Маркировка конденсаторов онлайн калькулятор: Калькулятор буквенно-цифровой маркировки конденсаторов

Содержание

Цветовая маркировка резисторов, конденсаторов, индуктивностей, калькулятор определения номинала.

В раздел: Советы → Цветная маркировка

Цветная маркировка резисторов, конденсаторов и индуктивностей

    Он-лайн калькулятор дает возможность рассчитать номинальное значение радиоэлементов таких как резистор, конденсатор и индуктивность, имеющие на своем корпусе вместо цифрового обозначения цветные полоски на корпусе. Для правильного определения номинала расположите элемент таким образом, чтобы цветовые кольца были как-бы сдвинуты к левому краю, или широкая полоска находилась с левой стороны.

Для пользования калькулятором определения номинала резистора по цветным полоскам, расположите его перед собой как указано на рисунке, поочередно, начиная с левого столбца, выберите нажатием нужный цвет, старайтесь не ошибиться в правильном определении цвета полоски, в правом окошке увидите полученный результат.
  
  
  
  

Маркировка конденсаторов

Обычно на конденсаторах наносится цифровая маркировка, обозначающий номинал.
Рядом с этим цифровым кодом маркируется наибольшее рабочее напряжение, а иногда класс (точность), температурный коэффициент и другие значения. Но на самых миниатюрных конденсаторах (например, для поверхностного монтажа) нет таких полных обозначений, и вы не должны удалять полоски до тех пор, пока они будут вам необходимы.

В зависимости от производителя имеются различия в обозначении, касается материала диэлектрика и др. Обозначение конденсаторов на схеме 4n7/40V означает, что емкость конденсатора 4,700pF, его максимальное рабочее напряжение 40В. Имеется и другое обозначение 4n7.
Конденсаторы идентифицируются и по нанесенным цветным полосам, обозначение подобное резисторам по 4-полосный системе. Первые два цвета (A и B) обозначают первые две цифры, третий цвет (C) — множитель, четвертый цвет (D) допуск, и пятый цвет (E) рабочее напряжение.
На корпусе дисковых керамических конденсаторов (рис. 2.2b) и трубчатых конденсаторов (рис. 2.2) рабочее напряжение не указывается, так как они используются в цепях с низким напряжением постоянного тока. Если трубчатый конденсатор имеет пять цветных полос, первый цвет представляет температурный коэффициент, в то время как другие четыре обозначают емкость.

COLOR DIGIT MULTIPLIER TOLERANCE VOLTAGE
 Черный 0  x 1 pF ±20%  
 Коричневый 1  x 10 pF ±1%  
 Красный 2  x 100 pF ±2% 250V
 Оранжевый 3  x 1 nF ±2.5%  
 Желтый 4  x 10 nF   400V
 Зеленый 5  x 100 nF ±5%  
 Синий 6  x 1 µF    
 Фиолетовый 7  x 10 µF    
 Серый 8  x 100 µF    
 Белый 9  x 1000 µF ±10%  

 

Цветная маркировка танталовых электролитических конденсаторов

 

Первые два цвета определяют две первые цифры и имеют такое же назначение как и при определении резисторов. Третий цвет множитель в мкф, четвертый максимальное рабочее напряжение.

COLOR DIGIT MULTIPLIER VOLTAGE
 Черный
0
 x 1 µF 10V
 Коричневый 1  x 10 µF  
 Красный 2  x 100 µF  
 Оранжевый 3    
 Желтый 4   6.3V
 Зеленый 5   16V
 Синий 6   20V
 Фиолетовый 7    
 Серый 8  x .01 µF 25V
 Белый 9  x .1 µF 3V
 Розовый     35V

Как быть с цифровой маркировкой SMD резисторов? Сопротивление резистора обозначается в Омах и равно первым цифрам, последние указывают количество нулей после них. К примеру, обозначение 472 =4700 Ом или 4,7 кОм.

Таблица маркировки резисторов, калькулятор цветовой маркировки резисторов, обозначение резистора, конденсатора. Программа расчета.

Размеры резисторов в зависимости от мощности

В зависимости от рассеивания мощности резисторов зависят и размеры корпуса (самого элемента) резистора. Корпус зависит от материала из которого изготовлен резистор и типа резистора.

Цветовая маркировка конденсаторов — DataSheet

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Допуск [%] Буквенное обозначение Цвет
±0,1* В(Ж)  
±0,25* С(У) оранжевый
±0,5* D(Д) желтый
±1,0* F(P) коричневый
±2,0 G(Л) красный
±5,0 J(И) зеленый
±10 К(С) белый
±20 М(В) черный
±30 N(Ф)  
-10…+30 Q(0)  
-10…+50 Т(Э]  
-10…+100 Y(Ю)  
-20…+50 S(Б) фиолетовый
-20,..+80 Z(A)
серый

*-Для конденсаторов емкостью < 10 пФ допуск указан в пикофарадах.

Перерасчет допуска из % (?) в фарады (?):

?=(?хС/100%)[Ф]

Пример:

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± ? = (0.22 ±0.01) нФ, где ?= (0.22 х 10-9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)


Конденсаторы с ненормируемым ТКЕ

Таблица 2

Группа ТКЕ Допуск при -6О…+85°С[%] Буквенный код Цвет*
Н10 ±10 В оранжевый+черный
Н20 ±20 Z оранжевый+красный
Н30 ±30 D оранжевый+зеленый
Н50 ±50 X оранжевый+голубой
Н70 ±70 Е оранжевый+фиолетовый
Н90 ±90 F оранжевый+белый

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры

Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
[ppm/°C]*
Буквенный
код
Цвет**
П100 P100 100 (+130…-49) A красный+фиолетовый
П33   33 N серый
МПО NPO 0(+30..-75) С черный
М33 N030 -33(+30…-80] Н коричневый
М75 N080 -75(+30…-80) L красный
M150 N150 -150(+30…-105) Р оранжевый
М220 N220 -220(+30…-120) R желтый
М330 N330 -330(+60…-180) S зеленый
М470 N470 -470(+60…-210) Т голубой
М750 N750
-750(+120…-330)
U фиолетовый
М1500 N1500 -500(-250…-670) V оранжевый+оранжевый
М2200 N2200 -2200 К желтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85°С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры

Таблица 4

Группа ТКЕ* Допуск[%] Температура**[°C] Буквенный
код ***
Цвет***
Y5F ±7,5 -30…+85    
Y5P ±10 -30…+85   серебряный
Y5R   -30…+85 R серый
Y5S ±22 -30…+85 S коричневый
Y5U +22…-56 -30…+85 A  
Y5V(2F) +22…-82 -30…+85    
X5F ±7,5 -55…+85    
Х5Р ±10 -55…+85    
X5S ±22 -55…+85    
X5U +22…-56 -55…+85   синий
X5V +22…-82 -55..+86    
X7R(2R) ±15 -55…+125    
Z5F ±7,5 -10…+85 В  
Z5P ±10 -10…+85 С  
Z5S ±22 -10…+85    
Z5U(2E) +22…-56 -10…+85 E  
Z5V +22…-82 -10…+85 F зеленый
SL0(GP) +150…-1500 -55…+150 Nil белый

* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.

Рис. 1

Таблица 5

Метки
полосы, кольца, точки
1 2 3 4 5 6
3 метки* 1-я цифра 2-я цифра Множитель
4 метки 1-я цифра 2-я цифра Множитель Допуск
4 метки 1-я цифра 2-я цифра Множитель Напряжение
4 метки 1 и 2-я цифры Множитель Допуск Напряжение
5 меток 1-я цифра 2-я цифра Множитель Допуск Напряжение
5 меток» 1-я цифра 2-я цифра Множитель Допуск ТКЕ
6 меток 1-я цифра 2-я цифра 3-я цифра Множитель Допуск ТКЕ

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Рис. 2

Таблица 6

Цвет 1-я цифра
мкФ
2-я цифра
мкФ
Множи-
тель
Напряже-
ние
Черный   0 1 10
Коричневый 1 1 10  
Красный 2 2 100
Оранжевый 3 3  
Желтый 4 4 6,3
Зеленый 5 5 16
Голубой 6 6 20
Фиолетовый 7 7  
Серый 8 8 0,01 25
Белый 9 9 0,1 3
Розовый   35


Рис. 3

Таблица 7

Цвет 1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
Множитель Допуск ТКЕ
Серебряный   0,01 10% Y5P
Золотой   0,1 5%  
Черный   0 0 1 20%* NPO
Коричневый 1 1 1 10 1%** Y56/N33
Красный 2 2 2 100 2% N75
Оранжевый 3 3 3 103   N150
Желтый 4 4 4 104 N220
Зеленый 5 5 5 105 N330
Голубой 6 6 6 106 N470
Фиолетовый 7 7 7 107 N750
Серый 8 8 8 108 30% Y5R
Белый 9 9 9   +80/-20% SL

* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Рис. 4

Таблица 8

Цвет 1-я и
2-я цифра
пФ
Множитель Допуск Напряжение
Черный 10 1 20% 4
Коричневый 12 10 1% 6,3
Красный 15 100 2% 10
Оранжевый 18 103 0,25 пФ 16
Желтый 22 104 0,5 пФ 40
Зеленый 27 105 5% 20/25
Голубой 33 106 1% 30/32
Фиолетовый 39 107 -2О…+5О%  
Серый 47 0,01 -20…+80% 3,2
Белый 56 0,1 10% 63
Серебряный 68   2,5
Золотой 82   5% 1,6

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Рис. 5

Таблица 9

Номинальная емкость [мкФ] Допуск Напряжение
0,01       ±10% 250
0,015  
0,02  
0,03  
0,04    
0,06    
0,10      
0,15  
0,22  
0,33   ±20 400
0,47    
0,68    
1,0      
1,5  
2,2  
3,3  
4,7    
6,8    
  1 полоса 2 полоса 3 полоса 4 полоса 5 полоса

Кодовая маркировка

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
1622 16200 16,2 0,0162
4753 475000 475 0,475


Рис. 6

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Таблица 12

Код Емкость [мкФ]
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100


Рис. 7

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33h3 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ


Рис. 8

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Рис. 9

Таблица 14

Код Емкость [мкФ] Напряжение [В]
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35


Рис. 10

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Рис. 11

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Рис. 12

Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

Рис. 13

Вычисление сопротивления резистора по цветовой кодировке

Для того чтобы понять какого номинала конденсатор, на его корпус наносится маркировка – специальное цифровое или буквенно-цифровое обозначение. По этой маркировке можно узнать емкость конденсатора , номинальное напряжение, допустимые отклонения и другие параметры. 

Ряды конденсаторов

Чтобы производить реальный диапазон конденсаторов, необходимо увеличивать шаг между номиналами ёмкостей по мере их увеличения. Стандартные ряды конденсаторов основаны на этой идее и их значения похожи в каждом интервале, кратном десяти.

Ряд Е3 (3 значения в каждом интервале, кратном десяти)
10, 22, 47, … затем это продолжается так: 100, 220, 470, 1000, 2200, 4700 и т.д.
Обратите внимание, как значение шага увеличивается по мере увеличения ёмкости (емкость каждый раз примерно удваивается).

Ряд Е6 (6 значений в каждом интервале, кратном десяти)
10, 15, 22, 33, 47, 68, … затем: 100, 150, 220, 330, 470, 680, 1000 и т.д.
Видите, это тот же ряд Е3, но с дополнительными промежуточными значениями.

Кодовая маркировка конденсаторов описана здесь.

ВВЕДЕНИЕ

Настоящая рекомендация подготовлена Техническим комитетом N 40 “Резисторы и конденсаторы”.

В период совещания Технического комитета N 12 “Радиосвязь” в Стокгольме в 1948 г. было единогласно принято решение о том, что одним из наиболее необходимых вопросов международной стандартизации являются ряды предпочтительных величин сопротивлений и емкостей до 0,1 мкФ.

Было бы желательно стандартизовать для таких рядов систему , но выяснилось, что в ряде стран для упомянутых величии принята система в связи со стандартизацией допусков 5%, 10%, 20%. Так как не имело смысла изменять коммерческую практику в этих странах, была принята система .

В связи с создавшимся положением комитет выразил сожаление о том, что пришлось рекомендовать систему , хотя более совместимым с практикой ИСО было бы использование системы .

Предложение по рядам Е6, Е12 и Е24 предпочтительных величин было принято в Париже в 1950 г. и опубликовано в виде Публикации 63 МЭК (первое издание).

Содержание этой публикации воспроизводится в настоящей Публикации в виде первого ее раздела.

Следующие страны согласились с опубликованием первого издания Публикации 63 в качестве рекомендации МЭК:

Австрия

Австралия

Аргентина

Бельгия

Венгрия

Израиль

Индия

Италия

Канада

Нидерланды

Норвегия

Объединенная Арабская Республика

Польша

Португалия

Соединенное Королевство*
________________
* Соединенное Королевство Великобритании и Северной Ирландии.

Соединенные Штаты Америки

Союз Советских Социалистических Республик

Финляндия

Франция

Чехословакия

Швеция

Югославия

Южно-Африканская Республика

При перепечатке первого раздела в пункт “Область применения” был внесен ряд редакционных поправок. Параграфы а) и b) первоначально были изложены следующим образом:

“а) сопротивление постоянных проволочных резисторов и постоянных композиционных резисторов, выраженное в омах;

b) емкость конденсаторов до 100000 пФ включительно, выраженная в пикофарадах”.

Через несколько лет после выхода первого издания Публикации 63 МЭК стало очевидным, что не всегда эти ряды достаточны для рекомендаций МЭК по некоторым элементам.

В 1957 г. Национальный комитет Соединенного Королевства выступил с предложением о рассмотрении рядов Е48 и Е96 с целью расширения Публикации 63 МЭК.

Этот вопрос обсуждался в Цюрихе в 1957 г. и Стокгольме в 1958 г., где было решено назначить рабочую группу с целью подготовки предложения по этому вопросу.

Заседание рабочей группы состоялось в Гааге в сентябре 1959 г. Результаты заседания обсуждались Подкомитетом 40-1 (теперь Технический комитет N 40 “Резисторы и конденсаторы для электронной аппаратуры”) в г.Ульме в начале октября 1959 г. В результате этого совещания национальным комитетам в марте 1960 г. был представлен на утверждение по Правилу шести месяцев проект документа, содержащий рекомендованные рабочей группой ряды чисел.

При подготовке этого документа поддерживалась тесная связь с Техническим комитетом ИСО N 19 “Предпочтительные числа”.

Следующие страны проголосовали за опубликование рядов чисел для элементов с жесткими допусками, приведенных во втором разделе настоящей публикации:

Аргентина

Бельгия

Дания

Нидерланды

Норвегия

Румыния

Соединенные Штаты Америки

Франция

Чехословакия

Швеция

Югославия

Япония

Следующие страны проголосовали против:

Германия*
________________
* Объединенный национальный комитет ГДР и ФРГ.

Италия

Соединенное Королевство

Союз Советских Социалистических Республик

Швейцария

Несмотря на относительно большое число отрицательных голосов, на совещании Технического комитета N 40, состоявшемся в г.Ницце в 1962 г., было принято решение опубликовать эти ряды, так как было очевидно, что достижение большего согласия на данном этапе невозможно.

Каких видов бывают конденсаторы

  • Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
  • Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
  • Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
  • Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
  • Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
  • С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.


Устройства бывают разных видов

Как подключить трехфазный электродвигатель в сеть 220в

Ряды номиналов резисторов: E3, E6, E12, E24, E48, E96, E192

Как часто вам приходилось подбирать резистор для замены в какой-либо плате или в для конструирования нового устройства.

Несмотря на большое разнообразие существующих моделей, значение омического сопротивления каждого из них не является случайным и не формируется одной лишь прихотью производителя.

На практике существует конкретный ряд номиналов резисторов, который и определяет возможные варианты для заводских сопротивлений.

Что такое ряд номиналов?

Данное понятие устанавливает определенную закономерность чередования значений для любых радиодеталей, включая и резисторы. Впервые существующий стандарт был утвержден еще в 1948году и получил обозначение латинской буквой E, означающей EIA в расшифровке Electronic Industries Alliance.

Следом за буквой E указывается цифра, обозначающая конкретную линейку значений, она же показывает число доступных в этом ряду номиналов.

К примеру, E6 разбивает номинальные мощности, емкости или сопротивления в пределах от 0 до 10 на шесть единиц, если сравнить с E96, то в нем этих единиц окажется уже 96.

С математической точки зрения, номинальные величины представляют собой логарифмическую функцию, поэтому шаг изменения номинальных сопротивлений можно определить по формуле:

где n – это порядковый номер конкретного члена, а N – это номер ряда.

Чтобы подобрать из предложенных линеек данных нужную модель, установленное значение, к примеру, у E12 – это 1… 1,2 … 1,5 … и т.д. и умножается на десятичный множитель – 10, 100, 1000 и т.д.

до достижения желаемой величины. Всего выделяют семь стандартных номиналов, правда, первый из них сегодня уже не выпускают, но встретить в старых устройствах его вы еще можете.

Далее рассмотрим особенности каждого из ряда номиналов деталей.

Ряд Е3

Номинальный ряд Е3 включает в себя только три величины сопротивления: 1; 2,2; 4,7. Помимо этого электрическое сопротивление резисторов может иметь отклонение от заявляемого параметр.

То же может повторять и емкость конденсатора, и другие характеристики деталей электронных схем, подчиняющихся стандартам Е3.

Нормальными колебаниями основных характеристик считаются не более 50%, это означает, что если вы хотите приобрести непроволочный резистор на 10 Ом, то завод может выпускать его в пределах от 5,1 до 14,9 Ом, не выступая за отведенные стандартом границы.

Ряд Е6

Здесь для обозначения номиналов содержится шесть возможных величин: 1; 1,5; 2,2; 3,3; 4,7; 6,8. При указании номинальных емкостей, сопротивлений и других характеристик радиодеталей, Е6 обладает такими отличиями:

  • величина допуска на погрешность составляет не более 20%, что дает немалое отклонение, которое обязательно следует учитывать при работе точных приборов;
  • при использовании цветовых маркировок для керамических или углеродистых резисторов, детали будут иметь черную полосу, характеризующую их возможную погрешность;


Определение допустимого отклонения по цветовой маркировке

  • наибольшее распространение они получили в силовом оборудовании, где основная роль резистора заключается в гашении величины токовой нагрузки, а существующая погрешность не окажет существенного влияния.

Ряд Е12

В сравнении с предыдущим, будет иметь уже не шесть, а двенадцать вариантов номиналов для электронных компонентов от 1 до 8,2. Значение номинальных данных имеет пропорциональное увеличение.

По своим характеристикам ряды Е12 отличаются следующими данными:

  • допустимая погрешность катушек индуктивности или резисторов составляет не больше 10%;
  • если у резистора имеется цветная маркировка, то полоска, указывающая на возможное отклонение от заявленного сопротивления должна иметь серый или серебристый цвет;
  • их сфера применения охватывает сферу подстроечных и переменных резисторов, также используется для некоторых бытовых приборов.

Ряд Е24

Такой тип маркировки имеет в два раза большее количество номиналов, в сравнении с предыдущим.

Отличительными особенностями ряда Е24 является:

  • отклонение от установленного производителем значения допускается не более чем на 5%, большая величина недопустима по причине перекрытия соседнего номинала
  • цветные полоски для таких номинальных рядов имеют золотистую расцветку;
  • наиболее распространен среди радиолюбителей, так как проволочне выводы легко припаивать и использовать для сборки электрических схем, а процент погрешности не сильно влияет на электрические параметры.

Ряд Е48

Количество вариантов сопротивления электрическому току еще в два раза превосходит Е24, начиная с него, номиналы разделяются не только десятыми, но уже и сотыми долями. Отличительной особенностью этого и последующих рядов является их высокая точность, а именно, Е48 может отклоняться от заявленных данных всего на 2%.

Для обозначения ряда Е48 из цветных полос наносится красного цвета, в работе бытовых приборов подобное отклонение совершенно незаметно, так как обычные колебания напряжения в электрической цепи оказывают куда более существенное влияние. Поэтому их использование в моделировании имеет узконаправленную специфику и принадлежит к точным элементам.

Ряд Е96

Обладает в два раза более широким спектром номиналов, чем Е48. В сравнении с другими, ряд Е96 обладает такими отличительными особенностями:

  • погрешность элемента, изготовленного по стандарту этого номинала, может отличаться не более чем на 1% от паспортного значения, к примеру, резистор на 100 Ом не выйдет за пределы 99 или 101 Ома;
  • цветовое обозначение точности на корпусе радиодетали будет иметь коричневую полоску;
  • на практике используется в сборке печатных плат, устанавливается в цепях управления, релейной защиты, телемеханики и т.д.

Существенным недостатком является относительно более высокая себестоимость , в сравнении с менее точными резисторами.

Ряд Е192

Является наибольшее число номиналов, ряд включает в себя 192 единицы возможных вариантов и предоставляет самый широкий спектр для выбора. Отличается такими данными:

  • погрешность сопротивления не может превышать 0,5%, 0,25 и даже 0,1%, что выводит их в категорию сверхточного оборудования, часто на их основе разрабатывают smd резисторы;

  • с точки зрения цветового обозначения ряда, то на корпусе прибора изображается зеленая, синяя или фиолетовая полоска;
  • применяется в сверхточных измерительных комплексах и электронно-вычислительных машинах.

Существенный недостаток – самая высокая стоимость, в сравнении с другими. Для удобства понимания разницы между номинальными рядами трех последних порядков ниже приведена таблица с значениями сопротивлений резисторов.

Таблица: номиналы рядов Е48, Е96, Е192


Таблица: номиналы рядов Е48, Е96, Е192

Источник: https://www.asutpp.ru/ryad-nominalov-rezistorov.html

Примечания[править | править код]

  1. ↑ ГОСТ 28884-90 (МЭК 63-63) “Ряды предпочтительных значений для резисторов и конденсаторов”
  2. Бодиловский В.Г., Смирнов М.А. Справочник молодого радиста. — 3-е. перераб. и доп.. — М.: Высш. школа, 1976.

Цветовая маркировка отечественных радиоэлементов

Цветовая маркировка заземляющих проводников

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.


Цветовая маркировка

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

ПРИЛОЖЕНИЕ 1 (обязательное). ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К РЕЗИСТОРАМ И КОНДЕНСАТОРАМ, НЕОБХОДИМЫЕ ДЛЯ ВЫБОРА ИХ ПАРАМЕТРОВ

ПРИЛОЖЕНИЕ 1
Обязательное

Настоящий стандарт распространяется на конденсаторы постоянной емкости и резисторы для электронной аппаратуры и устанавливает ряды предпочтительных значений для резисторов и конденсаторов.

1. Указанные в табл.1 ряды с конкретными допусками являются предпочтительными. Допускается устанавливать ряды с другими допусками.

2. Номинальные значения напряжений емкости, токов и допускаемые отклонения емкости в зависимости от конструктивных особенностей конденсаторов выбирают из одного из приведенных ниже рядов. Конкретные значения этих параметров устанавливают в технических заданиях (ТЗ), стандартах или технических условиях на конденсаторы конкретных типов.

3. Постоянное номинальное напряжение конденсаторов следует выбирать из ряда: 1,0; 1,6; 2,5; 3,2; 4,0; 6,3; 10; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 450; 500; 620; 800; 1000; 1600; 2000; 2500; 3000; 4000; 5000; 6300; 8000; 10000 В.

При необходимости разработки конденсаторов на номинальное напряжение свыше 10000 В значение номинального напряжения выбирают из ряда R5 и R10 по ГОСТ 8032. R5 – предпочтительный ряд.

4. Переменное номинальное напряжение помехоподавляющих конденсаторов следует выбирать из ряда: 50; 127; 250; 380; 440; 500; 750 В.

В технически обоснованных случаях по согласованию с потребителем допускается устанавливать значения номинального постоянного и переменного напряжений отличными от указанных в пп.2 и 3.

5. Постоянный номинальный ток или эффективное значение переменного тока для помехоподавляющих проходных конденсаторов следует выбирать из ряда: 0,63; 1,00; 1,60; 2,50; 4,00; 6,30; 10,00; 16,00; 25,00; 40,00; 63,00; 100,00; 160,00; 250,00; 400,00; 630,00 А.

6. Минимальную емкость подстроечных керамических конденсаторов следует выбирать из ряда: 0,2; 0,3; 0,4; 0,5; 0,6; 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0; 15,0; 20,0 пФ.

Максимальная емкость подстроечных керамических конденсаторов должна соответствовать значению, полученному умножением минимальной емкости на один из множителей, выбираемых из ряда: 2, 5, 8, 10, 12, 15, 20.

В технически обоснованных случаях по согласованию с потребителем допускается устанавливать значения минимальных емкостей и множителей, отличных от указанных в п.5.

7. Допускаемые отклонения емкости от номинальной для конденсаторов постоянной емкости с номинальной емкостью 10 пФ и более следует выбирать из ряда: ±0,1; ±0,25; ±0,5; ±1; ±2; ±5; ±10; ±20; ±30; +30 -10; +50 0; +50 -10; +50 -20; +75 -10; +80 -20; +100 -10.

8. Допускаемые отклонения емкости от номинальной для конденсаторов постоянной емкости с номинальной емкостью менее 10 пФ следует выбирать из ряда: ±0,1; ±0,25; ±0,5; ±1; ±2 пФ.

9. В зависимости от размеров конденсаторов при их маркировке должно применяться их полное или сокращенное (кодированное) обозначение. Применение при маркировке полных или кодированных обозначений должно предусматриваться в технических условиях на конденсаторы конкретных типов. Полное обозначение номинальных емкостей, их допускаемых отклонений, номинальных постоянных напряжений должно состоять из значения номинальной емкости и ее допускаемого отклонения, номинального постоянного напряжения и обозначения единиц измерения в соответствии с настоящим стандартом.

Кодированное обозначение электрических параметров конденсаторов должно соответствовать указанным в ГОСТ 28883.

При заказе необходимо использовать только полное обозначение.

10. Номинальные значения сопротивлений, в зависимости от конструктивных особенностей резисторов, должны выбираться по одному из рядов, указанных в табл.1 и 2.

Конкретные значения сопротивления устанавливают в стандартах или технических условиях на резисторы конкретных типов.

11. Стандарт не распространяется на высокочастотные резисторы, мощные резисторы-поглотители, а также резисторы, разрабатываемые по требованиям заказчика к значению номинального сопротивления.

Примечание. Требования, установленные в приложении 1, не распространяются на:

– вакуумные конденсаторы;

– конденсаторы сильноточные высокого напряжения;

– пусковые конденсаторы;

– конденсаторы для повышения коэффициента мощности в линиях электропередач свыше 1000 В;

– конденсаторы, предназначенные для дооснащения ранее выпущенной электронной аппаратуры и изготовляемой длительное время;

– конденсаторы, разрабатываемые по специальным требованиям к значению запасаемой энергии или номинальной емкости.

Была ли статья полезна?

Да

Нет

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Радио для всех — Лаборатория


В разделе представлены on-line калькуляторы

Цветовая маркировка резисторов
Расчет индуктивности
Расчёт реактивного сопротивления конденсатора C и реактивного сопротивления катушки L
Расчёт параллельного соединения резисторов и последовательного конденсаторов
Расчёт резистивного и ёмкостного делителей
Расчёт частоты колебательного контура и цепочки RC. Частота среза фильтра ФНЧ и ФВЧ
Компенсация реактивной мощности
Закон Ома. Расчёт напряжения, сопротивления, тока, мощности
Расчет элементов J антенны
Расчет резонансной частоты LC-контура
Расчет резистивного Пи аттенюатора
Делитель напряжения
Цветовой код конденсаторов
Стабилизация напряжения
Дроссели, намотанные на резисторах МЛТ
Реактивное сопротивление конденсатора
Реактивное сопротивление катушки индуктивности
Калькулятор определения номинала SMD-резистора
Расчет значения резистора для LM317
Онлайн калькулятор таймер 555
Расчет «Cantenna» (баночной антенны) для Wi Fi
Расчет усилителя на биполярном транзисторе
Калькулятор расчета компактных монолитных усилителей
Расчет силового трансформатора
Расчет дискоконусной антенны
Сопротивления для согласующего трансформатора
Расчет для тороидальных (ферритовых) сердечников Amidon
Расчет петлевого вибратора
Калькулятор DC-DC преобразователя MC34063A
Расчет выпрямителя для блока питания
Расчет гасящего конденсатора в блоке питания
Расчет резистора для подключения светодиода

Цветовая маркировка резисторов

 

Расчет индуктивности

 
Расчёты электронных цепей.

Вписываем значения и кликаем мышкой в таблице

Расчёт реактивного сопротивления конденсатора C и реактивного сопротивления катушки L

Реактивное сопротивление ёмкости
Xc = 1/(2πƒC)


Реактивное сопротивление индуктивности
XL = 2πƒL


Расчёт параллельного соединения резисторов и последовательного конденсаторов

Параллельное соединение двух сопротивлений
R =R1*R2/(R1+R2)


Последовательное соединение двух ёмкостей
C = C1*C2/(C1+C2)



Расчёт резистивного и ёмкостного делителей

Расчёт резистивного делителя напряжения
U1 = U*R1/(R1+R2)


Расчёт ёмкостного делителя напряжения
U1 = U*C2/(C1+C2)




Расчёт частоты колебательного контура и цепочки RC. Частота среза фильтра ФНЧ и ФВЧ

Частота резонанса колебательного контура LC
F = 1/(2π√(LC))


Пост. времени τ RC и частота среза RC-фильтра
τ = RC ;   Fср = 1/(2πτ)




Компенсация реактивной мощности

Реактивная мощность Q = √((UI)²-P²)
Реактивное сопротивление X = U²/Q
Компенсирующая ёмкость C = 1/(2πƒX)




Закон Ома. Расчёт напряжения, сопротивления, тока, мощности

После сброса ввести два любых известных параметра

I=U/R;   U=IR;   R=U/I;   P=UI   P=U²/R;   P=I²R;   R=U²/P;   R=P/I²   U=√(PR)   I= √(P/R)


 

Расчет элементов J антенны


 


Дополнение: Арифметические калькуляторы и конвертеры величин

Конденсаторы 0 5. Маркировка конденсаторов

Содержание:

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с , она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица — фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица — миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF — микрофарадам. Также встречается маркировка fd — сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы — керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р — пикофарад, u- микрофарад, n — нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ — это максимальная температура.

Цифры соответствуют следующим показателям: 2 — 45 0 С, 4 — 65 0 С, 5 — 85 0 С, 6 — 105 0 С, 7 — 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным — «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 — от 10 до 99 вольт, 2 — от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрофарад [мкФ] = 1000000 пикофарад [пФ]

Исходная величина

Преобразованная величина

фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

Общие сведения

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

Обозначение конденсатора на схеме

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Электролитические конденсаторы

Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

Температурный коэффициент емкости конденсатора (ТКЕ)

ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

Маркировка конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

1R5 = 1П5 = 1,5пФ

Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

6М8 = 6,8мкФ

Цифровая маркировка конденсаторов

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Параллельное соединение конденсаторов

Емкость конденсаторов при параллельном соединении складывается.

Последовательное соединение конденсаторов

Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

Если последовательно соединены два конденсатора:

Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов .
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.

Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).

Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код
Ёмкость
Пикофарад
(пФ, pF)
Нанофарад (нФ, nF)
Микрофорад (мкФ, µF)
109
1.0
0.001
159
1.5
0.0015
229
2.2
0.0022
339
3.3
0.0033
479
4.7
0.0047
689
6.8
0.0068
100
10
0.01
150
15
0.015
220
22
0.022
330
33
0.033
470
47
0.047
680
68
0.068
101
100
0.1
151
150
0.15
221
220
0.22
331
330
0.33
471
470
0.47
681
680
0.68
102
1000
1.0
0.001
152
1500
1.5
0.0015
222
2200
2.2
0.0022
332
3300
3.3
0.0033
472
4700
4.7
0.0047
682
6800
6.8
0.0068
103
10000
10
0.01
153
15000
15
0.015
223
22000
22
0.022
333
33000
33
0.033
473
47000
47
0.047
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
224
220000
220
0.22
334
330000
330
0.33
474
470000
470
0.47
684
680000
680
0.68
105
1000000
1000
1.0
1622
16200
16.2
0.0162

Выбор редакции

Дневники: Прикасаться к тебе – сказка.Целовать тебя – это дрожь.Не хватает так твоей ласки,Что с ума схожу. Это – не ложь.Без тебя так…
Текущая страница: 1 (всего у книги 36 страниц) [доступный отрывок для чтения: 7 страниц]Колин Кэмпбелл, Томас КэмпбеллКитайское…
В современном мире знание иностранного языка давно стало обязательным пунктом в резюме. Языковые навыки значительно облегчают поиск…
Текущая страница: 1 (всего у книги 13 страниц) [доступный отрывок для чтения: 3 страниц]Эту книгу хорошо дополняют: Помнить все Артур… Текущая страница: 1 (всего у книги 22 страниц) [доступный отрывок для чтения: 5 страниц]Барбара Шер, Энни ГоттлибМечтать не вредно. Как… Посвящается моему деду, Герману Архангельскому, с благодарностью за приобщение к традиции управленческого мышления и за вовремя… Финский мужчина Статистика Финские мужчины похожи на мечту многих женщин, об этом подробнее здесь: Правда, маловато их…… Если один из супругов решил завести тайные знакомства, значит, у него на это есть веские причины. Поиск любовницы или любовника ведется… Когда двое решают зарегистрировать свои отношения или жить вместе, меньше всего они думаю о том, что когда-то пылкая любовь пройдет, а ей…

© 2021, buhconsul.ru

Консультации и советы бухгалтера

Калькулятор последовательного и параллельного соединения конденсаторов

Перевод единиц Ёмкости электрической, электрической емкости, маркировка конденсаторов — таблица + Таблица перевода величин емкостей и обозначений конденсаторов

Перевести из: Перевести в:
Ф абФ Ф до 1948 г. μФ статФ
1 Ф = фарада = F = farad (единица СИ) это: 1,0 1.0×10-9 1.000495 1.0×106 8.987584×1011
1 абФ = Абфарад = Abfarad = единица СГСМ = EM unit это: 1.0×109 1,0 1.000495×109 1.0×1015 8.987584×1020

1Ф до 1948 г. = «farad international»:

0.999505 9.995052×10-10 1,0 9.995052×105 8.9831369×1011
1 микрофарад = μФ = μF: 1.0×10-6 1.0×10-15 1.000495×10-6 1,0 8.987584×105
1 Статфарад = статФ = Statfarad = единица СГСЭ = ES unit это: 1.112646×10-12 1.112646×10-21 1.131968×10-12 1.112646×10-6 1,0
  • Приставки: мили-, микро-, нано-, пико- — таблица тут
  • Формулы емкости конденсатора.

Последовательное и параллельное соединение конденсаторов

На практике часто используются тела, обладающие малыми (и очень малыми) размерами, которые могут накопить большой заряд, при этом имея небольшой потенциал. Такие объекты называют конденсаторами. Одна из основных характеристик конденсатора – это его емкость.

Имея в резерве набор конденсаторов, обладающих разными параметрами, можно расширить спектр величин емкостей и диапазон рабочих напряжений, если применять их соединения.

Различают три типа соединений конденсаторов: последовательное, параллельное и смешанное (параллельное и последовательное).

Последовательное соединение конденсаторов

Последовательное соединение изконденсаторов изображено на рис. 1

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды. Электрическая емкость последовательного соединения конденсаторов вычисляется по формуле:

где– электрическая емкость i-го конденсатора.

Если емкости конденсаторов при последовательном соединении равны, то емкость последовательного их соединения составляет:

где– предельное напряжение каждого конденсатора соединения. При последовательном соединении конденсаторов следует следить за тем, чтобы ни на один из конденсаторов батареи не падало напряжение, превышающее его максимальное рабочее напряжение.

Параллельное соединение конденсаторов

Параллельное соединение N конденсаторов изображено на рис. 2.

При параллельном соединении конденсаторов соединяют обкладки, обладающие зарядами одного знака (плюс с плюсом; минус с минусом). В результате такого соединения одна обкладка каждого конденсатора имеет одинаковый потенциал, например,, а другая. Разности потенциалов на обкладках всех конденсаторов при их параллельном соединении равны.

При параллельном соединении конденсаторов суммарная емкость соединения рассчитывается как сумма емкостей отдельных конденсаторов:

При параллельном соединении конденсаторов напряжение равно самой наименьшей величине рабочего напряжения конденсатора из состава рассматриваемого соединения.

Зарядка и разрядка

Рассмотрим такую схему:

Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение — он заряжается.
Заряд Q на пластине в определённый момент времени расчитывается по формуле:

C — ёмкость, e — экспонента (константа ≈ 2.71828), t — время с момента начала зарядки.
Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор
R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R)
и зарядка будет происходить очень быстро.

Изобразив функцию на графике, получим такую картину:

Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по
мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение Vc,
которое «сопротивляется» Vin.

Заканчивается всё тем, что Vc становится равным по значению Vin и
ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium).
Заряд при этом достигает максимума.

Вспомнив , мы можем изобразить зависимость силы тока в нашей
цепи при зарядке конденсатора.

Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

На пластинах конденсатора заряды противоположных знаков, они создают напряжение — появляется ток
через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением
источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро,
затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q
обозначить заряд, который был на конденсаторе изначально, то:

Эти величины на графике выглядят следующим образом:

Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение
исчезнет, течение тока прекратится.

Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор
ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение
резко меняется. Это его свойство и определяет когда и как он применяется на практике.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Кодовая маркировка, дополнение

   В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

   Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

   * Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

   Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

Рис. 6

С. Маркировка емкости в микрофарадах

   Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

   В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33h3 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

   Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

   Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

   Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

   Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Последовательное и параллельное соединение конденсаторов

Опубликовано Июль 30, 2015

Все наверняка уже знают, что собой представляют последовательное и параллельное соединения. Соединение, при котором конец одного устройства соединен с началом следующего, называется последовательным.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов. получаемая цепь выглядит следующим образом:

Эта схема состоит из следующих элементов: трех конденсаторов C1. C2. С3 и источника электрической энергии E .

Мы видим, что конденсаторы подключены по всем правилам последовательного соединения, то есть вывод конденсатора C1 соединён с началом конденсатора C2. ну а конец конденсатора C2 соединен с началом третьего конденсатора C3

Стоит обратить внимание на то, как распределяются ёмкости каждого

При таком соединении, все ёмкостя следующим образом.

Дело в том, что общая емкость всех включенных конденсаторов не будит превышать емкости любого из конденсаторов. Проще говоря, если в данной группе конденсаторов, будит конденсатор с наименьшей емкостью, например, в 100 миро фарад, то общая емкость трех конденсаторов не будит превышать этих ста микрофарад. Общую емкость можно рассчитать по следующей формуле: Если в цепи имеются всего лишь два последовательно соединенных конденсатора, то общая емкость определяется по формуле:

Параллельное соединение конденсаторов

При параллельном соединении, начала всех конденсаторов соединяются в одну точку, а концы в другую, как показано на рисунке ниже:

Так при параллельном соединении, емкости всех конденсаторов складываются: То есть, емкость каждого конденсатора, включенного параллельно суммируется и получается одна большая емкость, которую можно на схеме представить одним конденсатором.

Это как два пишем один в уме, только в данном случаи один рисуем, а три в уме.

Смешанное соединение конденсаторов

Смешанное соединение конденсаторов выглядит следующим образом:

И представляет с собой различные сочетания параллельного и последовательного соединений. Для вычисления общей емкости таких соединений, применяют метод замещения: все конденсаторы делят на последовательно и параллельно соединенные группы, рассчитывают ёмкость каждой группы в отдельности, так что в конце выйдет две параллельных или последовательных емкостей, которые можно без труда посчитать. Например, дана следующая схема и следующие данные:

C1=0.4Ф C2=0.8Ф C3=0,73Ф Необходимо найти общую емкость всех трех конденсаторов. Как мы видим конденсаторы C1 и C2 соединены последовательно, а конденсатор C3 по отношению к первым двум параллельно. Посчитав общую емкость последовательно соединенных конденсаторов C1 и C2, их можно представить, как один конденсатор C1,2. Теперь нам не составит труда посчитать емкость двух параллельно соединенных конденсаторов, просто сложив их ёмкости.

Применения параллельного и последовательного соединений конденсаторов нашло свое применение в тех случаях, когда необходимо получить ту или иную величину емкости. Допустим у вас нет подходящего конденсатора, но есть куча других. Выполнив несколько не хитрых расчетов можно подобрать необходимую емкость.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Таблица перевода емкостей и обозначений конденсаторов

Таблица емкостей и обозначений конденсаторов
μF
микрофарады
nF
нанофарады
pF
пикофарады
Code /
Код трех-цифровой
1μF 1000nF 1000000pF 105
0.82μF 820nF 820000pF 824
0.8μF 800nF 800000pF 804
0.7μF 700nF 700000pF 704
0.68μF 680nF 680000pF 624
0.6μF 600nF 600000pF 604
0.56μF 560nF 560000pF 564
0.5μF 500nF 500000pF 504
0.47μF 470nF 470000pF 474
0.4μF 400nF 400000pF 404
0.39μF 390nF 390000pF 394
0.33μF 330nF 330000pF 334
0.3μF 300nF 300000pF 304
0.27μF 270nF 270000pF 274
0.25μF 250nF 250000pF 254
0.22μF 220nF 220000pF 224
0.2μF 200nF 200000pF 204
0.18μF 180nF 180000pF 184
0.15μF 150nF 150000pF 154
0.12μF 120nF 120000pF 124
0.1μF 100nF 100000pF 104
0.082μF 82nF 82000pF 823
0.08μF 80nF 80000pF 803
0.07μF 70nF 70000pF 703
0.068μF 68nF 68000pF 683
0.06μF 60nF 60000pF 603
0.056μF 56nF 56000pF 563
0.05μF 50nF 50000pF 503
0.047μF 47nF 47000pF 473
μF
микрофарады
nF
нанофарады
pF
пикофарады
Code /
Код трех-цифровой
0.04μF 40nF 40000pF 403
0.039μF 39nF 39000pF 393
0.033μF 33nF 33000pF 333
0.03μF 30nF 30000pF 303
0.027μF 27nF 27000pF 273
0.025μF 25nF 25000pF 253
0.022μF 22nF 22000pF 223
0.02μF 20nF 20000pF 203
0.018μF 18nF 18000pF 183
0.015μF 15nF 15000pF 153
0.012μF 12nF 12000pF 123
0.01μF 10nF 10000pF 103
0.0082μF 8.2nF 8200pF 822
0.008μF 8nF 8000pF 802
0.007μF 7nF 7000pF 702
0.0068μF 6.8nF 6800pF 682
0.006μF 6nF 6000pF 602
0.0056μF 5.6nF 5600pF 562
0.005μF 5nF 5000pF 502
0.0047μF 4.7nF 4700pF 472
0.004μF 4nF 4000pF 402
0.0039μF 3.9nF 3900pF 392
0.0033μF 3.3nF 3300pF 332
0.003μF 3nF 3000pF 302
0.0027μF 2.7nF 2700pF 272
0.0025μF 2.5nF 2500pF 252
0.0022μF 2.2nF 2200pF 222
0.002μF 2nF 2000pF 202
0.0018μF 1.8nF 1800pF 182
μF
микрофарады
nF
нанофарады
pF
пикофарады
Code /
Код трех-цифровой
0.0015μF 1.5nF 1500pF 152
0.0012μF 1.2nF 1200pF 122
0.001μF 1nF 1000pF 102
0.00082μF 0.82nF 820pF 821
0.0008μF 0.8nF 800pF 801
0.0007μF 0.7nF 700pF 701
0.00068μF 0.68nF 680pF 681
0.0006μF 0.6nF 600pF 621
0.00056μF 0.56nF 560pF 561
0.0005μF 0.5nF 500pF 52
0.00047μF 0.47nF 470pF 471
0.0004μF 0.4nF 400pF 401
0.00039μF 0.39nF 390pF 391
0.00033μF 0.33nF 330pF 331
0.0003μF 0.3nF 300pF 301
0.00027μF 0.27nF 270pF 271
0.00025μF 0.25nF 250pF 251
0.00022μF 0.22nF 220pF 221
0.0002μF 0.2nF 200pF 201
0.00018μF 0.18nF 180pF 181
0.00015μF 0.15nF 150pF 151
0.00012μF 0.12nF 120pF 121
0.0001μF 0.1nF 100pF 101
0.000082μF 0.082nF 82pF 820
0.00008μF 0.08nF 80pF 800
0.00007μF 0.07nF 70pF 700
μF
микрофарады
nF
нанофарады
pF
пикофарады
Code /
Код трех-цифровой
0.000068μF 0.068nF 68pF 680
0.00006μF 0.06nF 60pF 600
0.000056μF 0.056nF 56pF 560
0.00005μF 0.05nF 50pF 500
0.000047μF 0.047nF 47pF 470
0.00004μF 0.04nF 40pF 400
0.000039μF 0.039nF 39pF 390
0.000033μF 0.033nF 33pF 330
0.00003μF 0.03nF 30pF 300
0.000027μF 0.027nF 27pF 270
0.000025μF 0.025nF 25pF 250
0.000022μF 0.022nF 22pF 220
0.00002μF 0.02nF 20pF 200
0.000018μF 0.018nF 18pF 180
0.000015μF 0.015nF 15pF 150
0.000012μF 0.012nF 12pF 120
0.00001μF 0.01nF 10pF 100
0.000008μF 0.008nF 8pF 080
0.000007μF 0.007nF 7pF 070
0.000006μF 0.006nF 6pF 060
0.000005μF 0.005nF 5pF 050
0.000004μF 0.004nF 4pF 040
0.000003μF 0.003nF 3pF 030
0.000002μF 0.002nF 2pF 020
0.000001μF 0.001nF 1pF 010
μF
микрофарады
nF
нанофарады
pF
пикофарады
Code /
Код трех-цифровой

Цветовая кодировка керамических конденсаторов.

На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные
полоски.

Как правило, номинал емкости оказывается закодирован первыми тремя полосками.
Каждому цвету, в первых двух полосках,соответствует своя цифра:
черный — цифра 0;
коричневый — 1;
красный — 2;
оранжевый — 3;
желтый — 4;
зеленый — 5;
голубой — 6;
фиолетовый — 7;
серый — 8;
белый — 9.
Таким образом, если например, первая полоска коричневая а вторая желтая,
то это соответствует числу -14. Но это число не будет величиной номинальной
емкости конденсатора, его еще необходимо умножить на множитель, закодированный
третьей полоской.

В третьей полоске цвета имеют следующие значение:
оранжевый — 1000;
желтый — 10000;
зеленый — 100000.
Допустим, что цвет третьей полоски нашего конденсатора — желтый.
Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад.
Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в
процентах:
белый — ± 10 %;
черный — ± 20%.
Пятая полоска — номинальное рабочее напряжение.
Красный цвет — 250 Вольт, желтый — 400.

Соединение конденсаторов Как правильно соединять конденсаторы?

 У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

 Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим необходимый конденсатор. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь 2 – 3 конденсатора на 470 микрофарад. Ставить конденсатор на 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров за одним конденсатором?

Важно

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:

Параллельное соединение

Принципиальная схема параллельного соединения

Последовательное соединение

Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение конденсаторов. На практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого конденсатора;

С2 – ёмкость второго конденсатора;

С3 – ёмкость третьего конденсатора;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости конденсаторов нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если рассчитываем ёмкости в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах

Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады или нанофарады можно воспользоваться специальной таблицей. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно пересчитать значения величин. 

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Для большего количества последовательно включенных конденсаторов потребуется другая формула. Она более запутанная, да и не всегда пригождается 

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении конденсаторов их результирующая ёмкость будет всегда меньше наименьшей ёмкости, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсатор ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость составного конденсатора будет меньше 5.

Совет

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – ёмкость конденсатора.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из конденсаторов.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате ёмкость составного конденсатора составит 5 нанофарад.

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично.
Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с.
Номинальная емкость может кодироваться либо с помощью (вариант 2 на рисунке), либо с использованием двухзначного
буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением
в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада,
BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.

Подведем итоги о блокировочных конденсаторах

Теперь у нас достаточно информации, чтобы сформулировать краткий набор рекомендаций для успешной блокировки:

  • В случае сомнений обеспечьте каждый питающий вывод керамическим конденсатором 0,1 мкФ, предпочтительно размером 0805 или меньше, параллельно танталовому или керамическому конденсатору 10 мкФ.
  • Если речь идет только о высокочастотном шуме, возможно, вы можете опустить конденсатор на 10 мкФ или заменить его чем-то меньшим.
  • Если вам необходимо компенсировать продолжительные колебания питания, которые потребуют большого количества сохраненного заряда, вам может потребоваться обеспечить каждую микросхему дополнительным более крупным конденсатором, скажем, 47 мкФ.
  • Если ваш проект включает в себя очень высокие частоты или особенно чувствительную схему, используйте симулятор для анализа переходных процессов (AC анализ) вашей цепи блокировки. (Возможно, будет сложно найти точные спецификации на ESR и ESL, особенно учитывая, что ESR конденсатора может значительно варьироваться в зависимости от частоты – просто сделайте всё возможное.) При необходимости добавьте керамические конденсаторы с малой ESL для улучшения высокочастотных характеристик импеданса.
  • Устанавливайте высокочастотные керамические конденсаторы как можно ближе к питающему выводу и используйте короткие дорожки и сквозные отверстия для минимизации паразитных емкости и сопротивления. Размещение более крупных конденсаторов, предназначенных для низкочастотной блокировки, не столь критично, но они также должны быть близки к микросхеме (в пределах полдюйма (12,7 мм) или около того).

Список источников

  • dpva.ru
  • elektrikaetoprosto.ru
  • radioprog.ru
  • electric-220.ru
  • wiki.amperka.ru
  • orenburgelectro.ru
  • electricremont.ru
  • www.gamesdraw.ru
  • sibay-rb.ru

Электронный справочник радиолюбителя, полезная информация

В этом разделе я постараюсь не сильно углубляться в увесистые каталоги технической документации и подробной справочной информации. А размещу-ка я здесь, пожалуй: разного рода полезный радиолюбительский материал, рекомендации по использованию электронных компонентов, а также схемотехнические построения с расчётами и иллюстрациями по их корректному использованию.
Большинство расчётов в справочнике будет подкреплено простыми, но довольно практичными онлайн калькуляторами, что позволит постигнуть азы радиолюбительских знаний без чрезмерного напряга, калькулятора и деревянных счёт.
Надеюсь, что данный электронный справочник окажется полезным как начинающему радиолюбителю, делающему первые шаги в электронике, так и специалисту в случае необходимости освежить в памяти подзабытые знания либо провести соответствующие расчёты.

ОСНОВОПОЛАГАЮЩИЕ ЗНАНИЯ

Закон Ома — теория и практика. Онлайн расчёт для цепей постоянного и переменного тока с ёмкостными и индуктивными элементами    Ссылка на страницу

Первый и второй законы Кирхгофа для электрических цепей    Ссылка на страницу

Реактивные сопротивления конденсаторов и индуктив- ностей    Онлайн расчёт

Перевод децибелов в отношение мощностей, нап- ряжений и токов. Зависимость мощности на нагрузке от напряжения и наоборот.    Онлайн калькуляторы

Последовательное и параллельное соединение про- водников, резисторов, конденсаторов и катушек индуктивности.    Онлайн расчёты

Что такое динамический диапазон, и какие бывают его разновидности?    Онлайн расчёты

Как связаны межу собой частота колебаний и период?    Онлайн калькулятор


СПРАВОЧНАЯ ИНФОРМАЦИЯ

Цветовая маркировка резисторов — разновидности, при- меры и онлайн калькулятор    Ссылка на страницу

Цифровая маркировка SMD резисторов — разновидности, примеры и онлайн калькулятор    Ссылка на страницу

Параметры и буквенно-цифровая маркировка выводных и SMD конденсаторов    Ссылка на страницу

Краткие характеристики импортных полупроводниковых диодов    Ссылка на страницу

Справочные характеристики отечественных полупровод- никовых диодов    Ссылка на страницу

Сердечники Amidon и Micrometals из распылённого желе- за: свойства, цветовая кодировка, онлайн калькулятор индуктивности и кол-ва витков    Ссылка на страницу

Регулируемые стабилизаторы напряжения и тока LM317 и LM337. Характеристики, схемы, онлайн калькуляторы.   Ссылка на страницу

Динистор — описание, принцип работы, свойства и харак- теристики, справочные данные    Ссылка на страницу

Тиристор — описание, принцип работы, свойства и харак- теристики, справочные данные    Ссылка на страницу

Симистор — описание, принцип работы, свойства и харак- теристики, справочные данные    Ссылка на страницу

Справочные характеристики мощных комплементарных полевых транзисторов для УНЧ    Ссылка на страницу

Описание и руководство по применению ИМС цифрового ревербератора и дилэя PT2399    Ссылка на страницу

Описание и руководство по применению светодиодных индикаторов уровня LM3914…3916    Ссылка на страницу

4–разрядный реверсивный счётчик CD4516 (К561ИЕ11), руководство по применению    Ссылка на страницу

КУДА ЖЕ РАДИОЛЮБИТЕЛЮ БЕЗ ТРАНЗИСТОРА?

Основные характеристики и параметры транзисторов.    Ссылка на страницу

Что собой представляет, как устроен и за счёт чего рабо- тает биполярный транзистор.    Ссылка на страницу

Параметры и эквивалентная схема биполярного транзис- тора. Схемы ОБ, ОЭ, ОК.    Ссылка на страницу

Режимы и классы работы транзисторных усилительных каскадов.    Ссылка на страницу

Расчёт каскада на биполярном транзисторе по схеме с общим эмиттером (ОЭ).    Онлайн калькулятор

Расчёт каскадов на БТ по схемам с общей базой (ОБ) и общим коллектором (ОК).    Онлайн калькулятор

Частотные свойства биполярных транзисторов. Зависи- мость β транзистора от частоты.    Онлайн калькулятор

Расчёт режимов и элементов усилительных каскадов на полевых JFET транзисторах.    Ссылка на страницу

Расчёт режимов и элементов усилительных каскадов на полевых MOSFET транзисторах.    Онлайн калькулятор

Простое устройство для измерения параметров полевых транзисторов всех типов.    Ссылка на страницу

Массовые MOSFET транзисторы против аудиофильских полевиков. Оптимальный ток покоя выходного каскада на ПТ в усилителях мощности    Ссылка на страницу


ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Операционные усилители, схемы включения и расчёт параметров.    Ссылка на страницу

Дифференцирующие и интегрирующие цепи: от RC и RL — пассивных до активных на ОУ.    Онлайн расчёт

Источники тока на операционных усилителях, преобра- зователи напряжение-ток.   Ссылка на страницу

СИЛОВАЯ ЭЛЕКТРОНИКА

Сопротивление проводника в зависимости от длины и сечения. Выбор площади сечения проводов в зави- симости от мощности нагрузки.    Онлайн калькуляторы

Какая мощность рассеивается на полупроводниковом приборе в виде тепла?    Ссылка на страницу

Расчёт размеров радиаторов охлаждения для тран- зисторов и микросхем.    Онлайн калькулятор

Полупроводниковые выпрямители блоков питания, виды, свойства, схемы, онлайн расчёт.    Онлайн калькулятор

Сглаживающие фильтры выпрямителей блоков питания: Ёмкостные, LC, активные.    Онлайн калькулятор

Линейные стабилизаторы напряжения на транзисторах и интегральных микросхемах. Расчёт элементов схем.    Онлайн калькуляторы

Расчёт умножителей напряжения однополупериодных и двухполупериодных, параллельных и последовательных. Онлайн калькулятор

Расчёт элементов простого бестрансформаторного блока питания с гасящим конденсатором. Онлайн калькулятор

ВСЁ ПРО ФИЛЬТРЫ

Расчёт пассивных НЧ, ВЧ и ПФ фильтров на RC цепях
Онлайн калькуляторы

Расчёт активных НЧ, ВЧ и ПФ фильтров на RC цепях
Онлайн калькуляторы

Универсальный активный фильтр с регулировкой час- тоты и добротности   Онлайн калькулятор

Расчёт пассивных и активных РЕЖЕКТОРНЫХ филь- тров на RC цепях    Онлайн калькуляторы

Расчёт пассивных РЕЖЕКТОРНЫХ фильтров на LC це- пях   Онлайн калькуляторы

Расчёт НЧ, ВЧ и ПФ пассивных фильтров на LC цепях
Онлайн калькуляторы

Расчёт многозвенных LC- фильтров 3-7 порядков.
Онлайн калькулятор

Расчёт многозвенных эллиптических LC-фильтров Кауэра 3-7 порядков.    Онлайн калькулятор

Расчёт полосовых LC — фильтров 3-7 порядков.
Онлайн калькулятор

Расчёт разделительных LC фильтров, цепей Цобеля и аттенюаторов для громкоговорителей.   Онлайн расчёт

Схемы и расчёт активных разделительных фильтров, для многополосных УМЗЧ.   Онлайн расчёт

ПОГОВОРИМ О ГЕНЕРАТОРАХ

Генераторы: ёмкостная трёхточка, индуктивная трёхточ- ка, LC-генераторы на транзисторах в барьерном режиме. Онлайн расчёт элементов

Схемы генераторов с кварцевой стабилизацией частоты на биполярных и полевых транзисторах, КМОП и ТТЛ микросхемах.  Онлайн расчёт элементов

Схема кварцевого генератора с перестраиваемой часто- той колебаний.  Ссылка на страницу

Перестраиваемый генератор с керамическим резонато- ром.  Ссылка на страницу

Генераторы на КМОП микросхемах с симметричной формой выходного сигнала.   Онлайн расчёт элементов

Генераторы на КМОП микросхемах с несимметричной формой выходного сигнала и генераторы с изменяемой скважностью выходных импульсов.   Онлайн расчёт

Схемы генераторов сигналов треугольной формы, линей- ность, частотные свойства.   Онлайн расчёт элементов

АНТЕННА АНТЕННЕ – РОЗНЬ И ВСЁ, ЧТО НУЖНО ДЛЯ РАДИОПРИЁМА И РАДИОПЕРЕДАЧИ

Полуволновый симметричный диполь, многодиапазонная антенна Windom, несимметричный вибратор, штыревая антенна.   Ссылка на страницу

Антенна «длинный провод» (Long Wire, верёвка), антенна Фукса, широкополосная антенна T2FD, V-образные ан- тенны.   Ссылка на страницу

Фильтровое формирование однополосного SSB сигнала: передатчик, приёмник, трансивер   Ссылка на страницу

Фазовый и фазофильтровый методы формирования однополосного SSB сигнала   Ссылка на страницу

КАТУШКИ ИНДУКТИВНОСТИ, ДРОССЕЛИ, ТРАНСФОР- МАТОРЫ и прочие МОТОЧНЫЕ ИЗДЕЛИЯ

Добротность колебательного контура. Как измерить доб- ротность в любительских условиях.   Ссылка на страницу

Как намотать высокодобротную катушку без ферритового сердечника?   Ссылка на страницу

Как намотать высокодобротную катушку на ферритовом кольце?   Ссылка на страницу

Собственная паразитная ёмкость катушки индуктивности
Онлайн расчёт

Расчёт растягивающих конденсаторов для КПЕ в перес- траиваемом по частоте LC контуре   Онлайн калькулятор

Расчёт и изготовление трансформатора для импульсного блока питания на тороидальном (кольцевом) ферри- товом сердечнике    Онлайн калькулятор

Как не загнать ферритовый сердечник в насыщение? Расчёт для магнитопроводов из феррита, распылённого железа и радиотехнической стали   Онлайн калькуляторы

Схема замещения катушки индуктивности малого номи- нала на катушку — большего    Онлайн калькулятор

ЗВУКОВОСПРОИЗВЕДЕНИЕ

Каким должен быть хороший УНЧ на транзисторах?
Феномен транзисторного звучания против «тёплого» лам- пового звука.   Ссылка на страницу

Правила разводки печатных плат УМЗЧ, блоков питания, аналого-цифровых устройств   Ссылка на страницу

Обзор, схемы и сравнительные характеристики импульс- ных усилителей классов D, T и пр.   Ссылка на страницу

Выходные каскады усилителей мощности на биполярных и полевых транзисторах   Ссылка на страницу

Дарлингтон против Шиклаи. Как выбрать составной тран- зистор для выходного каскада УНЧ   Ссылка на страницу

Расчёт цепи частотной коррекции RIAA для фонокор- ректоров в проигрывателях винила   Ссылка на страницу

Основные виды акустического оформления звуковых АС   Ссылка на страницу

Эквивалентная электрическая схема громкоговорителя. Онлайн расчёт элементов для различных акустических оформлений   Ссылка на страницу

Настройка и онлай расчёт фазоинвертора акустической системы   Ссылка на страницу


РАДИОВОЛНЫ, ЗВУКОВЫЕ ВОЛНЫ

Частотные диапазоны радиосвязи и радиовещания от длинных волн до ультракоротких.    Ссылка на страницу

Частоты, длины волн и их соответствие номерам каналов цифрового телевидения dvb-t2.   Ссылка на страницу

Перевод длины волны в частоту и наоборот для диапа- зона электромагнитных колебаний.   Онлайн калькулятор

Звуковая волна – период, длина, частота и скорость рас- пространения. Перевод длины волны в частоту, частоты в длину.   Онлайн калькуляторы

Что такое КСВ? Влияние коэффициента стоячей волны на потери в линии.   Ссылка на страницу


ЦИФРОВАЯ ЭЛЕКТРОНИКА

Перевод чисел из одной системы счисления в любую другую    Онлайн калькулятор

Ждущие мультивибраторы, одновибраторы, формирова- тели импульсов на КМОП ИМС   Онлайн калькулятор

Генераторы на КМОП ИМС   Онлайн расчёт элементов

Схемы подавления дребезга контактов на КМОП ИМС   Ссылка на страницу

Эмуляция дребезга контактов в среде PROTEUS и других симуляторах   Ссылка на страницу


МИКРОКОНТРОЛЛЕРЫ ДЛЯ НАЧИНАЮЩИХ

Осваиваем микроконтроллер на примере Atmega8:
1. Что нам нужно, чтобы микроконтроллер заработал?
Основные параметры ATmega8   Ссылка на страницу

2. Шпаргалка начинающего программиста. Порты ввода-вывода AVR – необходимые знания   Ссылка на страницу

3. Шпаргалка начинающего программиста. Переменные и константы в языке Си   Ссылка на страницу

4. Мигающий светодиод на ATmega8 – пишем программу.   Ссылка на страницу

5. Подключаем кнопку к Atmega8, устраняем дребезг кон- тактов, зажигаем и гасим светодиод   Ссылка на страницу

6. Встроенные таймеры–счётчики AVR микроконтрол- леров, описание регистров   Ссылка на страницу

7. Пример реализации широтно-импульсной модуляции (ШИМ) на МК Atmega8   Ссылка на страницу

8. Таймер – счётчик AVR микроконтроллера в качестве генератора   Ссылка на страницу


РАДИОЛЮБИТЕЛЮ — КОНСТРУКТОРУ

Схемотехника и расчёт элементов активных и пассивных фазовращателей.   Онлайн калькулятор

Пассивные RC и RL дифференцирующие и интегрирую- щие цепи. Постоянная времени.   Онлайн калькулятор

Источники тока на полевых и биполярных транзисторах, разновидности токовых зеркал.   Онлайн калькулятор

Источники тока на операционных усилителях, преоб- разователи напряжение-ток.   Ссылка на страницу

Резистивные схемы аттенюаторов c фиксированным ослаблением и регулируемые.   Онлайн калькуляторы

Расчёт П-образной цепи согласования выходного каскада передатчика с антенной.   Онлайн калькулятор

Расчёт межкаскадных цепей согласования в усилителе мощности передатчика.   Онлайн калькулятор

Ссылки на наиболее популярные радиолюбительские сайты.   Ссылка на страницу


ХОЗЯЙКЕ НА ЗАМЕТКУ (Вопросы не про радио)

Незамерзайка своими руками. Как сделать омывайку для авто в домашних условиях.   Онлайн калькулятор

Онлайн конвертер физических величин из одной единицы измерения в другую.   Онлайн калькулятор

 

Калькулятор значения цветового кода конденсатора

Поиск инструмента

Цветовой код конденсатора

Инструмент для определения емкости конденсатора. Цветовой код конденсатора аналогичен цветовой кодировке резисторов и поэтому частично применяется к конденсаторам и обеспечивает визуальное представление.

Результаты

Цветовой код конденсатора

— dCode

Метка (и): Электроника

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокэшинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Калькулятор цветового кода конденсатора

Цвет 1 (первая значащая цифра) ЧерныйкоричневыйКрасныйОранжевыйЖелтыйЗеленыйСинийФиолетовыйСерыйБелый
Цвет 2 (вторая значащая цифра) ЧерныйКоричневыйКрасныйОранжевыйЖелтыйЗеленыйСинийФиолетовыйСерыйБелый
Цвет 3 (множитель) СеребристыйЗолотыйЧерныйКоричневый КоричневыйКрасныйОранжевыйЖелтыйЗеленыйСинийФиолетовыйСерыйБелыйСеребряныйЧерный
Рассчитать

Ответы на вопросы (FAQ)

Как прочитать значение конденсатора?

В конденсаторах используется цветовой код конденсатора , аналогичный цветовому коду резисторов (3, 4 или 5 полос).

Первые два цвета обозначают значащие цифры значения емкости (в пФ), следующий цвет соответствует степени 10, два других цвета являются необязательными и обозначают допуск и максимальное напряжение.

Черный 0
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
Фиолетовый 7
Серый 8
Белый 9
Золото -1
Серебро -2

Пример: Конденсатор [Красный, Синий, Оранжевый, Зеленый] имеет соответствующие значения для цветов Красный = 2, Синий = 6, Оранжевый = 3, Зеленый = 5

Выполните расчет $$ ([Color1] * 10 + [Color2]) * 10 ^ {[Color3]} ± [Color4]% (Допуск) $$

Пример: 26 x10 ^ 3 ± 5% = 26000 пФ ± 5% = 26 нФ ± 5%

Какая единица измерения для конденсаторов?

Емкость конденсаторов выражена в Фарадах.3 => 12 нФ

Задайте новый вопрос

Исходный код

dCode сохраняет право собственности на исходный код «Цветовой код конденсатора». За исключением явной лицензии с открытым исходным кодом (обозначенной Creative Commons / бесплатно), алгоритма «Цветовой код конденсатора», апплета или фрагмента (преобразователь, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или «Цвет конденсатора» Кодовые «функции (вычисление, преобразование, решение, дешифрование / шифрование, дешифрование / шифрование, декодирование / кодирование, перевод), написанные на любом информационном языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.)) и все загрузки данных, скрипты или доступ к API для «Цветового кода конденсатора» не являются общедоступными, то же самое для автономного использования на ПК, планшете, iPhone или Android!
Копирование и вставка страницы «Цветовой код конденсатора» или любых ее результатов разрешается, если вы цитируете онлайн-источник https://www.dcode.fr/capacitor-color-code
Напоминание: dCode можно использовать бесплатно.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для получения помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

конденсатор, код, цвет, цвет, емкость, фарад, нф, пф, допуск, значение

Ссылки


Источник: https: // www.dcode.fr/capacitor-color-code

© 2021 dCode — Идеальный «инструментарий» для решения любых игр / загадок / геокэшинга / CTF. Калькулятор емкости конденсатора

(и калькулятор кодов)

Керамические конденсаторы имеют трехзначный код, а не указанное фактическое значение емкости. Вы можете использовать этот калькулятор емкости керамического конденсатора, чтобы рассчитать фактическое значение вашего, или использовать калькулятор кода керамического конденсатора, чтобы скрыть значение емкости в коде!

Калькулятор номинала конденсатора / Калькулятор кодов конденсатора

О кодах керамических конденсаторов

Керамические конденсаторы крошечные! Их значения трудно прочитать даже с помощью кода.Представьте, если бы нам пришлось сократить их полные спецификации и напечатать их на конденсаторе! Чтобы их прочитать, нам понадобится микроскоп! Вот почему производители начали использовать трехзначный код для маркировки керамических конденсаторов. Вы можете запоминать формулу или вычислить их с помощью калькулятора:

  • Калькулятор значения конденсатора преобразует трехзначный код в значение емкости.
  • Калькулятор кода конденсатора преобразует значение в код.
«Взлом конденсатора» Код

Формула, которую использует калькулятор емкости конденсатора, на самом деле не так уж и сложна, и вы можете запомнить ее и выполнить в уме. На самом деле, это не так уж и сложно!

Давайте сломаем этот трехзначный код!

Первые две цифры — это значение емкости в пФ, а третья цифра — просто множитель. Вот тут и нужна хорошая память, или калькулятор! Множитель — это всегда число от нуля до шести.Если вы найдете число больше шести, это означает, что в нем не используется стандартная схема нумерации, или это может быть даже не конденсатор.

СВЯЗАННЫЙ : Что такое конденсатор?

Керамические умножители конденсаторов

Вот простая таблица множителей, которую вы можете использовать для этого вычисления в уме:

  • 0 : умножить на 1
  • 1 : умножить на 10
  • 2 : умножить на 100
  • 3 : умножить на 1000
  • 4 : умножить на 10,000
  • 5 : умножить на 100000
  • 6 : умножить на 1000000

Давайте попробуем на простом примере, как это работает.Если у вас есть код 130, тогда вы должны принять значение 1 и 3. Третья цифра равна нулю и означает умножение на единицу. Поскольку один раз все есть само по себе, 1 X 13 — это всего лишь 13. Таким образом, значение конденсатора с кодом 130 равно 13.

Другой пример 103. Снова мы берем 1 и 0 за номинал. Итак, 10. Третья цифра — 3, что означает, что мы умножаем 10 на 1000. Это делает этот конденсатор конденсатором емкостью 10,00 пФ (проще записать как 0,01 мкФ).

Итак, вы видите, что рассчитать эти керамические конденсаторы не так уж и сложно.Моя проблема в том, что я никогда не могу вспомнить множитель и всегда использую калькулятор номинала керамического конденсатора, чтобы вычислить его!

Калькулятор импеданса конденсатора

— Инструменты для электротехники и электроники

Обзор

Наш калькулятор емкостного реактивного сопротивления поможет вам определить полное сопротивление конденсатора, если заданы его значение емкости (C) и частота сигнала, проходящего через него (f). Вы можете ввести емкость в фарадах, микрофарадах, нанофарадах или пикофарадах.Для частоты доступны следующие единицы измерения: Гц, кГц, МГц и ГГц.

Уравнение

$$ X_ {C} = \ frac {1} {\ omega C} = \ frac {1} {2 \ pi fC} $$

Где:

$$ X_ {C} $$ = реактивное сопротивление конденсатора в Ом (Ом)

$$ \ omega $$ = угловая частота в рад / с = $$ 2 \ pi f $$, где $$ f $$ — частота в Гц

$$ C $$ = емкость в фарадах

Реактивное сопротивление (X) показывает сопротивление компонента переменному току. Импеданс (Z) показывает сопротивление компонента как постоянному, так и переменному току; это выражается как комплексное число, т.е.е., Z = R + jX. Импеданс идеального резистора равен его сопротивлению; в этом случае действительная часть импеданса — это сопротивление, а мнимая часть равна нулю. Импеданс идеального конденсатора по величине равен его реактивному сопротивлению, но эти две величины не идентичны. Реактивное сопротивление выражается обычным числом с единицей измерения Ом, тогда как полное сопротивление конденсатора — это реактивное сопротивление, умноженное на -j, то есть Z = -jX. Член -j учитывает фазовый сдвиг на 90 градусов между напряжением и током, который возникает в чисто емкостной цепи.

Приведенное выше уравнение дает вам реактивное сопротивление конденсатора. Чтобы преобразовать это в импеданс конденсатора, просто используйте формулу Z = -jX. Реактивность — более простое значение; он сообщает вам, какое сопротивление будет иметь конденсатор на определенной частоте. Однако для всестороннего анализа цепей переменного тока необходимо полное сопротивление.

Как видно из приведенного выше уравнения, реактивное сопротивление конденсатора обратно пропорционально как частоте, так и емкости: более высокая частота и большая емкость приводят к более низкому реактивному сопротивлению.Обратное соотношение между реактивным сопротивлением и частотой объясняет, почему мы используем конденсаторы для блокировки низкочастотных компонентов сигнала, позволяя проходить высокочастотным компонентам.

Дополнительная литература

Учебное пособие — Конденсаторные цепи переменного тока

Учебник

— Цепи резистор-конденсатор серии

Рабочий лист — Емкостное реактивное сопротивление

Чистая мощность для каждой ИС: общие сведения о байпасных конденсаторах

Программа расчета срока службы

AlCap | TDK Electronics

Инструмент AlCap Useful Life Calculation Tool обеспечивает расчеты срока полезного использования конденсатора выбранного типа в зависимости от условий нагрузки.

Щелкните одну из следующих серий, чтобы запустить программу. Затем укажите тип конденсатора и выберите метод расчета, который вы хотите использовать: спектр пульсирующего тока или измеренные температуры. На следующем шаге введите условия нагрузки для конкретного приложения и начните индивидуальный расчет.

База данных включает широкий выбор конденсаторов с винтовыми клеммами, вставными, 4- / 5-контактными, паяными и крупногабаритными конденсаторами из ассортимента TDK.

Для заказных типов и для тех, у которых есть предварительный номер детали, введите 8-значный код конденсатора, определяемый заказчиком, в поле кода CSC ниже.Это приведет к инструменту расчета, в котором можно ввести условия нагрузки для конкретного приложения.

AlCap Useful Life Calculation Tool сохраняет файлы cookie на вашем компьютере, планшете, смартфоне и других устройствах для обработки информации, технически важной для работы программы. См. Подробности в разделе об использовании файлов cookie.

Использование AlCap Useful Life Calculation Tool регулируется условиями лицензионного соглашения.

Винтовые клеммы
4- / 5-контактные защелкивающиеся клеммы и контакты под пайку
Оснастка
Срок службы Длительный срок службы B43634 3

4

04 B43642

9007 9004

9007 903 2000 ч

85ºC B43630

2000 h

Ультракомпактный

B43624

8000 h

8000 ч

Длительный срок службы, сверхкомпактный

B43541

8000 ч

Превосходный ток пульсации, высокое напряжение

105ºC

2000 ч

Ультракомпактный

B43641

2000 ч

Ультракомпактный

B43509

3000 ч

3000 ч

Сверхкомпактный, высокий ток пульсации

B43643

3000 ч

Сверхкомпактный

B43644

5000 ч

Ультра компактный

B43544

3000 ч

Очень высокий пульсирующий ток, высокое напряжение

B43545

5000 ч

Превосходный пульсирующий ток, длительный срок службы

900
B43547

8000 ч

Максимальный пульсирующий ток, длительный срок службы

B43548

3000 h

Максимальный пульсирующий ток, компактный

03

Ультра компак т

Большой

105ºC B43268

3000 ч

Высокий пульсирующий ток

B43 9649

3000 h

B43654

5000 ч

Очень компактный, длительный срок службы

Калькулятор конденсаторов | Код конденсатора

Каждый конденсатор обычно имеет два числа, которые его характеризуют.Это его емкость и номинальное напряжение . Последний говорит нам о максимальном напряжении, при котором элемент все еще будет работать должным образом. Емкость часто записывается напрямую, поэтому когда вы видите конденсатор с 220 мкФ 25 В , это просто означает, что он имеет емкость 220 мкФ и безопасно работает с напряжениями до 25 В .

Однако, когда емкость ниже 100 мкФ , мы обычно можем найти трехзначный код конденсатора, который определяет значение.Правило простое: Первая и вторая цифры говорят нам о емкости в пФ (пикофарадах), а третья — множитель (степень 10) — для числа n , емкость умножается на 10ⁿ . Это просто еще один способ использовать научную нотацию для описания больших чисел. Последняя цифра обычно находится в диапазоне 0-6.

Если имеется одно- или двузначное число, оно просто определяет значение в пФ.

Рассмотрим пример.У нас конденсатор код 104 :

  • Первые две цифры указывают на емкость в пФ, что составляет 10 пФ
  • Цифра 3ʳᵈ является множителем — 10⁴ или 10,000
  • В результате получается значение 10 пФ * 10⁴ = 10⁵ пФ , или 100 нФ , или 0,1 мкФ

Мы также можем спросить обратное: Какой код конденсатора для известной емкости? Попробуем с конденсатором с C = 1.24 мкФ :

  • Нам нужны две цифры для первых двух цифр кода, поэтому пора округлить значение до двух значащих цифр — 1,24 мкФ 1,2 мкФ . Таким образом, код будет начинаться с 12 ·
  • Чтобы найти последнюю цифру, мы должны использовать соответствующие единицы измерения емкости, пФ — 1,2 мкФ = 1,200,000 пФ = 12 * 10⁵ пФ
  • Из этой формы мы можем сразу определить, что цифра 3 — это 5
  • Таким образом, код конденсатора для емкости 1.24 мкФ равно 125

К счастью, этот калькулятор конденсаторов работает как в качестве кода емкости , так и в качестве преобразователя емкости в код ! Просто выберите подходящее поле для ввода данных, и результат появится в мгновение ока!

Онлайн-калькуляторы, удобные для EE

Онлайн-калькуляторы получили распространение. Учтите, что на одном сайте под названием omnicalculator.com сейчас размещено более 1800 онлайн-калькуляторов по различным дисциплинам. Но когда дело доходит до электроники и техники, выбор меньше.Calculatoredge.com предоставляет множество онлайн-калькуляторов для инженеров, из которых чуть более 100 работают в области электроники и электротехники.

Это подводит нас к компании Digi-Key, которая собрала набор преобразователей и калькуляторов для электроники, которые призваны ускорить рабочий процесс в лаборатории или магазине. На сайте Digi-Key размещены очень полезные инструменты для преобразования и расчета, каждый из которых содержит краткое руководство. Некоторые из них являются простыми одноэтапными операциями, другие — более сложными. Вот несколько основных моментов:

Калькулятор срока службы батареи : Калькулятор срока службы батареи зависит от одной простой алгебраической формулы: Срок службы батареи = (емкость батареи в мАч / ток нагрузки в мАч).Калькулятор удобен, если на первом этапе проектирования мобильного устройства необходимо выбрать аккумулятор и выделить для него место.

Преобразование емкости : Этот инструмент преобразует значения емкости в единицы пикофарад, нанофарад, микрофарад и фарад. В прилагаемой таблице можно найти емкость, посмотрев код конденсатора: первые две цифры — это значение в пикофарадах, а третья — множитель. Если множитель не указан, результатом будет емкость в пФ.

Вычислитель безопасного разряда конденсатора : Инструмент используется для расчетов разряда конденсатора через фиксированное сопротивление. Учитывая значение емкости, а также начальное и конечное напряжения, этот калькулятор вычисляет либо время, либо сопротивление, вычисляя результирующее начальное рассеивание мощности на сопротивлении и общую энергию до нуля вольт.

Калькулятор делителя тока : Этот инструмент вычисляет ток, протекающий через каждое из десяти параллельных сопротивлений, подключенных к источнику питания.Формула: I n (ток через резистор R n ) = I s (R всего / R n ), где R всего = общее эквивалентное параллельное сопротивление массива резисторов через источник тока, а I s — ток от источника.

дБмВт для преобразования : Для работы с этим преобразователем пользователь вводит либо поле децибел-милливатт, либо поле ватт. Формула преобразования мощности для дБмВт в ватты: P (w) — 1 Вт × 10 P (дБм) / 10 /1000 = 10 (P (дБм) — 30) / 10 .

Преобразование десятичной дроби : этот инструмент преобразует десятичные значения в их эквивалентные дробные значения. В полученных дробях используется ближайшее значение, основанное на выбранном знаменателе. Соответствующий рисунок с ползунком показывает дробный результат при вводе десятичной дроби.

Преобразование энергии : поля, которые можно заполнить, — это британские тепловые единицы, джоули, киловатт-часы, термы, калории (пищевые) и калории (термохимические). Например, введите один Джоуль, и вы сразу же получите информацию о количестве энергии в каждом из вышеуказанных измерений.Джоуль, например, равен 0,23361 термохимической калории, каждая из которых примерно в тысячу раз больше пищевой калории.

Преобразование силы : Поля — ньютоны, грамм-сила, метрическая тонна-сила, короткая тонна-сила, стене (если вам интересно, это устаревшая единица силы или тяги в системе метр – тонна – секунда единиц, введенных во Франции в 1919 г.), фунт-сила, дина, фунт-сила и длинная тонна-сила (Великобритания). Соответствующие формулы: 1 ньютон = 1 Джоуль / метр.Один ньютон = один килограмм-метр / секунда в квадрате. Соответственно, ньютон — это функция пространства, времени и массы.

Преобразование индуктивности В есть эти поля, которые можно заполнить, любое из которых переводится в другие поля: пикогенри, наногенри, микрогенри, миллигенри, генри и килогенри. На диаграмме показаны индуктивности.

Последовательный резистор светодиодов Калькулятор: Этот инструмент используется для расчета сопротивления, необходимого для управления одним или несколькими последовательно соединенными светодиодами от источника напряжения с заданным уровнем тока.Калькулятор советует пользователю выбрать резистор с номинальной мощностью, примерно в два-десять раз превышающей расчетное значение, чтобы избежать чрезмерного повышения температуры. Соответствующая формула: R = (V s — V f ) / I f , где V f и I f — это прямое падение напряжения и прямой ток светодиода. Типичные диапазоны V f для светодиодов: красный, от 1,8 до 2,1; Янтарный — от 2 до 2,2; Оранжевый, от 1,9 до 2,2; Желтый, от 1,9 до 2,2; Зеленый — от 2 до 3,1; Синий, от 3 до 3,7; и белые, 3 к 3.4.

Преобразование длины : ввод может быть от долей микрона до километров, ярдов, футов и дюймов. Общее уравнение преобразования: один см = 0,393701 дюйма

Калькулятор ширины дорожки печатной платы : Этот расчет может иметь решающее значение, поскольку ширина дорожки равна допустимой нагрузке. След меньшего размера становится перегруженным предохранителем. Слишком широкий, возможно, означает меньшее разделение между линиями противоположной полярности и возможными паяными перемычками. Чтобы использовать калькулятор, вам необходимо знать ток, толщину следа, превышение температуры, температуру окружающей среды и длину следа.

Калькулятор постоянной времени вычисляет произведение значений сопротивления и емкости, то есть постоянную времени RC, время, необходимое для того, чтобы напряжение на конденсаторе достигло примерно 63,2% от своего конечного значения после изменения напряжения. Также вычисляется полная энергия, запасенная в конденсаторе, заряженном до заданного напряжения. Входами являются напряжение, емкость и сопротивление нагрузки. Выходы — постоянные времени и энергия. Соответствующие формулы: E = (V 2 × C) / 2 и τ = RC.

Калькулятор преобразования размеров провода : Используется для расчета номинальных эквивалентных значений размеров проводов, таких как американский калибр проводов (AWG), площадь в квадратных миллиметрах, площадь в миллиметрах и других. Просто введите известное измерение или значение, и все эквивалентные размеры будут автоматически рассчитаны и отображены. Все преобразования основаны на сплошном проводе. Американский калибр для проволоки, также известный как калибр для проволоки Брауна и Шарпа, был разработан в 1855 году. Измерение проводилось путем подсчета количества раз, когда проволоку нужно было протянуть через матрицу для достижения желаемого размера.Из-за этого размеры обратно и логарифмически пропорциональны, то есть провода большего размера имеют меньшее число AWG. Провод 10 AWG имеет площадь примерно в десять раз больше, чем провод 20 AWG. AWG широко используется в Северной Америке и более чем в 65 других странах.

Преобразование частоты в длину волны : Преобразователь радиочастоты ITU в длину волны позволяет вам ввести частоту от 8,3 кГц до 11,2 ГГц и вычислить длину волны. Он также демонстрирует первичное распределение ITU для частоты.

Калькулятор таймера 555 : Таймер 555 — это обычно используемая ИС, которую можно настроить для выдачи прямоугольного сигнала на выходе. В нестабильной конфигурации этот выходной сигнал представляет собой прямоугольную волну свободного хода. В моностабильном режиме выход представляет собой одиночный импульс высокого уровня, генерируемый для одного входного события. Этот калькулятор определит ширину импульса, если вводятся выходные данные на основе значений сопротивления и емкости.

Калькулятор тройникового аттенюатора : Калькулятор тройникового аттенюатора рассчитает значения R 1 и R 2 .Введите требуемое затухание и импеданс линии, которую необходимо согласовать.

Калькулятор аттенюатора с тройниковым мостом : Аттенюатор с тройниковым мостом представляет собой аттенюатор с модифицированной топологией pi. Это позволяет ослабить сигнал без изменения полного сопротивления системы. Введите затухание (дБ) и импеданс. Отображаются R 1 и R 2 .

Калькулятор ослабления отражения : Аттенюатор отражения использует два одинаковых резистора, заземленных и подключенных к одному и тому же узлу, для ослабления сигнала.Есть два возможных выхода в зависимости от того, превышает ли сопротивление полное сопротивление системы. Этот калькулятор позволяет пользователю найти два возможных значения резистора для аттенюатора. Затухание (дБ) и импеданс — это поля, которые необходимо заполнить. Выходы: R 1 > Z0 и R 1

Калькулятор аттенюатора Пи : Аттенюатор Пи использует последовательный резистор и два шунта на землю для ослабления сигнала. Этот калькулятор позволяет вам ввести желаемое затухание в дБ и полное сопротивление системы.Он рассчитывает требуемый шунтирующий резистор и последовательный резистор.

Код резистора SMD : Калькулятор кодов резистора для поверхностного монтажа использует маркировку, нанесенную на устройство. Выберите формат кода: трехзначный EIA, четырехзначный EIA или EIA-96. В резисторах SMD со стандартным допуском для обозначения сопротивления используется трехзначный код. Первые два числа обозначают значащие цифры, а третье — множитель. R используется для обозначения положения десятичной точки.

Калькулятор сглаживающих и фильтрующих конденсаторов

Сглаживающий конденсатор уменьшает остаточную пульсацию ранее выпрямленного напряжения.В этой статье описывается работа сглаживающего конденсатора. В дополнение к формуле расчета вы также найдете практичный онлайн-калькулятор для определения размеров конденсатора.

Общие сведения о сглаживающем конденсаторе

Электросеть Германии подает синусоидальное переменное напряжение с частотой 50 Гц. Однако многие устройства работают от постоянного напряжения. При подключении этих устройств напряжение необходимо заранее выпрямить. Чаще всего схема выпрямителя состоит из мостового выпрямителя, состоящего из четырех диодов.Однако у этой схемы есть большой недостаток: она работает только от нижней полуволны вверх и оставляет пульсирующее постоянное напряжение. Эксперты говорят о высокой пульсации .

Сглаживающий конденсатор , также называемый фильтрующим конденсатором или зарядным конденсатором , используется для «сглаживания» этих напряжений. Это ослабляет рябь. Хотя конденсатор не вырабатывает идеального постоянного напряжения, он снижает колебания до уровня, с которым может легко справиться большинство устройств.Оставшаяся пульсация называется напряжением пульсации .

Для напряжения с минимальной остаточной пульсацией , насколько это возможно, конденсатор должен быть подходящего размера. Однако он не может быть бесконечно большим, так как диоды могут быть повреждены. Мы хотим объяснить, как можно подобрать сглаживающий конденсатор и как именно он работает. Наш онлайн-калькулятор конденсатора фильтра помогает определить емкость.

Функция сглаживающего конденсатора

Конденсатор для сглаживания напряжения размещается параллельно нагрузке за схемой выпрямителя.Часто два сглаживающих конденсатора меньшего размера используются вместо одного большого . Здесь конденсатор максимально приближен к схеме выпрямителя, а второй — максимально близко к потребителю. Конденсаторы помогают заполнить пробелы выпрямленного напряжения.

Пока напряжение достигает максимального значения, конденсатор заряжается. Когда он опускается ниже определенного уровня, он разряжается. Однако из-за выпрямительной схемы он не может отправить заряд обратно в источник напряжения, а разряжает его через потребителя.Вот почему пульсации входного напряжения незначительны, когда оно достигает потребителя — конденсатор поддерживает напряжение.

Конденсатор надлежащего размера может сглаживать не только синусоидальное напряжение, но также широтно-импульсную модуляцию (ШИМ) . Если выбранный конденсатор слишком мал, он не сглаживает напряжение полностью, и остается высокая остаточная пульсация. Это может повлиять на функции потребителей или даже вызвать повреждение. С другой стороны, если конденсатор слишком большой, его большой зарядный ток может вывести из строя диоды для выпрямления или перегрузить кабели.

Полярность на сглаживающем конденсаторе

Полярность важна для многих компонентов технологии постоянного тока, чтобы гарантировать бесперебойную работу. Некоторые устройства просто не будут работать, если они будут подключены с неправильной полярностью, а другие выйдут из строя. «Нормальные» конденсаторы относятся к менее чувствительным компонентам и обычно могут подключаться в обоих направлениях.

Но будьте осторожны: часто используемый электролитический конденсатор , сокращенно Elco, чувствителен к неправильному подключению.Между пластинами имеется оксидный слой, который предназначен только для протекания тока в одном направлении. Если он подключен в перевернутом виде, этот слой растворяется, и конденсатор приобретает низкий импеданс. Даже если он подключен к напряжению, значительно меньшему его диэлектрической прочности, эффект возникает с задержкой по времени. После удаления оксидного слоя ток увеличивается и электролитический конденсатор взрывается!

Конструкция схемы сглаживающего конденсатора

На первой схеме сглаживающий конденсатор находится за полуволновым выпрямлением.

На второй схеме сглаживающий конденсатор расположен за выпрямительным мостом.

Расчет сглаживающего конденсатора — формула

Самая важная формула для расчета сглаживающего конденсатора:

$$ C = I \ cdot \ frac {\ Delta t} {\ Delta U} $$

Формула сглаживающего конденсатора, альтернативно:

$$ I = C \ cdot \ frac {\ Delta U} {\ Delta t} $$

Уточнение:
\ (C \) = емкость конденсатора в мкФ
\ (I \) = ток заряда в мА
\ (\ Delta t \) = полупериод в мс
\ (\ Delta U \) = пульсации напряжения, В

Пояснение — Расчет сглаживающего конденсатора

Потребляемый ток \ (\ mathbf {I} \) схемы можно рассчитать по закону Ома.Высокое потребление тока потребителем значительно увеличивает требуемую емкость конденсатора.

Полупериод \ (\ mathbf {\ Delta t} \) можно рассчитать по частоте напряжения. Формула: \ (\ Delta t = \ frac {1} {2} \ cdot T \). При сетевом напряжении 50 Гц получаем \ (\ frac {1} {2} \ cdot \ frac {1} {50} \) с результатом \ (\ Delta t = 10ms \).

Напряжение пульсаций \ (\ mathbf {\ Delta U} \) (факторы при вычислении пульсаций напряжения) — это остаточные пульсации напряжения.Здесь тип потребителя определяет, насколько может упасть напряжение. Чем ниже может упасть пульсационное напряжение, тем больше должны быть размеры сглаживающего конденсатора. Например, при эксплуатации светодиодов не должно быть больших колебаний.

Емкость сглаживающего конденсатора \ (\ mathbf {C} \) — это наш желаемый результат в микрофарадах. Также следует убедиться, что конденсатор рассчитан на соответствующий уровень напряжения. Это можно толковать широко.Конденсатор на 18 В легко работает от цепи 12 В.

Инструмент для вычисления сглаживающих конденсаторов

Калькулятор размера конденсатора, доступный в Интернете, поможет вам рассчитать сглаживающий конденсатор. Просто введите значения, используя формулу, описанную выше, чтобы рассчитать нужный размер.

Калькулятор сглаживающего конденсатора

Начните расчет

Области применения — Плавное напряжение с конденсатором

При преобразовании конденсаторных цепей всегда требуется осторожность.Из-за накопления заряда в конденсаторе большая часть рабочего напряжения может оставаться в цепи после ее отключения. Хотя он имеет очень низкую емкость по сравнению с батареей, он достаточно замкнут накоротко, чтобы разрушить компоненты.

Вероятно, наиболее широко используемым применением сглаживающих конденсаторов является конструкция источников питания . Независимо от частоты, с которой подается входное напряжение, конденсатор используется для уменьшения остаточного сопротивления после выпрямления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *