Мало низких частот в коробе что делать: где взять бас и как его настроить • Stereo.ru

где взять бас и как его настроить • Stereo.ru

Вопрос этот отнюдь не праздный. Автомобильная аудиосистема строится совсем иначе, нежели домашняя. Тут играет роль и ограниченность пространства салона, и особенности установки акустических систем. Потому и подход к решению задачи выглядит для многих непривычно.

Причина, по которой я хотел бы начать именно с этой темы, очень проста. Как показывает практика, далеко не каждый автомобилист захочет перестраивать штатную аудиосистему полностью. Поэтому многие ограничиваются лишь ее легким апгрейдом для более уверенного звучания низкочастотного диапазона. В большинстве штатных систем бас — это действительно одно из самых слабых мест. Акустические оформления динамиков зачастую оставляют желать лучшего, а штатный сабвуфер, если он вообще есть, редко в какой системе может похвастать достойным звуком.

Штатные сабвуферы, как правило, построены на небольших динамиках и имеют пластиковые корпуса

Сразу должен предупредить, что речь пойдет именно о нормальной музыкальной системе, в которой бас — это плотный фундамент, придающий звучанию полновесность независимо от жанра.

К сожалению, словосочетание «автомобильный сабвуфер» у многих сегодня ассоциируется с непонятными сооружениями в багажниках, которые издают гудящие и дребезжащие звуки и не имеющие к музыке никакого отношения. Эти «50 оттенков баса» и прочие автозвуковые извращения давайте оставим за бортом, а за ориентир возьмем хорошую домашнюю систему.

Акустические условия

Первое заметное отличие автомобильных условий от домашних заключается в том, что объем салона ограничен. Многие скептики оперируют именно этим аргументом, полагая, что строить в автомобиле аудиосистему высокого класса бессмысленно. В таких случаях я обычно возражаю, что с домашним подходом это действительно так. А вот если грамотно использовать специфику «малых объемов», то можно добиться впечатляющих результатов, что неоднократно доказывалось практикой.

Собственно, одна из основных особенностей акустических свойств салона автомобиля — это «помощь» в воспроизведении низких частот. Понятно, что с понижением частоты длина звуковой волны растет.

Например, на частоте 1000 Гц длина волны около 30 см, а на 300 Гц — уже больше метра. С еще большим понижением она становится и вовсе соизмеримой с размерами салона.

В этот момент звуковые волны в обычном представлении прекращают свое существование, и диффузор динамика начинает создавать равномерное чередование сжатий-разряжений воздушной массы по всему объему. Подобно поршню в цилиндре. И здесь не в последнюю очередь многое будет зависеть от амплитуды колебаний диффузора. Ниже частота — выше амплитуда. В замкнутом объеме салона автомобиля это создает эффект акустического усиления низких частот: ниже частота — больше ход диффузора — выше акустическое усиление.

Акустическое усиление в салоне автомобиля (дБ/Гц)

В теории «помощь» салона начинается с 50-100 Гц в зависимости от размеров автомобиля. Чем меньше авто, тем с более высоких частот начинает проявляться этот эффект. Причем с понижением частоты на каждую октаву прирост усиления составит 12 дБ. На практике, конечно же, все не так радужно — скажутся утечки воздуха, потери звуковой энергии через вибрации и т.

д. К тому же эта математическая модель не учитывает индивидуальных особенностей разных салонов. И дело не только в геометрических размерах, значение может иметь даже материал обивок.

Разные акустические условия при закрытом и открытом верхе делают кабриолеты и родстеры одними из самых сложных при построении аудиосистем высокого уровня

Почувствовать эффект «помощи» салона на низких частотах очень просто. Включите любую композицию с акцентированным басом. Обратите внимание на то, как звучит низкочастотный диапазон. Теперь откройте двери и крышку багажника. Уверен, разницу почувствуете сразу же — как будто регулятором тембра убавили низкие частоты.

А нужен ли сабвуфер?

Зная эту особенность замкнутого салона, логично предположить, что в автомобиле и вовсе нет необходимости в отдельном сабвуферном звене. Возможно оно и так, но давайте сравним автомобильную акустику с домашней. И в том, и в другом случае используются громкоговорители близких калибров — от 5 до 8 дюймов. 6,5 дюймов – «золотая середина» и классика автомобильных динамиков.

Домашняя колонка — это цельный законченный узел, спроектированный и изготовленный так, чтобы создать для динамиков наилучшее акустическое оформление. А самое главное — прочный корпус, лишенный вибраций. В машине, к сожалению, о таком чаще всего приходится только мечтать. Корпусами для динамиков в большинстве случаев становятся двери или какие-нибудь ниши и пространства в кузовных элементах. Получить в таких условиях нормальное воспроизведение низких частот? Ой, да не смешите.

Так установлены динамики в Burmester 3D High End Sound System за 8000 Евро. Мягко говоря, не самое лучшее акустическое оформление:

Вот и получается, что в большинстве случаев акустика способна более-менее эффективно «дотянуть» лишь до 80-100 Гц, что бы там ни заявляли производители. Какая уж тут основательность звучания.

Положение можно исправить либо серьезным укреплением дверей с превращением ее в тяжеленную «железобетонную» конструкцию, либо изготовлением для динамиков отдельных корпусов. Ну или вовсе удариться в какую-нибудь экзотику:

В любом случае попытки создать низкоиграющую акустическую систему сводятся к радикальному вмешательству в конструкцию автомобиля, а для этого нужно быть совсем уж фанатиком. А посему получается, что сабвуфер — самый рациональный способ решить автомобильную проблему низких частот. Другое дело, каким именно он должен быть и как его бесшовно срастить с остальной акустикой, чтобы он не бубнил в багажнике сам по себе, а являлся полноценной частью звуковой системы.

Изготовление корпусов в дверях — не такой экзотический, но тоже весьма радикальный и затратный способ создания нужного акустического оформления для динамика. На фото — работа Александра Лысенко

Выбор сабвуферного звена

Думаю, нет смысла подробно останавливаться на выборе конкретной концепции сабвуфера, для человека, знакомого с домашней техникой, многие вещи очевидны. Но кое в чем автомобильная специфика все же отличается от домашней.

Для домашней техники объем корпуса хоть и играет определенную роль, но не такую значимую, как в автомобиле.

Здесь желательно уместить всю конструкцию в как можно меньших объемах. Задача эта весьма противоречивая, и ее решение — сплошные компромиссы. Как только зажимаешь динамик в тесный объем, сразу же возрастает нижняя граничная частота и сабвуфер превращается просто в вуфер. Чтобы восстановить статус-кво, производителям приходится утяжелять подвижную систему, а это влечет за собой снижение чувствительности, а значит, требует более мощного усилителя. Поэтому не стоит удивляться автомобильным басовым моноблокам с мощностью в сотни Ватт — им обычно приходится тягать достаточно тугие драйверы.

Так что при выборе динамика приходится расставлять приоритеты — либо отдать предпочтение «легковесам» с мягкими подвесами и малым весом подвижки, с хорошим импульсным откликом и не заоблачными требованиями к усилителю, но которые при этом будут требовать крупных корпусов, либо «тяжеловесам», которые умещаются в компактные корпуса, но требуют усилителей повышенной мощности.

Сабвуфер совсем не обязательно должен быть большим и занимать половину багажника. Это может быть и небольшая аккуратная конструкция, не съедающая в багажнике полезное место

Теперь немного о размерах динамиков. То, что большие громкоговорители при прочих равных требуют больших корпусов, полагаю, и так очевидно. Но есть еще и другой фактор. От размера сабвуфера напрямую зависит еще и то, насколько удачно его получится срастить с акустическими системами. Например, если с басовым потенциалом у последних совсем все плохо, то выбирать какой-нибудь тяжеловесный 15-дюймовый саб как минимум глупо — он вряд ли нормально будет работать выше 50-60 Гц. А вот, например, «десятки» при прочих равных, могут легко дотянуться снизу до акустики и неплохо с ней состыковаться.

Пожалуй, это два основных момента, на которые следует обратить внимание при построении низкочастотного звена для автомобильной аудиосистемы. Все остальное — вопросы конкретных реализаций динамиков. Могут быть и легкие сабвуферы больших размеров, и маленькие «тугоходы». Каждый из них, естественно, требует своего подхода к выбору акустического оформления.

Но это отдельная тема и сейчас углубляться в нее нет необходимости.

Кстати, что касается оформления, то тут считаю нужным упомянуть сабвуферные динамики для установки free-air. Они обычно стоят немного особняком. Такие не требуют отдельных корпусов. Вернее, корпусами для них будет объем багажника – они ставятся в заднюю полку или перегородку между багажником и салоном. Несмотря на кажущуюся простоту, обеспечить им должное оформление довольно сложно хотя бы из-за того, что приходится радикально укреплять до каменной жесткости посадочные места для динамиков, а это связано с высокой трудоемкостью таких работ. Кинуть в багажник корпус куда как проще, поэтому «фриэйрных» сабов на рынке крайне мало. Хотя, на мой взгляд, это все же одни из самых лучших сабвуферов, с которыми обеспечивается наиболее точное звучание НЧ-диапазона.

Проблемы «заднего баса»

Продолжая тему сращивания звучания сабвуфера с АС, должен затронуть еще один важный вопрос — локализация саба. Казалось бы, наши уши не определяют положение источника звука в том частотном спектре, в котором работает сабвуфер. Вот почему никто особо не стремится разместить его в передней части салона, а классикой считается установка в багажнике.

Не хотите ставить саб в багажнике? Да пожалуйста, хоть в торпедо встраивайте… Можно и в буквальном смысле

Однако на практике в очень многих случаях бас все равно воспринимается как бы идущим сзади, когда основная звуковая картина формируется впереди слушателя, а низкие частоты живут своей жизнью. Причин этому может быть несколько.

Причина первая: вибрации

От могучих басовых аккордов могут резонировать рядом расположенные панели и элементы. А эти звуки, как вы понимаете, уже далеко не низкочастотные. Они так хорошо «подмешиваются» к звучанию сабвуфера, что мы не всегда можем идентифицировать их, но общую картину они заметно испортят.

Лечится обработкой кузовных элементов вибродемпфирующими материалами, посадкой пластиковых обивок на уплотнительные «противоскрипные» материалы, надежным креплением корпуса сабвуфера и, в конце концов, элементарным наведением порядка в багажнике.

Причина вторая: неудачный корпус

Попробуйте при включенном сабе просто прикоснуться к нему ладонью. У хорошего корпуса вибраций быть не должно. Если же они есть, то вот вам и вторая причина — кроме диффузора динамика звук излучают сами стенки корпуса. Причем тоже далеко не на самых низких частотах. Этим в основном грешат дешевые сабвуферы с плоскими стенками, большинство из них изготавливается из ДСП толщиной в лучшем случае 18-20 мм.

Выход — делать нормальный корпус с толстыми стенками, усиливать его внутренними распорками или применять многослойную конструкцию с использованием вибродемпфирующих материалов в качестве промежуточных слоев. Недостаток — трудоемко, да и корпус слишком тяжелый получается. Легкость конструкции с достаточной жесткостью сочетают в стеклопластиковых корпусах. Сантиметровой толщины для стеклопластиковых стенок сложной формы вполне хватает, чтобы сделать конструкцию достаточно монолитной.

Криволинейные поверхности стеклопластикового корпуса даже при толщине около 1 см имеют достаточную жесткость

Здесь же отмечу и проблему, связанную с возможной некачественной сборкой. Неплотно посаженный динамик или даже небольшая негерметичность — и паразитные призвуки обеспечены. Многие почему-то думают, что это важно только для закрытого акустического оформления. Отнюдь, фазоинверторное к этому еще больше чувствительно — там перепады давления внутри корпуса выше, чем в закрытом корпусе.

Причина третья: завихрения воздуха

На низких частотах ход диффузора часто оказывается весьма значительным, особенно если «поддать жару». При этом, если сам динамик закрыт слишком плотным защитным грилем, то на больших амплитудах могут появляться завихрения воздуха, которые будет хорошо слышно.

Если используется корпус фазоинверторного типа, то еще одним потенциальным источником может стать сам порт. Особенно, если он имеет слишком маленькое сечение или острые края.

Причина четвертая: неправильная настройка фильтров усилителя

Очень важно в сабвуферном канале правильно ограничивать частотный диапазон сверху. Подобрать срез фильтра нижних частот можно только опытным путем, отталкиваясь, опять же, от потенциала фронтальной акустики. В самом простейшем случае такая возможность обычно есть в сабвуферном усилителе, для более сложных систем с процессорами можно выбирать не только частоту среза, но и, например, крутизну фильтра, а иногда даже и его добротность. В custom-системах топового уровня такие возможности процессоров оказываются востребованными. Естественно, если настройщик имеет достаточный опыт и имеет представление о том, что именно он настраивает.

Цифровые процессоры дают практически неограниченные возможности настройки аудиосистемы. Настройка, как правило, производится с компьютера через специальный софт

В отличие от домашних систем, в автомобилях частота настройки ФНЧ в сабвуферном канале обычно лежит в пределах 50-100 Гц. Что касается крутизны фильтра, то принято считать, что чем она выше, тем лучше, но я бы с этим утверждением поспорил. Настройка — дело творческое и сугубо индивидуальное, шаблонный подход не всегда приносит нужный результат.

Важно понимать, что согласовать сабвуфер с акустическими системами необходимо не только по их АЧХ, но и по фазе. Многие специализированные сабвуферные усилители имеют для этого так называемые «фазовращатели». Проще, если у вас система с цифровым процессором, там можно оперировать задержками, как правило, виртуально отодвинув ими фронтальные каналы.

Если вы уже все перепробовали, но сабвуфер по-прежнему звучит отдельно от всего остального и локализуется сзади, просто перекиньте «+» и «-» на динамике. Иными словами, переверните фазу и попробуйте повторить настройку.

Заканчивая этот материал, хотелось бы отметить следующее. Принимая любое решение — простой ли апгрейд штатной системы или построение сложной custom-системы на топовых компонентах, всегда держите в голове, чего именно вы хотите добиться. Автозвук — это средство повысить комфорт вашего личного пространства, конкретно — вашего автомобиля. Звучание должно быть аккуратным, точным и, главное, приносящим удовольствие.

Также читайте: Звук в автомобиле: как заставить штатную систему звучать лучше?

Общие недостатки помещений и методы их устранения.

/ Разное / Статьи — Салон «Магия звука»

Предположим, вы задались целью улучшить акустические условия вашей комнаты прослушивания. У вас имеется широчайший диапазон возможных решений. Например, можно добавить в интерьер специально разработанные акустические приспособления или потратить много денег на переоборудование помещения. А можно просто повесить ковер на стену или заменить портьеру, — зачастую этого оказывается вполне достаточно. Вы можете самостоятельно повысить качество звучания вашей системы, используя подручные средства и материалы, или, не останавливаясь перед затратами, приобретете специальные приспособления, предназначенные для управления акустическими параметрами помещения. Не торопитесь с решением — прежде внимательно ознакомьтесь с этим разделом. В нем вы найдете описание наиболее часто встречающихся недостатков, присущих помещениям, и способов их устранения. Возможно, эта информация поможет вам сэкономить время и деньги.

1. Акустически необработанные параллельные поверхности

Не исключено, что это самая общая и самая досадная из проблем, связанных с помещениями. Если существуют две параллельные отражающие поверхности, то между ними возникает порхающее эхо — прыгающий звук, слышимый после того как прямой звук уже смолк. Если вы когда-нибудь бывали в пустых незаглушенных помещениях и хлопали там в ладоши, вы слышали порхающее эхо. Оно похоже на повторяющиеся, затухающие в воздухе хлопки. Для того, чтобы лучше уяснить, что такое порхающее эхо, представьте себе трюмо с обращенными друг к другу зеркалами. Одно зеркало отражается в другом, его изображение снова отражается в первом, которое, в свою очередь, отражается во втором и так далее. — создается иллюзия бесконечного зеркального коридора. Здесь происходит нечто подобное: звук, отраженный одной поверхностью, возвращается к другой, отражается от нее и начинает как бы метаться, порхать между двумя стенами (отсюда и название), постепенно затухая. Скорость затухания зависит главным образом от свойств отражающих поверхностей. Порхающее эхо „размывает» фронты нарастания и затухания звуковой волны придает жесткий, металлический характер звучанию верхних средних и высоких частот.

Попробуйте хлопнуть в ладоши в различных помещениях вашего дома. Наиболее отчетливое порхающее эхо вы услышите в холле или ванной комнате. И если нечто подобное вы обнаружите в комнате прослушивания, вам придется решить эту проблему.

Порхающее эхо легко устранить. Выясните, какие поверхности внутри помещения параллельны друг другу и поместите на одну из них звукопоглощающий или рассеивающий материал. Этого достаточно, чтобы не допустить повторных отражений. В качестве такого материала можно использовать ковер, повешенный на стену, палас на полу (если эхо возникает из-за отражений между полом и потолком), шторы на окне или какой-нибудь акустический звукопоглотитель. закрепленный на стене. Даже небольшие кусочки сильно поглощающей звук акустической пены, такой как „Sonex» (этот материал описан ниже), способны ликвидировать порхающее эхо.

Для этой цели можно также с успехом использовать материал типа тонкого коврового покрытия, подобного применяемому в отделке помещений аэропортов и конференц-залов. И хотя он довольно дорогой, когда продается как материал для акустической обработки, вы можете договориться на фабрике ковровых изделий и приобрести его в несколько раз дешевле, чем в магазине. Он выглядит скромно, ненавязчиво, легко прикрепляется к любой поверхности. Его поглощающие свойства позволяют эффективно справляться с порхающими отражениями, и вместе с тем он не поглощает чрезмерное количество энергии, так что комната не кажется „мертвой». Ковровое покрытие можно наклеить на стены или прибить гвоздиками. Если вы воспользуетесь „Masonit’oM», то сможете попробовать установить покрытие в разные места, подыскивая наилучшее.

Недавно фирма „Acoustic Sciences» представила материал, полностью ликвидирующий порхающее эхо. Он называется „Flutter Stix» и поставляется кусками размером 38x90x600 мм или 38x100x900 мм. Прикрепляется к стене легко и быстро.

Каким бы способом решения этой проблемы вы ни воспользовались, ваши труды не пройдут даром, потому что уничтожение порхающего эха имеет первостепенную важность.

2. Неуправляемые отражения от пола и боковых стен

Трудно избежать установки громкоговорителей около стен помещения и вблизи пола. Из-за этого вы слышите прямой звук вместе с отражениями от стен, пола и потолка комнаты. Огражения от боковых стен имеют задержку по времени относительно прямого сигнала, обладают окрашенным тембром и приходят не от громкоговорителей, а совсем с другого направления. Все эти факторы могут ухудшить качество звучания. К ТОМУ же отражения от пола и боковых стен суммируются с прямой волной, дополнительно окрашивая звучание. На рис. 4-11 показано, как в результате наложения прямых и отраженных волн формируется звук, воспринимаемый слушателем.

Рис. 4-11. Слушатель воспринимает комбинацию прямых и отраженныхзвуковых волн

Есть три основные причины, влияющие на тембр звука. Во-первых, фактически все внеосевые частотные характеристики громкоговорителей (то есть измеренные со смещением относительно их рабочей оси) не такие равномерные, как характеристики, измеренные на оси. Звук, излучаемый в сторону от рабочей оси (а именно он, в основном, и отражается от боковых стен), может иметь значительные пики и спады на разных частотах. Таким образом, отраженный сигнал изначально — еще до отражения — отличается по тембру от прямого звука, и мы слышим эту тональную окраску в музыке.

Во-вторых, акустические характеристики боковых стен сами вносят изменения в спектральный состав сигнала. Скажем, если материал стен поглощает высокие частоты, не поглощая энергию средних и низких частот, это, безусловно, повлияет на тембр отраженного звука.

И, наконец, временная задержка отраженного звука относительно прямого также играет свою роль в формировании общего тембра звучания. Задержка эта обусловлена разностью хода прямого и отраженного звука. Зная скорость распространения звука в воздухе (340 м/с), легко вычислить время задержки. Например, если дополнительный путь, проделанный отраженными звуковыми волнами на рис. 4-11, равен 120 см, то время задержки составит 35 мс (тридцать пять тысячных долей секунды) относительно прямого звука.

В результате явления, названного гребенчатой фильтрацией (см. рис. 4-12), возникает ряд пиков и провалов частотной характеристики (отсюда и ассоциация с гребнем), обусловленных интерференцией между прямым и отраженным сигналами. Ввиду разности хода прямой и отраженной звуковых волн происходит ослабление одних частот и усиление других, как это видно на графике. Такая характеристика не может не повлиять на частотный состав звукового сигнала на слушательском месте.

следствие всех этих причин мы слышим звук, отличающийся по тембру от того, что излучается громкоговорителями. Отражения от боковых стен — одна из причин, по которым одни и те же громкоговорители звучат по-разному в разных помещениях.

Рис. 4-12. Амплитудно-частотная характеристика гребенчатого вида состоит из чередующихся пиков и провалов, образовавшихся в результате интерференции прямого и отраженного звука.

Эти отражения не только влияют на тональный баланс, они также мешают точно локализовать образ в пределах звуковой сцены, так как на боковых стенах появляются дополнительные „мнимые» образы сигналов. И хотя отражения в некоторой степени улучшают пространственность и объемность звучания, сильные отражения субъективно увеличивают кажущееся расстояние между громкоговорителями. Отдельные звуковые образы „размываются», ощущение их телесности теряется, а вся звуковая сцена становится менее сфокусированной и точной.

Звук отражается также от пола и потолка. Отражения от пола понижают энергию среднего баса, и звук становится „тоньше». Отражения от потолка влияют на звук слабее отражений от боковых стен из-за большей разницы хода звуковых волн. Звук дипольных громкоговорителей, посылающих очень мало энергии к потолку, меньше подвержен его влиянию, чем звук обычных громкоговорителей. Наконец, наклонный потолок предпочтительнее горизонтального, если громкоговорители расположены в части комнаты, где потолок ниже. Его наклон будет направлять отражения в сторону от слушателя.

Акустически обработать боковые стены несложно: достаточно поместить на них между громкоговорителями и слушательским местом звукопоглощающий или звукорассеивающий материал. Отражения от пола устраняются еще проще — напольный ковер погасит большинство отражений и уменьшит их вредное влияние. Тем не менее он не будет поглощать некоторые низкие частоты, что приведет к ослаблению среднего баса — в результате интерференции между прямой и отраженной волной. Это так называемый „эффект Эллисона», названый по имени конструктора громкоговорителей Роя Эллисона, который первым опубликовал описание данного явления.

Интересно, что тип ковра на полу между вами и громкоговорителями тоже влияет на качество звука. Например, покрытие из шерсти создает более естественный тональный баланс, чем синтетический ковер. Дело в том, что волокна шерсти имеют разную длину и толщину, и это способствует лучшему поглощению различных частот. В отличие от него, синтетическое покрытие состоит из одинаковых ворсинок, а потому эффективно поглощает звук лишь в узком диапазоне частот. Вы можете убедиться в этом на складе ковровых изделий, разговаривая вслух в окружении различных образцов натуральных и синтетических покрытий. С шерстяным ковром вы получите более натуральный тембр звучания своего голоса.

Отражения от боковых стен могут либо рассеиваться, либо поглощаться. Рассеивающая поверхность разбивает единичную падающую волну на множество маломощных, хаотично направленных отражений, как показано на рис. 4-13. Рассеивателями звука могут быть специальные акустические материалы, такие как рассеиватели „RPG» (показанные на рис. 4-14а и описанные ниже в этой главе), или просто неровные поверхности. Например, открытые полки, заполненные книгами, отлично рассеивают звук, если к тому же книжные корешки по-разному „утоплены» вглубь полок. Рис. 4-146 демонстрирует рассеиватели „RPG», установленные позади громкоговорителей. Обратите внимание на ковер между громкоговорителями и слушательским местом.

Рис. 4-13. Звук, попадая на поверхность, поглощается, отражается или рассеивается (может наблюдаться и комбинация всех трех явлений).

Рис. 4-14а. Рассеиватель фирмы «RPG Diffusor Systems».

Рис. 4-14б. Рассеиватель фирмы «RPG Diffusor Systems»

Вы можете выбрать и другой подход — поглощение отражений от боковых стен. Акустические звукопоглощающие материалы, например, акустическая пена, очень эффективны, но надо учитывать опасность слишком заглушить помещение, — тогда звук в нем станет безжизненным, а ощущение пространства и звукового объема уменьшится или исчезнет совсем.

Вообще вопрос о том, что лучше — рассеивание или поглощение отражений от боковых стен, вызывает оживленные дебаты в high-end-сообществе. Сторонники рассеивания аргументируют свои взгляды тем, что отраженная энергия полезна в виде диффузных отражений — они увеличивают ощущение объема звукового пространства. Их оппоненты, отстаивая метод поглощения, утверждают, что любые отражения, поступающие в течение первых 20 мс после прихода прямого звука, субъективно понижают его качество. Большинство комнат прослушивания на студиях звукозаписи построены по принципу „зоны без отражений», где звукорежиссер слышит только прямой звук студийных мониторов. Мой собственный опыт подсказывает: поглощение отражений от боковых стен лучше, чем их рассеивание, хотя рассеивающие материалы, расположенные позади кресла слушателя, тоже приносят ощутимую пользу. Во всяком случае, бесспорно то, что наличие отражений от боковых стен помещения ухудшает качество звука.

Превосходное изделие, эффективно устраняющее отражения от боковых стен, выпускает „Acoustic Sciences Corporation» (ASC). Оно называется „Tower Trap» (башня-ловушка). Это высокий предмет цилиндрической формы, одна сторона которого обладает поглощающими, а другая — отражающими свойствами, причем нужное свойство можно выбрать простым поворотом цилиндра. Когда он установлен около боковой стены с обращенной к ней отражающей стороной, поглощающая сторона задерживает основную часть отражений. То небольшое количество энергии, которое все же достигает боковой стены, отражается в сторону задней стенкой „Tower Trap». Большинство отражений поглощено, остальные ослаблены и рассеяны — все как надо.

Следует помнить, что нет нужды обрабатывать всю поверхность боковых стен в комнате прослушивания, — ведь отражения приходят только от небольшого участка стены. С точки зрения законов отражения звуковые волны средних и высоких частот подобны лучам света. Благодаря этому свойству мы можем изобразить линии отражения звука от боковых стен к креслу прослушивания и обработать акустическим материалом только нужный участок. Согласно законам геометрической оптики, угол падения луча равен углу отражения. Применительно к звуку это означает, что если звуковая волна ударяет в отражающую поверхность под некоторым углом, то под тем же углом покидает ее и отраженная волна.

Метод отслеживания траектории отражений показан на рис. 4-15, 4-16 и 4-17. Сначала на стену между линией громкоговорителей и слушателем прикрепляется отражающая майларовая лента. Ее следует разместить на высоте ваших ушей, когда вы сидите в кресле прослушивания. Затем установите источники света (в идеале — две лампы без абажуров) там, где обычно располагаются громкоговорители, как изображено на рис. 4-15. Сидя в кресле прослушивания, вы видите отражения ламп в ленте на стене (рис. 4-16). Места майларовой ленты, где вы видите отражения ламп, и есть те участки стены, от которых звуковая волна отражается в вашу сторону и где надо провести акустическую обработку. Фотография рис. 4-17 показывает, как стратегически правильное размещение акустических материалов (в данном случае, „Tower Trap» фирмы „ASC») устраняет отражения от боковых стен сигналов обоих громкоговорителей. Сравните рис. 4-16 с рис. 4-17.

Выполните аналогичные действия для левой стены. Если ваша комната прослушивания симметрична и место прослушивания находится в центре, вам нет нужды проделывать эту процедуру дважды — просто проведите аналогичную обработку другой стены. Для сохранения акустической симметрии помещения обе боковые стены должны быть обработаны одинаково.

Следует учитывать, что стены отражают звук каждого громкоговорителя. Например, звук левого громкоговорителя, отражаясь от правой стены, приходит к правому уху и смешивается со звуком правого громкоговорителя. Такое перекрещивание звуковых волн сжимает размеры звуковой сцены, из-за чего становится трудно локализовать звуковой образ. Поэтому, занимаясь акустической обработкой боковых стен, желательно устранить отражения звука не только ближнего к ней, но и дальнего громкоговорителя.

Рис. 4-15. Замена громкоговорителей источниками света и установка отражающей майларовой ленты.

Рис. 4-16. Точки, в которых видны отражения источников света, одновременно являются и точками отражения звука.

Заметим, что объемный звукопоглотитель, размещенный на некотором расстоянии от стены, работает лучше, чем закрепленный на ней. Происходит это потому, что такой поглотитель как бы отбрасывает „акустическую тень» на стену и тем самым увеличивает эффективную зону поглощения.

Аналогично можно ликвидировать все отражения в комнате прослушивания. Если вы опояшете зеркальной лентой все помещение, то увидите все точки отражения звуковых волн, которые достигают ваших ушей. Благодаря этому вы сможете разместить поглощающие или рассеивающие материалы именно в тех местах, где необходимо. Если не хотите возиться с зеркальной лентой и лампами, просто попросите кого-нибудь обойти вокруг комнаты с зеркалом в руках (его необходимо держать возле стены на высоте головы сидящего слушателя) и отметьте все точки, в которых видны отражения диффузоров громкоговорителей.

Если вы не желаете утруждать себя даже этим, все равно можете как-то повлиять на отражения от боковых стен. Книжные полки, ковры и драпировки — все же лучше, чем ничего. Но если вы хотите добиться действительно хорошего звука, ничто не заменит вам профессионально спроектированную акустическую обработку.

Рис. 4-17. Акустические материалы, помещенные точно в местах отражений, ликвидируют их.

3. Густой бубнящий бас

Густой бубнящий бас — болезнь, трудно поддающаяся лечению. Зачастую на его появление влияют собственные резонансы помещения, недостаточное поглощение низких частот, плохие акустические системы или неправильное их расположение, недостаточное звукопоглощение на низких частотах. Как станет ясно из раздела, описывающего стоячие волны, положение места прослушивания тоже может способствовать „разбуханию» баса.

Конечно, качество акустических систем занимает не последнее место среди причин, вызывающих этот неприятный эффект. И если даже при правильном расположении громкоговорителей (а это наиболее эффективный метод его устранения) эффект все еще проявляется, вам имеет смысл сменить акустические системы. Однако прежде чем принимать столь кардинальные меры, попробуйте использовать низкочастотные звукопоглотители — возможно, с ними ситуация изменится к лучшему.

Пассивные низкочастотные поглотители преобразуют звуковую энергию в другую форму, например, в тепловую энергию внутри волокнистых материалов. Такие звукопоглотители продаются в готовом виде (например, „Tube Traps» и „Tower Traps» фирмы „ASC» ), встраиваются в существующий интерьер комнаты или сооружаются из подручных материалов.

Так, весьма недорогой и эффективный поглотитель низких частот можно сделать самостоятельно за несколько часов, и он будет стоить вам меньше $20. Это устройство, называемое также звукопоглощающей панелью, имеет достаточно высокий коэффициент поглощения и может настраиваться на требуемую частоту или диапазон частот.

Панель устанавливается свободно или встраивается в стену. Обычный размер панели — 1,2×2,4 м, она набирается из фрагментов 0,6×1,2 м и прикрепляется к стене за края. Места стыков панели со стеной герметизируются, а воздушный промежуток внутри конструкции заполняется стекловолоконным наполнителем. Затем следует лишь прикрепить поверх панели кусок фанеры или мазонита, просверлить в нем много маленьких отверстий — и низкочастотный поглотитель (конструкцию такого типа еще называют резонатором Гельмгольца) готов!

Некоторые панели могут и не иметь отверстий — взамен используется очень тонкий материал, прогибающийся под давлением звука. Частоты эффективного поглощения зависят от глубины воздушной прослойки и толщины панели. Стекловолокно внутри структуры сглаживает частотную характеристику поглощения. Изменяя величину воздушного зазора и диаметр отверстий (в перфорированных панелях), а также толщину панелей, можно настроить панель на определенную частоту в диапазоне от низких до средних частот. В большинстве помещений необходимо широкополосное поглощение в области нижних частот, но панельные поглотители могут решить и проблемы резонансов помещения, если их точно настроить на соответствующие частоты. Некоторые поглощающие панели, настроенные на основные резонансы в низкочастотном диапазоне, могут существенно уменьшить басовые проблемы небольших помещений. Чтобы сделать панели соответствующими вашему вкусу, покройте их поверхность тканью, но помните, что для поглотителей типа резонатора Гельмгольца слишком плотное покрытие нежелательно, — необходимо оставить хотя бы 5-мм воздушный зазор, чтобы дать возможность отверстиям „дышать».

Свободно стоящий панельный поглотитель строится аналогичным образом, но с жесткой задней стенкой, например, из доски толщиной 3/4 дюйма. Конкретную информацию, необходимую для изготовления панельных поглотителей — толщину материала, диаметр отверстий, промежуток между ними и т. д. — можно найти в книге „The Master Handbook of Acoustics», автор F. Alton Everest.

Низкочастотное поглощение достигается и другим способом: встраиванием объемного поглотителя в уже существующие сооружения, скажем, в стенной шкаф. Простая драпировка проема стенного шкафа поглощающим материалом — акустической пеной или стекловолокном, уже обеспечивает низкочастотное поглощение. Звукопоглощающая конструкция такого типа называется „четвертьволновым поглощающим фильтром». Она имеет максимум звукопоглощения на частоте, для которой расстояние от ближайшей задней стенки до поглощающего материала составляет четверть длины звуковой волны или кратно нечетному числу четвертей ее длины. Фактически, любой поглощающий материал, подвешенный перед отражающей поверхностью, представляет собой такой фильтр. Портьеры на окнах также дадут подобный эффект, но расстояние между окном и занавеской слишком мало, и самая низкая поглощаемая частота в этом случае будет находиться в диапазоне средних частот.

Давайте подсчитаем частоту поглощения для короба глубиной 60 см с подвешенным перед ним поглощающим материалом по следующей формуле: F=340/(4xD), где F — наиболее низкая эффективно поглощаемая частота, 340 — скорость звука в м/с, 4xD — четыре расстояния между задней стенкой короба и поглотителем. Таким образом, для ящика глубиной 60 см F=141 Гц. Эта конструкция имеет пики поглощения и на нечетных кратных F частотах, например, 3xF (423 Гц), 5xF (706 Гц), 7xF (989 Гц), и так далее. Драпировка же на расстоянии 15 см от окна дает пики поглощения на частотах 565 Гц, 1695 Гц, 3955 Гц… Наклон поглощающих материалов сдвинет эти величины по оси частот, а поглощение может даже увеличиться.

Применение четвертьволновых поглотителей ограничено большими размерами короба — это необходимо для поглощения самых низких частот. Я был поражен, когда выяснил, что самый простой и наиболее эффективный метод снижения густоты баса — правильная расстановка громкоговорителей. Поэтому используйте акустическую обработку только после того, как вы выполните все рекомендации по размещению акустических систем.

4. Отражающие объекты возле громкоговорителя

Отражающие объекты около громкоговорителей: стойки для аппаратуры, окна позади громкоговорителей, сабвуферы или мебель между ними, даже усилитель мощности на полу — все это может привести к потере глубины и сфокусированности звукового образа. Лучшее решение в данном случае — убрать мешающий объект. Аппаратурная стойка стояла у меня между громкоговорителями; передвинув ее к стене, я добился от моей системы потрясающей глубины звуковой сцены и точности образа. Если для вас это неприемлемо, отодвиньте все отражающие предметы как можно дальше за громкоговорители. Например, усилитель мощности совсем не обязательно выставлять перед лицевой панелью громкоговорителей. Для улучшения качества звука следует избегать установки между громкоговорителями большого телевизионного монитора. Эта одна из причин, по которой музыкальная система в идеале должна быть разделена с видеосистемой: звуковые образы ухудшаются большими отражающими стеклянными поверхностями, расположенными в непосредственной близости от громкоговорителей. Правда, существует несколько приемов, с помощью которых можно снизить неблагоприятное влияние видеомонитора на качество звучания (они описаны в главе 13). Системы, использующие видеопроекторы с выносными экранами, не создают таких проблем.

Если вы не можете переместить отражающие объекты, накройте их звукопоглощающим материалом, например, „Sonex’ом». Во время прослушивания лучше занавесить окна позади акустических систем. Я слышу значительное увеличение глубины звуковой сцены, когда занавешиваю большое окно за моими громкоговорителями.

Диагностическая запись для условий прослушивания (LEDR — Listening Environment Diagnostic Recording), которую можно найти на диске Chesky Record Jazz Sampler & Audiophiles Test Compact Disk, часть 1 (Chesky JD37) — хорошая проверка того, насколько отражающие поверхности возле громкоговорителей мешают хорошему звуковоспроизведению. Этот тест содержит запись синтезированных ударных инструментов, звук которых как бы движется по дуге, расположенной между громкоговорителями и над ними. Система и комната с хорошим качеством звуковоспроизведения создадут впечатление плавного движения источника звука в требуемом направлении. Любые провалы в звуковой сцене приведут к „перепрыгиванию» звука из одного места в другое, нарушат плавное и постепенное движение. Причиной этих провалов могут быть плохие громкоговорители или неправильное их размещение, но часто провалы можно устранить, отодвинув от громкоговорителей отражающие объекты. Лучше всего, когда вы добиваетесь значительного улучшения качества звучания и звуковой сцены, потратив на это всего несколько минут вашего времени.


6 проблем с частотой, о которых вам нужно знать, как их исправить

По моему честному и правильному мнению, вы никогда не узнаете достаточно об эквалайзере.

Когда вы овладеете спектром эквалайзера и знаете, куда обращаться, когда вам нужно исправить или улучшить свой микс, вы впереди игры.

Если вы можете послушать звук и сказать себе: «О, здесь нужно чуть больше 250 Гц» или «Я думаю, что сокращение на 1,2 вполне подойдет», тогда вам есть чем гордиться.

Вы слышите то, что никто вокруг вас не слышит.

Когда вы микшируете, вы обнаружите, что повторяющиеся темы появляются снова и снова; определенные частоты всплывают чаще, чем другие.

Если вы тренируете свой слух, чтобы найти следующие шесть частот, вы уже впереди всех, когда дело доходит до эквалайзера.

Частота 1 – Плотность/мутность

Инструменты и звуки, преобладающие на низких частотах, имеют тенденцию доминировать над ними слишком сильно.

Слишком сильное наращивание низких и средних частот может сгущать звук так, что ему не хватает ясности и четкости. Низкие средние частоты, около 200 Гц, являются отличной областью для проверки нежелательной мутности или гулкости в ваших миксах.

Частота 2 – Квадратность

Это бич большого барабана. Я ненавижу бас-бочки, в которых слишком много привкуса картонной коробки. Если это сделано на 100% правильно, у него действительно будет естественный землистый вкус, который довольно крут, но чуть-чуть слишком много может убить звук для меня.

Звучит как удар кулаком по картонной коробке.

Если вы боретесь с квадратностью, то диапазон частот 3–600 Гц должен быть вашим охотничьим угодьем. Увеличьте свой эквалайзер до максимума и остановитесь, когда квадратность становится невыносимой. Затем быстро вырежьте середину. Не волнуйтесь, если ваш разрез не очень узкий; в этой области можно более радикально обрезать бочку.

Частота 3 – Дешевый звук

Это очень раздражающая частота для акустических гитаристов, которые также являются инженерами.

Как я.

Похоже, кто-то купил гитару в магазине Wal-Mart и принес ее в студию, ожидая отличного звука.

Хорошо, этого может и не случиться, но иногда некоторые гитары просто звучат дешево.

Очевидно, это не всегда можно исправить. Но есть читерская частота, с помощью которой можно избавиться хоть от какой-то ее части.

Средние частоты около 800 Гц имеют такую ​​характеристику, из-за которой акустическая гитара звучит слишком дешево. Таким образом, немного обрезав его, вы обычно можете добиться более теплого и менее резкого звука.

Частота 4 – Носовой звук

Отстойно записывать простуженного певца.

Неважно, что вы можете простудиться, но ваш вокал тоже!

Еще хуже, когда твой певец не болеет простудой, но почему-то звучит как простуда.

Гнусавый или жестяной звук может быть следствием слишком большой частоты 1–1,2 кГц. Слишком много в этой области, и ваши инструменты звучат как рожок и жестяно, а ваши певцы звучат гнусаво и перегружено.

Если вы чувствуете, что ваш вокал страдает от этих симптомов, обязательно проверьте, не поможет ли срез в области 1 кГц.

Частота 5 – Присутствие

Если бы мне пришлось выбирать между частотами для любимой (что звучит смешно, но потерпите меня), я бы выбрал 5 кГц. 5 кГц раскрывают характер многих инструментов. Если вам нужно немного подправить скучный вокал или оживить электрогитару, 5 кГц действительно заставят все это сиять. Только не ставьте на все 5 кГц!

Частота 6 – эфир

Последний участок спектра от 10 кГц и выше иногда называют эфиром.

Как можно догадаться из названия, он поднимает высокие частоты и открывает инструменты, занимающие эту часть спектра. Высокие ноты инструментов, тонкости игры на фортепиано, например, или шелест барабанных тарелок.

14 кГц или около того можно использовать для тонкого осветления вещей, которые не обязательно скучны, но могут нуждаться в небольшом… ну, воздухе, чтобы они выделялись.

Усиления в самом верху частотного спектра не повлияют на все инструменты, потому что их там просто нет. Однако, когда вам нужно немного яркости для записи акустического инструмента, он может открыть ее.

Знайте, где вы ищете, и вы будете смешивать быстрее

Зная, что вы ищете и куда идти за этим, вы сделаете свою жизнь намного проще и легче.

Легко избавиться от мутности, если знать, где она обитает на низких частотах; если ваш вокалист звучит как жестянщик, это легко вырезать, а если вам нужно немного присутствия или воздуха в ваших миксах, все это возможно с помощью нескольких щелчков мыши по экрану или поворотов эквалайзера.

До сих пор я коснулся только этих шести частотных областей, но частотный спектр наполнен гораздо большим количеством проблем. В книге «Стратегии EQ — ваше полное руководство по EQ» я расскажу вам обо всех частотных областях и о том, что вы можете ожидать от каждой части спектра. Поэтому всякий раз, когда вам нужно найти проблемную частоту, вы всегда можете обратиться к моим руководствам, чтобы точно знать, где искать.

Ускоряет и упрощает микширование. Просто прочитайте, что Уильям сказал о руководстве:

«Полное руководство по эквалайзеру написано так, что даже я могу прочитать и усвоить информацию, не пропуская кучу технического жаргона, которого я не понимаю, и вся необходимая мне информация лежит у моих ног, не сбивая меня с толку и не покидая. я распластался на полу, не имея ничего, кроме того, с чего я начал. Разбивка частот значительно облегчила процесс отслеживания. Я очень рекомендую EQ Strategies всем, кто хочет улучшить свои миксы или просто узнать больше об эквализации». -Уильям Картер

За дополнительной информацией обращайтесь сюда:

www.EQStrategies. net


Микширование музыки

5 шагов к низкочастотному управлению в вашей комнате — акустические поля

9/19, чтобы отразить текущие изменения в низкочастотных технологиях.

Звуковое давление и отражения

Проблем с акустикой помещения много, и для большинства людей их слишком много и они слишком запутаны. Чтобы по-настоящему упростить ситуацию и объединить всю науку с практической реальностью в наших комнатах, мы можем разделить акустику небольшого помещения на две основные области: звуковое давление и отражения. Практические знания в этих двух областях будут иметь большое значение для понимания ваших конкретных проблем с шумом в помещении и способов их решения.

Поглощение низких частот за монитором

Звуковое давление

Звуковое давление проникает в комнату из многих источников. Динамики, инструменты и вокал — все это источники энергии, создающие звуковое давление в нашей комнате. Часть этой энергии поместится в комнату с соответствующими размерами. Некоторые из них не будут. Частоты ниже 100 циклов или Гц не подходят, и здесь нам поможет наше понимание звукового давления в небольших помещениях. 100 Гц. волна имеет длину 11 футов. У вас должно быть не менее 11 футов в длину, ширину или высоту комнаты для 100 Гц. волны, чтобы вписаться в комнату, не производя искажения давления. В большинстве комнат допускается частота 100 Гц. волны, чтобы соответствовать ширине или длине, но высота потолка обычно является наименьшей из трех и, таким образом, дает наибольшее искажение.

Длины волн

Физическая длина энергии звукового давления в наших помещениях является решающим фактором при определении того, будут ли определенные частоты вызывать давление или модальные проблемы. Если взять 30 Гц. длины волны, мы знаем, что, разделив скорость звука 1100 (округленно) на 30 Гц., мы получим длину волны в 30 периодов, равную 36 плюс футам. Поскольку большинство комнат не имеют такого размера или даже близкого к нему, мы сталкиваемся с нежелательным давлением, которое вызывает это искажение.

Частота по сравнению с. Длина волны 20 Гц – 90 Гц

Слишком большой Слишком подходящий

Как эта 36-футовая волна поместится в нашей 18-футовой комнате? Это не часть его воли. Та часть, которая не помещается, но в этом процессе выразит свой дискомфорт и заставит воздух в комнате в определенных местах начать двигаться. Это избыточное давление, движение воздуха, создает комнатные моды на частотах, которые не подходят размеру комнаты. Эти комнатные режимы возникают по всей комнате. Они могут простираться от пола до потолка, от боковой стены до боковой стены и от передней до задней стены. Это всегда уравновешивание, чтобы длинные волны низкочастотной энергии соответствовали размеру и объему помещения.

Приглушить или преувеличить

Комнатные моды могут заглушить или размыть определенные частоты, лежащие в частотной области резонанса. Да, каждый резонанс имеет свою частотную характеристику. Комнатный модальный резонанс также может преувеличивать или усиливать определенные частоты, попадающие в его частотную характеристику. Все мы слышали «басовый бум» в наших комнатах. Когда проигрывается определенная басовая нота, которая активирует резонанс, мы слышим бум или, что более уместно, «цветение». В течение всего срока службы резонанса мы не будем слышать никаких других частот в этой комнате. Режимы комнаты будут находиться во многих местах в нашей комнате и могут быть на расстоянии до 18 дюймов друг от друга.

Знакомый шум

Вы знаете эту проблему низкого уровня в вашей комнате. Тот, с которым вы всегда работаете над каждой песней. Тот комнатный резонанс, который появляется на определенной басовой ноте. Вы знаете тот. Он в вашей комнате и всегда в одном и том же месте. Он не уходит, просто сыграй другую песню. Перестаньте работать вокруг него и устраните его. Найдите его местоположение, мы можем помочь, и обработайте его диафрагменным поглотителем, который является единственной технологией, способной поглотить избыточное звуковое давление со скоростью и уровнем, необходимыми для создания звукового воздействия.

Управление низкими частотами и отражением

6-шаговая процедура

Чтобы справиться с проблемами низкочастотного звукового давления и управления отражением, нам необходимо выполнить пятиэтапную процедуру. Шаг 1 включает определение проблемы шума. Назовем низкочастотные, комнатные моды шумом ради обсуждения. Это сделает его легче. Шаг 2 помогает нам найти место возникновения проблемы с шумом. Шаг 3 — это определение технологии звукопоглощения или диффузии, которую мы будем использовать для решения нашей проблемы с шумом. Шаг 4 включает в себя установку технологии таким образом, чтобы не ставить под угрозу любую другую часть комнаты, и, наконец, шаг 5 включает в себя критическую настройку прослушивания, чтобы убедиться, что мы эффективно справились с проблемой шума.

Шаг 1. Определите шум

Чтобы справиться с чрезмерным звуковым давлением в помещении из-за длин волн, которые не подходят для наших помещений, мы должны сначала выяснить, какая частота вызывает проблему шума. Загрузите генератор частоты и подключите его к усилителям, а затем через динамики. Найдите 10 Гц. – 200 Гц. генератор по этой ссылке: http://www.audiocheck.net/audiotests_frequencychecklow.php. Начните с 30 Гц. и двигайте частоту за частотой через 80 Гц. Запишите каждую частоту, которая звучит не совсем правильно. Его может быть слишком много. Их может не хватить. Сядьте в свое кресло для прослушивания и сделайте зачистку. Пусть каждая частота воспроизводится в течение нескольких секунд. Вы получите представление о том, как ваша комната справляется с энергией. Запишите каждую частоту, которая не звучит чисто и сбалансировано в звуковом представлении.

Динамик с низкочастотным поглотителем

Шаг 2. Найдите источник шума

Во время сканирования частоты останавливайтесь на каждой частоте и пройдитесь по комнате. Начните с одного угла и идите к другому. Чувствуете разницу в давлении? Вы будете. Если вам нужна проверка, возьмите измеритель звукового давления в радиомагазине, они называют его децибелметром и посмотрите, как увеличивается дБ. У вас будет прибавка от +2дБ до +10дБ, может даже +15. Используйте свой слух, проверьте с помощью мультиметра. Отметьте скотчем место на стене. Попробуйте найти «физическое» местонахождение давления. Это непросто, но с нескольких попыток у вас все получится. Выключите свет, чтобы не видеть. Доверяйте своим ушам и костной проводимости. Вы тот, кто должен работать и играть в этой комнате. Правильное исполнение этой части очень важно для акустической жизни вашей комнаты.

Шаг 3. Выбор технологии обработки

При лечении комнатных резонансов лучше всего снести существующую комнату и построить новую, более подходящих размеров, что сведет к минимуму модальные проблемы. Не беспокойтесь, просто шучу. Большинство из нас не могут этого сделать, поэтому мы должны разместить мощные низкочастотные губки, чтобы поглотить избыточное комнатное давление в этих модальных местах в наших существующих комнатах. Помните, вы измерили точки давления +10 дБ и, возможно, даже +15 дБ в комнате. Вы не сможете остановить такое количество энергии без высокой скорости и уровня технологии поглощения. Коробки, заполненные строительной изоляцией, не подходят для управления низкочастотным давлением.

Доступные варианты обработки

Только два существующих типа обработки помещений позволяют достичь цели звукопоглощения. Резонаторы Гельмгольца и диафрагменные поглотители. Резонаторы Гельмгольца неэффективны и их трудно рассчитать. У них узкая полоса пропускания, и вам нужно много устройств для обработки поверхностей. Используйте диафрагмальное поглощение, чтобы обеспечить мощность поглощения, которая вам действительно нужна. Вы можете встроить его в каждую стену студии. Вы можете создать такую ​​же технологию самостоятельно и превратить ее в отдельно стоящее, портативное, легко устанавливаемое устройство. Вы можете найти планы сборки, инструкции по сборке, список инструментов и материалов и даже листы, на которых показано, насколько велика или мала каждая деталь: https://acousticfields. com/d-i-y-acoustic-treatments/

Диафрагмальные поглотители Acoustic Fields

Шаг 4 – Установка

Диафрагмальные поглотители, которые вы можете построить, имеют ту же технологию, что и наши производственные блоки. . Речь всегда идет о покрытии площади поверхности. Вы должны использовать правильную технологию в правильных местах помещения. Поскольку проблема заключается в стенах, давайте встроим технологию в стены. Вы также можете построить отдельно стоящие блоки, которые являются широкополосными поглотителями от 35 Гц. – 200 Гц. Поскольку они широкополосные, вы можете использовать их для всех модальных позиций комнаты. Сделайте их из массива дерева, протрите их, покрасьте, вы решаете, а затем сделайте это так. С более чем 30 вариантами ткани и цветов, подобрать декор вашей комнаты будет легко. Найдите метки вашей ленты, а затем поместите устройство в эти места.

Новая сборка с использованием нашей углеродной технологии: https://acousticfields. com/very-dedicated-listening-piano-rooms/

Шаг 5. Критическое прослушивание

комнате с генератором синусоидальных волн, вы можете ходить по комнате и слушать перепады давления после того, как ваши поглотители были установлены. Приложите ухо к новому поглотителю, который вы только что построили и установили. Послушайте различия. Слушай, сидя в кресле. Возможно, вам придется удалить некоторые из этих модулей. Возможно, вам придется добавить больше. Только прослушивание со временем покажет. Теперь вы на пути к тому, чтобы все было слышно в вашей комнате.

Поглощающая перегородка

 

Шаг 6. Форма комнаты: более простой способ

Вы также можете заполнить форму комнаты, которую мы предлагаем в нашем бесплатном анализе комнаты. После того как вы отправите нам данные о своей комнате, мы сравним ее размеры и использование с нашей базой данных, содержащей более 150 построенных и измеренных комнат. Мы сможем определить частоту и амплитуду (силу) ваших проблем и, что не менее важно, расположение этих проблем в вашей комнате.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *