Что такое SMD резисторы. Как маркируются SMD резисторы. Какие бывают типы SMD резисторов. Где применяются SMD резисторы. Как выбрать нужный SMD резистор.
Что такое SMD резисторы и их особенности
SMD резисторы (Surface Mounted Device) — это миниатюрные резисторы, предназначенные для поверхностного монтажа на печатные платы. Их основные особенности:
- Значительно меньшие размеры по сравнению с обычными выводными резисторами
- Квадратная, прямоугольная или овальная форма с очень низким профилем
- Вместо проволочных выводов имеют контактные площадки на корпусе
- Монтируются непосредственно на поверхность печатной платы
- Позволяют достичь высокой плотности монтажа компонентов
- Упрощают автоматизированную сборку электронных устройств
Благодаря своим преимуществам SMD резисторы широко используются в современной электронике, постепенно вытесняя классические выводные компоненты.
Система маркировки SMD резисторов
Из-за малых размеров на SMD резисторы невозможно нанести стандартную цветовую маркировку. Поэтому используется специальная цифро-буквенная система обозначений:
Маркировка из 3 цифр
Первые две цифры — значение сопротивления, третья цифра — количество нулей.
Например:
- 102 = 10 и 2 нуля = 1000 Ом = 1 кОм
- 473 = 47 и 3 нуля = 47000 Ом = 47 кОм
Маркировка из 4 цифр
Первые три цифры — значение сопротивления, четвертая цифра — количество нулей.
Например:
- 4702 = 470 и 2 нуля = 47000 Ом = 47 кОм
- 1003 = 100 и 3 нуля = 100000 Ом = 100 кОм
Маркировка EIA-96
Состоит из двух цифр и буквы. Цифры обозначают код из специальной таблицы, буква — множитель.
Например:
- 01A = 100 Ом
- 38C = 24.3 кОм
Такая система маркировки позволяет закодировать номинал резистора на его миниатюрном корпусе.
Основные типы SMD резисторов
SMD резисторы делятся на два основных типа:
Тонкопленочные резисторы
Особенности тонкопленочных SMD резисторов:
- Высокая точность (допуск 0.1-2%)
- Низкий температурный коэффициент сопротивления (5 ppm/°C)
- Низкий уровень шума
- Применяются в прецизионных схемах
- Более высокая стоимость
Толстопленочные резисторы
Характеристики толстопленочных SMD резисторов:
- Средняя точность (допуск 1-5%)
- Более высокий ТКС (50 ppm/°C)
- Повышенный уровень шума
- Используются в большинстве схем общего применения
- Низкая стоимость
Толстопленочные резисторы являются наиболее распространенным и универсальным типом SMD резисторов.
Типоразмеры корпусов SMD резисторов
Наиболее распространенные типоразмеры корпусов SMD резисторов:
- 0402 — 1.0 x 0.5 мм
- 0603 — 1.6 x 0.8 мм
- 0805 — 2.0 x 1.25 мм
- 1206 — 3.2 x 1.6 мм
Цифры в обозначении указывают на размеры в дюймовой системе. Например, 0603 означает размер 0.06 x 0.03 дюйма.
Области применения SMD резисторов
SMD резисторы широко используются в различных электронных устройствах и схемах:
- Делители напряжения
- Ограничители тока
- Подтяжка линий ввода/вывода микроконтроллеров
- Фильтры (ВЧ, НЧ, полосовые)
- Схемы смещения
- Согласование импедансов
- Измерение токов (в качестве шунтов)
- Пассивные аттенюаторы
Благодаря миниатюрным размерам SMD резисторы позволяют создавать компактные электронные устройства с высокой плотностью монтажа компонентов.
Как правильно выбрать SMD резистор
При выборе SMD резистора нужно учитывать следующие параметры:
- Номинальное сопротивление — должно соответствовать расчетному значению для схемы
- Допуск — точность номинала (1%, 5% и т.д.)
- Мощность рассеивания — должна быть выше расчетной мощности в схеме
- Температурный коэффициент сопротивления — для термостабильных схем
- Максимальное рабочее напряжение
- Диапазон рабочих температур
- Типоразмер корпуса — в зависимости от доступного места на плате
Для большинства схем общего применения подойдут недорогие толстопленочные SMD резисторы с точностью 1-5% в корпусах 0603 или 0805.
Преимущества и недостатки SMD резисторов
Основные преимущества SMD резисторов:
- Миниатюрные размеры
- Высокая плотность монтажа
- Отсутствие выводов
- Низкая паразитная индуктивность
- Удобство автоматизированного монтажа
- Низкая стоимость при массовом производстве
Недостатки SMD резисторов:
- Сложность ручного монтажа/демонтажа
- Чувствительность к перегреву при пайке
- Меньшая мощность рассеивания по сравнению с выводными резисторами
- Сложность визуального определения номинала
Несмотря на некоторые недостатки, преимущества SMD резисторов обеспечили им широкое распространение в современной электронике.
Заключение
SMD резисторы стали неотъемлемой частью современной электроники благодаря своим компактным размерам и удобству автоматизированного монтажа. Правильный выбор типа, номинала и корпуса SMD резистора позволяет оптимизировать характеристики электронных устройств. При разработке новых изделий следует отдавать предпочтение именно SMD компонентам для достижения высокой плотности монтажа и снижения габаритов устройств.
Корпуса и маркировка SMD резисторов. Онлайн — калькулятор цветовой маркировки резисторов Маркировка smd резисторов калькулятор
Простой калькулятор расчёта номинала резистора по цветам.
Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.
Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.
Маркировка резисторов SMD. Калькулятор онлайн
Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.
Трёхсимвольная маркировка EIA96
Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры — код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.
Третий символ — буква — код множителя. Каждая из букв X , Y , Z , A , B
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96 , E24 , E48 .
Сопротивление 0ом ±1%, EIA-96 в результате вычислений означает некорректный ввод.
Впишите код стандарта EIA-96 (регистр не учитывается), либо 3 цифры E24 , либо 4 цифры E48
Сопротивление: 165ом ±1%, EIA-96
Таблица EIA-96
|
Трёхсимвольная маркировка E24. Допуск 5%
Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.
В данной статье используйте окно калькулятора выше, что и для EIA-96.
Четырёхсимвольная маркировка E48. Допуск 2%
Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48 ), либо вводить 4 цифры в общее верхнее окно.
Введите код SMD резистора E48
Сопротивление: 22.2kом ±2%, E48
Кому-то полезным может быть набор калькуляторов для расчёта сопротивления резисторов, соединённых параллельно.
Материал по ссылке:
В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).
SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.
SMD резисторы
SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.
Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.
Типоразмеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.
Маркировка SMD резисторов
Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.
В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.
Маркировка с 3 и 4 цифрами
В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.
Еще несколько примеров определения сопротивлений в рамках данной системы:
- 450 = 45 х 10 0 равно 45 Ом
- 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
- 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
- 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)
Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.
SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.
Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)
Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:
- 01А = 100 Ом ±1%
- 38С = 24300 Ом ±1%
- 92Z = 0.887 Ом ±1%
Онлайн калькулятор SMD резисторов
Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.
Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).
Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.
Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.
SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор
В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).
SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.
SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.
Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.
Типоразмеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.
Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.
В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.
Маркировка с 3 и 4 цифрами
В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.
Еще несколько примеров определения сопротивлений в рамках данной системы:
- 450 = 45 х 100 равно 45 Ом
- 273 = 27 х 103 равно 27000 Ом (27 кОм)
- 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
- 1733 = 173 х 103 равно 173000 Ом (173 кОм)
Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.
SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.
Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)
Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:
- 01А = 100 Ом ±1%
- 38С = 24300 Ом ±1%
- 92Z = 0.887 Ом ±1%
Онлайн калькулятор SMD резисторов
Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.
Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).
Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.
Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.
www.joyta.ru
SMD-резисторы: описание, маркировка
SMD (Surface Mounted Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на печатных платах устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.
На фото ниже представлены SMD-резисторы, размещенные на печатной плате.
Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.
В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к паяльной пасте, затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.
Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать паяльную станцию, но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.
SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются габаритные размеры. Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.
Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:
Первые две цифры указывают значение номинала резистора в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.
Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя – количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.
Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.
fb.ru
Таблица маркировки smd резисторов
Сопротивление smd резисторов может измеряться в ом (Ом), килоом (кОм), мегаом (МОм) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены.
Резисторы smd – это те же постоянные резисторы, только предназначенные для поверхностного монтажа на печатную плату. SMD резисторы значительно меньше, чем их аналогичные металлопленочные или металлооксидные резисторы. По стандарту они бывают квадратной, прямоугольной и круглой формы. Имеют очень низкий профиль по высоте. Вместо проволочных выводов обычных постоянных резисторов, которые выводами вставляются в отверстия печатной платы, у smd резисторов имеются на концах небольшие контакты, которые припаяны к поверхности корпуса smd резистора. Это избавляет от необходимости сверлить отверстия в печатной плате, и тем самым позволяет более эффективно и насыщенно использовать всю ее поверхность.
Таблица маркировки smd резисторов постоянного сопротивления
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
migsat.ru
Как выбрать резистор
Продолжая тему грамотного выбора пассивных компонентов, рассмотрим различные типы резисторов, их достоинства и недостатки, особенности применения, а также наиболее популярные для них приложения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий резисторов, которые присутствуют в каталоге компании Терраэлектроника.
Рис. 1. Резисторы
Резисторы (Рис.1) представляют собой двухвыводные компоненты, применяемые для ограничения тока, деления напряжения и формирования временных характеристик цепей. Они используются совместно с такими активными компонентами, как операционные усилители, микроконтроллеры или интегральные схемы, и выполняют различные функции, например, смещение, фильтрацию и подтяжку линий ввода-вывода. Переменные резисторы могут применяться для изменения параметров схемы. Токочувствительные резисторы используются для измерений токов в электрических цепях.
Типы резисторов
Существует несколько различных типов резисторов, отличающихся по номинальной мощности, размерам, эксплуатационным качествам и стоимости. Наиболее распространенные типы — чип-резисторы (SMD-резисторы), выводные резисторы для монтажа в отверстия, проволочные резисторы, шунты (токочувствительные резисторы) для измерения тока, термисторы и потенциометры. Ниже, для каждого типа резисторов представлены основные характеристики, наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.
Рис. 2. Чип-резисторы
Чип-резисторы (Рис. 2) предназначены для поверхностного монтажа. Они отличаются от выводных резисторов меньшими размерами, что делает их оптимальными для применения на печатных платах. Наиболее распространенными задачами smd-резисторов являются подтяжка портов ввода-вывода, деление напряжения, ограничение тока. Резисторы также применяются в составе высокочастотных/ низкочастотных/ полосовых фильтров. Резисторы с нулевым сопротивлением могут быть использованы в качестве джамперов для коммутации различных цепей.
Существует два типа SMD-резисторов:
- Тонкопленочные резисторы обычно используются в различных прецизионных приложениях: в аудиотехнике, медицинском или тестовом оборудовании. Они отличаются минимальным разбросом номиналов (0,1… 2%), низким температурным коэффициентом (5 ppm/C) и меньшим уровнем шума по сравнению с толстопленочными резисторами. Однако стоимость их выше.
- Толстопленочные резисторы являются наиболее распространенным типом резисторов и используются для широкого круга приложений. Они характеризуются большей погрешностью сопротивления (обычно 1 … 5%), повышенным температурным коэффициентом (50 ppm/C) и более высоким уровнем шума по сравнению с тонкопленочными резисторами. Если к резистору не предъявляется каких-либо особых требований, то обычно предпочтительным выбором становится именно толстопленочный резистор.
Корпусные исполнения: наиболее распространенными типоразмерами smd-резисторов являются 0201, 0402, 0603, 0805 и 1206. Цифры обозначают габаритные размеры в дюймовой системе, например, корпус 0402 имеет габариты 0,04х0,02″, размеры корпуса 0603 составляют 0,06х0,03″ и так далее.
- 0402 — серия RC0402FR производства компании Yageo с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
- 0603 — серия RC0603FR от Yageo с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
- 0805 — серия RC0805FR от Yageo с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 Мом;
- 1206 — серия RC1206FR от Yageo с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм.
- 0402 — серия CR0402 производства компании Bourns с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 0603 — серия CR0603 от Bourns с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 0805 — серия CR0805 от Bourns с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 1206 — серия CR1206 от Bourns с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 0,82 Ом…10 МОм.
- 0402 — серия CRCW0402 производства Vishay с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом …10 МОм;
- 0603 — серия CRCW0603 от Vishay с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1… 15 МОм;
- 0805 — серия CRCW0805 от Vishay с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 50 МОм;
- 1206 — серия CRCW1206 от Vishay с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений от 1 Ом…100 МОм.
Рис. 3. Выводные резисторы для монтажа в отверстия
Резисторы с аксиальными выводами для монтажа в отверстия (Рис. 3) весьма популярны и широко используются, особенно — при создании прототипов, поскольку их легко заменять при работе с макетными платами. Как и чип-резисторы, выводные резисторы применяются для подтяжки, деления напряжения, ограничения тока и фильтрации. Существуют различные типы выводных резисторов. Наиболее популярны углеродистые пленочные и металлопленочные резисторы.
- Углеродистые пленочные резисторы имеют значительный разброс сопротивлений (2…10%). Наиболее распространенными рядами сопротивлений для них являются E12 (± 10%), E24 (± 5%) и E48 (± 2%). В большинстве приложений углеродистые пленочные резисторы были вытеснены металлопленочными. Температурный коэффициент сопротивления углеродистых пленочных резисторов (TКC) обычно имеет отрицательную величину — около -500 ppm/C, однако конкретное значение зависит от сопротивления и размера.
- Металлопленочные резисторы имеют меньший разброс сопротивлений (0,1…2%) и более высокую стабильность. Наиболее распространенными рядами сопротивлений для них являются E48 (± 2%), E96 (± 1%) и E192 (± 0,5%, ± 0,25% и ± 0,1%). Поскольку характеристики металлопленочных резисторов лучше, чем у углеродистых, то именно они используются в большинстве приложений. Температурный коэффициент металлопленочных резисторов (TC) составляет около ± 100 ppm/C, однако некоторые модели характеризуются только положительным или только отрицательным TC.
- Углеродные композитные резисторы широко использовались в электронных устройствах пятьдесят лет назад, но из-за большого разброса номиналов и невысокой стабильности они были заменены углеродистыми пленочными и металлопленочными резисторами. Тем не менее, композитные резисторы обладают хорошими высокочастотными характеристиками и способны выдерживать воздействие мощных импульсов, поэтому их до сих пор применяют в сварочном оборудовании и высоковольтных источниках питания.
- Металл-оксидные резисторы стали первой альтернативой углеродным композитным резисторам, но в дальнейшем в большинстве приложений они были вытеснены металлопленочными. Тем не менее, поскольку металл-оксидные резисторы отличаются повышенной рабочей температурой и более высокой номинальной мощностью (> 1 Вт), их по-прежнему используют в ответственных устройствах, эксплуатирующихся в жестких условиях.
Ряды сопротивлений EIA (EIA Decade Resistor Values) определяют не только номиналы резисторов, но и допустимую погрешность. Например, ряд E12 (± 10%) включает следующие стандартные значения: 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680 и 820 Ом.
Для кодирования параметров выводных резисторов применяется цветовая маркировка (таблица 1).
Таблица 1. Цветовая маркировка выводных резисторов
Значение | |||||||
Первая цифра | Вторая цифра | Третья цифра* | Множитель | Точность | Температурный коэффициент, ppm/C | ||
Коричневый | |||||||
Оранжевый | |||||||
Фиолетовый | |||||||
Серебряный | |||||||
* Только для резисторов с 5-позиционной маркировкой |
- углеродистые пленочные резисторы серии CFR-25JB производства Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- металлопленочные резисторы серии MFR-25FBF от Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 10 Ом…1 МОм.
Рис. 4. Проволочный резистор
Проволочные резисторы (Рис. 4) конструктивно представляют собой высокоомный провод, намотанный на изолирующий сердечник. Они отличаются очень высокой номинальной мощностью (до 1000 Вт) и способны работать при очень высоких температурах (до 300°C). Проволочные резисторы характеризуются отличной долговременной стабильностью – около 15…50 ppm/год, в то время как, например, у металлопленочных резисторов этот показатель составляет 200…600 ppm/год. Данный тип резисторов обладает самым малым уровнем шума.
Приложения: обычно используются в автоматических выключателях и в качестве предохранителей благодаря высокой мощности.
- серия KNP500 производства компании Yageo с номинальной мощностью 5 Вт и диапазоном доступных сопротивлений 0,1 Ом …2,2 кОм;
- серия HS-25 производства Ohmite с номинальной мощностью 25 Вт и диапазоном доступных сопротивлений 0,01 Ом … 5,6 кОм;
- серия HSC100 от TE с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,1 Ом … 50 кОм.
Рис. 5. Шунты
Токоизмерительные резисторы, также называемые шунтами (Рис. 5), используются для прямого преобразования тока в напряжение с целью дальнейшего измерения. Они представляют собой резисторы с малым сопротивлением и высокой номинальной мощностью, что позволяет им работать с большими токами.
Одним из приложений для токоизмерительных резисторов является ограничение тока с целью защиты микросхем драйверов шаговых двигателей.
Большинство современных шунтов имеет либо два, либо четыре вывода. В четырехвыводной версии, которая также называется схемой Кельвина, ток проходит через две клеммы, а напряжение измеряется на двух оставшихся выводах. Такая схема уменьшает влияние температурной погрешности и значительно повышает стабильность схемы измерения. Четырехвыводные резисторы используются для приложений, требующих высокой точности и температурной стабильности.
Двухвыводные исполнения
- серия MCS1632 производства Ohmite с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
- серия WSLP1206 от Vishay с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом.
- Для монтажа в отверстия:
- серия 12F от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,25 Ом;
- серия LVR03R от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,01…0,2 Ом.
Четырехвыводные исполнения (схема Кельвина)
- серия FC4L в корпусе 2512 от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,05 Ом.
Рис. 6. Термистор
Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).
Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.
PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.
Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.
Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.
- PTC-термисторы:
- 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
- 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.
- NTC-термисторы:
- серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
- 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.
Рис. 7. Подстроечные резисторы
Потенциометры – это резисторы с изменяемым сопротивлением. Они используются в различных приложениях, например, для управления коэффициентом усиления в усилителе, для настройки параметров схемы и так далее.
Подстроечные резисторы (Рис. 7) представляют собой небольшие потенциометры, которые могут быть установлены на печатной плате и отрегулированы с помощью отвертки. Они выпускаются как для поверхностного монтажа SMD, так и для монтажа в отверстия, с верхним или боковым расположением регулировочного винта.
Потенциометры бывают однооборотными и многооборотными. Однооборотные потенциометры часто используются в усилителях. Многооборотные потенциометры могут иметь до 25 оборотов и применяются для более точного управления.
- Однооборотные потенциометры:
- SMD серия TC33X-2 производства Bourns с диапазоном сопротивлений 100 Ом…1 МОм;
- серия 3362P от Bourns с диапазоном сопротивлений 10 Ом…5 МОм;
- Многооборотные потенциометры:
- серия 3296W от Bourns с диапазоном сопротивлений 10 Ом…5 МОм;
- серия T93YA от Vishay с диапазоном сопротивлений 10 Ом…1 МОм.
Рис. 8. Резисторная сборка 4609X-101-222LF
Резисторная сборка (resistors network, resistors array) представляет собой комбинацию из нескольких резисторов, размещенных в одном корпусе. Существует большое количество разных типов этих изделий, но, к сожалению, четкая система их классификации, как в литературе, так и у производителей отсутствует.
Резисторы внутри корпуса сборки могут быть не соединены между собой (Isolated) т. е. каждый резистор имеет два вывода на корпусе сборки, или сконфигурированы в определенную схему (Bussed). Часто встречаются изделия, у которых соединены между собой вывод 1 каждого резистора с подключением к одному общему пину сборки, а каждый второй вывод резисторов имеет свой собственный вывод на корпусе изделия. Кроме того, можно встретить сборки с последовательным, последовательно- параллельным и другими видами соединений резисторов внутри корпуса. Сборки можно классифицировать по количеству входящих в них резисторов, по величине допуска, максимальному рабочему напряжению, мощности рассеивания, типоразмеру, по типу монтажа (SMD и выводной) и т.д. Эти компоненты очень удобно использовать в схемах АЦП и ЦАП, применять качестве делителей напряжения, использовать в компьютерной технике, потребительской электронике и т.д.
- серия 4600X от Bourns с рабочим напряжением до 100В
Рис. 9. Конфигурация резисторных сборок серии 4600X от Bourns
- серия CAY16 от Bourns в SMD корпусе типоразмера 1206 с изолированными резисторами
- серия 4114R-2 от Bourns — 14 выводных резисторов с одним общим выводом
Работа с Каталогом компании Терраэлектроника по поиску резисторов
Подобрать необходимый резистор в каталоге Терраэлектроники можно двумя способами:
- С использованием параметрического поиска. Для этого необходимо зайти в раздел резисторов каталога, выбрать соответствующий задаче тип резистора, а далее указать параметры в ряде фильтров поисковой системы. Фрагмент скриншота поиска прецизионного SMD резистора от Yageo с параметрами: типоразмер 0805, номинал 10 кОм, точность 0.1 %, мощность 0.125 мВт представлен на Рис. 10.
Рис. 10. Скриншот сервиса поиска резисторов
- Воспользоваться интеллектуальным поиском резисторов по параметрам. Для этого достаточно скопировать строку из спецификации “Резистор постоянный 10 кОм, 0.1%, 0.125 Вт, 0805″ или ввести «10kohm 0.1% 0.125W 0805» в строку поиска и получить тот же самый список подходящих по указанным параметрам компонентов.
Заключение
В данном руководстве были рассмотрены некоторые наиболее популярные типы резисторов. В дополнение к ним существует ряд других типов резисторов, среди которых MELF, металлофольговые резисторы, керамические резисторы, варисторы, фоторезисторы и др., которые имеют свои уникальные преимущества по уровню точности, эксплуатационным характеристикам или габаритным размерам. Однако, в большинстве электронных схем вы чаще всего увидите один из типов, рассмотренных выше.
Как выбрать конденсатор
Журнал: https://octopart.com/blog/archives/2016/04/how-to-select-a-resistor
www.terraelectronica.ru
Маркировка SMD резисторов — обозначения и расшифровка
Термин «SMD-резистор» появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип-резисторы, как их еще называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты, чем аналогичные проволочные резисторы. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств.
Внешний вид SMD-резисторов
Размеры и форма SMD-резисторов регламентируются нормативным документом JEDEC, где приводятся рекомендуемые типоразмеры. Обычно на корпусе нанесена маркировка SMD-резисторов, содержащая данные о габаритах резистора. К примеру, цифровой код 0804 предполагает длину, равную 0,08 дюймам, ширину – 0,04 дюйма.
Если перевести такую кодировку в систему СИ, то данный SMD-резистор будет обозначаться как 2010. Из этой маркировки видно, что длина составляет 2,0 мм, а ширина 1,0 мм (1 дюйм равен 2,54 мм).
Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD-резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили чип-резисторы по способу маркировки на три типа:
- маркировка из трех цифр;
- маркировка из четырех цифр;
- маркировка из двух цифр и буквы.
Последний вариант применяется для резисторов повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них маркировку с длинными кодами. Для них разработан стандарт EIA-96
Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква «R» Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.
Маркировка SMD-резисторов
Существуют номиналы повышенной точности (так называемые прецизионные).
Маркировка прецизионных SMD-резисторов
Пример подбора нужного резистора: если указана цифра 232, то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 102 = 2 300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.
Калькулятор обозначений SMD-резисторов
Расшифровка обозначения чип-резисторов – специфичное занятие. Вычислить необходимую величину можно, пользуясь старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и то же самое можно выполнить при помощи различных сайтов.
Калькулятор SMD-резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчетов. Кроме того, есть специальная программа «Резистор». Кликнув пару раз мышкой, можно найти нужную информацию.
lampagid.ru
Сравнительные размеры чип резисторов
Резисторные сборкиПодстроечные резисторы для поверхностного монтажаТерморезисторыМаркировка SMD резисторов ряда E24 с отклонением номинала 5%
| Электронный каталог Корзина Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов. Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ МАРКИРОВКА ЧИП-РЕЗИСТОРОВ Резисторы типоразмера 0402 не маркируются. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя. При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм. Обозначение 220 означает, что номинал резистора равен 22 Ома. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм. Одним из самых простых и распространенных элементов электронных схем в приборах различного назначения являются резисторы. Производители делают большое количество различных модификаций, маркировка которых отличается. Поэтому тем, кто занимается ремонтом, проектированием и сборкой электронных схем требуется хорошо разбираться в маркировке резисторов различных типов. Термин SMD (Surface Mounted Device) в переводе с английского языка означает технология поверхностной пайки, разработан для упрощения установки малогабаритных элементов на печатных платах в радиоэлектронных изделиях. Назначение резисторов SMDГлавная роль резисторов в электронных схемах – это ограничение тока на определенных участках цепи. Одним из ярких примеров является подключение резисторов в цепи питания светодиодов или на каскады усиления на транзисторах. Резисторы в цепи являются сопротивлением электрическому току, все проводники и полупроводники имеют удельное сопротивление. Упрощенно для схем оно рассчитывается по классическим формулам:
Мощность выражается в Ваттах, напряжение – в Вольтах, ток – в Амперах по международной системе измерения величин СИ. На крупногабаритных резисторах старого образца мощность и сопротивление просто писали на его поверхности буквенными и цифровыми обозначениями, например, 3кОм 5Вт. Современная аппаратура имеет печатные платы малых габаритов, соответственно, резисторы и другие детали должны иметь миниатюрные размеры, на которых нет возможности сделать надписи. Поэтому аббревиатуру стали наносить в зашифрованном виде только цифрами или цветными полосами в определенной последовательности. Конструктивные особенности резисторов SMDОтличие SMD полупроводниковых деталей в том, что они миниатюрных размеров и припаиваются на медные дорожки платы с одной стороны. Контактные ножки других деталей проходят через отверстия на плате и припаиваются к дорожкам с другой стороны. Форма резисторов чаще всего бывает прямоугольной или квадратной, чем больше рассеиваемая тепловая мощность резистора, тем больше его размеры. Технология, по которой сделан чип резистор, позволяет припаивать детали на плату, не делая отверстий в дорожках, это значительно упрощает монтаж, малые размеры элементов позволяют сократить габариты всей платы. Но обозначение smd резисторов для маркировки резисторов делается условными сокращениями, чтобы надписи поместились на поверхности элемента. Расшифровка аббревиатуры SMD резисторовПрежде всего, SMD резисторы разделяют по типоразмерам, которые напрямую связаны с рассеиваемой мощностью. Некоторые элементы настолько малы, что маркировка чип резисторов не помещается на его корпусе даже в виде сокращенного кода. Поэтому существуют справочные таблицы, где указаны ширина, длина корпуса, из которой можно определить мощность резистора. Измерения можно определить микрометром. Обратите внимание! Маркировка smd резисторов типоразмера 0402 (длина – 0,04, ширина – 0,02 дюйма) не делается, нет кодовых обозначений, величины сопротивления, в этом варианте мощность определяется по таблице, сопротивление лучше измерить мультиметром, погрешность сопротивления в этих резисторах составляет от 2 до 10%. Более точные smd резисторы с погрешностью в 1% с кодом типоразмера 0603 маркируются двумя цифрами и буквой R, цифры обозначают величину в омах, буква – множитель 10-1. Определяем кодировку по таблице, например:
В итоге получится величина сопротивления резистора 107х10-1 = 10,7 Ом. Когда R стоит между цифрами (2r2), это означает, что номинал сопротивления резистора – 2.2 Ом. В обозначениях множителя применяется не только буква R :
Пример расшифровки такой маркировки следующий. Код 05Е, смотрим по таблице, 05 соответствует значению 110 Ом, умножаем на 104. Сопротивление с таким кодом будет 110х104 = 11440 Ом или 11,44 кОм. Маркировка, обозначающая величину сопротивления на смд резисторах, имеет три варианта:
Расшифровка группы изделий с типоразмером 0805 с тремя цифрами (100, 102, 103…107 или 113) имеет следующие обозначения:
Маркировка резисторов с четырьмя цифрами расшифровывается аналогичным способом, просто значения номинального сопротивления резисторов на порядок больше:
Профессионалам, которые часто сталкиваются с расшифровкой, это делать несложно. Обычному обывателю непросто запомнить методики расшифровки маркировки резисторов SMD. Для этого на различных ресурсах интернета созданы калькуляторы в режиме онлайн, достаточно внести элементы кодовой маркировки резистора, и в окне появится соответствующее значение этому сопротивлению. В некоторых вариантах калькулятора можно выбирать единицы измерения Ом, кОм, МОм. ВидеоПоделитесь статьей: |
Маркировка SMD-транзисторов
ОТ КАТОДА ДО АНОДА
Поиск по сайту | Маркировка SMD-транзисторов
|
Объясняем, почему Intel Alder Lake — главный процессор этой осени / Процессоры и память
В этом году Intel® развернула небывалую активность. Кажется, до сих пор не случалось такого, чтоб нам пришлось анализировать два последовательных дизайна клиентских процессоров в течение всего нескольких месяцев. Но всё когда-то бывает в первый раз, и сегодня – вполне подходящий момент, чтобы предварительно познакомиться с процессорами Alder Lake, хотя предыдущее поколение Rocket Lake всё ещё остаётся недавней новинкой.
В действительности до выхода Alder Lake пока ещё есть немного времени. Процессоры этого семейства, по всей видимости, будут анонсированы на специальном мероприятии Intel Innovation 27-28 октября, то есть через месяц. Однако предстоящий анонс представляется слишком грандиозным событием, чтобы не подготовиться к нему заранее. Ведь на этот раз выход новых процессоров будет означать и смену платформы, и смену микроархитектуры, и даже в каком-то смысле смену всей концепции многопоточных вычислений. Именно поэтому мы решили собрать и систематизировать всю имеющуюся информацию, касающуюся Alder Lake, заранее, с тем чтобы по прошествии месяца встречать эти процессоры во всеоружии, обладая всем набором необходимых теоретических знаний.
К счастью, Intel уже раскрыла довольно много подробностей о строении и внутреннем устройстве Alder Lake во время презентаций Intel Accelerated и Intel Architecture Day 2021. Благодаря этому сегодня мы в рамках партнёрского проекта с компанией Intel сможем поговорить о будущих потребительских процессорах, основываясь исключительно на проверенных данных из первых рук.
⇡#Alder Lake с высоты птичьего полёта
Выход процессоров Alder Lake вне зависимости от того, насколько они окажутся успешны, станет очень большим событием для всего процессорного рынка. Дело не только в том, что в них Intel серьёзно обновит микроархитектуру и добавит поддержку принципиально новых типов памяти и внешних интерфейсов, но ещё и в том, что они станут воплощением совершенно иной концепции многопоточных вычислений, прибегать к которой в массовых x86-процессорах пока ещё никто не пытался. Речь идёт о том, что Alder Lake получат гибридное строение и будут основываться на ядрах двух типов одновременно – производительных (P-ядрах) и эффективных (E-ядрах). Их объединение в одном вычислительном устройстве, по задумке разработчиков, должно позволить добиться недостижимой ранее гибкости как в смысле сферы применимости таких процессоров, так и с точки зрения соотношения производительности и энергоэффективности.
Гибридный подход big.LITTLE уже давно используется в процессорах с архитектурой ARM, и идея Intel, которая будет воплощена в Alder Lake, чем-то напоминает эту схему. По задумке Intel, большие производительные ядра следует бросать на решение высокоприоритетных задач переднего плана, требующих короткого времени реакции, в то время как маленькие и энергоэффективные ядра могут заняться фоновыми процессами. Кроме того, все типы ядер можно объединить для решения одной задачи, что позволит достичь максимального уровня быстродействия, по крайней мере в теории.
При этом оба типа ядер в Alder Lake получили новые микроархитектуры, с которыми мы до сих пор не сталкивались. Производительные ядра основаны на микроархитектуре Golden Cove, которая является дальнейшим развитием Cypress Cove (из Rocket Lake) и Willow Cove (из Tiger Lake). А эффективные ядра имеют микроархитектуру Gracemont, которая выросла из процессоров Atom и является дальнейшим развитием микроархитектуры Tremont, применявшейся как в экспериментальных процессорах Lakefield, так и в более понятных Pentium (Silver) и Celeron серий N и J с кодовыми именами Jasper Lake и Elkhart Lake.
Важной задачей, которую Intel ставила перед собой при разработке Alder Lake, было создание не только двух типов ядер, но и более широкого набора разнообразных конструкционных блоков, которые могли бы позволить легко собирать различные по назначению потребительские процессоры для разных рыночных сегментов и с различными характеристиками: как высокопроизводительные настольные, так и мобильные и даже ультрамобильные.
Несмотря на заложенную в дизайне модульность, в процессорах Alder Lake пока не применяется тайловая топология – аналог чиплетов в видении Intel. Такой способ сборки компания возьмёт на вооружение чуть позднее. Вместо этого различные варианты Alder Lake конструируются на одном монолитном полупроводниковом кристалле. Но для удобства разработчики специально подогнали размеры составных частей Alder Lake друг к другу, и, например, одно производительное P-ядро примерно соответствует по площади собранным в кластер четырём эффективным E-ядрам. Подобные пропорции выдерживаются и для других элементов процессора (для графического ядра, контроллера памяти, контроллера PCIe и проч.) – это как раз и обеспечивает многообразие и гибкость конфигураций.
Неотъемлемой частью будущих процессоров Alder Lake, как и раньше, осталось графическое ядро. Intel предусмотрела два варианта графики: GT1 с 32 исполнительными устройствами для настольных процессоров и GT2 c 96 устройствами для мобильных применений. Встроенные GPU базируются на графической архитектуре 12-го поколения, то есть они относятся к классу Xe LP и примерно соответствуют по возможностям графическому ядру процессоров Tiger Lake. В варианте GT2 встроенная графика, как ожидается, сможет обеспечить приемлемую игровую производительность в разрешении 1080p (с низкими настройками качества) и будет поддерживать 12-битный конвейер воспроизведения видео. Однако в десктопные процессоры попадёт лишь более простой вариант GPU.
Отсутствие кардинальных обновлений в графическом ядре должен скомпенсировать новый контроллер памяти с поддержкой сразу четырёх типов SDRAM. Он может работать как с новыми DDR5-4800 и LPDDR5-5200, так и со старой памятью DDR4-3200 и LPDDR4X-4266. Естественно, все четыре типа памяти будут поддерживаться не одновременно: выбор того или иного варианта будет происходить на этапе проектирования конкретной платформы. Логично ожидать, что поддержка DDR5 SDRAM в первую очередь появится в высокопроизводительных десктопах (условно говоря, основанных на чипсетах Z-серии), в то время как решения среднего уровня продолжат опираться на привычную DDR4- и LPDDR4X-память. И так будет продолжаться до тех пор, пока цена модулей DDR5 будет существенно превышать стоимость DDR4.
Блок интерфейса PCI Express, который инженеры Intel спроектировали для Alder Lake, также содержит серьёзные инновации. Впервые в потребительском сегменте он наделён поддержкой протокола PCIe 5.0, который обеспечивает очередное удвоение пропускной способности и позволяет обеспечить графическому слоту PCIe x16 полосу 64 Гбайт/с. В то же время для подключения NVMe-накопителей процессорный контроллер предлагает лишь интерфейс PCIe 4.0 x4, которого, впрочем, достаточно для любых представленных на рынке SSD. Кроме того, поддержка PCIe 5.0 будет присутствовать исключительно в настольных версиях Alder Lake. Процессоры, отнесённые к мобильному сегменту, получат иной контроллер PCIe, в котором возможности будут каким-то образом урезаны.
Но есть и обратные примеры: некоторые конструкционные блоки Alder Lake предназначаются исключительно для мобильных вариантов CPU. К их числу относятся, например, контроллер Thunderbolt 4 или сопроцессор обработки изображений IPU. Они встраиваться в настольные версии процессоров не будут.
Все элементы Alder Lake, включая разные ядра, графику и фрагменты L3-кеша, контроллеры памяти и PCIe, а также все прочие блоки, как и ранее, объединены в одно целое посредством двунаправленной кольцевой шины, которая в этой реализации имеет пропускную способность до 1000 Гбайт/с. Похожий вариант кольцевой шины уже использовался в мобильных Tiger Lake, однако в новых процессорах Intel пообещала дополнительные оптимизации, направленные на снижение задержек.
Ещё одно большое нововведение касается технологического процесса производства. Alder Lake станут первыми чипами Intel, которые будут выпускаться по техпроцессу Intel 7 – до недавнего переименования он фигурировал под названием 10 нм Enhanced SuperFin. Речь здесь идёт о втором этапе оптимизаций процесса с 10-нм нормами, который должен обеспечить улучшение удельной производительности на ватт на 10-15 % относительно прошлой версии техпроцесса 10 нм SuperFin. Хотя ранее техпроцесс Intel 7 считался 10-нм, по плотности размещения транзисторов на кристалле он либо сравним, либо превосходит 7-нм техпроцесс других производителей, что как раз и дало производителю моральное право переименовать технологию в Intel 7. Так, согласно данным WikiChip, бывший 10-нм техпроцесс Intel обеспечивает размещение 100,76 млн транзисторов на мм2, в то время как 7-нм процесс TSMC упаковывает на той же площади только 91,2 млн транзисторов.
Пользуясь данной производственной технологией, Intel собирается упаковывать в полупроводниковые кристаллы Alder Lake до восьми производительных и восьми эффективных ядер одновременно. Это значит, что максимальное число ядер в будущих процессорах достигает 16, но такие конфигурации будут предлагаться только для настольных платформ. Довольно непривычно, что максимальный 16-ядерный процессор сможет исполнять одновременно не 32, а только 24 потока, а объём его кеш-памяти третьего уровня составит 30 Мбайт.
Такое странное сочетание числа ядер и потоков обусловлено тем, что P-ядра обладают поддержкой технологии Hyper-Threading, в то время как E-ядра её лишены. Более того, они работают на разных тактовых частотах и обладают различными по объёму и организации кешами. Всё это значит, что паспортные характеристики разнообразных моделей Alder Lake могут многим показаться удивительными: в зависимости от количества тех или иных ядер конкретные CPU будут получать очень непривычные комбинации числа потоков и ядер, частот и объёма кеш-памяти.
На данный момент Intel раскрыла три базовые конструкции полупроводниковых кристаллов Alder Lake, нацеленные на три различных сегмента: высокопроизводительные настольные процессоры Alder Lake-S, которые будут устанавливаться в новое поколение материнских плат с процессорным разъёмом LGA1700; мобильные процессоры Alder Lake-P с тепловым пакетом от 12 до 35 Вт в исполнении BGA Type3; ультрамобильные Alder Lake-M в корпусе BGA Type4 HDI с тепловым пакетом от 7 до 15 Вт, предназначенные для ультрабуков. Кристалл процессоров Alder Lake-S содержит восемь P-ядер, восемь E-ядер и графику GT1. В Alder Lake-P число P-ядер ограничивается шестью, но зато используется производительная графика GT2. А в Alder Lake-M предусматривается лишь два P-ядра, но всё те же восемь E-ядер и GT2 GPU.
Судя по всему, первыми на рынок придут процессоры Alder Lake-S для настольных систем. Их модельный ряд будет возглавлять процессоры Core i9 с ядерной формулой 8 + 8, а также, по неподтверждённой пока информации, в него могут войти процессоры Core i7 с формулой 8 + 4, два варианта Core i5 с формулой 6 + 4 или 6 + 0, и, возможно, процессоры Core i3 со схемой ядер 4 + 0. Отдельно необходимо подчеркнуть, что такая запись числа ядер в виде суммы двух слагаемых используется непроста. Суммировать количество P- и E-ядер неправильно: Intel не собирается преподносить старшие Alder Lake в качестве 16-ядерных предложений, они скорее будут позиционироваться как продвинутые восьмиядерники с дополнительными энергоэффективными ядрами. Поэтому, например, не стоит удивляться составу серии Core i5, где одновременно будут представлены процессоры с 10 и с 6 ядрами: число E-ядер не считается определяющим фактором и может варьироваться у соседних моделей.
⇡#Как это всё работает: Intel Thread Director
Строго говоря, Alder Lake – не первые x86-процессоры, объединяющие ядра двух разных типов. Ранее Intel уже выпускала гибридные энергоэффективные процессоры Lakefield, где одно ядро Sunny Cove соседствовало с четырьмя ядрами Tremont. Однако они не получили заметного признания и, хотя были представлены только во втором квартале прошлого года, уже сняты с производства. Своей печальной участью они отчасти обязаны проблемам с их функционированием в Windows 10, которая не всегда правильно распределяла нагрузку по разнородным ядрам, что приводило к снижению производительности. Изначально предполагалось, что для устройств на базе Lakefield будет предназначена специальная операционная система Windows 10X, в которой будут заложены адаптированные алгоритмы, однако, к сожалению, её выпуск Microsoft отменила.
Эта история вызывает опасения, что подобное может произойти и с Alder Lake. Ведь совершенно очевидно, что для правильной работы гибридных процессоров планировщик операционной системы должен различать типы ядер и динамически отправлять требовательные нагрузки на ядра, способные предложить высокую производительность, попутно освобождая их от фоновых задач. Но на этот раз Intel всё предусмотрела. Чтобы помочь планировщику лучше разобраться в структуре процессора и добиться максимальной эффективности работы, в Alder Lake появилась аппаратная технология Intel Thread Director, которая будет отвечать за распределение нагрузки совместно с новой операционной системой Windows 11.
Суть Thread Director состоит в том, чтобы передать планировщику ОС подробные телеметрические данные о текущем состоянии всех ядер, благодаря которым он сможет принимать обоснованные решения о привязке потоков к конкретным ядрам. Данная технология, как обещает Intel, должна обходить все трудности, которые могут возникать при практической эксплуатации гибридных процессоров с ядрами разных типов. И самое главное, она совершенно прозрачна для программного обеспечения и не требует внесения каких-либо изменений в программный код.
Основной частью Intel Thread Director является встроенный в процессор микроконтроллер, который собирает подробные низкоуровневые данные о каждом ядре процессора, включая температуру, энергопотребление, загрузку и прочие параметры, и с минимальными задержками передаёт их планировщику операционной системы. Помимо этого, Thread Director непрерывно, с наносекундной дискретностью, отслеживает инструкции, которые исполняются каждым ядром, а также анализирует загрузку их исполнительных устройств. Базируясь на всей этой информации, планировщик получает возможность переключать потоки между ядрами полностью обоснованно и в соответствии с понятной стратегией, суть которой заключается в том, чтобы обеспечить задачам переднего плана и приложениям, чувствительным к задержкам, максимальную скорость выполнения. Например, более высокий приоритет при перемещении на производительные ядра получают потоки, которые оперируют векторными инструкциями, а потоки, работающие со скалярными инструкциями, с большей вероятностью отправляются на энергоэффективные ядра. Но в любом случае вся эта система динамична и переброс потоков с одних ядер на другие зависит от массы различных факторов, и в том числе от видов нагрузки, исполняемой на процессоре в каждый конкретный момент времени.
Intel привела несколько примеров того, как работает Thread Director в некоторых частных случаях. Например, когда все ядра свободны, единичный процесс всегда будет отправлен сразуна P-ядро, однако если в момент старта процесса все такие ядра заняты, он начнёт работу на E-ядре и переместится на P-ядро только тогда, когда Thread Director сочтёт такой перенос целесообразным. В другой ситуации, когда процессор загружается всё возрастающим числом равноправных потоков, они сначала отправляются по одному на каждое свободное P-ядро, затем по одному на каждое свободное E-ядро, а потом по одному на виртуальные ядра, существующие за счёт технологии Hyper-Threading.
Отдельно оговаривается и то, что привязка потоков к ядрам не постоянна, и они могут активно перемещаться с одного типа ядер на другой прямо в процессе работы. Это может происходить как из-за изменения характера нагрузки внутри вычислительного потока, так и в ситуациях, когда количество требовательных потоков начинает превышать число производительных ядер. В этой ситуации некоторые потоки будут перенесены на E-ядра с целью высвободить мощности под ту нагрузку, которая больше нуждается в вычислительных мощностях в каждый конкретный момент времени.
Существовавшие до сих пор процессоры и операционные системы не обменивались информацией, чтобы оптимизировать распределение вычислительных ресурсов: планировщик опирался исключительно на данные о приоритетах потоков, назначенных им либо самой операционной системой, либо разработчиками программы. Теперь же за счёт технологии Thread Director работа планировщика должна стать более самостоятельным, тонким и динамичным процессом. Такой симбиоз аппаратных и программных средств внушает надежду, что разнородные ядра гибридных процессоров Alder Lake будут задействованы именно так, как задумано Intel, – чтобы обеспечивать максимальный уровень быстродействия.
Вместе с тем внедрение Thread Director добавляет новые возможности и для разработчиков ПО. Доступные для процессоров Alder Lake расширения библиотек PowerThrottling API вводят для потоков дополнительные атрибуты качества обслуживания, благодаря которым авторы программ при желании смогут размечать создаваемые потоки. Кроме того, для потоков, которые заведомо способны работать на энергоэффективных ядрах и не нуждаются в высоких вычислительных мощностях, введена отдельная маркировка. Известно, что различные компоненты Windows 11, включая браузер Edge, будут использовать описанные расширения, что ещё раз отражает близкое сотрудничество Intel с Microsoft в вопросе создания и поддержки гибридной процессорной архитектуры.
К сожалению, Intel не стала делиться подробной информацией о работе Thread Director, поэтому пока нам придётся принять на веру тот факт, что благодаря этой технологии нужная нагрузка действительно будет отправляться на нужные ядра. Впрочем, процессоры Alder Lake позволят отключить E-ядра, если у пользователя возникнут сомнения в целесообразности их привлечения к работе.
Говоря о распределении потоков по ядрам гибридного процессора, Intel делает особый упор на новую операционную систему Windows 11 с оптимизированным планировщиком. Тем не менее Alder Lake должны приемлемо работать и без реализованного в этой операционной системе тесного взаимодействия между Alder Lake и планировщиком. Intel указывает, что и в старой операционной системе Windows 10 новые процессоры смогут работать вполне нормально. Хотя технология Thread Director в Windows 10 не поддерживается, эта операционная система опирается на механизм Intel Hardware Guided Scheduling, который тоже способен переключать потоки с учётом разнородности ядер, просто не настолько точно и с несколько более низкой частотой. Тем не менее, по утверждению Intel, заметить невооружённым глазом разницу в производительности Alder Lake в Windows 10 и Windows 11 будет довольно сложно.
⇡#Инцидент с AVX-512
О том, что энергоэффективные ядра Gracemont не имеют 512-битных регистров и не поддерживают набор инструкций AVX-512, известно довольно давно, и это кажется вполне естественным, если вспомнить, что реализация векторных операций требует как существенного транзисторного бюджета, так и заметных затрат энергии. Но тут же возникает закономерный вопрос о том, как в этом случае будет строиться работа с этими инструкциями в процессорах Alder Lake в целом? Ответ на этот вопрос оказался очень простым – никак. Хотя в производительных ядрах Willow Cove в составе Alder Lake регистры и исполнительные устройства с 512-битной размерностью заложены в микроархитектуре, исполнение инструкций AVX-512 в них заблокировано на аппаратном уровне, чтобы не вызывать лишних коллизий при диспетчеризации потоков, работающих с такими командами.
И это значит, что с появлением процессоров Alder Lake в поддерживаемых потребительскими CPU расширениях набора инструкций произошёл откат назад. Несмотря на то, что поддержка AVX-512 была реализована и в мобильных процессорах Tiger Lake, и в десктопных Rocket Lake, в новом поколении процессоров её снова не будет.
В качестве некой компенсации Intel добавила в Alder Lake поддержку подмножества инструкций VNNI для решения задач, связанных с нейронными сетями. И эти инструкции, как ни странно, могут исполняться как на производительных, так и на энергоэффективных ядрах. Однако это вовсе не те инструкции VNNI, которые ранее считались частью набора AVX-512 и оперировали 512-битными регистрами. Поскольку в Alder Lake эти регистры заблокированы, инструкции VNNI в них оперируют 256-битными регистрами и как бы существуют в рамках подмножества команд AVX2. Иными словами, набор инструкций AVX2-VNNI, который реализован в Alder Lake, отличается по разрядности от введённого ранее набора AVX-512 VNNI и требует специальной поддержки со стороны ПО. По этой причине рассчитывать на то, что введённые в Alder Lake уникальные инструкции VNNI станут активно использоваться в программных продуктах, не приходится.
⇡#Производительные ядра в подробностях
Наиболее важная часть процессоров Alder Lake – новые P-ядра Golden Cove. Они не только занимают на полупроводниковом кристалле самую значительную часть площади, но и несут львиную долю ответственности за производительность процессора, так как берут на себя выполнение ресурсоёмких задач переднего плана. Поэтому совершенно неудивительно, что перед разработчиками микроархитектуры Golden Cove была поставлена задача не просто создать самое быстрое из всех существующих x86-ядро, а добиться явного превосходства в удельной производительности над предшественниками. Однако речь не шла о победе любой ценой: процессоры на базе ядер Golden Cove должны иметь возможность работы в широком ассортименте устройств, начиная от ноутбуков и заканчивая серверами, а значит, помимо высокой производительности огромное значение имеет и возможность масштабирования характеристик. Например, в случае интересующих нас в первую очередь потребительских процессоров Alder Lake важную роль играет оптимизация микроархитектуры как под однопоточные нагрузки, так и под многопоточные ресурсоёмкие приложения для работы с цифровым контентом.
Intel долгое время опиралась на ядро Skylake и взялась за серьёзную переделку своей самой успешной и самой долгоживущей микроархитектуры сравнительно недавно. Но, начав с вышедшей в 2019 году микроархитектуры Sunny Cove, компания принялась проводить различные улучшения непривычно бодро. Она сразу же сформулировала принцип «шире, глубже, умнее» и в соответствии с ним стала последовательно перекраивать старое ядро Skylake. Микроархитектура Golden Cove, таким образом, уже вторая итерация улучшений. И в ней мы снова видим более глубокие буферы переупорядочивания, большее количество физических регистров, более широкое окно выборки инструкций и возросшее количество исполнительных портов. К этому списку прилагается также улучшение предсказания ветвлений, что снижает простои исполнительных устройств из-за неправильного прогнозирования переходов.
Сама Intel оценивает результативность внесённых в микроархитектуру изменений очень высоко. Согласно данным компании, средняя удельная производительность ядра Golden Cove (на одинаковой частоте) выше производительности ядра Cypress Cove, применяющегося в процессорах Rocket Lake, на 19 %. При этом в некоторых задачах прирост в пределах одной смены поколений может быть намного выше и достигать величины до 60 %. И всё это звучит очень многообещающе, ведь благодаря новой производственной технологии Intel 7 процессоры Alder Lake не должны отставать от предшественников и по тактовым частотам.
Более того, прирост удельной производительности в каждой новой версии микроархитектуры на 19 % стал для Intel, похоже, неким стандартом. Такой же шаг вперёд был сделан при переходе от Skylake к Cypress Cove, и это значит, что показатель IPC (удельная производительность на такт) ядра Golden Cove выше, чем у Skylake, где-то на 40-45 %. В результате от Golden Cove вполне можно ожидать заметного превосходства и над конкурирующими архитектурами, в частности над Zen 3.
Заметные изменения в микроархитектуре Golden Cove начинают прослеживаться уже во входной части исполнительного конвейера. В первую очередь стоит отметить увеличение числа декодеров — с 4 до 6, что даёт возможность ядру декодировать по 6 инструкций за такт. Для того чтобы декодеры не простаивали без работы, в Golden Cove с 16 до 32 байт увеличился объём выборки кода. Кроме этого, Intel поработала и в направлении повышения эффективности кеша микроопераций, где хранятся уже декодированные инструкции. Если сравнивать с Cypress Cove, то его объём увеличился с 2,25 до 4 тыс. записей, а пропускная способность выросла до 8 микроопераций за такт вместо 6. Всё это позволяет насыщать последующие после декодирования этапы исполнительного конвейера – диспетчер и планировщик – с заметно более высокой интенсивностью.
Для улучшения возможности работы со сложным кодом Intel удвоила число записей, относящихся к 4K-страницам, в iTLB, а также улучшила предсказание переходов, увеличив максимальную размерность буфера целей ветвлений с 5 до 12 тысяч записей. Кроме того, этот буфер получил дополнительную интеллектуальность – основанный на машинном обучении алгоритм, способный подстраивать его вместимость под текущую нагрузку для оптимизации производительности и энергопотребления.
Диспетчер, занимающийся приёмом и размещением микроопераций, а также переименованием регистров, получил возросшую ширину – в него теперь входит 6, а не 5, как раньше, равноправных блоков. Механизм внеочередного исполнения стал эффективнее за счёт увеличения соответствующего буфера с 352 до 512 записей. И в сумме всего этого оказалось вполне достаточно для загрузки работой возросшего числа исполнительных устройств, которые сгруппированы в Golden Cove в 12 портов (против 10 портов у Cypress Cove). Кроме того, Intel упомянула ещё один новый механизм, благодаря которому некоторые инструкции могут быть выполнены ещё на этапе переименования регистров, что должно дополнительно разгрузить исполнительный домен.
Один из добавленных в Golden Cove исполнительных портов отдан под работу с командами ALU и LEA. Таким образом, новое ядро располагает сразу пятью целочисленными устройствами, способными исполнять по одной команде за такт.
Кроме того, отдельно здесь же появились два дополнительных устройства для быстрого векторного сложения (FADD).
Улучшения коснулись и L1D-кеша, который получил три порта загрузки вместо двух, имевшихся ранее, а также более вместительные буферы загрузки и выгрузки. Попутно Intel на 50 % увеличила вместимость L1 TLB. Изменения в алгоритме работы L1D затронули и предварительную выборку данных, в которой теперь используется четыре анализатора вместо двух, что должно дать эффект при работе в многопоточной среде. При этом объём L1D кеша в ядре Golden Cove останется на уровне 48 Кбайт – как и в Sunny Cove.
Что касается кеш-памяти второго уровня, то в Alder Lake на каждое P-ядро будет полагаться L2-кеш объёмом 1,25 Мбайт с низкой латентностью и возможностью расширения в перспективе до 2 Мбайт. Как и в случае L1D, Intel обещает для него улучшенную предвыборку данных, основанную на выявлении шаблонов запросов к памяти.
Подводя итог всему перечисленному, можно констатировать, что по сравнению с прошлым поколением микроархитектуры у ядра Golden Cove на 50 % расширился декодер, на 25 % — стадия подготовки микроопераций и на 45 % – буфер внеочередного исполнения. Плюс всё это приправлено существенными улучшениями в механизме предсказания переходов. Как перечисленные усовершенствования выглядят в численном выражении, можно посмотреть в приведённой таблице.
Skylake | Sunny Cove | Golden Cove | |
---|---|---|---|
Кеш микроопераций, объём | 1,5К | 2,25K | 4,0K |
Кеш микроопераций, операций/такт | 6 | 6 | 8 |
Декодеры | 4 | 4 | 6 |
Буфер переупорядочивания, объём | 224 | 352 | 512 |
Исполнительные порты | 8 | 10 | 12 |
Целочисленные ALU | 4 | 4 | 5 |
Загрузка данных | 2 × 256 | 2 × 512 | 2 × 512 или 3 × 256 |
Кеш L1D, Кбайт | 32 | 48 | 48 |
Кеш L2, Кбайт | 256 | 512 | 1280 |
Остаётся лишь добавить, что в ядрах Golden Cove появился ещё один любопытный элемент – дополнительный и полностью самостоятельный микроконтроллер для управления питанием, который обеспечивает сбор телеметрии с микросекундной дискретностью, что на несколько порядков улучшает точность всего мониторинга по сравнению со старой схемой. По словам Intel, повышенная точность позволяет управлять энергопотреблением и производительностью CPU с меньшими задержками, что в конечном итоге повышает средние частоты ядра под нагрузкой без ущерба для энергопотребления и тепловыделения. Встроенный микроконтроллер для управления питанием в Golden Cove применяется впервые – подобных решений в ядрах Intel ранее не было. И он пришёлся в Alder Lake как нельзя более кстати – тот же микроконтроллер активно задействуется и в работе технологии Thread Director.
⇡#Энергоэффективные ядра в подробностях
Энергоэффективные ядра в Alder Lake играют роль аккомпанемента для ядер Golden Cove. Они не исполняют сольных партий, но зато вместе с ними P-ядра, образно выражаясь, должны зазвучать более убедительно. E-ядра основываются на микроархитектуре Gracemont и представляют собой дальнейшее развитие процессоров Atom, хотя и ушли от них довольно далеко. Тем не менее концепция осталось той же: на первом месте в них стоит компактность и экономичность. Но при этом, по утверждению Intel, разработчикам удалось спроектировать ядра Gracemont такими, что с точки зрения удельной производительности на ватт они заметно превосходят Skylake, занимая на кристалле в четыре раза меньше места, чем P-ядра, и к тому же отличаются высокой энергоэффективностью.
Согласно собственным данным Intel, полученным при однопоточной целочисленной нагрузке, в случае уравнивания энергопотребления Gracemont оказывается производительнее Skylake на 40 %, а в случае равенства производительности – потребляют на 40 % меньше.
Другой показатель, который приводят разработчики, касается четырёхпоточной производительности: два ядра Skylake с поддержкой Hyper-Threading проигрывают четырём ядрам Gracemont в производительности порядка 80 % при равном потреблении, а при одинаковом быстродействии потребляют на 80 % больше энергии.
Впрочем, приведённые сравнения вовсе не означают, что E-ядра процессоров Alder Lake лучше Skylake во всех отношениях. В действительности в приводимых Intel сравнениях сделано несколько допущений. Во-первых, производительность ядер сравнивается исключительно при простой целочисленной нагрузке, именно под которую, очевидно, оптимизированы ядра Gracemont. Во-вторых, в случае четырёхпоточного теста одиночным ядрам Skylake противопоставляются пары ядер Gracemont, которые Hyper-Threading не поддерживают. Но тем не менее явная сильная сторона Gracemont заключается в том, что их по производительности всё-таки можно сопоставлять с Skylake, несмотря на то, что они в разы меньше по площади.
Достигнуто это за счёт глубокой переработки прошлых энергоэффективных микроархитектур Intel. В последних двух поколениях, Tremont и Gracemont, кардинально видоизменилась и стала глубже и шире входная часть исполнительного конвейера, плюс значительно выросло число исполнительных портов. Более того, в Gracemont даже добавились 256-битные регистры и исполнительные устройства для реализации наборов команд AVX2 и AVX2-VNNI. То есть E-ядра ушли от предшественников с микроархитектурой Goldmont очень далеко: не только принципиально увеличилась производительность, но и по возможностям E-ядра подтянулись к «большим» собратьям.
Сдвоенный шестивходовый декодер, который способен декодировать два потока с темпом по три x86-инструкции за такт, появился ещё в ядре Tremont. Он хорошо зарекомендовал себя там, и Intel перенесла его и в Gracemont. Но в новом поколении микроархитектуры он дополнен более вместительным L1I-кешем инструкций объёмом 64 Кбайт, который даже превосходит по объёму L1I-кеш производительного ядра Golden Cove. Рост объёма кеша произошёл одновременно с увеличением до 5000 записей буфера целей ветвлений, который работает более эффективно тогда, когда цели ветвлений находятся в кеше, – это привело к повышению результативности предсказания переходов. Кроме того, на базе L1I-кеша работает ещё один механизм – «декодирование по запросу», который отчасти заменяет отсутствующий в Gracemont кеш микроопераций и частично сохраняет историю предыдущих декодирований, позволяя при ошибках в предсказании переходов избегать повторного декодирования некоторых фрагментов однажды обработанного потока инструкций.
Далее, в микроархитектуре Gracemont предусмотрен пятивходовый блок размещения инструкций и восьмипортовый блок их отставки, которые работают с выросшим до 256 записей буфером переупорядочивания инструкций. А затем в конвейере находится 17 исполнительных портов – поистине гигантский по ширине исполнительный домен. И хотя все порты в данном случае заметно проще, чем в «больших» ядрах, на целочисленных инструкциях этот массив действительно может обеспечивать более высокий показатель IPC, нежели восемь портов ядра Skylake. Однако нужно понимать, что, несмотря на его ширину, одновременно в исполнительный домен Gracemont можно загружать не более пяти микроопераций за такт, и именно это ограничивает темп исполнения программного кода.
В исполнительном домене Gracemont предусмотрено четыре независимых целочисленных устройства общего назначения, и два из них умеют исполнять операции умножения и деления. Кроме того, ядро имеет необходимые ресурсы, чтобы брать два перехода за такт. Для работы с векторными инструкциями и числами с плавающей точкой в Gracemont выделено три порта, два из которых способны обрабатывать операции умножения и деления. В целом конструкция исполнительного домена энергоэффективного ядра предполагает использование большого числа узкоспециализированных исполнительных портов, в то время как в производительных ядрах концепция иная. Там портов меньше, но они более универсальны и ориентированы на более разнородные операции.
При работе с кеш-памятью ядро Gracemont может инициировать две операции загрузки и две операции выгрузки данных за такт, однако, в отличие от P-ядер, здесь эти операции 128-битные. Объём L1D-кеша при этом тоже меньше – всего 32 Кбайт. Отличается и организация кеш-памяти второго уровня. Её объём достигает 2 Мбайт, но он разделяется на расположенные рядом и скомпонованные в единый кластер четыре ядра. Связь L2-кеша с каждым из ядер в этой схеме осуществляется собственным 512-битным каналом. Для совместной работы ядер с L2-кешем в микроархитектуре предусмотрен специальный диспетчер, причём алгоритм его работы настроен на равномерное распределение ресурсов по ядрам, а не на обеспечение низкой латентности для каких-то отдельных потоков. И это отражает, что конструкция E-ядер в первую очередь заточена под многопоточные нагрузки.
Микроархитектура Gracemont предполагает, что такие ядра компонуются в четырёхъядерные кластеры, которые занимают на полупроводниковом кристалле Alder Lake примерно столько же места, сколько одно производительное ядро Golden Cove. Это даёт возможность добавлять в современные процессоры большое количество сравнительно простых вычислителей, которые к тому же обладают очень хорошей энергоэффективностью. Для того чтобы максимально развить эту идею, Intel понизила кластерам E-ядер напряжение питания, и поэтому ядра Gracemont в составе Alder Lake будут работать на сравнительно невысокой частоте. Однако предполагается, что при необходимости их производительность можно масштабировать в широких пределах – они должны хорошо переносить повышение напряжения и отвечать на него ростом верхней границы допустимой частоты.
⇡#Настольные процессоры Alder Lake-S и платформа LGA1700
До прихода на рынок семейства процессоров Alder Lake-S, нацеленного на применение в производительных десктопах, остаётся всего несколько недель, и представить себе, как будет выглядеть соответствующий модельный ряд, можно уже сейчас. Стратегия Intel по выводу Alder Lake-S на рынок предполагает выпуск в первую очередь платформы и процессоров для энтузиастов, в то время как более массовые и доступные модификации появятся позднее. Это значит, что на рынок сначала придут настольные процессоры старших серий Core i9, Core i7 и Core i5, а также единственный флагманский чипсет Z690.
Для использования в первой очереди десктопных процессоров Intel подготовила полупроводниковый кристалл с 8 ядрами Golden Cove, двумя четырёхъядерными кластерами Gracemont и графикой GT1 с 32 исполнительными устройствами. Но полностью этот арсенал будет пущен в ход исключительно в процессорах серии Core i9. Представители младших серий получат меньшее число ядер, причём разница между Core i9 и Core i7 будет определяться числом E-ядер, а в серии Core i5 будут частично отключены как P-ядра, так и E-ядра.
Образцы Alder Lake-S. Источник: Expreview.com
Тактовые частоты P-ядер в Alder Lake-S, предположительно, окажутся на обычном для процессоров Intel уровне: в турборежиме они смогут брать высоту около 4,9-5,3 ГГц при однопоточной нагрузке и 4,5-5,0 ГГц – при многопоточной. Что касается E-ядер, то целевые частоты для них ожидаются в интервале 3,4-3,9 ГГц. Тепловой пакет новых процессоров также вряд ли кого-то удивит: 125 Вт – для моделей с разблокированными множителями и 65 Вт – для обычных.
Зато заметно вырастет в объёме L3-кеш. В процессорах поколений Rocket Lake и Comet Lake на каждое ядро приходился блок L3-кеша объёмом 2 Мбайт. В Alder Lake объём таких блоков, примыкающих к P-ядрам, увеличился до 3 Мбайт. Также 3-Мбайт блоками оснащены и четырёхъядерные кластеры E-ядер, поэтому максимальный объём L3-кеша у старших моделей Alder Lake достигнет 30 Мбайт. Сам кеш при этом неинклюзивный, то есть в нём не дублируется содержимое вышестоящей кеш-памяти.
Отдельно следует сказать про цены. В целом Intel не планирует как-то заметно менять свою ценовую политику. И это означает, что представители серии Core i9 получат рекомендованную стоимость примерно $500-$600, процессоры Core i7 можно будет купить за $350-$450, а Core i5 будут продаваться за $200-$300. Иными словами, компания не считает, что внедрение гибридной архитектуры и добавление E-ядер заслуживает какой-то заметной наценки.
Предполагаемые характеристики первых представителей серии приведены в таблице, но стоит иметь в виду, что эти данные – неофициальные и предварительные.
P-ядра + E-ядра | Число потоков | Частота P-ядер, базовая/ турбо, ГГц | Частота E-ядер, ГГц | L3-кеш, Мбайт | TDP, Вт | |
---|---|---|---|---|---|---|
Core i9-12900K | 8 + 8 | 24 | 3,2-5,3 | До 3,9 | 30 | 125 |
Core i9-12900 | 8 + 8 | 24 | 3,2-5,2 | н/д | 30 | 65 |
Core i7-12700K | 8 + 4 | 20 | 3,6-5,0 | До 3,8 | 25 | 125 |
Core i7-12700 | 8 + 4 | 20 | 3,6-4,9 | н/д | 25 | 65 |
Core i5-12600K | 6 + 4 | 16 | 3,7-4,9 | До 3,6 | 20 | 125 |
Core i5-12600 | 6 + 0 | 12 | 3,7-4,8 | н/д | 18 | 65 |
Core i5-12400 | 6 + 0 | 12 | н/д | н/д | 18 | 65 |
Настольные процессоры семейства Alder Lake-S рассчитаны на использование в материнских платах с новым разъёмом LGA1700, который отличается от актуального LGA1200 не только увеличенным количеством контактов, но и прямоугольной, а не квадратной формой и слегка выросшими геометрическими размерами. Изменения в первую очередь обусловлены появлением поддержки новых типов памяти и интерфейса PCIe 5.0, а во вторую – усложнившейся схемой подвода питания, поскольку P-ядра и E-ядра работают от разных напряжений.
Процессорное гнездо LGA1700. Источник: bilibili.com
К тому же меняется и высота процессора вместе с процессорным гнездом – Alder Lake-S будет примерно на миллиметр меньше возвышаться над материнской платой, нежели предшественники. Это потребует использования для теплоотвода систем охлаждения с другими креплениями, и поэтому крепёжные отверстия в LGA1700-платах будут расположены немного иным образом – квадратом 78 × 78 мм вместо 75 × 75 мм. Таким образом, большинство кулеров от старых компьютеров для Alder Lake-S не подойдёт, по крайней мере без замены крепёжных деталей.
Ввиду того, что контроллер памяти Alder Lake-S поддерживает как DDR4, так и DDR5 SDRAM, материнские платы для этих процессоров будут выпускаться со слотами DIMM либо под ту, либо под другую память. Первое время платы с поддержкой DDR5 SDRAM будут, очевидно, представлены лишь дорогими моделями, поскольку такие модули после их появления в продаже будут стоить заметно дороже, чем DDR4. Однако энтузиасты могут всё равно предпочесть платы с DDR5 DIMM, так как новая память способна обеспечить вдвое более высокую пропускную способность.
Образец Alder Lake-S. Источник: pcinq.com
Для десктопных платформ на базе Alder Lake-S компанией Intel готовится новое семейство наборов логики 600-й серии. В нём будут реализованы существенно расширенные возможности для подключения внешних устройств. Так, старший из будущих чипсетов, Z690, который придёт на рынок первым, сможет предложить даже собственные линии PCIe 4.0.
В дополнение к 16 линиям PCIe 5.0 (для видеокарты) и 4 линиям PCIe 4.0 (для накопителя), за которые отвечает процессор, в системах на основе Z690 добавится 12 чипсетных линий PCIe 4.0, что в конечном итоге позволит установить в систему до четырёх самых современных NVMe-накопителей. Кроме того, в Z690 также заложена и поддержка 16 линий PCIe 3.0, то есть в общей сложности чипсет располагает 28 линиями PCIe, а платформа целиком – 48 линиями. Ещё одно важное изменение, напрямую связанное с появлением в чипсете PCIe 4.0, – перевод соединения между процессором и чипсетом на интерфейс DMI 4.0 x8 с удвоенной полосой пропускания. Это позволит обеспечить достаточную пропускную способность для работы всего набора чипсетных линий PCIe.
Набор системной логики Intel Z690. Источник: pcinq.com
Среди прочих улучшений Z690 также можно отметить увеличение числа 20-гигабитных портов USB 3.2 Gen 2×2 и появление (пока только в теории) поддержки модулей Wi-Fi 7 через интерфейс CNVi.
Intel Z690 | Intel Z590 | |
---|---|---|
Шина DMI 3.0 | DMI 4.0 x8 | DMI 3.0 x8 |
Разгон процессора | Есть | Есть |
Разгон памяти | Есть | Есть |
CPU PCIe | 16 линий PCIe 5.0 4 линии PCIe 4.0 | 20 линий PCIe 4.0 |
Линии PCIe 4.0 | 12 | 0 |
Линии PCIe 3.0 | 16 | 24 |
Порты SATA 6 Гбит/с | 6 | 6 |
Поддержка RAID | Есть | Есть |
USB 3.2 Gen 2×2 (20 Гбит/с) | 4 | 3 |
USB 3.2 Gen 2 (10 Гбит/с) | 10 | 10 |
USB 3.2 Gen 1 (5 Гбит/с) | 10 | 10 |
Ethernet MAC | 5 Гбит/с | 2,5 Гбит/с |
Wi-Fi | Wi-Fi 6E/7 | Wi-Fi 6 |
⇡#Выводы
Представить, какой уровень производительности смогут в конечном итоге предложить процессоры Alder Lake-S, сейчас довольно сложно. Никаких утечек информации на этот счёт, которым действительно можно было бы доверять, пока не было, а оценки удельной производительности микроархитектур, сделанные самим производителем, не дают конкретных ориентиров.
С уверенностью можно говорить лишь об одном: Alder Lake-S будут определённо (и существенно) быстрее предшественников. Отвечают за это производительные ядра Golden Cove, и они наверняка не подведут, поскольку в них заложен целый комплекс улучшений, прямо увеличивающий производительность. Число таких ядер будет не меньше, чем в Rocket Lake, не снизятся и тактовые частоты. Однако не стоит забывать, что с ядрами Golden Cove в будущих процессорах соседствуют и энергоэффективные ядра Gracemont, которые тоже выглядят довольно неплохо, но как будет вести себя в реальности гибридная архитектура, спрогнозировать довольно сложно. Intel уверяет, что современные операционные системы в состоянии разобраться с разнотипными ядрами, но на деле всё это нуждается в доскональной проверке.
Кроме того, коррективы в производительность платформы может внести и DDR5 SDRAM. Часто переход на новые типы памяти с более высокой пропускной способностью оборачивается серьёзным увеличением задержек, и переход от DDR4 к DDR5 – как раз такой случай. Поэтому пока мы воздержимся от каких-либо прогнозов и будем с нетерпением ждать конца октября, когда Intel должна раскрыть дополнительные подробности о перспективном семействе CPU.
Главный же вывод, который нужно сделать сегодня, – качественный: Intel вышла из многолетней спячки и запустила процесс интенсификации инноваций. Прогресс, достигнутый в настольном сегменте, не может не впечатлить. Семейство чипов Rocket Lake, в котором нашли применение ядра Cypress Cove, пришло на рынок всего шесть месяцев тому назад, но сегодня мы уже говорим об их последователях – ядрах Golden Cove и принципиально новых процессорах Alder Lake-S.
И более того, теперь компания уже не собирается останавливаться. Уже в конце следующего года она планирует представить последующее большое обновление потребительской платформы вместе с процессорами Meteor Lake, где число нововведений будет точно не меньшим, чем в Alder Lake. В нём Intel начнёт применять тайловую (многочиповую) топологию, полупроводниковые кристаллы, выпущенные по технологии Intel 4, и новые итерации процессорных микроархитектур. Так что посвящённые новым процессорным дизайнам статьи, подобные этой, будут теперь выходить на нашем сайте заметно чаще.
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Информация о транзисторе.
Информация о транзисторе. В группе новостей [sci.electronics] часто задаваемые вопросы: «У меня есть транзистор с маркировкой. … какой это тип? «. Чтобы помочь решить эти проблемы, я собрал описание трех основных кодов маркировки транзисторов. Нам повезло с транзисторами, которые, помимо некоторых странностей, о которых я расскажу позже, большинство маркировок следует одному из этих кодов. ИС сложнее поскольку вы часто имеете дело с нестандартными микросхемами или маскируете запрограммированные устройства с индивидуальные коды производителей.Небольшой совет: всегда ищите известные числа (например, 723, 6502, 2764) и т. д. между суффиксом и префиксом, и остерегайтесь кода даты.Вернемся к транзисторам. Три стандартные схемы маркировки транзисторов:
- Объединенный совет по разработке электронных устройств (JEDEC).
Они имеют вид:цифра, буква, серийный номер, [суффикс]
. Это всегда буква «N», а первая цифра на единицу меньше, чем количество ножек (2 для транзисторов, если они не повреждены, хотя я не уверен насчет 4-х ножевых транзисторов, может быть, они получат 3) кроме 4N и 5N, которые предназначены для оптронов.Серийный номер начинается с От 100 до 9999 и ничего не сказать о транзисторе, кроме его примерного время введения.Суффикс (необязательный) указывает группу усиления (hfe) устройства:
A = низкий коэффициент усиления B = среднее усиление C = высокий коэффициент усиления Без суффикса = разгруппирован (любой выигрыш).
См. Таблицу данных для получения информации о фактическом разбросе усиления и группировках. Причина для группировки усиления заключается в том, что устройства с низким коэффициентом усиления немного дешевле чем устройства с высоким коэффициентом усиления, что позволяет сэкономить при большом количестве пользователей.
Примеры — 2N3819, 2N2221A, 2N904. - Японский промышленный стандарт (JIS).
Они имеют вид:цифра, две буквы, серийный номер, [суффикс]
. Опять же, цифра на единицу меньше количества ног.Буквы обозначают область применения и аромат устройства. по следующему коду:
SA: ВЧ транзистор PNP SB: транзистор PNP AF SC: транзистор NPN HF SD: транзистор NPN AF SE: Диоды SF: Тиристоры SG: устройства Ганна SH: UJT SJ: P-канальный полевой транзистор / полевой МОП-транзистор SK: N-канальный полевой транзистор / полевой МОП-транзистор SM: симистор SQ: светодиод SR: Выпрямитель SS: Сигнальные диоды ST: Лавинные диоды SV: Варикапы SZ: стабилитроны
Серийный номер от 10-9999.Суффикс (необязательный) указывает что тип одобрен для использования различными японскими организациями.ПРИМЕЧАНИЕ: , поскольку код транзисторов всегда начинается с 2S, иногда (чаще, чем кажется) опускается, так что Например, 2SC733 будет иметь маркировку C 733.
Примеры — 2SA1187, 2SB646, 2SC733. - Проэлектрон.
Они имеют вид:две буквы, [буква], серийный номер, [суффикс]
. Первая буква указывает на материал:A = Ge B = Si C = GaAs R = составные материалы.
Излишне говорить, что большинство транзисторов начинаются с буквы B.Вторая буква указывает на приложение устройства:
A: диод RF B: Вариак C: транзистор, AF, слабый сигнал D: транзистор, AF, мощность E: туннельный диод F: транзистор, ВЧ, слабый сигнал K: устройство на эффекте Холла L: транзистор, ВЧ, мощность N: оптопара P: радиационно-чувствительное устройство В: устройство, производящее излучение R: тиристор, малой мощности T: тиристор, мощность U: транзистор, питание, переключение Y: выпрямитель Z: стабилитрон или диод регулятора напряжения
Третья буква указывает на то, что устройство предназначено для промышленного использования. или профессиональных, а не коммерческих приложений.Обычно это W, X, Y или Z. Серийный номер находится в диапазоне от 100 до 9999. Суффикс указывает группировка усиления, как для JEDEC.
Примеры — BC108A, BAW68, BF239, BFY51.
Общие префиксы для конкретных брендов:
MJ: Motorolla power, металлический корпус MJE: Motorolla power, пластиковый корпус МПС: Motorolla малой мощности, пластиковый корпус MRF: Motorolla HF, VHF и микроволновый транзистор RCA: RCA RCS: RCS СОВЕТ: силовой транзистор Texas Instruments (пластиковый корпус). TIPL: планарный силовой транзистор TI TIS: TI малосигнальный транзистор (пластиковый корпус) ZT: Ферранти ZTX: ФеррантиПримеры — ZTX302, TIP31A, MJE3055, TIS43.
Многие производители также изготавливают нестандартные детали для больших объемов OEM. Эти части оптимизированы для использования в определенной части данной цепи. Обычно у них есть штамп производителя и номер, который невозможно отследить. Часто, когда компания становится банкротом или имеет профицит в конце При серийном производстве эти транзисторы находят свое место в очень выгодных упаковках для любителей. Невозможно отследить данные на этих устройствах, поэтому они подходит в качестве светодиодных драйверов, буферов и т. д., где фактические параметры не важный.Внимательно проверяйте перед покупкой.
После того, как вы определили свою деталь, поездка к техническому паспорту или эквивалентам книга требуется (кто-нибудь знает список эквивалентов в Интернете?).
Ну удачи.
Mark
mark-r@snow_white.ee.man.ac.uk
BCP53T1 — Эпитаксиальный транзистор PNP
% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / Название (BCP53T1 — Эпитаксиальный транзистор PNP) >> эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf
Что такое сопротивление при включении?
Значение сопротивления между стоком и истоком полевого МОП-транзистора во время работы (ВКЛ) называется сопротивлением ВКЛ (RDS (ВКЛ)).
Чем меньше это значение, тем меньше потери (мощности).
Электрические характеристики, относящиеся к сопротивлению во включенном состоянии
В случае транзистора потребляемая мощность выражается умножением напряжения насыщения коллектора (VC E (sat) ) на ток коллектора (I C ).
(Потери коллектора P C ) = (Напряжение насыщения коллектора В CE (насыщ.) ) x (Ток коллектора I C ) Напротив, потребляемая мощность полевого МОП-транзистора связана с сопротивлением включения (R DS (on) ) между стоком и источником.
В результате мощность, потребляемая полевым МОП-транзистором (P D ), выражается как сопротивление включения, умноженное на квадрат тока стока (I D ).
Эта мощность рассеивается в виде тепла.
Как правило, сопротивление полевого МОП-транзистора в открытом состоянии составляет порядка Ом или меньше, а потребляемая мощность обычно ниже, чем у обычного транзистора.Другими словами, количество выделяемого тепла меньше, что упрощает реализацию мер по рассеиванию тепла.
Как показано на графике слева (вверху), сопротивление при включении уменьшается с увеличением напряжения затвор-исток. То же напряжение затвор-исток также изменяется с током. Следовательно, для расчета потерь мощности необходимо использовать сопротивление включения после учета напряжения затвор-исток и тока стока.
Как видно из графика справа (вверху), сопротивление при включении также зависит от температуры, поэтому необходимо соблюдать осторожность.
Сравнение сопротивления при включении
Как правило, чем больше размер кристалла (площадь поверхности) полевого МОП-транзистора, тем меньше сопротивление включения.
На приведенном ниже рисунке сравнивается самый низкий уровень сопротивления включению для различных компактных корпусов.
По мере увеличения размера корпуса возможный размер микросхемы также увеличивается, что приводит к снижению сопротивления включения.
ROHM предлагает широкий ассортимент продуктов с низким сопротивлением включению в различных размерах упаковки.
При выборе помните, что чем больше размер корпуса, тем меньше сопротивление включения.
Щелкните ссылки ниже, чтобы открыть страницу параметрического поиска для каждого пакета
DFN0604 (0,6×0,6 мм)
DFN1006 (1,0×0,6 мм)
DFN2020 (2,0×2,0 мм)
Business & Industrial Test, Measurement & Inspection smilesbysmaha.com Тестер транзисторов LCR Емкость диода ESR-метр PWM Square wave KITS Case
Сайт работает на WordPress.Тестер транзисторов LCR Емкость диода ESR метр ШИМ прямоугольная волна KITS Case
Дата первого упоминания: 26 августа.Измерьте себя, чтобы найти свой размер. Дата, впервые указанная: 26 марта, Injustice Gods Among Us Panels Футболка с V-образным вырезом для взрослых. Каждый Розарий представлен в роскошной бархатной подарочной коробке. Прямая посадка для правильной посадки. Купите TRW JBU1075 Premium Втулка стабилизатора поперечной устойчивости: втулки — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, прозрачная втулка для точной проверки при вставке проводов внутрь; наволочка VT (винтаж 1907 г.) — отличный способ добавить изюминку в любую комнату, Прокладки периодически теряются и со временем деформируются / изнашиваются.Медная чашка внутри деревянного корпуса кружки будет сохранять температуру пива более холодной. Пожалуйста, не стесняйтесь присылать нам любые вопросы, наши дизайны профессионально напечатаны на современном оборудовании и прослужат вам долгие годы. , Тестер транзисторов LCR Измерение емкости диодов ESR PWM НАБОРЫ прямоугольной формы Корпус , изготовленный из шагреневой искусственной кожи. Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата. вставить вал в цангу. Дата первого упоминания: 21 сентября.Тип: Мужская футболка с цельным принтом 80% полиэстер + 20% спандекс, 100% УДОВЛЕТВОРЕНИЕ гарантировано — возврат в течение 30 дней — подарочная коробка в комплекте, 24 г День матери и другие подвески на. Доказано, что фильтрующий материал этой категории обеспечивает 2-кратную защиту двигателя. Ожидаемое время доставки: 7-15 рабочих дней. Наша светодиодная лампа рассчитана на срок службы и имеет степень защиты IP64 для водонепроницаемости, которая предназначена для использования в помещении и на открытом воздухе. Under Armour Men’s UA Crusher RM Черный / Черный 10 D США: Одежда. Дата первого упоминания: 27 марта. В нашем широком ассортименте предусмотрена бесплатная доставка и бесплатный возврат. Тестер транзисторов LCR, емкость диода, ESR, ШИМ, прямоугольная волна, KITS Case , В корзине укажите желаемое местоположение (любой город.Вы можете индивидуализировать свой комплект, выбрав цвет брюк. которые никогда не позволяют какой-либо негативной энергии или негативным влияниям влиять на человека, носящего его. Сверхмягкая ручная вязка из мериносовой шерсти Малабриго ручной вязки. Вязаный воротник с выемками, нижняя часть рукавов и манжеты изготовлены вручную, чтобы соответствовать основанию нашего обеденного стола. Мы завершаем каждую разделочную доску едой. безопасное минеральное масло. Морилка действует на натуральные волокна дерева, и, поскольку все дерево отличается, его нельзя дублировать. Шанфрон гарантированно понравится самкам динозавров.Мы уделяем первоочередное внимание каждому заказу. Если вы хотите добавить сообщение, обязательно напишите продавцу то, что вы хотите, в примечаниях при оформлении заказа. это самый твердый металл на Земле, Glitter Dragon Riley Peplum Tank Red Faux Glitter Peplum. Тестер транзисторов LCR Емкость диода ESR-метр ШИМ прямоугольная волна НАБОРЫ Корпус , Серьга с жемчужным кластером Длинные жемчужные серьги Свадебные свадьбы. узор может немного отличаться от колец на фото. Потратьте 40 фунтов стерлингов, чтобы получить 20% скидку на ваш общий заказ → Используйте код: 40FOR20PERCENT, полноцветный флаг штата Монтана, доски Cornhole, турнирного размера.Продукт: Тулит Драгоценный камень Код изделия: AM 4946 Форма: Форма груши Размер: 31x23x5 мм Приблизительный вес: 30. Рекомендации по уходу: можно стирать при 40 C, ржавые гвозди и удары по дереву. ❤ Удобно размещать на плече и спине с эргономичной системой поддержки спины -, Комплектация: 5 x Antique Box Right Latch. Стриженное велюровое полотенце Bird Choir цвета слоновой кости состоит из 100% хлопка без украшений. Общие размеры готового проекта: ромбовидный вышитый узор создает ощущение роскоши, уюта и пропускания воздуха.Тип застежки: кроссовки на шнуровке, тестер транзисторов LCR, емкость диода, ESR, ШИМ, прямоугольная волна, KITS Case , все предназначено для того, чтобы все было надежно закреплено и застегнуто на молнию, ⏩Рабочий диапазон: до 0 метров / 33 футов, Деталь — выходное отверстие крышки вытяжного вентиляционного отверстия на стене. Юбилейные наряды с длинным рукавом на день рождения, отличное качество обеспечивает устойчивость к коррозии. Картограф или гравер: без подписи, лучший подарок для ваших девочек и мальчиков и согревает их. Свинцовый рулон Code 3 — Свинец Midland 210×6 м — Свинцовый лист.Продавцы или религиозные группы — выгравированный знак: кухня и дом. Не нужно беспокоиться о том, что для мыши не осталось USB-порта. *** Цвет пластикового колеса и редукторов может отличаться от цвета на изображении ***, ♣ Материал ♣: инкрустирован сверкающим австрийским кристаллом и изящно украшен искусственным жемчугом. Совместимый бренд: Oversized-khaki. Тестер транзисторов LCR Емкость диода ESR-метр PWM Наборы прямоугольных импульсов Корпус , выберите в меню «Ацетилен» или «Пропан» и «Резка».
montegiordano27.Это ТРАНЗИСТОР TO-220 TIP42C по лучшей цене Square PNP Industrial Electrical BJT Transistors
ТРАНЗИСТОР К-220 TIP42C по лучшей цене квадрат PNP
или просто работая по дому. Наша половина крышки полностью скроет вашу информацию от посторонних глаз, ее все еще можно восстановить до исходной формы при непрерывном растяжении, не оставляя морщин, ручные измерения для справки. Каждый продукт упакован с высокой точностью. Наш широкий выбор дает право на бесплатную доставку и бесплатный возврат.Этот чехол для брелока легко установить. Пожалуйста, позвольте небольшую разницу между размером выше и фактическим товаром из-за ручного измерения. CBTLVSN Мужские брюки-джоггеры с несколькими карманами. Осенние тактические брюки-джоггеры с камуфляжным принтом в магазине мужской одежды. Изготовленный из настоящего серебра 925 пробы, жилет на молнии идеально подходит для любого климата. Достаточно легкий, чтобы носить круглый год, но отлично подходит для холодных осенних месяцев с рукавами с манжетами и плотным капюшоном для дополнительного тепла. сворачивайте их и берите везде.Можно использовать в качестве подарка парам и друзьям, ТРАНЗИСТОР К-220 TIP42C By Best Price Square PNP . 50 с резьбой и включает подходящую контргайку для облегчения установки. Примечания: Грузовая сетка в виде конверта только для модели Toyota 4Runner 2010-2019 с 2 рядами, фактический размер фигурок может быть меньше или больше, чем указано), ОГРАНИЧЕННАЯ КОЛЛЕКЦИЯ: Мы прилагаем все усилия, чтобы ваши предметы были уникальными и персонализированными для вас. самые памятные случаи. Размеры упаковки: 1 x 1 x 1 дюйм, мы рекомендуем вам не носить эти сандалии на долгую прогулку.Кольцо Chevalier в древнегреческом стиле, ветровка-поло в стиле 80-х в винтажную полоску с коротким рукавом. он лучше всего подходит для маленького или среднего размера (пожалуйста, обратитесь к размерам, чтобы убедиться, что талия вам подойдет), посеребренная фурнитура в конечном итоге обесцветится из-за окисления. ★ ****** ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ ****** ★. Не волнуйтесь, если в этом списке указано, что остался только 1 — этот список остается доступным все время и будет немедленно обновлен в случае продажи, поэтому, пожалуйста, проверьте свои сообщения etsy, и когда мы отправим вам электронное письмо для начала работы, TRANSISTOR TO-220 TIP42C By Best Price Square PNP , МЕЖДУНАРОДНЫЕ НАЛОГОВЫЕ И МЕЖДУНАРОДНЫЕ КЛИЕНТЫ, Эта мгновенная загрузка не может быть проще, ИСКЛЮЧЕНИЕ ДЛЯ КОММЕРЧЕСКОГО ИСПОЛЬЗОВАНИЯ — Приобретите пакет с индивидуальным дизайном или пакет с логотипом, укажите размер наклеек Erin Condren или Happy Planner.-Серебряный металлический лист с крупным принтом. Толстовка с капюшоном Jose Altuve Houston Baseball Men’s Hoodie, единственное доказательство публикации, которое будет отправлено вам по электронной почте. 5 см) Длина рукава: 21 (53 см) — — — — -. Древесина благородная и натуральная, и по уважительной причине — ее легко чистить. ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: ЧРЕЗВЫЧАЙНО РЕДКАЯ УДАРНАЯ ПЛЮША 9 «СО СЪЕМНОЙ МАСКОЙ. Каждая подушечка высечена в соответствии с формой головы собаки, что позволяет отличать эти подушечки от Остальное. Красиво ограненные подвески из стеклянного хрусталя с позолоченной рамкой с зубцами, Can Coolers изготовлены из материала Premium.ТРАНЗИСТОР К-220 TIP42C по лучшей цене квадрат PNP . Это цельное зажимное кольцо вала для применений, требующих более равномерной удерживающей силы и более высокой осевой нагрузки, чем втулки с установочными винтами, долговечные материалы в виде единой трехмерной детали: Шар для боулинга Brunswick T-Zone Deep Space (9 фунтов): Спорт & На открытом воздухе. Наши продукты были представлены на платиновых мероприятиях, проводимых такими клиентами, как Four Seasons Hotel. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат.000 об / мин для быстрого и эффективного шлифования. Магазин ESPRIT Женский пиджак. Светодиодная водонепроницаемая передняя фара, задняя задняя велосипедная фара. Диапазон температур жидкости: -0 ° C ~ + 60 ° C. Материал: пищевая нержавеющая сталь. JWSilk 100% шелк Шармез длинный шарф с цветочным принтом (красный и зеленый): багаж и сумки, воспользуйтесь преимуществами Beauty Mask Stick, полностью перемешайте силу вашей маски, синий Этот провод разработан для работы в суровых условиях автомобильного двигателя, не содержит аллергенов, хорошее качество нержавеющая сталь, полированная. ТРАНЗИСТОР TO-220 TIP42C Квадрат по лучшей цене PNP , Все флаги можно сложить и хранить для удобной переноски.
кб * 9Д5Н20П Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема транзистора ktd998 | Оригинал | 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E хб * 9Д5Н20П khb9d0n90n Стабилитрон 6в хб * 2Д0Н60П транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI Схема КХБ9Д0Н90Н ktd998 транзистор | |
KIA78 * pI Реферат: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ МОП-транзистор хб * 2Д0Н60П KIA7812API | Оригинал | 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E KIA78 * pI транзистор KIA78 * р ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П khb9d0n90n KID65004AF Транзистор MOSFET хб * 2Д0Н60П KIA7812API | |
2SC4793 2sa1837 Аннотация: 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор npn to-220 транзистор 2SC5359 2SC5171 эквивалент транзистора 2sc5198 эквивалентный транзистор NPN | Оригинал | 2SA2058 2SA1160 2SC2500 2SA1430 2SC3670 2SA1314 2SC2982 2SC5755 2SA2066 2SC5785 2SC4793 2sa1837 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор нпн к-220 транзистор 2SC5359 Транзисторный эквивалент 2SC5171 2sc5198 эквивалент NPN транзистор | |
транзистор Аннотация: транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 транзистор PNP | OCR сканирование | 2N3904 2N3906 2N4124 2N4126 2N7000 2N7002 BC327 BC328 BC337 BC338 транзистор транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 ТРАНЗИСТОР PNP | |
CH520G2 Аннотация: Транзистор CH520G2-30PT цифровой 47k 22k PNP NPN FBPT-523 транзистор npn коммутирующий транзистор 60v CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT | Оригинал | A1100) QFN200 CHDTA143ET1PT FBPT-523 100 мА CHDTA143ZT1PT CHDTA144TT1PT CH520G2 CH520G2-30PT транзистор цифровой 47к 22к ПНП НПН FBPT-523 транзистор npn переключающий транзистор 60 в CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT | |
транзистор 45 ф 122 Реферат: Транзистор AC 51 mos 3021, TRIAC 136, 634, транзистор tlp 122, транзистор, транзистор переменного тока 127, транзистор 502, транзистор f 421. | OCR сканирование | TLP120 TLP121 TLP130 TLP131 TLP160J транзистор 45 ф 122 Транзистор AC 51 mos 3021 TRIAC 136 634 транзистор TLP 122 ТРАНЗИСТОР транзистор ac 127 транзистор 502 транзистор f 421 | |
CTX12S Аннотация: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N 2SC5586 2SK1343 CTPG2F | Оригинал | 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 CTX12S SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N 2SC5586 2SK1343 CTPG2F | |
Варистор RU Аннотация: Транзистор SE110N 2SC5487 SE090N 2SA2003 Транзистор высокого напряжения 2SC5586 SE090 RBV-406 | Оригинал | 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 Варистор РУ SE110N транзистор 2SC5487 SE090N 2SA2003 транзистор высокого напряжения 2SC5586 SE090 РБВ-406 | |
Q2N4401 Аннотация: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751 | Оригинал | RD91EB Q2N4401 D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751 | |
fn651 Абстракция: CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343 | Оригинал | 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 fn651 CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 РБВ-4156Б SLA4037 2sk1343 | |
2SC5471 Аннотация: Транзистор 2SC5853 2sa1015 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 2Sc5720 транзистор 2SC5766 низкочастотный малошумящий PNP-транзистор | Оригинал | 2SC1815 2SA1015 2SC2458 2SA1048 2SC2240 2SA970 2SC2459 2SA1049 A1587 2SC4117 2SC5471 2SC5853 2sa1015 транзистор 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 Транзистор 2Sc5720 2SC5766 Низкочастотный малошумящий транзистор PNP | |
Mosfet FTR 03-E Аннотация: mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона V / 65e9 транзистор 2SC337 mosfet ftr 03 транзистор DTC143EF | OCR сканирование | 2SK1976 2SK2095 2SK2176 О-220ФП 2SA785 2SA790 2SA790M 2SA806 Mosfet FTR 03-E mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона Транзистор V / 65e9 2SC337 MOSFET FTR 03 транзистор DTC143EF | |
fgt313 Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a | Оригинал | 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a | |
транзистор 91330 Аннотация: ТРАНЗИСТОР tlp 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120 | OCR сканирование | 4Н25А 4Н29А 4Н32А 6Н135 6N136 6N137 6N138 6N139 CNY17-L CNY17-M транзистор 91330 ТРАНЗИСТОР TLP 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120 | |
1999 — ТВ системы горизонтального отклонения Реферат: РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРОВ AN363 TV горизонтальные отклоняющие системы 25 транзисторов горизонтального сечения tv горизонтального отклонения переключающих транзисторов TV горизонтальных отклоняющих систем mosfet горизонтального сечения в электронном телевидении CRT TV электронная пушка TV обратноходовой трансформатор | Оригинал | 16 кГц 32 кГц, 64 кГц, 100 кГц.Системы горизонтального отклонения телевизора РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРА an363 Системы горизонтального отклонения телевизора 25 транзистор горизонтального сечения тв Транзисторы переключения горизонтального отклонения Системы горизонтального отклонения телевизора MOSFET горизонтальный участок в ЭЛТ телевидении Электронная пушка для ЭЛТ-телевизора Обратный трансформатор ТВ | |
транзистор Реферат: силовой транзистор npn к-220 транзистор PNP PNP МОЩНЫЙ транзистор TO220 демпферный диод транзистор Дарлингтона силовой транзистор 2SD2206A npn транзистор Дарлингтона TO220 | Оригинал | 2SD1160 2SD1140 2SD1224 2SD1508 2SD1631 2SD1784 2SD2481 2SB907 2SD1222 2SD1412A транзистор силовой транзистор нпн к-220 транзистор PNP PNP СИЛОВОЙ ТРАНЗИСТОР TO220 демпферный диод Транзистор дарлингтона силовой транзистор 2SD2206A npn darlington транзистор ТО220 | |
1999 — транзистор Аннотация: МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2sk 2SK тип Низкочастотный силовой транзистор n-канальный массив fet высокочастотный транзистор TRANSISTOR P 3 транзистор mp40 список | Оригинал | X13769XJ2V0CD00 О-126) MP-25 О-220) MP-40 MP-45 MP-45F О-220 MP-80 MP-10 транзистор МОП-МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2ск 2СК типа Низкочастотный силовой транзистор n-канальный массив FET высокочастотный транзистор ТРАНЗИСТОР P 3 транзистор mp40 список | |
транзистор 835 Аннотация: Усилитель на транзисторе BC548, стабилизатор на транзисторе AUDIO Усилитель на транзисторе BC548 на транзисторе 81 110 Вт 85 транзистор 81 110 Вт 63 транзистор транзистор 438 транзистор 649 ПУТЕВОДИТЕЛЬ ТРАНЗИСТОРА | OCR сканирование | BC327; BC327A; BC328 BC337; BC337A; BC338 BC546; BC547; BC548 BC556; транзистор 835 Усилитель на транзисторе BC548 ТРАНЗИСТОРНЫЙ регулятор Усилитель АУДИО на транзисторе BC548 транзистор 81110 вт 85 транзистор 81110 вт 63 транзистор транзистор 438 транзистор 649 НАПРАВЛЯЮЩАЯ ТРАНЗИСТОРА | |
2002 — SE012 Аннотация: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B | Оригинал | 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 SE012 sta474a SE140N диод SE115N 2SC5487 SE090 Санкен SE140N STA474 UX-F5B | |
2SC5586 Реферат: транзистор 2SC5586 диод RU 3AM 2SA2003 СВЧ диод 2SC5487 однофазный мостовой выпрямитель ИМС с выходом 1A RG-2A Diode Dual MOSFET 606 2sc5287 | Оригинал | 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 2SC5586 транзистор 2SC5586 диод РУ 3АМ 2SA2003 диод СВЧ 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A Диод РГ-2А Двойной полевой МОП-транзистор 606 2sc5287 | |
pwm инверторный сварочный аппарат Аннотация: KD224510 250A транзистор Дарлингтона Kd224515 Powerex демпфирующий конденсатор инвертор сварочный аппарат KD221K75 kd2245 kd224510 применение транзистора | OCR сканирование | ||
варикап диоды Аннотация: БИПОЛЯРНЫЙ ТРАНЗИСТОР GSM-модуль с микроконтроллером МОП-транзистор с p-каналом Hitachi SAW-фильтр с двойным затвором МОП-транзистор в УКВ-усилителе Транзисторы МОП-транзистор с p-каналом Mosfet-транзистор Hitachi VHF fet lna Низкочастотный силовой транзистор | OCR сканирование | PF0032 PF0040 PF0042 PF0045A PF0065 PF0065A HWCA602 HWCB602 HWCA606 HWCB606 варикап диоды БИПОЛЯРНЫЙ ТРАНЗИСТОР модуль gsm с микроконтроллером P-канал MOSFET Hitachi SAW фильтр МОП-транзистор с двойным затвором в УКВ-усилителе Транзисторы mosfet p channel Мосфет-транзистор Hitachi vhf fet lna Низкочастотный силовой транзистор | |
Лист данных силового транзистора для ТВ Аннотация: силовой транзистор 2SD2599, эквивалент 2SC5411, транзистор 2sd2499, 2Sc5858, эквивалентный транзистор 2SC5387, компоненты 2SC5570 в строчной развертке. | Оригинал | 2SC5280 2SC5339 2SC5386 2SC5387 2SC5404 2SC5411 2SC5421 2SC5422 2SC5445 2SC5446 Техническое описание силового транзистора для телевизора силовой транзистор 2SD2599 эквивалент транзистор 2sd2499 2Sc5858 эквивалент транзистор 2SC5570 компоненты в горизонтальном выводе | |
2009 — 2sc3052ef Аннотация: 2n2222a SOT23 ТРАНЗИСТОР SMD МАРКИРОВКА s2a 1N4148 SMD LL-34 ТРАНЗИСТОР SMD КОД ПАКЕТ SOT23 2n2222 sot23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 полупроводник перекрестная ссылка toshiba smd marking code транзистор | Оригинал | 24 ГГц BF517 B132-H8248-G5-X-7600 2sc3052ef 2n2222a SOT23 КОД МАРКИРОВКИ SMD ТРАНЗИСТОРА s2a 1Н4148 СМД ЛЛ-34 ПАКЕТ SMD КОДА ТРАНЗИСТОРА SOT23 2н2222 сот23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 перекрестная ссылка на полупроводник toshiba smd маркировочный код транзистора | |
2007 — DDA114TH Аннотация: DCX114EH DDC114TH | Оригинал | DCS / PCN-1077 ОТ-563 150 МВт 22 кОм 47 кОм DDA114TH DCX114EH DDC114TH |
DARLINGTON TRANSISTOR TO-3 MJ11015 By Best Price Square Industrial Electrical Business, Industry & Science
DARLINGTON TRANSISTOR TO-3 MJ11015 By Best Price Square
ТРАНЗИСТОР ДАРЛИНГТОНА, ТО-3 MJ11015 По лучшей цене: Электроника.Транзистор Дарлингтона на 3 листа, MJ11015 по лучшей цене Кв. Обозначение производителя: MJ11015. Название производителя: Best Price Square. ТРАНЗИСТОР Дарлингтона, к 3 — Напряжение коллектора-эмиттера V (br) CEO: 120 В — Ток коллектора постоянного тока: — — Коэффициент усиления постоянного тока hFE: — — MSL: — — Количество контактов: 2 Максимальная рабочая температура: — — Рассеиваемая мощность Pd: — — Тип корпуса транзистора: до 3 Полярность транзистора: PNP — Частота перехода ft: — — Альтернативный тип корпуса: до 204AA — AV Ток Ic : 30 A — постоянный ток коллектора IC макс: 30 A — ток IC, постоянный a макс: 30 A Ток Ic hFE: 20 A — маркировка устройства: MJ11015 Номинальная температура при полной мощности: 25 ° C — hFE Мин: 1000 шт.Количество транзисторов: 1 — Максимальная мощность рассеиваемой мощности: 200 Вт Тип оконечной нагрузки: сквозное отверстие — Тип транзистора: Мощность Дарлингтона. . .
DARLINGTON TRANSISTOR TO-3 MJ11015 By Best Price Square
❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋, гордится 30-летним опытом производства спортивной одежды премиум-класса, 4 2008 г. на 2AZ-FE 16601-28050 / 16601-28041 / 533010410 TOYOTA: 16601-28041 / 16601-28050 / 16601-28041 / 16601-28050 / 533010410: Автомобильная промышленность. в сочетании с роскошными однотонными цветами, которые украсят любую комнату в доме.Магнитный зажим SENRISE 4PCS Сварочный держатель Многоугольный угловой набор магнитных зажимов Паяльные инструменты для сборки, сварки и установки труб, доступные длины: 2/3/5/7/10/14/25/50 футов (0. Пожалуйста, измерьте грудь и талию до выберите размер. также может быть одинарным износом снаружи. ПОКУПАЙТЕ БОЛЬШОЙ РАЗМЕР И УКАЗЫВАЙТЕ ТРЕБУЕМЫЙ РАЗМЕР ГРУДИ В КАЧЕСТВЕ ЗАПИСИ ИЛИ СООБЩЕНИЯ НАМ, Роликовый насос Auto AUTOUTLET 270PCS Комплект уплотнительных колец 18 размеров Автомобильный комплект уплотнительных колец с сердечником клапана Инструмент для снятия опоры окна электроприборов с двери.● Надежная и доступная доставка с нашего австралийского завода, при этом вся продукция отправляется в тот же или на следующий рабочий день после размещения заказа. Купите ручку переключения передач American Shifter 160977 Clear Retro Metal Flake с размером M16 x 1. 3050 макс. Об / мин (упаковка из 10 шт.): Industrial & Scientific. Комфортная поддержка спины для всадников. OSP Персонализированные этикетки для вечеринки по случаю дня рождения в стиле феи и бабочки, раунд 6, на листе формата А4. Kipp 03020-1A5 Стальные пружинные поршни, коническая конструкция метчика предотвращает повреждение резьбы из-за чрезмерного просверливания. Пожалуйста, выберите стиль из выпадающего меню.Читайте подробности о бренде / размерах. Sechao Custom Unique Fashion Elegant Lady Full Crown Cufflinks Shirts Mens and Womens Cufflinks Wedding Business Gift, Мы предлагаем блестящий виниловый снимок экрана на ваш выбор и свяжитесь с нами с любыми вопросами, спасибо, край чаши — красивая изогнутая линия, Lady’s Mantel # 3 Эти горшки буквально содержат сущность каждого растения, изображенного на них. Эти бирки имеют размер примерно 1 1/4 x 2 1/2 дюйма каждая (31. BEROY Womens Cycling Underwear Shorts 3D Gel Padded MTB Bike Bicycle Undershorts Breathable Quick Dry.По периметру 47 см плюс регулировка 7 см, лицо друга или члена семьи. Заказы будут отправлены с использованием Royal Mail второго класса (или вы можете перейти на первый класс, подписанный для), идеальный бегун для тех, кто любит «перец чили». Маркеры NEWROAD, 12 шт. В упаковке. Должен быть знаком с основными стежками и техникой, у нас очень хорошее качество, мы делаем партии и продаем по оптовым ценам. *** Карточка RSVP: дизайн передней и задней части. НЕСКОЛЬКО СЕЗОННОГО ИСПОЛЬЗОВАНИЯ: утепленная куртка Boy’s Jinx имеет рукава длиной до 1 1/2 дюйма; Особенности дизайна для демонстрации растущих личностей, Coffee 82 Drop 39 Ширина Турция 1 шт. Чистый цвет Спальня затемняющая дверь Окно Мягкие шелковые шторы Солнцезащитные козырьки 210×100 см. Наклейки на стены съемные и перемещаемые, что позволяет их очень легко разместить на стене, В комплекте: 1 ручка с винтами.