона от линейной зависимости в указанном диапазоне температур к произведению абсолютного изменения напряжения стабилизации и абсолютного изменения температуры окружающей среды при постоянном токе стабилизации

89в. Размах низкочастотных шумов стабилизации стабилитрона

Uш.ст

Unz

Разница наибольшего и наименьшего напряжения стабилизации стабилитрона за время измерения в указанном диапазоне частот при постоянном токе стабилизации

90. Спектральная плотность шума стабилитрона

Sш

SUnz

Эффективное значение напряжения шума, отнесенное к полосе в 1 Гц, измеренное при заданном токе стабилизации стабилитрона в оговоренном диапазоне частот

91. Выпрямительный ток СВЧ диода

Iвп

IO

Постоянная составляющая тока СВЧ диода в рабочем режиме

92. Постоянный рабочий ток ЛПД

IрЛПД

Iw

Значение постоянного тока лавинно-пролетного диода, при котором обеспечивается заданная непрерывная выходная СВЧ мощность

93. Импульсный рабочий ток ЛПД

Iи.рЛПД

IWM

Мгновенное значение тока лавинно-пролетного диода, при котором обеспечивается заданная импульсная выходная СВЧ мощность

94. Постоянный пусковой ток ЛПД

Iпуск

IWmin

Наименьшее значение постоянного тока лавинно-пролетного диода, при котором возникает генерация СВЧ мощности

95. Импульсный пусковой ток ЛПД

Iи.пуск

IWMmin

Наименьшее мгновенное значение тока лавинно-пролетного диода, при котором возникает генерация СВЧ мощности

96. Пороговый ток диода Ганна

Iпор

I(ТО)max

Значение постоянного тока диода Ганна в точке первого максимума вольт-амперной характеристики, при котором значение дифференциальной активной проводимости равно нулю

97. Постоянный рабочий ток диода Ганна

IрГ

Iw

Значение постоянного тока диода Ганна при постоянном рабочем напряжении

98. Импульсный рабочий ток диода Ганна

Iи.рГ

IWM

Мгновенное значение тока диода Ганна при импульсном рабочем напряжении

99. Постоянное пороговое напряжение диода Ганна

UпорГ

U(TO)

Значение постоянного напряжения, соответствующее пороговому току диода Ганна

100. Постоянное рабочее напряжение диода Ганна

Up

UW

Значение постоянного напряжения диода Ганна, при котором обеспечивается заданная непрерывная выходная СВЧ мощность

101. Импульсное рабочее напряжение диода Ганна

Uи.р

UWM

Мгновенное значение импульсного напряжения диода Ганна, при котором обеспечивается заданная импульсная выходная СВЧ мощность

102. Непрерывная рассеиваемая мощность СВЧ диода

E. R. F. с. w. power dissipation

F. Dissipation de puissance dans le cas d’une onde R. F. entretenue

Pрас

PD

Сумма рассеиваемой СВЧ диодом мощности от всех источников в непрерывном режиме работы

103. Импульсная рассеиваемая мощность СВЧ диода

E. Pulse r. f. power dissipation

F. Dissipation de puissance dans le cas de train d’ondes R. F.

Pрас. и

PDPм

Сумма рассеиваемой СВЧ диодом мощности от всех источников в импульсном режиме работы

104. Средняя рассеиваемая мощность СВЧ диода

E. Average r. f. power

F. Puissance R. F. moyenne

Pрас.ср

PAD

Сумма средних значений рассеиваемых СВЧ диодом мощностей от всех источников

105. Непрерывная выходная мощность СВЧ диода

Pвых

Pout

Значение непрерывной СВЧ мощности, отдаваемой диодом в согласованную нагрузку в заданном режиме

106. Импульсная выходная мощность СВЧ диода

Pвых.и

PoutM

Значение импульсной СВЧ мощности, отдаваемой диодом в согласованную нагрузку в заданном режиме

107. Мощность ограничения СВЧ диода

Е. Clipping power

Pогр

PL

Уровень СВЧ мощности, подводимой на вход линии передачи с диодом, включенным параллельно линии передачи, при которой выходная мощность достигает заданного значения

108. Тангенциальная чувствительность СВЧ диода

Е. Tangential sensitivity

Ptg

TSS

Значение импульсной мощности СВЧ сигнала, при котором на экране осциллографа, включенного на выходе системы «детекторное устройство — видеоусилитель» наблюдается совпадение верхней границы полосы шумов при отсутствии СВЧ сигнала с нижней границей полосы шумов при его наличии

109. Граничная мощность детекторного диода

Pгр

Pinc

Значение мощности, при которой зависимость выпрямленного тока детекторного диода от мощности сигнала отклоняется от линейной на заданное значение при заданном сопротивлении нагрузки

110. Минимально различимая мощность сигнала детекторного диода

Pmin

NDS

Значение мощности СВЧ сигнала, поданного на приемник с детектором на входе, при котором отношение сигнал — шум равно единице

111. Время тепловой релаксации СВЧ диода

τT

τT

Интервал времени с начала подачи импульса, за который температура перехода СВЧ диода достигает 63,2% от значения температуры в установленном режиме

112. Энергия одиночного импульса СВЧ диода

E. Single pulse energy

F. Energie d’une impulsion

Wи.од

Eи.од

Wp

Ep

Значение энергии одного воздействующего на СВЧ диод короткого импульса.

Примечание. Под коротким импульсом понимается импульс длительностью не более 10-8 с

113. Энергия повторяющихся импульсов СВЧ диода

E. Repetitive pulse energy

F. Energie d’une impulsion répétitive

Wи, п

Eи, п

Ep(rep)

Значение энергии серии воздействующих на СВЧ диод повторяющихся коротких импульсов

114. Энергия выгорания СВЧ диода

E. Burn-out energy

F. Energie de claquage

Wвыг

WM

EM

EHFM

WHFM

Минимальное значение энергии одиночного короткого импульса СВЧ диода, после воздействия которого электрические параметры СВЧ диода изменяются на заданные значения

115. Энергия СВЧ импульсов СВЧ диода

WСВЧи

WHFP

Значение энергии воздействующих на СВЧ диод СВЧ импульсов длительностью менее 3 · 10-9 с

116. Полное входное сопротивление СВЧ диода

Zвх

Zin

Полное сопротивление, измеренное на входе диодной камеры с СВЧ диодом в заданном режиме

117. Прямое сопротивление потерь переключательного диода

rпр

RF

Последовательное сопротивление потерь переключательного диода, включенного в линию передачи, при заданном постоянном прямом токе

118. Обратное сопротивление потерь переключательного диода

rобр

RR

Последовательное сопротивление потерь переключательного диода, включенного в линию передачи, при заданном постоянном обратном напряжении

119. Сопротивление ограничительного диода при низком значении СВЧ мощности

rниз

RL

Сопротивление потерь ограничительного диода, измеряемое при малых значениях СВЧ мощности, на начальном участке ограничительной характеристики, при которых сопротивление диода не изменяется

120. Сопротивление ограничительного диода при высоком значении СВЧ мощности

rвыс

RH

Сопротивление потерь ограничительного диода, измеряемое при значениях СВЧ мощности, больших мощности ограничения, при которых сопротивление диода не изменяется

121. Сопротивление диода Ганна

rГ

Rg

Активное сопротивление диода Ганна, измеряемое при напряжении значительно меньшем порогового

122. Выходное сопротивление смесительного диода

rвых

Zif

Активная составляющая полного сопротивления смесительного диода на промежуточной частоте в заданном режиме

123. Выходное сопротивление детекторного диода на видеочастоте

rвид

Rj

Активная составляющая полного сопротивления детекторного диода на видеочастоте в заданном режиме

124. Постоянная времени СВЧ диода

τ

τ

Произведение емкости перехода на последовательное сопротивление потерь СВЧ диода

125. Время выключения СВЧ диода

tвыкл

toff

Интервал времени нарастания обратного напряжения СВЧ диода при переключении его из открытого состояния в закрытое, отсчитанное по уровню 0,1 и 0,9 установившегося значения обратного напряжения

126. Полоса частот СВЧ диода

Интервал частот, в котором СВЧ диод, настроенный на заданную частоту, обеспечивает заданные параметры и характеристики в неизменном рабочем режиме

127. Предельная частота умножительного диода

fпред

fc

Значение частоты, на которой добротность умножительного диода равна единице.

Примечание. Предельная частота определяется по формуле

где Cпер — емкость перехода;

rп — последовательное сопротивление потерь

128. Критическая частота переключательного диода

fкр

fos

Обобщенный параметр переключательного диода, определяемый по формуле

129. Добротность СВЧ диода

Q

Qeff

Отношение реактивного сопротивления СВЧ диода на заданной частоте к активному при заданном значении обратного напряжения

130. Потери преобразования смесительного диода

E. Conversion loss

F. Perte de conversion

Lпрб

Lc

Отношение мощности СВЧ сигнала на входе диодной камеры к мощности сигнала промежуточной частоты в нагрузке смесительного диода в рабочем режиме

131. Коэффициент полезного действия СВЧ диода

η

η

Отношение выходной мощности СВЧ диода к потребляемой им мощности

132. Выходное шумовое отношение СВЧ диода

E. Output noise ratio

F. Rapport de température de bruit

Nm

Nr

Отношение мощности шума СВЧ диода в рабочем режиме, отдаваемой в согласованную нагрузку, к мощности тепловых шумов согласованного активного сопротивления при той же температуре и одинаковой полосе частот

133. Нормированный коэффициент шума смесительного диода

E. Standard overall average noise figure

F. Facteur de bruit total moyen normal

Fнорм

Fos

Fos(av)

Значение коэффициента шума приемного устройства со смесительным диодом на входе при коэффициенте шума усилителя промежуточной частоты равном 1,5 дБ

134. Коэффициент стоячей волны по напряжению СВЧ диода КСВН

E. Voltage standing wave ratio V.S.W.P.

F. Taux d’ondes stationnaires T.O.S (R.O.S.)

KстU

SV

Коэффициент стоячей волны по напряжению в линии передачи СВЧ, нагруженной на определенную диодную камеру с СВЧ диодом в рабочем режиме

135. Чувствительность по току СВЧ диода

E. Total current sensitivity

F. Sensibilité totale en courant

βI

βI

Отношение приращения выпрямительного тока диода к вызвавшей это приращение СВЧ мощности на входе диодной камеры с СВЧ диодом в рабочем режиме при заданной нагрузке

136. Чувствительность по напряжению СВЧ диода

βU

βU

Отношение приращения напряжения на нагрузке СВЧ диода к вызвавшей это приращение мощности СВЧ сигнала на входе диодной камеры с СВЧ диодом в рабочем режиме

137. Температурный коэффициент выходной мощности СВЧ диода

αPвых

αPout

Отношение относительного изменения выходной мощности СВЧ диода к абсолютному изменению температуры окружающей среды

138. Температурный коэффициент частоты СВЧ диода

αi

αi

Отношение относительного изменения частоты генерации СВЧ диода к разности температур, окружающей среды

139. Спектральная плотность напряжения шумового диода

S

S

Отношение среднего квадратического значения напряжения шумового диода к корню квадратному из заданного диапазона частот

140. Спектральная плотность мощности шумового диода

G

G

Отношение среднего квадратического значения мощности шумового диода к заданному диапазону частот

141. Неравномерность спектральной плотности напряжения (мощности) шумового диода

δSU

δSP

SU, SD

Отношение экстремального значения спектральной плотности напряжения (мощности) шумового диода к их среднему значению, выраженное в децибелах

142. Температурный коэффициент спектральной плотности напряжения (мощности) шумового диода

αSU

αSP

αSU, αSP

Отношение относительного изменения спектральной плотности напряжения (мощности) шумового диода к абсолютному изменению температуры окружающей среды при постоянном токе диода

143. Граничная частота шумового диода

fгр

finc

Значение частоты, на которой спектральная плотность напряжения или мощности шумового диода имеет максимальное отклонение от ее среднего значения

144. Диапазон частот шумового диода

Δf

f

Интервал частот, заключенный между верхней и нижней граничной частотой шумового диода

145. Постоянный рабочий ток шумового диода

Is

IS

Значение постоянного тока, при котором определяются параметры шумового диода

146. Постоянное напряжение шумового диода

Uш

Us

Значение постоянного напряжения, обусловленного постоянным рабочим током шумового диода

Диоды д 247 характеристики — Вместе мастерим

Диоды Д247 кремниевые, диффузионные.
Предназначены для преобразования переменного напряжения частотой до 1,1 кГц.
Выпускаются в металлостеклянном корпусе с жесткими выводами.
Тип диода и схема соединения электродов с выводами приводятся на корпусе.
Масса диодов с комплектующими деталями не более 18 г.
Тип корпуса: КДЮ-11-4.
Технические условия: аА0.336.206 ТУ.

Основные технические характеристики диода Д247:
• Uoбp max — Максимальное постоянное обратное напряжение: 500 В;
• Inp max — Максимальный прямой ток: 10 А;
• fд — Рабочая частота диода: 1,1 кГц;
• Unp — Постоянное прямое напряжение: не более 1,25 В при Inp 10 А;
• Ioбp — Постоянный обратный ток: не более 3000 мкА при Uoбp 500 В

Основные технические характеристики диодов Д247, Д247А, Д247Б:

ДиодUпр/IпрIoбрt вос обрUобр maxUобр имп maxIпр maxIпр имп maxfд maxТ
В/АмАмксВВААпФкГц°C
Д2471,25/103500101,1-60. +130
Д247А1,0/103500101,1-60. +130
Д247Б1,5/5350051,1-60. +130

Условные обозначения электрических параметров диодов:

Uпр/Iпр — Постоянное прямое напряжение (Uпр) на диоде при заданном прямом токе (Iпр) через него;
Iобр— Обратный ток диода при предельном обратном напряжении;
tвoc обр — Время обратного восстановления;
Uoбp max — Максимальное постоянное обратное напряжение;
Uобр имп max — Максимальное импульсное обратное напряжение;
Inp max — Максимальный прямой ток;
Inp имп max — Максимальный импульсный прямой ток;
Сд — Общая емкость диода;
fд max — Максимальная рабочая частота диода;
Т — температура окружающей среды.

Диод Д247, Д247А, Д247Б — кремниевый, диффузионный.
Предназначены для преобразования переменного напряжения частотой до 1,1 кГц.
Выпускаются в металлостеклянном корпусе с жесткими выводами.
Тип диода и схема соединения электродов с выводами приводятся на корпусе.
Масса диодов с комплектующими деталями не более 18 г.

Основные технические характеристики диода Д247:
• Uoбp max — Максимальное постоянное обратное напряжение: 500 В;
• Inp max — Максимальный прямой ток: 10 А;
• fд — Рабочая частота диода: 1,1 кГц;
• Unp — Постоянное прямое напряжение: не более 1,25 В при Inp 10 А;
• Ioбp — Постоянный обратный ток: не более 3000 мкА при Uoбp 500 В

Основные технические характеристики диода Д247А:
• Uoбp max — Максимальное постоянное обратное напряжение: 500 В;
• Inp max — Максимальный прямой ток: 10 А;
• fд — Рабочая частота диода: 1,1 кГц;
• Unp — Постоянное прямое напряжение: не более 1 В при Inp 10 А;
• Ioбp — Постоянный обратный ток: не более 3000 мкА при Uoбp 500 В

Основные технические характеристики диода Д247Б:
• Uoбp max — Максимальное постоянное обратное напряжение: 500 В;
• Inp max — Максимальный прямой ток: 5 А;
• fд — Рабочая частота диода: 1,1 кГц;
• Unp — Постоянное прямое напряжение: не более 1,5 В при Inp 5 А;
• Ioбp — Постоянный обратный ток: не более 3000 мкА при Uoбp 500 В

Техническая документация к электронным компонентам на русском языке.

Описание

Диоды кремниевые, диффузионные. Предназначены для преобразования переменного напряжения частотой до 1,1 кГц. Выпускаются
в металлостеклянном корпусе с жесткими выводами. Тип диода и схема соединения электродов с выводами приводятся на корпусе.
Масса диода с комплектующими деталями не более 18 г.

Пои креплении диодов усилие затяжки должно быть не более 1,96 Н·м (0,2 кгс·м). При этом запрещается прилагать к изолированному выводу усилие, превышающее 9,8 Н (1 кгс), так как это может привести к нарушению целостности стеклянного изолятора.

Размеры радиатора (теплоотвода) рассчитываются из условия, что диод является точечным источником теплоты, рассеивающим мощность 2Uпр.срIпр.ср.

При последовательном соединении диодов рекомендуется применять диоды одного типа и шунтировать каждый резистором сопротивлением 10…15 кОм на каждые 100 В амплитуды обратного напряжения.

Характеристики диода Д247
ПараметрОбозначениеМаркировкаЗначениеЕд. изм.
АналогД247Б1N2236
Максимальное постоянное обратное напряжение.Uo6p max, Uo6p и maxД247500В
Д247Б500
Максимальный постоянный прямой ток.Iпp max, Iпp ср max, I*пp и maxД24710А
Д247Б5
Максимальная рабочая частота диодаfд maxД2471.1кГц
Д247Б1.1
Постоянное прямое напряжениеUпр не более (при Iпр, мА)Д2471.25 (10 А)В
Д247Б1.5 (5 А)
Постоянный обратный токIобр не более (при Uобр, В)Д2473000 (500)мкА
Д247Б3000 (500)
Время обратного восстановления — время переключения диода с за данного прямого тока на задан ное обратное напряжение от мо мента прохождения тока через нулевое значение до момента до стижения обратным током задан ного значенияtвос, обрД247мкс
Д247Б
Общая емкостьСд (при Uобр, В)Д247пФ
Д247Б

Описание значений со звездочками(*) смотрите в буквенных обозначениях параметров диодов.

Зависимость допустимого прямого тока от температуры

Зависимость среднего прямого тока от частоты

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Диод 2Д102Б

Выпрямительный диод 2Д102Б малой мощности предназначен для преобразования переменного напряжения и имеет жёсткие выводы в металлостеклянном корпусе.

Технические характеристики

Параметр

Значение

Максимальное постоянное обратное напряжение

300 В

Максимальный прямой ток

100 мА

Постоянное прямое напряжение при постоянном прямом токе 50 мА, не более

1 В

Постоянный обратный ток при постоянном обратном напряжении 300 В, не более

1 мкА

Максимальное импульсное обратное напряжение

300 В

Максимальный прямой ток диода 2Д102Б при температуре окружающей среды:

от -60 до +50°C

100 мА

+100°C

30 мА

Максимальный импульсный прямой ток

2 А

Максимальная рабочая частота диода

20 кГц

Температура окружающей среды

от -60 до +125°C

Габаритные размеры:

длина

3,2 мм

ширина

2,7 мм

Масса

0,1 г

Габаритные размеры диодов

Исполнение диодов

Варианты исполнения выпрямительных диодов в зависимости от вида приёмки:

  • отдел технического контроля — ОТК;
  • особо стойкие и особо стабильные — ОС 2Д102Б и 2Д102Б ОС;
  • приемка заказчика — ПЗ;
  • военная приемка — ВП.

Номинальные характеристики диодов | Диоды и выпрямители

Помимо прямого падения напряжения (Vf) и пикового обратного напряжения (PIV), существует множество других номиналов диодов, важных для проектирования схемы и выбора компонентов. Производители полупроводников предоставляют подробные спецификации своей продукции, включая диоды, в публикациях, известных как datasheets .

Лист данных

Таблицы данных для широкого спектра полупроводниковых компонентов можно найти в справочниках и в Интернете.Я предпочитаю Интернет как источник технических характеристик компонентов, потому что все данные, полученные с веб-сайтов производителей, актуальны.

Типичные параметры диодов в листе данных

Типовой лист данных диода будет содержать цифры для следующих параметров:

Максимальное повторяющееся обратное напряжение = VRRM, максимальное количество напряжения, которое диод может выдержать в режиме обратного смещения в повторяющихся импульсах. В идеале эта цифра была бы бесконечной.

Максимальное обратное напряжение постоянного тока = VR или VDC, максимальное напряжение, которое диод может выдерживать в режиме обратного смещения на постоянной основе. В идеале эта цифра была бы бесконечной.

Максимальное прямое напряжение = VF, обычно указывается при номинальном прямом токе диода. В идеале эта цифра должна быть равна нулю: диод не оказывает никакого сопротивления прямому току. В действительности прямое напряжение описывается уравнением диода.”

Максимальный (средний) прямой ток = IF (AV), максимальная средняя величина тока, которую диод может проводить в режиме прямого смещения. По сути, это тепловое ограничение: сколько тепла может выдержать PN-переход, учитывая, что мощность рассеяния равна току (I), умноженному на напряжение (V или E), а прямое напряжение зависит как от тока, так и от температуры перехода. В идеале эта цифра была бы бесконечной.

Максимальный (пиковый или импульсный) прямой ток = IFSM или, если (выброс), максимальная пиковая величина тока, которую диод может проводить в режиме прямого смещения.Опять же, этот рейтинг ограничен теплоемкостью диодного перехода и обычно намного выше, чем средний номинальный ток из-за тепловой инерции (тот факт, что диоду требуется конечное количество времени, чтобы достичь максимальной температуры для данного тока). . В идеале эта цифра была бы бесконечной.

Максимальная общая рассеиваемая мощность = PD, величина мощности (в ваттах), допустимая для рассеивания диода с учетом рассеяния (P = IE) тока диода, умноженного на падение напряжения на диоде, а также рассеяния (P = I2R) квадрата тока диода, умноженного на объемное сопротивление.В основном ограничивается теплоемкостью диода (способностью выдерживать высокие температуры).

Рабочая температура перехода = TJ, максимально допустимая температура PN перехода диода, обычно выражаемая в градусах Цельсия (oC). Тепло — это «ахиллесова пята» полупроводниковых устройств: они должны быть охлаждены, чтобы они функционировали должным образом и обеспечивали долгий срок службы.

Диапазон температур хранения = TSTG, диапазон допустимых температур для хранения диода (без питания).Иногда указывается вместе с рабочей температурой перехода (TJ), потому что максимальная температура хранения и максимальная рабочая температура часто идентичны. Во всяком случае, максимальная номинальная температура хранения будет больше, чем максимальная номинальная рабочая температура.

Тепловое сопротивление = R (), разница температур между спаем и наружным воздухом (R (Θ) JA) или между спаем и выводами (R (Θ) JL) для заданной рассеиваемой мощности.Выражается в градусах Цельсия на ватт (oC / W). В идеале эта цифра должна быть равна нулю, что означает, что корпус диода является идеальным проводником тепла и радиатором, способным передавать всю тепловую энергию от перехода к наружному воздуху (или к выводам) без разницы в температуре по толщине диодный пакет. Высокое тепловое сопротивление означает, что диод будет нагреваться до чрезмерной температуры на переходе (где это критично), несмотря на все усилия по охлаждению внешней части диода, и, таким образом, ограничит его максимальное рассеивание мощности.

Максимальный обратный ток = IR, величина тока через диод в режиме обратного смещения с максимальным приложенным номинальным обратным напряжением (В постоянного тока). Иногда обозначается как ток утечки . В идеале эта цифра должна быть равна нулю, поскольку идеальный диод блокировал бы весь ток при обратном смещении. На самом деле это очень мало по сравнению с максимальным прямым током.

Типичная емкость перехода = CJ, типичная величина емкости, свойственная переходу, из-за обедненной области, действующей как диэлектрик, разделяющий соединения анода и катода.Обычно это очень маленькая цифра, измеряемая в пикофарадах (пФ).

Время обратного восстановления = trr, количество времени, которое требуется диоду, чтобы «выключиться», когда напряжение на нем меняет полярность с прямого смещения на обратное. В идеале эта цифра была бы равна нулю: диод прекращает проводимость сразу при изменении полярности. Для типичного выпрямительного диода время обратного восстановления находится в диапазоне десятков микросекунд; для диода с «быстрым переключением» это может быть всего несколько наносекунд.

Большинство этих параметров зависят от температуры или других условий эксплуатации, поэтому одна цифра не может полностью описать любой заданный рейтинг. Поэтому производители предоставляют графики характеристик компонентов в зависимости от других переменных (например, температуры), чтобы разработчик схем лучше понимал, на что способно устройство.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Общие сведения о характеристиках диода Шоттки Технические характеристики »Электроника

Хотя диоды Шоттки имеют много общих параметров с другими формами диодов, их характеристики отличаются, как и некоторые технические характеристики и параметры.


Учебное пособие по диодам с барьером Шоттки Включает:
диод с барьером Шоттки Технология диодов Шоттки Характеристики диода Шоттки Выпрямитель мощности на диоде Шоттки

Другие диоды: Типы диодов


Хотя диод Шоттки имеет много общих характеристик с более традиционными формами диодов, он все же имеет некоторые существенные отличия.

Понимание спецификаций и параметров диодов Шоттки помогает использовать их наиболее эффективно в любых схемах, в которых они могут использоваться.

Обозначение схемы диода с барьером Шоттки

Основные характеристики диода Шоттки

Диод Шоттки является основным носителем, т.е. электронами в материале N-типа.

Это дает ему значительное преимущество с точки зрения скорости, поскольку он не зависит от рекомбинации дырок или электронов, когда они попадают в область противоположного типа, как в случае обычного диода.

Кроме того, уменьшив размеры устройств, можно уменьшить постоянную времени обычного RC-типа, что сделает эти диоды на порядок быстрее, чем обычные PN-диоды.Этот фактор является основной причиной того, почему они так популярны в радиочастотных приложениях, а также во многих других энергетических приложениях, где важна скорость переключения, например в импульсных источниках питания.

Диод Шоттки также имеет гораздо более высокую плотность тока, чем обычный PN переход. Это означает, что прямое падение напряжения намного меньше. Это делает диод идеальным для использования в системах выпрямления мощности.

Основным недостатком диода Шоттки является уровень его обратного пробоя, который намного ниже, чем у диода PN.

Другой недостаток — относительно высокий уровень обратного тока. Для многих случаев использования это может не быть проблемой, но это фактор, на который стоит обратить внимание при использовании в более требовательных приложениях.

Общая ВАХ показана ниже. Можно видеть, что диод Шоттки имеет типичную характеристику прямого полупроводникового диода, но с гораздо более низким напряжением включения. При высоких уровнях тока он выравнивается и ограничивается последовательным сопротивлением или максимальным уровнем подачи тока.В обратном направлении происходит пробой выше определенного уровня. Механизм аналогичен ударно-ионизационному пробою в PN-переходе.

Диод Шоттки ВАХ

ВАХ обычно такая, как показано ниже. В прямом направлении ток растет экспоненциально, имея излом или напряжение включения около 0,2 В. В обратном направлении наблюдается больший уровень обратного тока, чем при использовании более обычного диода с PN-переходом.

Кроме того, напряжение обратного пробоя также обычно ниже, чем у эквивалентного кремниевого диода с PN переходом.

ВАХ диода Шоттки

Использование защитного кольца, включенного в структуру некоторых диодов Шоттки, улучшает его характеристики как в прямом, так и в обратном направлении.

Основным преимуществом включения защитного кольца в конструкцию является улучшение характеристики обратного пробоя. Разница в напряжении пробоя между ними составляет около 4: 1.Некоторые малосигнальные диоды без защитного кольца могут иметь обратный пробой всего от 5 до 10 В. Хотя это может быть приемлемо для некоторых приложений с низким уровнем сигнала, это не идеально для большинства ситуаций.

Основные характеристики и параметры диода Шоттки

Есть несколько ключевых характеристик диодов Шоттки, которые необходимо понимать при использовании этих диодов — они сильно отличаются от характеристик обычного диода с PN переходом.

  • Прямое падение напряжения: Ввиду низкого прямого падения напряжения на диоде, этот параметр вызывает особую озабоченность.Как видно из ВАХ диода Шоттки, напряжение на диоде изменяется в зависимости от протекающего тока. Соответственно, любая приведенная спецификация обеспечивает прямое падение напряжения для заданного тока. Обычно предполагается, что напряжение включения составляет около 0,2 В.
  • Обратный пробой: Диоды Шоттки не имеют высокого напряжения пробоя. Цифры, относящиеся к этому, включают максимальное пиковое обратное напряжение, максимальное постоянное напряжение блокировки и другие аналогичные названия параметров.При превышении этих значений существует вероятность обратного пробоя диода. Следует отметить, что среднеквадратичное значение для любого напряжения будет в 1 / √2 раза больше постоянного значения. Верхний предел обратного пробоя невысок по сравнению с обычными диодами с PN переходом. Максимальные значения, даже для выпрямительных диодов, достигают только около 100 В. Выпрямители на диодах Шоттки редко превышают это значение, потому что устройства, которые будут работать выше этого значения даже в умеренных количествах, будут иметь прямое напряжение, равное или превышающее эквивалентные выпрямители с PN переходом.
  • Емкость: Параметр емкости имеет большое значение для ВЧ-приложений с малым сигналом. Обычно площади переходов диодов Шоттки небольшие, и поэтому емкость мала. Типичные значения в несколько пикофарад являются нормальными. Поскольку емкость зависит от любых областей истощения и т. Д., Емкость должна быть указана при заданном напряжении.
  • Время обратного восстановления: Этот параметр важен, когда диод используется в приложении переключения.Это время, необходимое для переключения диода из его прямого проводящего состояния или состояния «ВКЛ» в обратное состояние «ВЫКЛ». Заряд, который течет в течение этого времени, называется «зарядом обратного восстановления». Время для этого параметра для диода Шоттки обычно измеряется в наносекундах, нс. Некоторые выставляют времена 100 пс. Фактически, то небольшое время восстановления, которое требуется, в основном связано с емкостью, а не с рекомбинацией основных носителей. В результате наблюдается очень небольшой выброс обратного тока при переключении из состояния прямой проводимости в состояние блокировки обратного хода.
  • Обратный ток утечки: Параметр обратной утечки может быть проблемой для диодов Шоттки. Установлено, что повышение температуры значительно увеличивает параметр тока обратной утечки. Обычно на каждые 25 ° C повышения температуры диодного перехода происходит увеличение обратного тока на порядок величины при том же уровне обратного смещения.
  • Рабочая температура: Максимальная рабочая температура соединения Tj обычно ограничивается диапазоном от 125 до 175 ° C.Это меньше того, что можно использовать с обычными кремниевыми диодами. Следует позаботиться о том, чтобы теплоотвод силовых диодов не допускал превышения этого значения.

Обзор характеристик диода Шоттки

Диод Шоттки используется во многих приложениях из-за его характеристик, которые заметно отличаются от некоторых характеристик более широко используемых стандартных диодов с PN переходом.

Диод Шоттки / Сравнение диодов PN
Характеристика Диод Шоттки PN Соединительный диод
Механизм прямого тока Основной транспортный транспорт. Из-за диффузионных токов, т.е. переноса неосновных носителей заряда.
Обратный ток Результаты большинства перевозчиков, преодолевших барьер. Это меньше зависит от температуры, чем для стандартного PN-перехода. Результат диффузии неосновных носителей заряда через обедненный слой. Имеет сильную температурную зависимость.
Напряжение включения Малый — около 0,2 В. Сравнительно большой — около 0.7 В.
Скорость переключения Fast — в результате использования основных носителей, поскольку рекомбинация не требуется. Ограничено временем рекомбинации введенных неосновных носителей.

Пример технических характеристик диода Шоттки

Чтобы дать некоторое представление об ожидаемых характеристиках диодов Шоттки, ниже приводится пара реальных примеров. В них обобщены основные технические характеристики, чтобы дать представление об их производительности.

1N5828 Силовой выпрямительный диод с барьером Шоттки

Этот диод описывается как диод Шоттки стержневого типа, то есть для выпрямления мощности. Он показывает, как работает силовой диод Шоттки.

Типичные характеристики / технические характеристики диода Шоттки 1N5258
Характеристика Типичное значение Блок Детали
Максимальное рекуррентное пиковое обратное напряжение 40 В
Максимальное напряжение блокировки постоянного тока 40 В
Средний прямой ток, IF (AV) 15 А Т = 100 ° С
Пиковый прямой импульсный ток, IFSM 500 А
Максимальное мгновенное прямое напряжение, VF 0.5 В При IFM = 15 A и Tj = 25 ° C
Максимальный мгновенный обратный ток при номинальном напряжении блокировки, IR 10

250

мА Tj = 25 ° C

Tj = 125 ° C

1N5711 Диод переключения с барьером Шоттки

Этот диод описывается как сверхбыстрый переключающийся диод с высоким уровнем обратного пробоя, низким прямым падением напряжения и защитным кольцом для защиты перехода.

Типовой 1N5711 Характеристики / Технические характеристики
Характеристика Типичное значение Блок Детали
Макс.напряжение блокировки постоянного тока, В 70 В
Максимальный постоянный ток в прямом направлении, Ifm 15 мА
Напряжение обратного пробоя, В (БР) R 70 В при обратном токе 10 мкА
Обратный ток утечки, IR 200 мкА При VR = 50 В
Падение напряжения в прямом направлении, VF 0.41

1,00

В при IF = 1,0 мА

IF = 15 мА

Емкость перехода, Кдж 2,0 пФ VR = 0 В, f = 1 МГц
Время обратного восстановления, trr 1 нС

Несмотря на то, что приведенные здесь примеры дают характеристику обратного напряжения 40 В, что довольно типично, обычно можно получить максимум около 100 В.

Следует отметить, что даже несмотря на то, что эти цифры приведены в качестве примеров цифр, которые можно ожидать для типичных диодов Шоттки, цифры даже для данного номера устройства также будут незначительно отличаться между разными производителями.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Кремниевые выпрямительные диоды

  • Изучив этот раздел, вы сможете:
  • • Опишите типичные применения выпрямителя.
  • • Обратите внимание на маркировку полярности выпрямителя.
  • • Опишите типовые параметры выпрямителя.
  • • Переход п.д.
  • • Средний прямой ток.
  • • Повторяющийся пиковый прямой ток.
  • • Обратный ток утечки.
  • • Повторяющееся пиковое обратное напряжение.
  • • Время обратного восстановления.
  • • Опишите влияние температуры на выпрямители.
  • • Температурный разгон.

Рисунок 2.1.1. Кремниевые выпрямительные диоды

Кремниевые выпрямительные диоды

Выпрямительные диоды, подобные тем, что показаны на рис.2.1.1 обычно используются в таких приложениях, как источники питания, использующие как высокое напряжение, так и большой ток, где они выпрямляют входящее сетевое (линейное) напряжение и должны пропускать весь ток, необходимый для любой цепи, которую они питают, который может составлять несколько ампер. или десятки ампер.

Как показано на рис. 2.1.2, для прохождения таких токов требуется большая площадь перехода, чтобы прямое сопротивление диода оставалось как можно более низким. Даже в этом случае диод может сильно нагреться.Черный полимерный корпус или даже болт на радиаторе помогают рассеивать тепло.

Сопротивление диода в обратном направлении (когда диод выключен) должно быть высоким, а изоляция, обеспечиваемая обедняющим слоем между слоями P и N, чрезвычайно хороша, чтобы избежать возможности обратного пробоя, когда изоляция обедненного слоя выходит из строя, и диод необратимо выходит из строя из-за высокого обратного напряжения на переходе.

Рисунок 2.1.2. Кремниевый выпрямитель


Construction

Маркировка полярности диодов

На полимерном кожухе диодов катод обычно обозначается линией вокруг одного конца кожуха диода.Однако существуют альтернативные указания: на некоторых выпрямительных диодах, залитых смолой, закругленный конец корпуса указывает на катод, как показано на рис. 2.1.2. На выпрямительных диодах с металлическими стержнями полярность диода может быть обозначена символом диода, напечатанным на корпусе. Штифт диода часто является катодом, но на него нельзя полагаться, как показано на рис. 2.1.1, это может быть анод! На диодах мостового выпрямителя символы + и — (плюс и минус), показанные на корпусе выпрямителя, указывают полярность выхода постоянного тока, а не анода или катода устройства, входные клеммы переменного тока обозначены маленькими синусоидальными символами.Один угол корпуса на некоторых линейных мостовых выпрямителях также часто скошен, но это не следует воспринимать как надежный указатель полярности, поскольку доступны выпрямители, которые используют эту индикацию как выходную клемму + или -.

Кремниевые выпрямительные диоды бывают самых разных форм с сильно различающимися параметрами. Они различаются по токонесущей способности от миллиампер до десятков ампер, некоторые из них имеют обратное напряжение пробоя в тысячи вольт.

Параметры выпрямителя

Что означают параметры.

Слой истощения (стык) п.о.

Слой истощения или стык p.d. представляет собой разность потенциалов (напряжение), которая естественным образом создается на обедненном слое за счет комбинации дырок и электронов во время изготовления диода. Этот п.д. необходимо преодолеть, прежде чем диод с прямым смещением станет проводящим. Для кремниевого перехода p.d составляет около 0,6 В.

Обратный ток утечки (I

R ).

Когда PN-переход смещен в обратном направлении, будет течь очень небольшой ток утечки (I R ), в основном из-за тепловой активности в полупроводниковом материале, встряхивая свободные свободные электроны.Именно эти свободные электроны образуют небольшой ток утечки. В кремниевых устройствах это всего несколько наноампер (нА).

Максимальный повторяющийся прямой ток (I

FRM ).

Это максимальный ток, который может пропустить диод с прямым смещением без повреждения устройства при выпрямлении повторяющейся синусоидальной волны. I FRM обычно задается диодом, выпрямляющим синусоидальную волну с максимальным рабочим циклом 0,5 на низкой частоте (например, от 25 до 60 Гц), чтобы представить условия, возникающие, когда диод выпрямляет сетевое (линейное) напряжение.

Средний прямой ток (I

FAV ).

Это средний выпрямленный прямой ток или выходной ток (I FAV ) диода, обычно это прямой ток при выпрямлении синусоидальной волны 50 Гц или 60 Гц, усредненный между периодами, когда (полуволновой) выпрямительный диод работает. проводимость, и период волны при обратном смещении диода. Обратите внимание, что это среднее значение будет значительно меньше повторяющегося значения, указанного для I FRM .Этот (и другие параметры) также во многом зависят от температуры перехода диода. Взаимосвязь между различными параметрами и температурой перехода обычно указывается в виде серии сносок в технических паспортах производителей.

Повторяющееся пиковое обратное напряжение (В

RRM )

Максимальное пиковое напряжение, которое может повторно подаваться на диод при обратном смещении (анод — катод +) без повреждения устройства. Это важный параметр, обычно относящийся к работе от сети (линии).Например. диод, используемый в качестве полуволнового выпрямителя для выпрямления сетевого напряжения 230 В переменного тока, будет проводить в течение положительного полупериода сигнала сети и отключаться во время отрицательного полупериода. В схеме источника питания катод выпрямительного диода обычно подключается к большому электролитическому накопительному конденсатору, который будет поддерживать катодное напряжение выпрямителя на уровне, близком к пиковым напряжениям формы волны сети. Помните, что волна 230 В переменного тока относится к среднеквадратичному значению волны, поэтому пиковое значение будет примерно 230 В x 1.414 = примерно + 325В. Во время отрицательного полупериода сигнала сети анод диода упадет до максимального отрицательного значения около -325 В. Следовательно, будут повторяющиеся периоды (50 или 60 раз в секунду, когда обратное напряжение на диоде будет 325 В x 2 = 650 В. Поэтому для этой задачи необходимо использовать выпрямительный диод с параметром V RRM на минимум 650 В, и для обеспечения надежности должен быть запас прочности для такого важного компонента, поэтому было бы разумнее выбрать диод с V RRM 800 или 1000 В.

Максимальное рабочее пиковое обратное напряжение (В

RWM )

Это максимально допустимое обратное напряжение. Обратное напряжение на диоде в любое время, независимо от того, является ли обратное напряжение изолированным переходным всплеском или повторяющимся обратным напряжением.

Рис. 2.1.3 Подавление выбросов

Максимальное обратное напряжение постоянного тока (В

R )

Этот параметр устанавливает допустимый предел для обратного напряжения и обычно имеет то же значение, что и V RRM и V RWM .Теоретически эти максимальные параметры могут быть разными, но поскольку любое напряжение (мгновенное, повторяющееся или постоянное), которое не более чем примерно на 5% превышает любой из этих параметров, может потенциально разрушить диод, всегда рекомендуется проявлять осторожность при установке. диоды и предусмотреть разумный запас на случай неожиданных скачков напряжения. Одной из распространенных мер безопасности для защиты выпрямителей источника питания от внешних всплесков является подключение небольшого емкостного конденсатора высокого напряжения, обычно дискового керамического типа, к каждому из четырех диодов в мостовом выпрямителе, как показано на рис.2.1.3.

Время обратного восстановления (t

rr )

Рис. 2.1.4 Обратное


Время восстановления (t rr )

Время, необходимое для падения тока до заданного низкого уровня обратного тока при переключении с заданного прямого тока (диод включен) на заданный обратный ток (диод выключен, обычно <10% от значения 'вкл. ' Текущий). Типичное t rr раз для выпрямительных диодов, хотя и не так быстро, как малосигнальные диоды, и в некоторой степени зависит от задействованных напряжений и токов, можно найти в десятках наносекунд (нс) e.грамм. 30 нс для выпрямителя BYV28 3.5A I AF 50 В и <60 нс для двойного выпрямителя BYV44 30A I AF 500 В.

Когда выпрямительный диод используется в высокоскоростной операции переключения, например, в импульсном источнике питания, в идеале обратный ток должен мгновенно упасть до нуля. Однако, когда диод является проводящим (до выключения), по обе стороны от перехода будет большая концентрация неосновных носителей; это будут дырки, которые только что перешли на слой N-типа, и электроны, которые только что перешли на слой P-типа, но до того, как они были нейтрализованы путем присоединения к основным носителям.Если теперь внезапно применяется обратное напряжение (V R ), как показано на рис. 2.1.4, диод должен быть выключен, но вместо того, чтобы ток через диод мгновенно падал до нуля, обратный ток (I R ) создается, поскольку эти неосновные носители притягиваются обратно через переход (дырки обратно в P-слой и электроны обратно в N-слой). Этот обратный ток будет продолжать течь, пока все эти носители заряда не вернутся на свою естественную сторону перехода.

Максимальная температура

На каждый из этих параметров могут влиять другие факторы, такие как температура окружающей среды, в которой работает диод, или температура перехода самого устройства.Любой полупроводник выделяет тепло, особенно те, которые используются в источниках питания. Поэтому важно, чтобы при проектировании таких цепей учитывались температурные эффекты. Одной из самых больших проблем является предотвращение теплового разгона, когда диод (или любой другой полупроводник) увеличивает свою температуру, что приводит к увеличению тока через устройство, что приводит к дальнейшему повышению температуры и так далее, пока устройство не будет разрушено. . Чтобы предотвратить эту проблему, каждый из параметров диода ссылается на температуру, например, обратный ток утечки кремниевого PN-диода обычно указывается при температуре окружающей среды 25 ° C, но, вероятно, примерно удвоится на каждые 10 ° C выше этого значения.Также повышение температуры вызовет уменьшение потенциала прямого перехода примерно на 2–3 мВ на каждый 1 ° C повышения температуры. Еще большее влияние на выпрямители Шоттки оказывает температура.

Начало страницы

Разъяснение используемых терминов | Полупроводниковые приборы | Компоненты для бизнеса | Наш бизнес

Условия Символы Определения
Повторяющееся пиковое обратное напряжение VRM Максимально допустимое значение обратного напряжения, которое может многократно подаваться в обратном направлении устройства.
Неповторяющееся пиковое обратное напряжение ВРСМ Максимально допустимое значение скачка обратного напряжения, которое может быть приложено к обратному направлению устройства.
est Обратное напряжение Втест Значение обратного напряжения, которое может быть приложено к устройству в обратном направлении для теста в течение 1 минуты).
Средний выпрямленный прямой ток IO Среднее значение тока при 50 Гц, полусинусоидальной волны (угол состояния 180 °), которая может течь в прямом направлении устройства.
Пик импульсного прямого тока IFSM Максимальное пиковое значение тока при 50 Гц, полусинусоида (односторонняя), которая может течь в прямом направлении устройства (неповторяющийся).
Максимальный импульсный ток (пиковый импульсный ток) ISM
(IPPM, IPP)
Максимальное пиковое значение тока при заданной импульсной форме волны, которое может протекать в устройстве.
Рассеиваемая пиковая импульсная мощность ПСМ Максимальное пиковое значение мощности при заданной импульсной форме волны, которое может быть приложено к устройству.
Напряжение пробоя VB Значение обратного напряжения (напряжения пробоя), когда указанный ток (IB) течет в обратном направлении устройства.
Падение напряжения в прямом направлении VF Значение прямого падения напряжения, когда указанный ток течет в прямом направлении устройства.
Напряжение зажима Vc Значение напряжения между клеммами, когда в устройстве протекает импульсный ток с заданным пиковым током.
обратный ток ИК Значение обратного тока утечки, когда заданное напряжение подается в обратном направлении устройства.
Рассеиваемая мощность-п. Максимально допустимое значение мощности при определенных условиях.
Напряжение стабилитрона VZ Значение напряжения, когда указанный ток IZ течет в обратном направлении устройства.
Ток стабилитрона ИЗ Стандартный ток, измеряющий напряжение стабилитрона.
Импеданс стабилитрона ряд Отношение изменения напряжения стабилитрона к соответствующему изменению заданного тока IZ в зоне стабилитрона.
Температурный коэффициент стабилитрона γ Отношение изменения напряжения стабилитрона к соответствующему изменению температуры окружающей среды.
Время обратного восстановления трр. Время уменьшения обратного тока до 10% от максимального, когда устройство переключается с прямого смещения на обратное.
Клеммная емкость CT Емкость между клеммами устройства, когда заданное напряжение VR и частота f прикладываются к обратному направлению устройства.
Емкость перехода Cj Емкость перехода, когда заданное напряжение VR и частота f приложены к обратному направлению устройства.
Рабочая температура перехода Tj Допустимая температура перехода, при которой работает устройство.
Температура хранения Tstg Допустимый диапазон температур окружающей среды, в котором может храниться устройство.
Температура корпуса TC Температура корпуса устройства.
Температура окружающей среды Ta Температура окружающей среды, при которой используется устройство.
Температура масла Труд Температура масла в электротехнике высокого давления вокруг устройства.
Термостойкость Rth (j-a) Значение повышения температуры перехода на основе температуры окружающей среды при подаче электроэнергии на агрегат.
Rth (j-c) Повышение температуры перехода на основе температуры корпуса при подаче электроэнергии на установку.

Как работают диоды Шоттки | ОРЕЛ

Как и другие диоды, диод Шоттки управляет направлением тока в цепи. Эти устройства действуют как улица с односторонним движением в мире электроники, позволяя току проходить только от анода к катоду. Однако, в отличие от стандартных диодов, диод Шоттки известен своим низким прямым напряжением и возможностью быстрого переключения. Это делает их идеальным выбором для радиочастотных приложений и любых устройств с низким напряжением.Диод Шоттки имеет множество применений, в том числе:

  • Выпрямление мощности. Диоды Шоттки могут использоваться в приложениях с большой мощностью благодаря низкому прямому падению напряжения. Эти диоды будут расходовать меньше энергии и могут уменьшить размер радиатора.
  • Несколько источников питания. Диоды Шоттки также могут помочь разделить питание в системе с двумя источниками питания, например, с сетью и батареей.
  • Солнечные элементы.Диоды Шоттки могут помочь максимизировать эффективность солнечных элементов благодаря низкому прямому падению напряжения. Они также помогают защитить ячейку от обратных зарядов.
  • Зажим. Диоды Шоттки также могут использоваться в качестве фиксаторов в транзисторных схемах, например, в логических схемах 74LS или 74S.

( Источник изображения )

Преимущества и недостатки диода Шоттки

Одним из основных преимуществ использования диода Шоттки перед обычным диодом является их низкое прямое падение напряжения.Это позволяет диоду Шоттки потреблять меньше напряжения, чем стандартному диоду, используя только 0,3-0,4 В на его переходах. На графике ниже вы можете видеть, что прямое падение напряжения примерно на 0,3 В начинает значительно увеличивать ток в диоде Шоттки. Это увеличение тока не вступит в силу до 0,6 В для стандартного диода.

( Источник изображения )

На изображениях ниже представлены две схемы, иллюстрирующие преимущества более низкого прямого падения напряжения.Схема слева содержит обычный диод, справа — диод Шоттки. Оба питаются от источника постоянного тока 2 В.

( Источник изображения )

Обычный диод потребляет 0,7 В, а для питания нагрузки остается только 1,3 В. Благодаря более низкому прямому падению напряжения диод Шоттки потребляет всего 0,3 В, оставляя 1,7 В для питания нагрузки. Если бы наша нагрузка требовала 1,5 В, тогда только диод Шоттки подойдет.

Другие преимущества использования диода Шоттки по сравнению с обычным диодом:

  • Более быстрое время восстановления .Небольшой заряд, накопленный в диоде Шоттки, делает его идеальным для приложений с высокоскоростным переключением.
  • Меньше шума . Диод Шоттки будет производить меньше нежелательных шумов, чем обычный диод с p-n переходом.
  • Лучшая производительность . Диод Шоттки потребляет меньше энергии и может легко удовлетворить требования низковольтных приложений.

Диоды Шоттки имеют некоторые недостатки. Диод Шоттки с обратным смещением будет испытывать более высокий уровень обратного тока, чем традиционный диод.При обратном подключении это приведет к большей утечке тока.

Диоды Шоттки

также имеют более низкое максимальное обратное напряжение, чем стандартные диоды, обычно 50 В или меньше. Как только это значение будет превышено, диод Шоттки выйдет из строя и начнет проводить большой ток в обратном направлении. Однако даже до достижения этого обратного значения диод Шоттки будет пропускать небольшой ток, как любой другой диод.

Как работает диод Шоттки

Типичный диод объединяет полупроводники p-типа и n-типа для образования p-n перехода.В диоде Шоттки металл заменяет полупроводник p-типа. Этот металл может варьироваться от платины до вольфрама, молибдена, золота и т. Д.

Когда металл соединяется с полупроводником n-типа, образуется переход m-s. Это соединение называется барьером Шоттки. Поведение барьера Шоттки будет отличаться в зависимости от того, находится ли диод в несмещенном, прямом или обратном смещении.

( Источник изображения )

Беспристрастное состояние

В несмещенном состоянии свободные электроны будут перемещаться от полупроводника n-типа к металлу, чтобы установить баланс.Этот поток электронов создал барьер Шоттки, где встречаются отрицательные и положительные ионы. Свободным электронам потребуется большая подводимая энергия, чем их встроенное напряжение, чтобы преодолеть этот барьер.

( Источник изображения )

Состояние с опережением

Подключение положительной клеммы батареи к металлической и отрицательной клеммы к полупроводнику n-типа создаст состояние с прямым смещением. В этом состоянии электроны могут пересекать переход от n-типа к металлу, если приложенное напряжение больше 0.2 вольта. Это приводит к протеканию тока, типичному для большинства диодов.

( Источник изображения )

Состояние с обратным смещением

Подключение отрицательной клеммы батареи к металлу и положительной клеммы к полупроводнику n-типа создаст состояние с обратным смещением. Это состояние расширяет барьер Шоттки и предотвращает прохождение электрического тока. Однако, если обратное напряжение смещения продолжает увеличиваться, это может в конечном итоге разрушить барьер.Это позволит току течь в обратном направлении и может повредить компонент.

( Источник изображения )

Производство и параметры диодов Шоттки

Существует множество методов изготовления диода Шоттки. Самый простой способ — подключить металлический провод к поверхности полупроводника, это называется точечным контактом. Некоторые диоды Шоттки до сих пор производятся с использованием этого метода, но он не известен своей надежностью.

( Источник изображения )

Самый популярный метод — это использование вакуума для осаждения металла на поверхность полупроводника. Этот метод представляет проблему разрушения металлических краев из-за воздействия электрических полей вокруг полупроводниковой пластины. Чтобы исправить это, производители будут защищать полупроводниковую пластину оксидным защитным кольцом. Добавление этого защитного кольца помогает улучшить порог обратного пробоя и предотвращает физическое разрушение соединения.

( Источник изображения )

Параметры диода Шоттки

Ниже вы найдете список параметров, которые следует учитывать при выборе диода Шоттки для вашего следующего электронного проекта:

Примеры диодов Шоттки

Это помогает увидеть, как эти параметры обычно указаны на веб-сайте производителя или в техническом описании. Вот два примера:

Диод Шоттки 1N5711 — это сверхбыстрый переключающийся диод с высоким обратным пробоем, низким прямым падением напряжения и защитным кольцом для защиты перехода.

Диод Шоттки 1N5828 представляет собой стержневой диод, используемый для выпрямления мощности.

Управляйте потоком

Планируете работать с ВЧ или силовым приложением, требующим работы от низкого напряжения? Диоды Шоттки — это то, что вам нужно! Эти диоды известны своим низким прямым падением напряжения и быстрой скоростью переключения. Независимо от того, используются ли они в солнечных элементах или в выпрямлении энергии, вы не сможете превзойти низкое падение напряжения 0,3 В и дополнительную эффективность.Autodesk EAGLE уже включает в себя массу бесплатных библиотек диодов Шоттки, готовых к использованию. Не нужно делать свое собственное. Загрузите Autodesk EAGLE бесплатно сегодня!

Руководство по проектированию

— PMOS MOSFET для схемы защиты от обратной полярности напряжения

Если источник питания в цепи перевернут, например, подключите положительный провод к земле, а отрицательный провод к Vcc схемы. Могут произойти две плохие вещи: либо схема, которую мы разработали, может сгореть вместе со всеми дорогостоящими компонентами в ней, либо сам источник питания может выйти из строя.Все становится еще опаснее, если схема питается от батареи. Изменение полярности батареи — худшее, что может произойти в цепи, потому что это не только повредит цепь, но также может вызвать дым и пожар, что делает ее потенциальной угрозой.

Но возможна человеческая ошибка, и поэтому разработчик несет ответственность за то, чтобы его схема могла безопасно обрабатывать условия обратной полярности. Вот почему почти все схемы имеют дополнительную схему безопасности на входной стороне, называемую схемой защиты от обратной полярности .В этой статье мы обсудим схему защиты от обратной полярности MOSFET , которая очень эффективна для защиты схемы от повреждений, связанных с обратной полярностью. Схема также может действовать как схема защиты полярности батареи , , поэтому то же руководство по проектированию можно использовать для защиты ваших цепей, даже если она питается от внешнего адаптера постоянного тока или батареи.

Защита цепей от обратной полярности

Есть несколько вариантов защиты цепи от обратной полярности.В большинстве случаев устройства с батарейным питанием используют специальные типы батарейных разъемов, которые не позволяют подключать батарейный разъем в обратном порядке. Это механически возможная защита аккумулятора от обратной полярности. Другой вариант — использовать диод Шоттки в шине питания, но это самый неэффективный способ защиты цепи от обратной полярности.

Использование диода Шоттки для защиты от полярности и его недостатки

На изображении ниже диод Шоттки используется последовательно с шиной питания, которая будет смещена в обратном направлении при обратной полярности и отключит цепь.Мы также ранее обсуждали это в разделе «Применение диодов» в предыдущей статье.

Левое изображение соответствует правильному соединению полярности, а правое изображение — состоянию обратной полярности. При подключении с обратной полярностью диод Шоттки блокирует прохождение тока.

Но схема выше неэффективна из-за постоянного протекания тока нагрузки через диод Шоттки. Кроме того, напряжение на выходе диода Шоттки меньше входного напряжения из-за прямого падения напряжения на диоде.Таким образом, используя описанный выше метод, он защитит схему от защиты от обратной полярности, но не эффективно.

Надлежащий способ сделать схему защиты от обратной полярности — использовать простой МОП-транзистор с МОП-транзистором или МОП-транзистор с МОП-транзистором. Рекомендуется использовать PMOS, потому что PMOS отключает положительные шины, и в цепи не будет никакого напряжения, а вероятность вредных последствий меньше, если схема работает при высоких напряжениях постоянного тока.

PMOS MOSFET для защиты от обратного напряжения

Полевой транзистор (FET) — это тип транзистора, который использует электрическое поле для управления прохождением тока через него.Полевые транзисторы — это устройства с тремя выводами: исток, затвор и сток. Полевые транзисторы управляют протеканием тока путем приложения напряжения к затвору, которое, в свою очередь, изменяет проводимость между стоком и истоком. Это основная вещь, которая используется в P-MOSFET в качестве переключателя защиты от обратной полярности.

На рисунке ниже показана схема защиты от обратной полярности PMOS .

PMOS используется как выключатель питания, который подключает или отключает нагрузку от источника питания.Во время правильного подключения источника питания MOSFET включается из-за правильного VGS (напряжения затвора в источник). Но в ситуации обратной полярности напряжение затвора в источник слишком низкое для включения полевого МОП-транзистора и отсоединяет нагрузку от входного источника питания.

Резистор 100R — это резистор затвора MOSFET , подключенный к стабилитрону. Стабилитрон защищает затвор от перенапряжения.

Фактическое моделирование в Orcad PSPICE

В приведенной выше схеме есть все необходимые компоненты для защиты от обратной полярности.V1 — это источник с идеальной полярностью. MOSFET с каналом P смещается от резистора 100R и стабилитрона 6,8 В 1N4099. Нагрузка — резистор 10R.

Моделирование показывает, что схема работает правильно при правильной полярности источника питания. Стабилитрон защищает затвор от перенапряжения, и нагрузка достигает 1,3 А при 13,9 В.

На изображении выше источник перевернут. Нагрузка полностью отключена, и схема действует как предохранитель от обратной полярности.Вы также можете посмотреть видео ниже, в котором объясняется работа схемы с симуляцией:

Выбор MOSFET для защиты от обратной полярности

Рекомендуется использовать PMOS вместо NMOS. Это связано с тем, что PMOS используется в положительной шине цепи, а не в отрицательной шине. Следовательно, PMOS отключает положительные шины, и в цепи не будет положительного напряжения. Но NMOS используется в отрицательных шинах, поэтому отключение отрицательной шины не приводит к отключению цепи от положительной шины аккумулятора.Следовательно, в случае высокого напряжения постоянного тока отсоединение положительной шины намного безопаснее, чем отсоединение отрицательной шины, и вероятность возникновения вредных последствий, таких как короткое замыкание, поражение электрическим током и т. Д., Меньше.

Выбор компонентов — важная часть этой схемы. Основным компонентом является полевой МОП-транзистор с каналом P.

МОП-транзистор имеет следующие характеристики, которые имеют решающее значение для схемы.

  1. Сопротивление дренажного источника (RDS)
  2. Ток утечки
  3. Напряжение сток к источнику

Сопротивление дренажному источнику (RDS):

RDS — сопротивление сток к источнику.Используйте очень низкое RDS (сопротивление от стока к источнику) для низкого тепловыделения и очень низкого падения напряжения на выходе. Более высокое значение RDS приведет к более высокому тепловыделению.

Ток утечки:

Это максимальный ток, который проходит через полевой МОП-транзистор. Поэтому, если для цепи нагрузки требуется ток 2 А, выберите полевой МОП-транзистор, который выдержит этот ток. В таком случае хорошим выбором будет Mosfet с током стока 3А. Выберите этот параметр больше, чем необходимо на самом деле.

Напряжение сток-источник:

Напряжение сток-исток полевого МОП-транзистора должно быть выше, чем напряжение в цепи. Если для схемы требуется максимум 30 В, для безопасной работы требуется полевой МОП-транзистор с напряжением сток-исток 50 В. Всегда выбирайте этот параметр больше фактического требуемого.

При обратной полярности полевой МОП-транзистор будет отключен из-за недостаточного напряжения Vgs, и это не повлияет на цепь нагрузки, а также на МОП-транзистор.Вышеуказанные параметры необходимы при нормальных условиях и требуют тщательного выбора.

Выбор напряжения стабилитрона:

Каждый полевой МОП-транзистор имеет Vgs (напряжение затвор-исток). Если напряжение затвор-исток превышает максимальное значение, это может повредить затвор полевого МОП-транзистора. Поэтому выбирайте напряжение стабилитрона, которое не будет превышать напряжение затвора полевого МОП-транзистора. Для напряжения Vgs 10 В будет достаточно стабилитрона 9,1 В. Убедитесь, что напряжение затвора не должно превышать максимальное номинальное напряжение.

100R Резистор в цепи:

Значение резистора должно быть выбрано таким образом, чтобы оно не было достаточно высоким, чтобы не перегревать стабилитрон, но достаточно низким, чтобы обеспечить адекватный ток смещения стабилитрона и быстро разрядить затвор, если напряжение питания внезапно изменится на противоположное. Следовательно, здесь есть компромисс между временем разряда затвора и смещением стабилитрона. В большинстве случаев подойдет 100R-330R, если есть вероятность появления внезапного обратного напряжения в цепи.Но если нет вероятности внезапного обратного напряжения во время непрерывной работы схемы, можно использовать любое сопротивление резистора от 1 кОм до 50 кОм.

Номер детали Предложение:

Самые популярные полевые МОП-транзисторы, которые используются для широкого диапазона схем, связанных с защитой от обратной полярности.

  1. ИРФ 9530
  2. IRF 9540
  3. Si2323 (низковольтные операции с низким током)
  4. ILRML6401 (низковольтные и слаботочные операции)

Недостатки схемы защиты от обратной полярности полевого МОП-транзистора

Основным недостатком этой схемы является рассеивание мощности через полевой МОП-транзистор.Однако эту проблему можно решить, используя полевой МОП-транзистор с каналом P, сопротивление которого измеряется в миллиомах.

Как читать таблицы данных: выпрямительные диоды

Диоды позволяют току течь только в одном направлении. Это делает их полезными во многих приложениях, включая преобразование переменного тока в постоянный, регулирование напряжений и обработку высокочастотных сигналов.

Диоды позволяют току течь только в одном направлении. Это делает их полезными во многих приложениях, включая преобразование переменного тока в постоянный, регулирование напряжений и обработку высокочастотных сигналов.


В предыдущих частях этого мини-сериала мы начали с рассмотрения проблем, связанных с чтением таблиц данных в целом, а затем рассмотрели линейные регуляторы (часть 1 и часть 2). Пришло время обратить внимание на диоды.

Что такое диод?

Диоды

бывают разных видов, и не всегда очевидно, как выбрать подходящий. Для начала ответим на два вопроса: «Что такое диод?» и «почему существует так много типов?» Собственно, зададим еще один вопрос: «Сколько диодов на плате, показанной ниже?» (Ответ дан в конце этой колонки.)

Сколько диодов вы видите на этой плате? (Источник: Элизабет Саймон)

Диод — это устройство, позволяющее току течь в одном направлении, но не в другом. Эта способность делает диоды полезными во многих приложениях, включая преобразование переменного тока в постоянный, регулирование напряжений и обработку высокочастотных сигналов. Ранние диоды были реализованы с использованием различных методов и технологий, от «кошачьих усов» до электронных ламп (вы можете найти больше информации о происхождении диодов на вики-сайте «История инженерии и технологий»).

В наши дни, конечно, мы преимущественно используем полупроводниковые диоды в наших электронных системах. Если вы не знакомы с диодами, то у SparkFun есть очень хорошее руководство, в котором объясняются основы, а в этих примечаниях к лекции можно найти более подробное обсуждение.

См. Также учебные пособия по цепям переменного тока, цепям постоянного тока и диодам на Electronics-Tutorials.ws.

На что обращать внимание при выборе диода

Итак, как мы узнаем, на что обращать внимание при выборе диода? Ответ (как и во многих других электронных устройствах) заключается в том, что это зависит от целевого приложения.Типичное применение диодов — преобразование переменного (переменного / двунаправленного) напряжения в постоянное (прямое / однонаправленное) напряжение. Это называется «выпрямлением», а диоды, предназначенные для этой цели, называются «выпрямительными диодами» или «выпрямителями».

Давайте посмотрим на простую схему, которую вы можете найти в блоке питания, как показано ниже:

Схема простого выпрямителя (Модель нарисована в LTspice, Источник: Элизабет Саймон)

Это простейшая схема выпрямителя из возможных.Как вы можете видеть на графиках ниже, диод преобразует сигнал переменного тока на входе в импульсный сигнал постоянного тока. Если бы мы добавили конденсатор, у нас получилось бы что-то близкое к стабильному постоянному напряжению, но это обсуждение в другой раз.

Результаты моделирования SPICE (Источник: Элизабет Саймон)

В этой схеме легко увидеть, что весь ток в цепи, которую мы хотим запитать (обозначенной в модели RL), должен проходить через диод. Если вы внимательно посмотрите на результат моделирования, вы увидите, что выходное напряжение меньше входного.Это означает, что диод рассеивает мощность.

Рассеиваемая мощность

Если вы читали мои недавние колонки о линейных регуляторах (см. Часть 1 и Часть 2), вы должны помнить, что рассеиваемая мощность приводила к нагреву регулятора. К счастью, падение напряжения на диоде намного меньше, поэтому этого не должно быть. проблема. Или надо?

Чтобы ответить на этот вопрос, давайте посмотрим на лист данных диода 1N4001, который появляется в модели SPICE (я нашел лист данных, который мы будем использовать для наших обсуждений на сайте ON Semiconductor).

Возможно, вы захотите обратиться к этому листу данных по мере продолжения работы. Между прочим, согласно Википедии, этот компонент существует с тех пор, как Motorola представила его в 1965 году, и он до сих пор производится несколькими производителями в оригинальном свинцовом корпусе с вариантами, доступными в пакетах SMT.

При просмотре этого паспорта первое, что мы видим, это семь разных номеров деталей: от 1N4001 до 1N4007. На первой странице мало что говорится о различиях между этими частями, но когда мы переходим ко второй странице, мы видим следующую таблицу максимальных оценок:

(Источник: ON Semiconductor)

Из этой таблицы мы видим, что каждая деталь в семействе имеет разное максимальное обратное напряжение.Просматривая остальную часть спецификации, никаких других различий не обнаруживается, поэтому это должно быть отличительной чертой для различных частей в семействе. Но почему существует три разных типа номиналов обратного напряжения и что все они означают?

К сожалению, значение различных рейтингов не объясняется в этом техническом паспорте, но, немного подумав, мы можем выяснить их следующим образом:

  • Пиковое повторяющееся обратное напряжение или напряжение блокировки постоянного тока — это максимальное обратное напряжение, которое деталь может выдерживать непрерывно без повреждений.
  • Неповторяющееся пиковое обратное напряжение, указанное в этом техническом паспорте, — это то, что деталь может выдержать «один раз» (обратите внимание на указанные условия).
  • RMS обратное напряжение — это максимальное переменное напряжение, которое может выдержать диод. Это применимо только к форме волны переменного тока (для 1N4001 обратите внимание, что среднеквадратичное значение 35 В немного меньше пикового значения 50 В, поэтому они по существу одинаковы).

Важно обратить на это внимание при выборе диода. Если вы попытаетесь использовать 1N4001 для выпрямления сетевого напряжения 115 В переменного тока, вас ждет очень неприятный сюрприз.Когда диод сталкивается со слишком большим обратным напряжением, он выходит из строя и начинает проводить ток в направлении, противоположном желаемому. Хотя есть диоды, которые предназначены и предназначены для безопасной работы в этом режиме (в первую очередь стабилитроны), многие диоды будут катастрофически выходить из строя и, пропуская обратный ток, часто также могут повредить другие части. В идеале максимальное обратное напряжение было бы бесконечным, но это не идеальные диоды, поэтому на нас нужно обращать внимание.

Ради удовольствия (я знаю, как хорошо провести время) я попробовал запустить свою модель SPICE с повышенным напряжением переменного тока до пикового значения 100 В вместо 10 В. Результаты показаны ниже. Пик -50 В, который показывает симуляция, не годится, если вы ожидаете, что это будет источник постоянного тока. Также обратите внимание, что это моделирование не включает катастрофический отказ.

Выпрямитель с обратным перенапряжением (Источник: Элизабет Саймон)

Двигаясь дальше, мы видим, что максимальный средний прямой ток для этой серии деталей составляет 1 А, с поразительными 30 А для одного пика.Мгновенное падение прямого напряжения составляет 1,1 В, в то время как максимальное среднее падение напряжения в прямом направлении составляет 0,8 В. Также отметим, что обратный ток указан в микроамперах. В идеале это было бы ноль, но микроамперы не так уж и плохи для детали 1А, которая была разработана в 1965 году.

Переходим к графикам. На графике, показывающем типичное прямое напряжение, мы видим, что напряжение увеличивается с увеличением тока и уменьшается с температурой. Мы также видим, что обратный ток увеличивается с температурой, а емкость уменьшается с обратным напряжением.Погодите, емкость? Я ничего не помню о емкости. Правильно, только взглянув на диаграмму, мы видим, что эти части обладают емкостью. Для типичного приложения, где эти диоды используются в источнике питания, это может быть не важно, но нам может потребоваться соблюдать осторожность в других приложениях.

Итак, что мы упустили до сих пор? Нам известны падение напряжения и максимальный ток, поэтому мы можем рассчитать рассеиваемую мощность. Используя среднее прямое падение, получаем:

ПД = 0.8 * 1 = 0,8 Вт

Звучит не так уж и много, но и не такая уж большая часть. Спецификация термического сопротивления отсылает нас к примечанию 1. Это примечание, которое можно найти на странице 4, содержит несколько номеров вместе со схемами возможных способов монтажа.

Похоже, что способность этой детали рассеивать тепло во многом зависит от того, как она установлена. Наилучший вариант — установить деталь так, чтобы один конец соприкасался с землей или плоскостью питания на печатной плате. Наихудший вариант — установить его подальше от платы с помощью длинных выводов.

В лучшем случае эта деталь будет иметь превышение температуры T = 50 * 0,8 = 40ºC. Это означает, что если наша плата имеет температуру 25ºC, то наш диод будет иметь температуру около 65ºC (149 ºF). Это немного горячее, чем мне бы хотелось.

В нашем примере приложения, однако, наш диод проводит только половину цикла, так что в действительности мы в среднем рассеиваем только половину этой мощности. Таким образом, мы имеем половину повышения температуры, что означает, что наш диод будет иметь температуру 45 ° C (113 ° F), что является гораздо более удобным значением.

Но как насчет наихудшего сценария, когда у нас гораздо более высокое тепловое сопротивление? В этом случае (с использованием тех же предположений) наш диод будет иметь температуру 69,6 ° C (157,3 ° F). Несмотря на то, что диод будет в пределах своих тепловых характеристик, он все равно будет достаточно теплым, и мы должны обратить внимание на то, чтобы не обжечься. Итак, опять же, мы обнаруживаем, что с властью не всегда все так просто, как кажется.

Сколько диодов?

Возвращаясь к печатной плате, которую я показал в начале этой статьи, на плате 12 диодов.В дополнение к восьми дискретным компонентам есть также мостовой выпрямитель, содержащий четыре диода (помните, я спрашивал, сколько там диодов, а не пакетов).

На этой плате 12 диодов (Источник: Элизабет Саймон)

И еще раз, время истекло, поэтому нам придется рассмотреть другие типы диодов в одной из следующих статей. А пока, как всегда, я приветствую ваши вопросы и комментарии.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *