Межфазное напряжение 380. Перекос фаз в трехфазной сети: причины, последствия и способы устранения

Что такое перекос фаз в трехфазной сети. Каковы основные причины возникновения перекоса фаз. Какие негативные последствия может вызвать перекос фаз. Какие существуют способы устранения и защиты от перекоса фаз в электросети. Как правильно распределить нагрузку по фазам.

Содержание

Что такое перекос фаз в трехфазной сети

Перекос фаз — это явление в трехфазной электрической сети, при котором напряжения или токи в разных фазах существенно отличаются друг от друга. В идеальной трехфазной системе напряжения и токи во всех трех фазах должны быть одинаковыми по амплитуде и сдвинуты относительно друг друга на 120 градусов. Однако на практике часто возникает ситуация, когда эти параметры в разных фазах становятся несимметричными.

Согласно ГОСТ, допустимая разница между напряжениями разных фаз не должна превышать 2-3%. При превышении этих значений говорят о возникновении перекоса фаз. Это может привести к серьезным проблемам в работе электрооборудования.


Основные причины возникновения перекоса фаз

Существует несколько основных причин, которые могут вызвать перекос фаз в трехфазной сети:

  • Неравномерное распределение нагрузки по фазам. Это наиболее распространенная причина.
  • Обрыв нулевого провода.
  • Неисправность или повреждение одной из фаз.
  • Некачественное электроснабжение от поставщика электроэнергии.
  • Неправильное подключение мощных однофазных потребителей.

Негативные последствия перекоса фаз

Перекос фаз может привести к серьезным проблемам в работе электрооборудования и электросети в целом:

  • Повышенный износ и выход из строя электродвигателей. При перекосе фаз в обмотках двигателей возникают дополнительные токи, вызывающие перегрев.
  • Некорректная работа и повреждение бытовой техники и электроники.
  • Увеличение потерь электроэнергии в сети.
  • Срабатывание защитной автоматики и отключение оборудования.
  • Пожароопасные ситуации из-за перегрева проводки.

Как определить наличие перекоса фаз

Для выявления перекоса фаз необходимо провести измерения напряжений и токов во всех трех фазах. Это можно сделать с помощью специальных приборов:


  • Мультиметр для измерения напряжений.
  • Токовые клещи для измерения токов.
  • Анализатор качества электроэнергии.

Если разница между напряжениями или токами в разных фазах превышает 2-3%, это указывает на наличие перекоса фаз.

Способы устранения перекоса фаз

Существует несколько основных способов борьбы с перекосом фаз:

  1. Правильное распределение нагрузки по фазам. Необходимо равномерно распределить мощные потребители между всеми тремя фазами.
  2. Установка стабилизаторов напряжения на каждую фазу. Это поможет выровнять напряжение даже при несимметричной нагрузке.
  3. Использование симметрирующих устройств. Они автоматически перераспределяют нагрузку между фазами.
  4. Применение реле контроля фаз. Такие устройства отключают нагрузку при сильном перекосе, защищая оборудование.
  5. Увеличение сечения нулевого провода. Это снижает падение напряжения в нейтрали.

Профилактика перекоса фаз

Для предотвращения возникновения перекоса фаз рекомендуется выполнять следующие профилактические меры:


  • Регулярно проводить измерения напряжений и токов во всех фазах.
  • Следить за равномерным распределением нагрузки при подключении новых мощных потребителей.
  • Своевременно проводить техническое обслуживание электрооборудования.
  • Использовать качественные комплектующие при монтаже электропроводки.
  • Применять современные системы защиты и автоматики.

Нормативные требования по перекосу фаз

Согласно действующим нормативным документам, установлены следующие требования по допустимому перекосу фаз:

  • Отклонение напряжения в каждой фазе не должно превышать ±10% от номинального значения.
  • Разница между наибольшим и наименьшим фазным напряжением не должна превышать 4%.
  • Коэффициент несимметрии напряжений по обратной последовательности не должен превышать 2%.

При превышении этих значений необходимо принимать меры по устранению перекоса фаз.

Заключение

Перекос фаз — серьезная проблема в трехфазных электрических сетях, которая может привести к повреждению оборудования и увеличению потерь электроэнергии. Для ее предотвращения необходимо правильно проектировать электросети, равномерно распределять нагрузку и применять современные средства защиты. Регулярный контроль параметров сети позволит своевременно выявлять и устранять возникающие перекосы фаз.



Перекос фаз в трехфазной сети последствия — советы электрика

Перекос фаз в загородном доме

Источник: http://vprl.ru/publ/istochniki_pitanija/tekhnologii/perekos_faz_v_zagorodnom_dome/8-1-0-134

Перекос фаз: определение, причины его возникновения и способы защиты

В однофазном режиме значение напряжения должно составлять 220 вольт, а при трёхфазном — 380 вольт. Но в реальности эти числа практически не встречаются.

Поэтому проверив значение напряжения в розетке, можно наглядно убедиться в существовании перекоса фаз.

Чтобы приблизить значение напряжения к стандартным значениям, необходимо понимать, что подразумевается под словосочетанием «перекос фаз», его причинами и возможными способами устранения.

  • Суть понятия
  • Причины возникновения
  • Способы защиты
  • Последствия перекоса

Фаза — это электрическая цепь с некоторым значением синусоидальной электродвижущей силы.

Трёхфазная цепь, в свою очередь, состоит из трёх электрических цепей, которые владеют синусоидальной электродвижущей силой с одинаковой амплитудой и частотой тока.

Трёхфазная сеть состоит из трёх синусоидальных токов или напряжений, которые имеют одну частоту и сдвинуты по фазе на угол, равный 120 градусам.

Если потребителей электрической энергии подключить к фазам сети неравномерно — например, большинство сосредоточить в одной, а в двух других их будет гораздо меньше — это приведёт к асимметрии напряжения. При этом в трёхфазных четырёхпроводных сетях несимметричность параметров будет менее заметна, так как нулевой провод выравнивает неравномерность напряжения по фазам.

Причины возникновения

Нарушение симметричности напряжений в трёхфазной цепи — нежелательная ситуация. Поэтому для того чтобы её устранить, необходимо понять, почему она может возникнуть. Причины перекоса фаз в трёхфазной сети сводятся к основным трём обстоятельствам:

  • неравномерное группирование потребителей;
  • отсоединение нулевого провода;
  • замыкание фазного провода на землю.

При неправильном распределении потребителей в трёхфазной трёхпроводной цепи, напряжение на них будет существенно отличаться. Потребители, обладающие наименьшим сопротивлением, окажутся под повышенным напряжением. Токоприёмники с большим значением сопротивления будут иметь напряжение, не достигающее оптимального значения.

На источниках электроэнергии неравномерное распределение напряжения по фазам скажется в виде увеличенного потребления энергии, повреждений изоляции, износа, сокращение срока службы. При использовании автономного дизельного генератора увеличится расход топлива и охлаждающего вещества.

Снижение качества электрической изоляции для потребителей чревато такими последствиями:

  • повреждение, поломка бытовых приборов или электрической проводки;
  • возникновение пожара;
  • получение травм;
  • выход из строя электроприборов.

Способы защиты

Устранить нежелательное явление перекоса можно с помощью организационных мероприятий и установкой защитной аппаратуры.

К организационным мероприятиям относится правильное распределение нагрузки по всем фазам с учётом мощности. Недостатком является тот факт, что при всём желании проектировщика произвести очень точное размещение, особенно при подключении квартир, домов, невозможно.

Защитная аппаратура, которую можно установить:

  • Трёхфазный автоматический выключатель.
  • Трёхфазный стабилизатор напряжения.
  • Реле контроля фаз. Особенно целесообразно использовать реле совместно со стабилизаторами напряжения.
  • Симметрирующие трансформаторы. По строению они отличаются от силовых тем, что имеют дополнительную обмотку, которая включается между заземлением средней точки и нулём.

Недостатки трёхфазных стабилизаторов:

  • излишний расход электроэнергии;
  • низкая надёжность работы из-за частой смены деталей;
  • принцип работы, способствующий появлению перекоса фаз.

Последствия перекоса

Наиболее просто обнаружить неравномерность напряжения даже без вольтметра в быту. При его пониженном значении бытовые приборы могут не включаться, осветительные приборы будут гореть очень тускло.

Последствия неравномерного распределения нагрузки:

  • ухудшение качества электроэнергии;
  • появление уравнительных токов, из-за которых потери электроэнергии увеличиваются;
  • неэффективная работа электрооборудования, снижение качества электрической изоляции и, как следствие, уменьшение срока службы аппаратуры.

Перекос фаз — явление крайне нежелательное, но, к сожалению, довольно распространённое при работе электрооборудования. Полностью искоренить его почти невозможно. Поэтому необходимо следить, чтобы отклонения значения напряжений всегда находились в допустимых пределах. Это обеспечит длительный срок службы электроприборов и сохранит здоровье и жизнь обслуживающему персоналу.

Источник: https://220v. guru/fizicheskie-ponyatiya-i-pribory/prichiny-i-posledstviya-perekosa-faz.html

Перекос фаз в трехфазной сети: причины и последствия

У конечных потребителей сетей централизованного электроснабжения, которое является трёхфазным, применяется напряжение 220 В. Это фазное напряжение. Три фазы распределяются между несколькими потребителями.

Они подключаются к сети не одновременно и с неодинаковыми нагрузками.

Поэтому необходимо использование нейтрали чтобы обеспечивать подачу фазного напряжения каждому потребителю при несимметричной нагрузке в этой трёхфазной сети.

Суть проблемы

Но поскольку существует ограничение по мощности конечных трансформаторных подстанций, при упомянутых выше нагрузках величины фазных напряжений изменяются соответственно нагрузкам.

У более нагруженной фазы напряжение уменьшается например до 195 – 205 В, а менее нагруженной увеличивается до 245 В и более.

Последствием таких нагрузок является ток в нейтрали, который по своей величине может быть близким к току нагруженной фазы.

Как следствие этого – увеличение потерь. Они есть в кабельных и воздушных линиях электропередачи, трансформаторных подстанциях, и даже в высоковольтных ЛЭП питающих эти подстанции.

Особенно характерно такое «смещение нейтрали» – термин, характеризующий фазные напряжения при несимметричных нагрузках в трёхфазной сети, для жилого сектора потребителей электроэнергии.

При этом повышение напряжения является небезопасным для некоторых бытовых электроприборов.

Совет

Используемые в инфраструктуре жилого фонда трёхфазные асинхронные двигатели уже при двухпроцентной асимметрии испытывают дополнительный нагрев обмоток, что заметно сокращает срок службы изоляции.

Причём дальнейшее увеличение асимметрии в разы, то есть всего лишь до 4 – 6% вызывает рост общих потерь почти в два раза. То же относится и к лампам накаливания и люминесцентным лампам.

При повышении напряжения всего лишь на пять процентов спирали в них почти в два раза быстрее перегорают.

Что делать при перекосе фаз?

Чтобы уменьшить смещение нейтрали перед подстанциями рекомендуется устанавливать специальные симметрирующие автотрансформаторы. Схемы включения таких трансформаторов приведены ниже на изображениях.

Приведенные выше схемы применимы также с глухо заземлённой нейтралью нагрузки при отсутствии технической возможности встраивания компенсационной автотрансформаторной обмотки в нулевой провод, соединяя через эту обмотку нагрузку с сетью.

Поскольку увеличение нагрузки например в фазе А вызовет увеличение тока в этой фазе, напряжение на соответствующей последовательно включённой обмотке автотрансформатора тоже увеличится и произойдёт компенсация падения напряжения пропорциональная силе тока нагрузки. Установка автотрансформаторов вблизи распределительной подстанции обеспечивает наилучший эффект. Когда с этой подстанции электроэнергия по разделённым фазам подаётся потребителям, становится возможным симметрирование напряжения.

Это уменьшает потери и позволяет отфильтровать гармонические составляющие тока, возникающие от работы полупроводниковых ключей электронных балластов газоразрядных ламп, мощных инверторов, сварочных аппаратов.

Работа этих устройств вносит искажения в синусоидальную форму напряжения питающей электросети.

Следствием подобных искажений являются тепловые потери во всех работающих электрических машинах, подключенных к этой электросети.

Компенсация смещения нейтрали с использованием специального автотрансформатора весьма недешёвый способ борьбы с потерями электроэнергии при смещении нейтрали при несимметричной фазной нагрузке. Однако положительный эффект от этого способа получается непрерывно и быстро окупает все расходы.

Источник: http://podvi.ru/elektrotexnika/perekos-faz.html

Перекос по фазам в трехфазной сети

Источник: http://www.yugtelekabel.ru/perekos-po-fazam-v-trexfaznoj-seti.html

Перекос фаз. Что это такое и с чем он связан? Как исправить?

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. С ростом средней мощности бытовых приборов и техники, установленной в одном месте, например, в квартире, нередко возникает явление, называемое перекосом фаз.

В таких случаях, очень многие задаются вопросом, какие причины вызывают перекос фаз? И так, давайте разбираться.

Что же собой представляет перекос фаз

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине.

   Перекос фаз

Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

  • AB=BC=CA=380 В
  • AN=BN=CN=220 В

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN. Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Причины перекоса фаз

Причин перекоса может быть несколько, однако, наиболее распространенной является причина, связанная с неправильной и неравномерно распределенной нагрузкой в фазах внутренних сетей. В случае возникновения перекоса на объекте с трехфазным питанием, это означает, что одна или две фазы работают с перегрузкой, тогда как другие фазы имеют гораздо меньшую нагрузку.

Однофазные потребители нередко попадают на одну фазу, и в этом случае перекос фаз образуется при одновременном включении большого количества бытовой техники. Первыми признаками перекоса могут быть бытовые приборы, мощность которых заметно упала, или они вообще перестали работать. Освещение становится тусклым, а лампы дневного света начинают мерцать.

Важно

Основная опасность ситуации состоит в том, что бытовые приборы начинают работать некорректно, и появляется реальная возможность поломок вплоть до полного выхода их из строя. Наибольшая часть негативных последствий приходится на различные виды электродвигателей, которые установлены почти во всех приборах.

После того, как выяснился вопрос, что такое перекос фаз и с чем он связан, необходимо рассмотреть основные способы борьбы с этим явлением. Следует сразу отметить, что данные способы не являются универсальными, а подходят только для конкретных ситуаций.

Устранение перекоса фаз

Для того, чтобы избежать перекос фаз, необходимо осуществить тщательное планирование всех мощностей и рассчитать все возможные нагрузки с их правильным распределением по фазам. Как правило, составляется подробный электропроект на квартиру или дом.

При эксплуатации необходимо выполнять проверку тока с помощью специальных тестеров. Если возникнет необходимость, должна быть выполнена переброска однофазных нагрузок с более загруженных фаз на менее загруженные.

Ток на каждой фазе трёхфазного автомата должен быть тщательно измерен, после чего нужно перераспределить однофазные нагрузки так, чтобы токи на каждой фазе были приблизительно равными.

Эта работа должна выполняться только профессионалом, имеющим специальное оборудование.

Защита от внешнего перекоса фаз может быть исполнена с помощью стабилизаторов напряжения. На каждую фазу устанавливают определённый стабилизатор. Это будет более эффективно, чем установка одного трёхфазного стабилизатора.

В заключение необходимо подчеркнуть, что перекос фаз может стать причиной повреждения или полного выхода из строя электроприборов. Следовательно, для её устранения необходимо установить стабилизаторы или привлечь профессионалов, которые квалифицированно спроектируют электросеть.

Видео

Смотрите также по этой теме:

   Защита от перенапряжения. Что поможет защитить сеть?

   Источник бесперебойного питания для частного дома.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup. by/energosberezhenie/perekos-faz

Нормы на перекос фаз | Электролаборатория

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

Сначала давайте определимся в терминах.  Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник.

В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание.

Совет

Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания.

Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей.

В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках.

Обратите внимание

Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины  нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений.

Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.  

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов.

При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД.

В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах.

 Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам.

Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Важно

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи.

Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты. Наша электролаборатория выполняет любые электротехнические измерения.

Мы прошли государственную аккредитацию и имеем соответствующие документы.  Мы с радостью поможем решить ваши проблемы.

Источник: https://elektrolaboratoriya.com/elektrolaboratoriya-ispytaniya/perekos-faz-kakie-normyi-na-perekos-faz.html

Допустимый перекос фаз, причины возникновения и способы устранения

Это явление, возникающее в трехфазных четырех- и пятипроводных электрических сетях с глухозаземленной нейтралью. Данное состояние сети отличается несимметрией токов и напряжений с разными амплитудами напряжений углами между ними.

Для лучшего понимания и большей наглядности процесса предлагаем сравнить векторные диаграммы напряжений трехфазных сетей. Диаграмма 1 отличается идеальной взаимосвязью линейных и фазных напряжений, на диаграмме 2 хорошо видна несимметрия напряжений сети, т. е. имеет место перекос фаз.

Причины возникновения

В большинстве случаев к этому аварийному режиму приводит неравномерное распределения нагрузки – когда одна или две фазы перегружены. В этом случае высокие токи потребления на них приводят к неизбежному увеличению напряжения на других фазах.

Нередко, причиной несимметрии напряжения сети является неполнофазный режим, опасный не только для нагрузок с питающим напряжением 220 В, но и для трехфазного оборудования. Так, отсутствие одной фазы в линии может привести к возрастанию токов в остальных.

Обрыв нулевого провода. Режим работы линии при отсутствии рабочего нуля (N) можно отнести к разряду неполнофазных. Нарушение соотношений токов нагрузки на в таких случаях неизбежно вызывает изменение фазных напряжений (Uф). Отклонения напряжений зависит от соотношения мощностей нагрузки по фазам. В некоторых случаях Uф может достигать линейных значений (380 В).

Замыкание одной из фаз с рабочей нейтралью (“нулем”) и несработка по каким-либо причинам автомата защиты (неисправность, большая длина участка линии между местом КЗ и автоматом и пр.). В этом случае также происходит увеличение Uф на других проводниках.

Способы устранения

Несомненно, лучшим способом предотвращения несимметрии напряжения является планирование равномерного распределения предполагаемой нагрузки по фазам сети еще на стадии проектирования электроустановки.

Для устранения возникшей несимметрии напряжения в ходе эксплуатации электрической сети производят замеры токов по фазам и перераспределением нагрузок (переключение с более загруженных на менее нагруженные фазы) добиваются равных токов потребления.

В быту для обеспечения допустимого напряжения питания отдельных приборов или их группы нередко используют однофазные стабилизаторы напряжения, в трехфазных сетях – соответственно, трехфазные устройства. 

Совет

Однако, следует учитывать, что выравнивание значения Uф до допустимого с использованием трехфазного стабилизатора неизбежно сопровождается отклонением от нормы на других фазах.

Таким образом, можно говорить об эффективности его использования для предотвращения отклонения напряжения на одной (контролируемой) фазе, но его отклонение от нормы на других может стать вторичной причиной возникновения несимметрии напряжении.

Допустимый перекос фаз

Главным действующим документом, определяющим качество электроэнергии и регламентирующим нормы несимметрии напряжений является ГОСТ 13109-97 (п.п 5.5). Допустимое отклонение соотношений нагрузок, согласно требований СП 31-110 (9.5) – 15% в панелях ВРУ и 30% в распредщитах.

Источник: http://l220.ru/?id=pf

Сергей Никитин.

Устраняем проблемы с электрической сетью

Существует очень много проблем с электрической сетью в частных домах, частые скачки напряжения, перекосы фаз, заниженное напряжение и прочее. В данной статье пойдёт речь как просто и относительно дёшево устранить эту проблему.

Сразу оговорюсь, этим способом можно решить проблему при наличии трёхфазной сети или возможностью подключения к фазному напряжению 380 Вольт. В загородных домах, на дачах, да и в сельской местности, перекос фаз наблюдается более выражено.

При этом может быть выход из строя электроприборов с преобладающей реактивной нагрузкой.

К таким приборам относятся холодильники, вентиляторы, пылесосы, да и любые бытовые приборы и устройства, имеющие трансформаторные источники питания.

Обратите внимание

Что такое “перекос фаз”, я здесь объяснять не буду, кто не в курсе – гугл Вам в помощь, но кто с этим сталкивался, тот уже очень хорошо это знает.

И так расскажу одну не большую историю; В одном посёлке, у хорошего моего друга, в частном доме постоянно прыгало напряжение.

Дом был построен большой и ввод напряжения там был трёхфазный, то есть 3х380 Вольт. Естественно вся нагрузка дома была распределена равномерно по фазам, но это на стабильности напряжения никак не отразилось, так как перекос фаз (неравномерная нагрузка по фазам) возникал уже до ввода в дом.

От этого очень часто в доме перегорала бытовая аппаратура, микроволновки меняли почти каждый год, потому что из-за пониженного напряжения магнетрон быстрее терял свою способность греть, да и грел он не очень. На каждой розетке стояли стабилизаторы напряжения, но они не успевали отрабатывать резкие скачки напряжения.

Был в доме даже и бесперебойник с чистой синусоидой на выходе и мощностью 9 кВт!!!!. И вот после долгих уговоров и бесед с другом по решению этой проблемы (а ему советовали специалисты что таким простым способом не решить данную проблему), было принято решение сделать данный проект по устранению последствий перекоса.

Для начала прикинули мощность, которую нужно прокачать, то есть необходимую для обеспечения всего дома. Получилось у нас около 16-18 кВт. Начали для претворения проекта в жизнь, искать необходимый нам трансформатор, сначала конечно же трёхфазный. Нашли готовый ТСЗ-16 380/380, но он стоил на сайте 70-80 т.р.

, а при обращении к продавцу, цена его уже поднималась до 100 т.р., да и его вес был более 100кг.

По этому пришлось попробовать найти однофазные трансформаторы, но уже три штуки. И о чудо, есть такие, называются ОСЗ, а дальше идёт его мощность.

Остановились на 6 кВт, три штуки, 380в на 220 вольт, и стоят они в среднем около 9 т.р. за штуку и весит один трансформатор около 25кг. В той фирме, куда мы обращались, на вопрос – есть ли такие, нам сказали, что намотаем любые и по этой цене.

И так у нас появились три трансформатора однофазных 380/220 вольт и мощностью 6 кВт. Подключил я их все, по ниже приведённой схеме.

Важно

И так, соблюдая фазировку обмоток, соединяем входные обмотки и выходные по схеме. Если есть возможность сделать хорошее заземление, то промышленный «Ноль» можно вообще не использовать, необходимы будут для работы только фазные напряжения.

Вы спросите – что, и всё, проблема будет решена? А всё оказывается очень просто, между фазами напряжение 380 вольт в основном всегда может быть или 380 вольт или только ниже, и никогда не бывает выше, в отличии от линейного напряжения 220 вольт, которое из-за неравномерной нагрузки или не качественного «Ноль» может достигать до 380 вольт.

К тому же, из-за того, что преобразование напряжения происходит у Вас непосредственно в доме, то и токи от подстанции до ввода у вас будут в два раза меньше, следовательно потери напряжения будут в два (почти в два) раза меньше.

Есть трансформаторы с дополнительными отводами, которыми можно переключать напряжение, например зимой когда в сети напряжение занижено его можно приподнять, а летом когда нагрузка меньше его можно приопустить.

С отводами трансформаторы конечно дороже, но конкретно у ТСЗ-6-380/220 (они кстати алюминием намотаны) есть место куда можно 5-8 витков провода обычного одножильного электрического медного 6 кв. мм. без проблем домотать, и это либо добавит либо сбросит вольт 15-24 (в зависимости в какую обмотку Вы их подключите и как сфазируете).

У этого трансформатора один виток почти 3 вольта. В первичную обмотку можно провод и 4 кв.мм подмотать. И будет вам дёшево и удобно. Конструкцию из трансформаторов мы сделали одну для трёх. Трансформаторы сначала были извлечены из своих металлических корпусов и установлены один на другой.

Между ними проложены были две реечки из дерева высотой 10-15 мм, слегка скреплены парой болтов в свои штатные отверстия. Вся эта конструкция была закрыта вертикальным кожухом, который имеет вентиляционные отверстия снизу и сверху.

Кожух желательно делать немножко выше всей конструкции, вентиляционное отверстие снизу в виде щели высотой 5-6 см и шириной почти с сам трансформатор, сверху площадь вентиляционного отверстия должна быть больше нижней, что бы была лучше вентиляция (тяга). Сами катушки при эксплуатации почти не греются, греется само железо, но это сейчас норма. После установки данной конструкции, а их было установлено две, пропали все проблемы с качеством электрической сети, ни бросков, ни провалов при включении микроволновок, электро утюгов и электро чайников. Желаю всем удачи.

 

В трехфазной сети силового кабеля периодически возникает такое явление, как перекос по фазам. Это может привести к значительному падению мощности в электрооборудовании (электродвигателе, трансформаторе) и выходу их из строя. В этой статье мы расскажем, что такое перекос фаз в трехфазной сети, почему происходит это явление и какие имеет последствия.

Вообще перекос по фазам – явление достаточно распространенное. И если оно остается в рамках допустимых значений, указанных в ГОСТ и ПУЭ, то большой беды в этом нет. Так, максимальная разница между токами проводника с наименьшей нагрузкой и токами проводника с наибольшей составляет 30% – это значение в пределах нормы. Для панелей ВРУ оно составляет 15%.

Все в том же ГОСТ указано, что максимальная разница по фазам в обратной последовательности должна составлять 2%.

Почему возникает перекос по фазам

Обратите внимание

Этому есть несколько причин. Основная – неравномерное и несбалансированное распределение фазовой нагрузки, когда одна фаза получает избыточное питание, а две другие, соответственно, недостаточное.

В однофазной сети нагрузка также может меняться, например, при одновременном включении нескольких мощных электроприборов. Тогда мощность сети сразу падает, оборудование перестает работать или же выходит из строя.

Особенно сильно страдают электродвигатели. Диагностировать проблему и узнать, где именно происходит перекос по фазам можно с помощью токоизмерительных клещей.

Трехфазная электрическая сеть имеет заземленную нейтральную жилу, которая выравнивает перекос, если таковой случился. Но если она обрывается, роль нейтральной жилы берет на себя одна из фазовых. И в этом случае на ней будет 380 В, а на других жилах – 127 и меньше.

Негативные последствия перекоса

Негативные последствия перекоса по фазам можно разделить на три типа:

  1. Повреждение электроприборов, вывод их из строя.

  2. Повреждение генераторов и трансформаторов электросети.

  3. Увеличение расходов на эксплуатацию электросети, снижение ее безопасности и надежности.

Из-за того что электроэнергия распределяется по проводникам неравномерно, в электросети значительно увеличивается потребление электричества. Трехфазная сеть, у которой образовалась несимметрия, может снизить срок эксплуатации электроприборов и бытовой техники.

Неравномерное распределение электричества заметно повышает его расход в сети. А вот срок эксплуатации бытовой и цифровой техники наоборот, может снизиться.

Если мы говорим об автономном электрогенераторе, то у него повысится расход топлива, и так же ухудшится надежность.

Как бы то ни было, все эти процессы негативного свойства, и чтобы их избежать, необходимо заранее предпринять меры по защите.

Меры по защите

Первой и одной из наиболее распространенных защитных мер является установка в сеть стабилизатора напряжения. Для установки в трехфазную сеть используются стабилизаторы, состоящие из трех однофазных. Однако нейтрализовать перекос всегда и везде они не могут, поэтому применяются дополнительные меры:

  • правильное проектирование с учетом всех современных правил и требований;
  • применение приборов, которые способны автоматически выравнивать нагрузку;
  • изменение текущей схемы работы электросети, в том числе и изменение мощности потребителей, если это возможно;
  • установка реле контроля фаз и напряжения – устройства, которое автоматически отключит этот элемент электросети при перекосе по фазам.

Линейное напряжение — Asutpp

В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

4-проводная сеть

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор — линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Расчет

Соединение

Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.

Схема звезда и треугольник

Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.

Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.

Формулы для расчета двигателей

Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.

В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.

Стабилизатор напряжения с защитой от перегрузок

Расчет

Для того чтобы рассчитать линейное напряжение используется формула Киргофа:

n  

∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.

k=1

 

И закон Ома:

I =   U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.

При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:

IL = IF – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.

Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.

Для этого используется формула: Uл=Uф∙√3, где:

Uл –линейное, Uф – фазовое. Формула справедлива только если IL = IF.

При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.

При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:

Q = Qа + Qb + Qс

Аналогичный вид имеет формула активной:

P = Pа + Pb + Pс

Что такое линейное и фазное напряжение, каково их соотношение?

Простое объяснение понятий фазного и линейного напряжения. Чем отличаются эти напряжения и каково их соотношение.


Снабжение электричеством городов, предприятий и жилищ ведется с помощью сети из трёх фаз. Так сложилось исторически, что трёхфазные машины переменного тока используются для генерирования электроэнергии и её потребления (в электроустановках). Такое количество было выбрано для минимальных затрат на создание вращающегося магнитного поля или использования этой энергии в целях генерации электричества. Встречаются и специфичные 6-тифазные генераторы, в автомобилях например, но там они нужны для других целей. В этой статье мы будем вести речь о том, что собой представляют фазное и линейное напряжение в трёхфазных цепях, чем они связаны и в чем различие. Содержание:

Переменное напряжение и его величины

Напряжение различают по роду тока: переменное и постоянное. Переменное может быть разной формы, основная суть в том, что с течением времени изменяется его знак и величина. У постоянного знак всегда одной полярности, а величина может быть стабилизированной или нестабилизированной.

В наших розетках напряжение переменное синусоидальной формы. Выделяют разные его значения, чаще всего используются понятия мгновенное, амплитудное и действующее. Как понятно из названия, мгновенное напряжение — это количество вольт в конкретный момент времени. Амплитудное – это размах синусоиды относительно нуля в вольтах, действующее — это интеграл от функции напряжения по времени, соотношение между ними такое: действующее в √2 или 1,41 раз меньше амплитудного. Вот как это выглядит на графике:


Напряжение в трехфазных цепях

В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).

Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.

Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.

Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.

КРАТКО: Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.

С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:

Линейное напряжение больше фазного в √3 или в 1,73 раза.

Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода. Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного. В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.

Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.

Для примера: обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль. Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).

Схемы подключения потребителей к трём фазам

Все двигателя, мощные нагреватели и прочая трёхфазная нагрузка может быть подключена по схеме звезды или треугольника. При этом большинство электродвигателей в борно имеют набор перемычек, которые в зависимости от их положения формируют звезду или треугольник из обмоток, но об этом позже. Что такое соединение звездой?

Соединение звездой предполагает соединение обмоток генератора таким образом, когда концы обмоток соединяются в одну точку, а к началам обмоток подключается нагрузка. Звездой же соединяются и обмотки двигателя и мощных нагревателей, только вместо обмоток в них выступают ТЭНы.

Давайте рассуждать на примере электродвигателя. При соединении его обмоток звездой линейное напряжение 380 В приложено к двум обмоткам, и так с каждой парой фаз.

На рисунке A, B, C – начала обмоток, а X, Y, Z – концы, соединенные в одну точку и эта точка заземлена. Здесь вы видите сеть с глухозаземленной нейтралью (провод N). На практике это выглядит так, как на фото борно электродвигателя:

Красным квадратом выделены концы обмоток, они соединены между собой перемычками, такое расположение перемычек (в линию) говорит о том, что они соединены по звезде. Синим цветом – питающие три фазы.

На этом фото промаркированы начала (W1, V1, U1) и концы (W2, V2, U2), обратите внимание на то, что они сдвинуты относительно начал, это нужно для удобного соединения в треугольник:

При соединении в треугольник к каждой обмотке приложено линейное напряжение, это приводит к тому, что протекают большие токи. Обмотка должна быть рассчитана на такое подключение.

У каждого из способов включения есть свои достоинства и недостатки, некоторые двигателя вообще в процессе пуска переключаются со звезды на треугольник.

Нюансы

В продолжение разговора о двигателях нельзя оставить без внимания вопрос выбора схемы включения. Дело в том, что обычно двигателя на своем шильдике содержат маркировку:

В первой строке вы видите условные обозначения треугольника и звезды, обратите внимание, треугольник идет первым. Далее 220/380В – это напряжение на треугольнике и звезде, значит, что при соединении треугольником нужно, чтобы линейное напряжение было равно 220В. Если в вашей сети напряжение равно 380 – значит нужно подключать двигатель в звезду. В то время как фазное всегда на 1,73 меньше, не зависимо от величины линейного.

Отличным примером является следующий двигатель:

Здесь номинальные напряжения уже 380/660, это значит, что его для линейного 380 нужно подключать треугольником, а звезда предназначена для питания от трёх фаз 660В.

Если в мощных нагрузках чаще оперируют с величинами межфазного напряжения, то в осветительных цепях в 99% % случаев используют фазное напряжение (между фазой и нулем). Исключением являются электрокраны и подобное, где может использоваться трансформатор с вторичными обмотками с линейным 220 В. Но это скорее тонкости и специфика конкретных устройств. Новичкам запомнить проще так: фазное напряжение – это то, которое в розетке между фазой и нулем, линейное – в линии.

Наверняка вы не знаете:

  • Как из 220 Вольт сделать 380
  • Как собрать трехфазный электрический щит
  • Как распределить нагрузку по фазам
Нравится0)Не нравится0)

Всё о напряжении — Мастер 380 вольт

Напряжение — разность потенциалов между двумя точками пространства. Измеряется в вольтах. Так напряжение между плюсовым и минусовым контактом батарейки составляет 1,5 вольта, а между поверхностью земли и грозовым облаком — миллионы вольт!

Всем известно, что в нашей розетке напряжение переменного тока составляет 220 — 230 вольт. А вот, в трёхфазной розетке — 380 вольт. Разница заключается в том, что в первом случае мы получаем фазное, а во втором — линейное напряжение. Так что же такое линейное напряжение  и что такое фазное напряжение , и каково соотношение между ними? И по какой причине  соотношения именно таковы.

Как в квартиру, так и на предприятие электроэнергия передаётся от генерирующих электростанций  по высоковольтным линиям электропередач (в нашей стране — частотой 50 Гц). На трансформаторных подстанциях высокое напряжение понижается, и распределяется по потребителям . Но если у вас в квартире сеть однофазная (надо заметить, что в последнее время у бытовых потребителей имеется возможность подключения к трёхфазной сети), то на производстве — трехфазная,  давайте разберёмся, в чём же разница.

Действующее значение и амплитудное значение напряжения

Говоря — 220 или 380 вольт, мы имеем ввиду действующие значения напряжений, другими словами — среднеквадратичные значения напряжений. Фактически амплитудное значение переменного напряжения всегда выше фазного Umф или линейного Umл. Для синусоидального напряжения его амплитуда больше действующего значения в квадратный корень из 2 раз,(1,414 раза).

Отсюда выходит, что фазное напряжение в 220 соответствует амплитудному — 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. Разумеется, на практике напряжение в розетке часто не соответствует именно 220 вольтам, оно может быть больше или меньше этой величины, но должно укладываться в допустимые параметры.

Что такое фазное напряжение в сети переменного тока?

На электростанции обмотки генератора соединены по схеме «звезда», то есть объединены концами X, Y и Z в одной точке, которая называется нейтралью или нулевой точкой генератора. Такая схема называется четырехпроводной трехфазной схемой. К выводам обмоток A, B и C присоединяются линейные провода, а к нулевой точке — нейтральный или нулевой провод.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

Линейное напряжение трехфазной сети

Действующее напряжение между выводом A и  B, между выводом B и  C, между выводом C и  A, — называются линейными напряжениями, то есть это напряжения между линейными проводами трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Линейное напряжение в наших электросетях составляет приблизительно 380 вольт. Соотношение фазного и линейного напряжения в любой трёхфазной сети с заземлённой нейтралью составляет 1,732, или квадратный корень из 3. Не смотря на то что фактическое напряжение в сети может изменяться в определённых пределах, в зависимости от загруженности, соотношение между фазным и линейным напряжением остаётся неизменным.

Что такое линейное и фазное напряжение 🚩 Естественные науки

Линейным называют напряжение между двумя фазными проводами, иногда его упоминают как межфазное или междуфазное. Фазным считается напряжение между нулевым проводом и одним из фазных. В нормальных условиях эксплуатации линейные напряжения одинаковы и превосходят фазные в 1,73 раза.

Трехфазные цепи обладают рядом преимуществ по сравнению с многофазными и однофазными, с их помощью можно легко получить вращательное круговое магнитное поле, которое обеспечивает работу асинхронных двигателей. Напряжение трехфазной цепи оценивают по ее линейному напряжению, для отходящих от подстанций линий его устанавливают 380 В, что соответствует фазному напряжению в 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используют обе величины — 380/220 В, подчеркивая этим, что к ней могут подключаться не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.

Фазой называют часть многофазной системы, имеющую одинаковую характеристику тока. Вне зависимости от способа соединения фаз существуют три одинаковых по действующему значению напряжения трехфазной цепи. Они сдвинуты относительно друг друга по фазе на угол, составляющий 2π/3. У четырехпроводной цепи, помимо трех линейных напряжений, есть также три фазные.

Самыми распространенными номинальными напряжениями приемников переменного тока являются 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В — для бытовых. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети. Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, которые рассчитаны на 220 и 127 В или 380 и 220 В.

Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.

Линейные и фазные токи и напряжения в трехфазных цепях

Трехфазная система электроснабжения принята в качестве стандарта в большинстве стран мира, Россия не исключение. Каждый дом в стране подключен именно к такой сети, но в отдельную квартиру заходит, как правило, один фазный провод. При желании можно провести и еще две фазы, что часто делается на участках, предназначенных для ИЖС. Они нужны для работы оборудования, содержащего электродвигатель. При подключении к трехфазной цепи часто возникают вопросы, связанные с такими понятиями, как фазный и линейный ток, а также с соответствующими показателями напряжений.

Цепи переменного тока

Как известно, электроснабжение в России осуществляется с помощью цепей переменного тока с частотой 50 Гц. За одну секунду совершается 50 циклов. Полный цикл представляет собой круг, угловой размер которого можно измерить в градусах и радианах — 360 градусов радиан или 2π радиан. Соответственно, половина этого цикла будет 180 или π радиан, треть — 120 или 2 π/3 и т. д. Конкретный момент этого цикла и называется фазой. Цепи в стране синхронизированы в единую систему.

Сдвиг по фазе в цепи

Это выражение не имеет ничего общего со здоровьем головного мозга. Таким термином объясняют несовпадение графиков тока и напряжения, что бывает на участках с катушками или конденсаторами, а также сравнение фаз в разных проводах. При трехфазной системе электроснабжения сдвиг составляет 120 градусов или 2 π/ 3 радиан.

Вот так выглядит наложение графиков напряжений в трех проводах, идущих от трансформаторной будки. Слева даже наглядно показано, как такое можно получить от простой турбины.

Возможно, некоторые помнят подобное упражнение при составление графика функции y=sin (x), когда рисовали ее от круга.

Действующие показатели тока и напряжения

Максимальная амплитуда напряжения в цепи, идущей от трансформаторной подстанции во дворе, составляет 310 В. За 1 с она бывает 100 раз — внизу и вверху графика. Мгновенные значения этого параметра зависят от фазы, в которой находится график. Естественно, для потребителей такое представление крайне неудобно, поэтому в обиходе используется понятие действующего напряжения.

Его формула была выведена экспериментально на основе закона Джоуля-Ленца. Суть вывода этой формулы заключается в том, что действующее значение переменного тока эквивалентно значению постоянного при одинаковом выделении теплоты. Коэффициент, который используется при вычислении, равен √2. Зная это, можно воспользоваться правилом:

I=I m/ √2, U=Um/√2,

где I m и Um — амплитуда. Если подставить во вторую формулу значение амплитуды, то получается, что действующее напряжение фазного провода относительно земли в квартире составит 230 В. Оно еще называется фазным. Ну, а величина тока будет зависеть от нагрузки, согласно закону Ома:

I=U/R.

Ток в фазном проводе тоже будет называться фазным.

Соединения звезда и треугольник

В домашней розетке помимо фазы обязательно присутствует ноль. Правильное его название — нейтраль. Некоторые путают его с заземлением, но на самом деле у него иная функция. Чтобы ее лучше понять, нужно ознакомиться с таким понятиями, как «звезда» и «треугольник».

Роль нейтрали в цепи

На подстанции, откуда в квартиру идет питающий провод, все три фазы одним концом соединены. Второй конец одной из фаз идет в одну квартиру, другой — в другую, третий — в третью. Если в каждой квартире в качестве второго провода использовать заземление, может возникнуть неприятная ситуация.

Но равновесие в этой системе возможно лишь тогда, когда все три потребителя одновременно включают одинаковую нагрузку — она называется симметричной. В реальности же один может включить телевизор, а другой — электрическую духовку. Итогом этого станет перекос фаз, когда у владельца телевизора в розетке будет 380, а у обладателя духовки 30 с небольшим. Чтобы такого не случилось, с места соединения концов фазных проводов выводят нейтраль, которая и идет в каждую квартиру. Для пущей осторожности ее тоже заземляют.

Нейтраль (нулевой провод) является компенсатором несимметричности нагрузки в такой цепи, которую назвали «звездой». В таком соединении между одной из фаз и нейтралью напряжение приблизительно равно 220 В, а между двумя фазами — 380. Это самое межфазное напряжение и называется линейным.

Его значение вычисляется исходя из действующего фазного и значения угла сдвига между ними. Вспомнив уроки геометрии в школе можно вывести:

AB=2x230x√3/2=230х√3=400.

Учитывая, что в цепь постоянно что-то включено, и в чистом виде ЭДС дома не измерить, получим:

220х√3=380.

Таким образом, фазные и линейные напряжения и токи при соединении звездой подчиняются следующим закономерностям:

U (l)=√3U (f), I (l)=I (f) — линейный ток равен фазному.

Соединение звездой с нейтралью очень удобно для распределения проводки по разным потребителям. Его преимущества можно перечислить:

  • устойчивость режима работы электроприборов в условиях разных нагрузок;
  • двигатели, обмотки которых подключены таким методом, не перегреваются;
  • из-за невозможности увеличить ток — пуск двигателя осуществляется плавно;
  • возможность использования как линейного, так и фазного напряжения.

Схема треугольник и максимум мощности

Такая необходимость возникает при желании по максимуму использовать КПД электродвигателя. Это можно достигнуть путем соединения фазных проводов в треугольник. Фазное и линейное напряжение в трехфазных цепях такого типа будут совпадать и равняться 380 В. А вот линейный ток, протекающий в подведенных к двигателю фазах, будет отличаться от того, что протекает через обмотки. Фазный ток можно вычислить, зная сопротивление и напряжение в обмотках, это величины известные. А вот линейный ток вычисляется по такой же диаграмме, как и напряжение в схеме «звезда»:

I (l)=I (f)x√3, U (f)=U (l).

Стоит ли делать такое переключение — отдельный вопрос. Для этого нужно учесть ряд важных моментов:

  • Мощность, конечно, увеличится в 1,5 раза. Возможность перегрева — тоже.
  • Если у двигателя тяжелый ротор, то при раскрутке ток будет раз в 7 выше, чем при устойчивой работе.
  • То же самое будет наблюдаться при попытке дать физическую нагрузку на вращающуюся часть, например, при пилке чего-то жесткого, при подъеме тяжести (если двигатель используется в качестве лебедки).

Поэтому перед проведением экспериментов стоит хорошо ознакомиться с паспортом двигателя и возможностями вашей сети.

Вполне возможно, что лучше будет приобрести электродвигатель с реостатной регулировкой пускового тока.

10 кВА Трехфазный преобразователь частоты 220 В / 380 В

Трехфазный преобразователь частоты 220/380 В на 10 кВА, простой преобразователь частоты с 50 Гц на 60 Гц или с 60 Гц на 50 Гц для трехфазных промышленных двигателей с чистой синусоидой, также может изменять напряжение с 220 В на 380 В / 400 В.

Срок поставки: 6-15 дней

Входное напряжение (трехфазное)
— 208В [+ 399 долларов.00] 220В [+ 399,00 $] 240 В [+ 399,00 $] 380В 400 В 420 В 460В [+ 399 долларов. 00] 480 В [+ 399,00 $]
Тип проводки
Выходная частота (Гц)
Используемый

Старая цена: 6 499 долларов США.00

Цена: 5 990,77 долл. США

Трехфазный твердотельный преобразователь частоты 10 кВА, легко преобразующий фиксированную частоту в переменную частоту для питания и тестирования промышленных машин с чистой синусоидой, также может изменять трехфазное 220 В на 380 В / 400 В за один шаг.

Технические характеристики

Модель Гц-50-3310
Вместимость 10 кВА
Размер 770 * 580 * 1140 мм
Масса 150 кг
Ввод Напряжение, 3 фазы, 4 провода: звезда типа 190/110, 200/115, 208/120, 220/128, 230/132, 240/139 В ± 10% (опция *)
3 фазы, 4 провода: звезда типа 380/220, 400/230, 415/240, 440/254, 460/265, 480/277 В ± 10% (опция *)
3 фазы 4 провода: Della тип 220, 230, 240, 380, 400, 415, 440 В ± 10% (опция *)
Частота 50 Гц, 60 Гц или 400 Гц ± 5%
Выход Напряжение, ток Настройка 110 В (низкий уровень): 0-150 В (фазное напряжение), 0-260 В (линейное напряжение) 27. 6A
Настройка 220 В (высокий уровень): 0-300 В (фазное напряжение), 0-520 В (линейное напряжение) 13,8 A
Коэффициент стабилизации нагрузки ≤ ± 1%
Частота 50 Гц, 60 Гц до 400 Гц регулируется
Стабильность частоты ≤ ± 0,01%
Гармонические искажения Чистая синусоида ≤2%
Частотомер 4 цифры, цифровой частотомер, разрешение 0.1 Гц / шаг
Вольтметр 4-разрядный цифровой вольтметр, разрешение 0,1 В
Амперметр 4 цифры, цифровой амперметр, разрешение 0,1 А
Ваттметр 4-разрядный цифровой ваттметр, разрешение 0,1 Вт
Защита При перегрузке, коротком замыкании, перегреве
Устройство защиты и аварийной сигнализации при мгновенном исчезновении питания
Рабочая среда Температура 0-40 град.
Влажность 0 — 90% (без конденсации)
Гарантия 18 месяцев

* Входное напряжение выбирается на заводе.

Советы: Может ли двигатель 60 Гц работать от источника питания 50 Гц?
Двигатели могут работать на любой частоте, начиная с нескольких Гц до превышения частоты (реалистичного), как вы знаете, преобразователь частоты может это сделать. Но двигатель должен охлаждаться, вентилироваться с помощью подключенных охладителей / вентиляторов.Есть много применений, когда двигатели работают на частоте от 10 Гц до 60 Гц (с частотно-регулируемыми приводами) длительные периоды без проблем. Главное условие — охлаждение! Вместо этого, очень низкая частота (например, около 5 Гц) сложнее, потому что вам нужно ввести более высокий ток, и это может стать опасным, поэтому это можно делать, но не в течение длительного периода.

Напишите ваш собственный отзыв о , 10 кВА, трехфазный преобразователь частоты 220/380 В

  • Только зарегистрированные пользователи могут оставлять отзывы

Существующие отзывы

Мы приобрели два из них, чтобы управлять трехфазными европейскими машинами 400 В 50 Гц здесь, в штатах, от нашей мощности 240 В 60 Гц. они оба доставлены быстро и в отличном состоянии. Пользуюсь ими уже больше года без каких-либо проблем.
Я сам вызвал несколько проблем, но их инженер Самех Гауда очень быстро помог решить мои проблемы.

по ТРОЙ на 02/11, 2018

Был ли этот обзор полезным? Есть / (0/0)

Лучшее соотношение цены и качества 3 фазы 380 В переменного тока — Отличные предложения на 3 фазы 380 В переменного тока от мировых продавцов 3 фазы 380 В переменного тока

Отличные новости !!! Вы находитесь в нужном месте для 3-х фазной сети 380 В переменного тока. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эти три лучшие фазы 380 В переменного тока должны в кратчайшие сроки стать одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели трехфазный 380 В переменного тока на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в трехфазном 380 В переменного тока и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 3 phase 380v ac по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Электроэнергетика

Узнайте о спецификациях электропитания и требованиях для Exadata Cloud у заказчика.

Exadata Cloud at Customer может эффективно работать в широком диапазоне напряжений и частот.Однако он должен иметь надежный источник питания. При превышении допустимых значений может возникнуть повреждение. Электрические помехи, такие как следующие, могут повредить облако Exadata у Заказчика:

  • Колебания из-за отключения электроэнергии

  • Широкие и быстрые изменения уровней входного напряжения или входной частоты питания

  • Грозы

  • Неисправности в системе распределения, например, неисправность проводки

Для защиты системы следует использовать специализированную систему распределения энергии и оборудование для кондиционирования энергии.Для защиты от грозы следует использовать молниеотводы или силовые кабели.

В каждой стойке есть два предустановленных блока распределения питания (PDU). PDU принимают разные источники питания. Вы должны выбрать тип PDU, который соответствует требованиям вашего центра обработки данных.

Доступные PDU

В следующем списке перечислены доступные PDU для Exadata Cloud у Заказчика в зависимости от вашего региона:

  • Америка, Япония и Тайвань

    • Низковольтное однофазное напряжение 15 кВА

    • Низковольтное напряжение 15 кВА, трехфазное

    • Низковольтное однофазное напряжение 22 кВА

    • Низковольтное напряжение 24 кВА, трехфазное

  • Европа, Ближний Восток и Африка (EMEA) и Азиатско-Тихоокеанский регион (APAC), за исключением Японии и Тайваня

    • Высоковольтное питание 15 кВА, трехфазное

    • Высоковольтный, однофазный, 22 кВА

    • Высоковольтное питание 24 кВА, трехфазное

Электрические характеристики низковольтного БРП

В следующей таблице перечислены характеристики низковольтного PDU. Перечисленные технические характеристики относятся к каждому PDU. Каждая стойка содержит два блока PDU.

Спецификация 15 кВА, 1 фаза 15 кВА, 3 фазы 22 кВА, 1 фаза 24 кВА, 3 фазы
Напряжение 200 — 240 В переменного тока 200 — 208 В переменного тока, 3 фазы 200 — 240 В переменного тока 200 — 208 В переменного тока, 3 фазы
Частота 50/60 Гц 50/60 Гц 50/60 Гц 50/60 Гц
Текущий 24A максимум на вход 40A максимум на фазу 36. 8 А максимум на вход 34,6 А максимум на фазу
Номинальная мощность 15 кВА 14,4 кВА 22 кВА 25 кВА
Выходной ток 72A (3 x 24A) 69A (3 x 23A) 110. 4 А (3 x 36,8 А) 120A (6 x 20A)
Розетки 42 x C13; 6 х C19 42 x C13; 6 х C19 42 x C13; 6 х C19 42 x C13; 6 х C19
Количество входов 3 x 30A, 1 фаза 1 x 60A, 3 фазы 3 x 50 А, 1 фаза 2 x 60 А, 3 фазы
Розетка центра обработки данных NEMA L6-30 IEC309 60A 4 PIN 250VAC 3 фазы IP67 Хаббелл CS8264C IEC309 60A 4 PIN 250VAC 3 фазы IP67

Электрические характеристики высоковольтного БРП

В следующей таблице перечислены характеристики высоковольтного блока распределения питания. Перечисленные технические характеристики относятся к каждому PDU. Каждая стойка содержит два блока PDU.

Спецификация 15 кВА, 3 фазы 22 кВА, 1 фаза 24 кВА, 3 фазы
Напряжение 220/380 — 240/415 В переменного тока, 3 фазы 220 — 240 В переменного тока 220/380 — 240/415 В переменного тока, 3 фазы
Частота 50/60 Гц 50/60 Гц 50/60 Гц
Текущий 25 А максимум на фазу 32A максимум на вход 18 А максимум на фазу
Номинальная мощность 14.4 кВА 22 кВА 25 кВА
Выходной ток 62,7 А (3 x 20,9 А) 96A (3 x 32A) 109A (6 x 18,1A)
Розетки 42 x C13; 6 х C19 42 x C13; 6 х C19 42 x C13; 6 х C19
Количество входов 1 x 25A, 3 фазы 3 x 32A, 1 фаза 2 x 25A, 3 фазы
Розетка центра обработки данных IEC309 32A 5 PIN 230/400 В 3 фазы IP44 IEC309 32A 3 контакта 250 В перем. Тока IP44 IEC309 32A 5 PIN 230/400 В 3 фазы IP44

Трехфазное напряжение, частота и количество проводов — Мировой стандарт электроэнергии — Мировая электроэнергетическая система

Хотя однофазное питание сегодня более распространено, трехфазное все еще выбран в качестве силы выбора для многих различных типов Приложения.Генераторы на электростанциях питают трехфазные электричество. Это способ обеспечить в три раза больше электричество по трем проводам, может подаваться по двум, без увеличения толщины проводов. это обычно используется в промышленности для привода двигателей и других устройств.

Трехфазный электричество по своей природе является более плавной формой электричество, чем однофазное или двухфазное. Это это более стабильная электрическая мощность, позволяющая машинам работать более эффективно и служат на много лет дольше, чем их родственники машины, работающие на других фазах.Некоторые приложения умеют работать с трехфазным питанием способами, которые не работают на однофазный у всех.

Имейте в виду, поскольку трехфазное электричество редко используется в бытовых целях, приведенная ниже таблица актуальна только для электриков, электриков. инженеры и другие технически квалифицированные люди. Путешественники Следует взглянуть на таблицу однофазных напряжений. Справочная таблица (однофазное напряжение, частота и вилки / розетки)

СТРАНА ТРЕХФАЗНОЕ НАПРЯЖЕНИЕ ЧАСТОТА КОЛИЧЕСТВО ПРОВОДОВ (без заземления)
Афганистан 380 В 50 Гц 4
Албания 400 В 50 Гц 4
Алжир 400 В 50 Гц 4
Американское Самоа 208 В 60 Гц 3, 4
Андорра 400 В 50 Гц 3, 4
Ангола 380 В 50 Гц 4
Антигуа 400 В 60 Гц 3, 4
Аргентина 380 В 50 Гц 3, 4
Армения 380 В 50 Гц 4
Аруба 220 В 60 Гц 3, 4
Австралия 415 В 50 Гц 3, 4
Австрия 400 В 50 Гц 3, 4
Азербайджан 380 В 50 Гц 4
Азорские острова 400 В 50 Гц 3, 4
Багамы 208 В 60 Гц 3, 4
Бахрейн 400 В 50 Гц 3, 4
Балеарские острова 400 В 50 Гц 3, 4
Бангладеш 380 В 50 Гц 3, 4
Барбадос 200 В 50 Гц 3, 4
Беларусь 380 В 50 Гц 4
Бельгия 400 В 50 Гц 3, 4
Белиз 190 В / 380 В 60 Гц 3, 4
Бенин 380 В 50 Гц 4
Бермудские острова 208 В 60 Гц 3, 4
Бутан 400 В 50 Гц 4
Боливия 400 В 50 Гц 4
Босния и Герцеговина 400 В 50 Гц 4
Ботсвана 400 В 50 Гц 4
Бразилия 220 В / 380 В / 440 В * 60 Гц 3, 4
Бруней 415 В 50 Гц 4
Болгария 400 В 50 Гц 4
Буркина-Фасо 380 В 50 Гц 4

Что такое трехфазное напряжение | Тихоокеанский источник энергии

Однофазное переменное напряжение

Большинство из нас знакомо с однофазным напряжением в наших домах, обеспечиваемым местными коммунальными предприятиями.Для США это обычно 120 В. Для однофазного напряжения напряжение выражается как напряжение между фазой и нейтралью между двумя силовыми проводниками (плюс защитное заземление). Нейтральный провод обычно имеет потенциал земли, а линейный провод — синусоидальное переменное напряжение со среднеквадратичным значением 120 В переменного тока. Это означает, что пик переменного напряжения меняется от + 169,7 В до -169,7 В каждые 16,667 мс на частоте сети 60 Гц в США. Для многих других стран эти номинальные значения составляют 230 В среднеквадратического значения при 50 Гц (20 мс).

Рисунок 1: Форма волны синусоидального напряжения однофазного среднеквадратического значения 120 В

Power Limited

Однофазное напряжение может выдавать только такую ​​мощность, как вся мощность, которая должна подаваться через линию и нейтраль. Это не проблема для домашнего использования, но для промышленного использования может потребоваться больший ток для работы машин, двигателей, освещения и других мощных нагрузок. В таких ситуациях часто желательно увеличить как напряжение, так и ток, чтобы получить более высокую мощность.Один из вариантов — использовать две фазы, как в некоторых домах в США, для работы электрических сушилок. Это называется соединением с разделением фаз, при котором две фазы 120 В среднеквадратического значения разнесены на 180 °, обеспечивая удвоенное межфазное напряжение 120 В или 240 В. Это удваивает доступную мощность. Разделенная фаза обычно не используется в Европе или Азии, поскольку нормальное напряжение однофазной сети уже составляет от 220 В до 240 ЛН.

Трехфазное переменное напряжение

Если пойти дальше, то мощные нагрузки обычно получают питание от трех фаз.Это распределяет ток по трем проводам, а не по одному набору проводов, что позволяет использовать проводку меньшего размера и, следовательно, менее дорогую. Три источника напряжения сдвинуты по фазе на 120 ° друг относительно друга для уравновешивания токов нагрузки. Это показано на Рисунке 2.

Рисунок 2: Формы трехфазного напряжения с разным вращением

Фазовый сдвиг на 120 ° между каждой формой сигнала может быть выполнен в одном из двух чередований фаз — A -> B -> C или A -> C -> B. Чередование фаз не влияет на большинство нагрузок, за исключением трехфазных двигателей переменного тока, которые будут поверните в обратном направлении, если чередование фаз изменилось.Изменить чередование фаз можно, поменяв местами любые два из трех фазных соединений. При использовании программируемого источника питания переменного тока, такого как серия AFX, фазовые углы для фаз B и C можно запрограммировать на 120 ° и 240 ° или 240 ° и 120 ° соответственно для изменения чередования фаз. AFX также позволяет программировать фазовый дисбаланс для изучения влияния фазовых изменений на тестируемое устройство.

Осторожно при определении межфазных напряжений

В то время как «нормальное» соотношение трехфазного треугольника и звездочки легко уловить в простой формуле, это применимо только к равным линейным и нейтральным напряжениям, идеальному фазовому балансу и синусоидальным напряжениям.В этом идеальном случае соотношение между среднеквадратичным напряжением между фазой и нейтралью и среднеквадратичным напряжением между фазой может быть выражено следующей формулой:

Это соотношение между фазным напряжением и нейтралью и линейным напряжением показано на фазовой диаграмме на Рисунке 3.

Рисунок 3: Трехфазная фазовая диаграмма

На рисунке 4 ниже показаны два типичных примера трехфазных конфигураций напряжения электросети, используемых в США. В Европе и Азии обычно используются конфигурации 220/380 В или 230/400 В.120VLN на фазу эквивалентно векторной сумме 208VLL:

В LL = 120 В LN * 1,732 = 207,84 В LL

Обратите внимание, что конфигурация сети, соединенная треугольником 480 В, не имеет нейтрального соединения и называется соединением 3 провода + земля треугольник. Чтобы смоделировать этот тип сети с источником питания переменного тока, трехфазная нагрузка подключается по схеме треугольника только между тремя выходными фазами без подключения к выходной клемме нейтрали.

Рисунок 4: Типичные конфигурации трехфазного напряжения, используемые в США

Это соотношение √3 важно при использовании программируемого трехфазного источника питания переменного тока, поскольку все источники переменного тока типа T&M программируются только на линейное и нейтральное напряжение.Таким образом, если какое-либо из указанных условий не выполняется, вы не можете просто полагаться на эту формулу для определения линейного напряжения:

  1. Одинаковые напряжения VLN на всех трех фазах
  2. Сбалансированные углы фаз на фазах B и C
  3. Низкие искажения, чистый синусоидальный сигнал

Небольшой сдвиг фазы на одной или нескольких из трех фаз может оказать значительное влияние на напряжения V LL , что также приведет к дисбалансу тока нагрузки.

Искаженное напряжение, вызванное нелинейной нагрузкой на одной или нескольких фазах, также может сбрасывать линейные напряжения.

Почему это важно?

Программируемые трехфазные источники питания переменного тока имеют регулируемые углы фаз и часто поддерживают сигналы произвольной формы. Это означает, что соотношение между фазой и нейтралью и линейным напряжением не обязательно «фиксированное». Как правило, все трехфазные программируемые источники питания переменного тока программируются на среднеквадратичное значение от линии до нейтрали, независимо от типа нагрузки (треугольник или звезда). Таким образом, может потребоваться фактически измерить результирующее линейное напряжение, поскольку его расчет недействителен, если эти условия не выполняются.

Заключение

При тестировании трехфазных нагрузок обращайте особое внимание на параметры напряжения и фазы, делая предположения о напряжениях между линиями, приложенных к тестируемому устройству.

трехфазных цепей переменного тока MCQ с пояснительными ответами

трехфазных цепей переменного тока (MCQ с пояснительными ответами)

трехфазных цепей переменного тока MCQ с пояснениями. Чтобы получить пояснительный ответ, нажмите кнопку-переключатель с надписью «Проверить пояснительный ответ».

1 кв. Мощность в трехфазной цепи = _________.

  1. P = 3 V Ph I Ph CosФ
  2. P = √3 V L I L CosФ
  3. Оба 1 и 2.
  4. Ни один из вышеперечисленных

910 Показать пояснения Ответ: (3)… Оба 1 и 2.

Пояснительный ответ:
Общая мощность в трехфазной цепи,
P = 3 x мощность на фазу,
P = 3 x V Ph I Ph CosФ
P = 3 В Ph I Ph CosФ ………… (1)

[для соединения треугольником]

[V Ph = V L и I Ph = I L / √3.]

, затем поместив значения в уравнение… .. (1)
P = 3 x V L x (I L / √3) x CosФ
P = √3 x√3 x V L x (I L / √3) x CosФ… {3 = √3x√3}
P = √3 x V L x I L x CosФ… .Ans.

Также
[для соединения звездой]

[V Ph = V L / √3 и I Ph = I L ] Снова подставляя значения в уравнение ……. (1)
P = 3 x (V L / √3) x IL x CosФ
P = √3 x√3 x (V L / √3) x I L x CosФ… {3 = √3x√3}
P = √3 x V L x I L x CosФ….Ответ

2 кв. Полифазная система создается ______?

  1. Наличие двух или более обмоток генератора, разделенных одинаковым электрическим углом.
  2. Наличие обмоток генератора на одинаковом расстоянии
  3. Ни одна из вышеперечисленных
  4. A и C

Показать пояснительный ответ

Ответ: 1. Наличие двух или более обмоток генератора, разделенных одинаковым электрическим углом.

Пояснительный ответ:

Генератор, имеющий две или более электрических обмоток, разделенных одинаковым электрическим углом, создает многофазную электрическую систему.Электрический угол или смещение зависят от количества обмоток или фаз. Например, в трехфазной электрической системе генерируемые напряжения разделены друг от друга на 120 °.

3 кв. В трехфазной цепи переменного тока сумма всех трех генерируемых напряжений равна _______?

  1. Бесконечный (∞)
  2. Ноль (0)
  3. Один (1)
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: 2. Ноль (0)

: Пояснительный ответ

Трехфазные напряжения генерируются генератором переменного тока с тремя обмотками якоря, так что каждая обмотка смещена относительно другой на 120 градусов.Когда эти обмотки помещаются во вращающееся магнитное поле или вращаются в стационарном магнитном поле, в каждой катушке генерируется электродвижущая сила одинаковой величины и направления. Рассмотрим приведенную ниже диаграмму.

Рисунок: 3-фазные кривые переменного тока

Как видно, ЭДС, генерируемая в катушке R-R1, равна R , которая в данном случае является эталонной. ЭДС, генерируемая в катушке Y-Y1, равна e Y , которая на 120 градусов опережает e R , а ЭДС, генерируемая в катушке B-B1, равна e B , которая на 240 градусов опережает e R .

Следовательно, уравнения напряжения приведены ниже;

e Y = E m sin⁡ (wt — 120 °)

e B = E m sin⁡ (wt — 240) = E m sin ⁡ (wt + 120 °)

Складывая все три уравнения, получаем

e R + e Y + e B = E m (sin ⁡wt + sin⁡ (wt — 120 °) + sin ⁡ (wt + 120 °))

= E m (sin ⁡wt + sin⁡ wt cos⁡ 120 ° — cos⁡wt sin⁡ 120 ° + sin⁡ wt cos ⁡120 ° + cos ⁡wt sin⁡ 120 °) = 0

i.e, e R + e Y + e B = 0

Следовательно, сумма всех трех напряжений равна нулю.

4 кв. Для трехфазной цепи переменного тока, соединенной звездой ———

  1. Фазное напряжение равно линейному напряжению, а фазный ток в три раза превышает линейный ток
  2. Фазное напряжение равно квадратному корню, в три раза умноженному на линейное напряжение, а фазный ток равен линейному току
  3. Фазное напряжение равно линейному напряжению, а линейный ток равен фазному току
  4. Ничего из вышеперечисленного

Показать пояснительный ответ

Ответ: 2.Фазное напряжение — это квадратный корень, трижды умноженный на линейное напряжение, а фазный ток равен линейному току

Пояснительный ответ:

Схема переменного тока, соединенная звездой, достигается путем соединения каждого конца обмотки с общей точкой, известной как нейтральная точка и оставив другой конец каждой обмотки свободным. В то время как напряжение на каждой катушке — это фазное напряжение, разность потенциалов между каждым свободным концом — это линейное напряжение.

Рассмотрим схему ниже;

Теперь, как сказано выше, фазные напряжения равны

Следовательно, V NR = V NY = V NB = V ph

Следовательно, линейное напряжение

03

V RY = √3 V PH

Поскольку линейный провод идет последовательно с фазной обмоткой, через линейный проводник будет протекать тот же ток, что и через фазные обмотки, следовательно, фазный ток равен фазному току.

Q5. В трехфазном соединении треугольником ——-

  1. Линейный ток равен фазному току
  2. Линейное напряжение равно фазному напряжению
  3. Ни одно из вышеперечисленных
  4. Линейное напряжение и линейный ток равны нулю

Показать пояснения Ответ

Ответ: 2. Напряжение в линии равно фазному напряжению

Пояснительный ответ:

Схема переменного тока, соединенная треугольником, достигается путем соединения начального конца обмотки с конечным концом другой обмотки таким образом, чтобы все три обмотки образуют сетку.Поскольку каждый конец обмоток образует соединение линии, напряжение на каждой обмотке равно разности потенциалов между соответствующими линиями, взятыми от этой обмотки. Следовательно, фазное напряжение равно линейному напряжению.

Q6. Для сети с соединением звездой, потребляемой мощностью 1,8 кВт и коэффициентом мощности 0,5, индуктивность и сопротивление каждой катушки при напряжении питания 230 В, 60 Гц равны ______?

  1. 0,1H, 8 Ом
  2. 0,5H, 10 Ом
  3. 0.3H, 7,4 Ом
  4. 1H, 7 Ом

Показать пояснительный ответ

Ответ: 3. 03H, 7,4 Ом

Пояснительный ответ:

Указанные значения:

L Напряжение сети 9098 В = 230 В

Частота сети, f = 60 Гц

Коэффициент мощности, cosφ = 0,5

Потребляемая мощность = P = 1800 Вт = √3 В L x I L x cosφ

Следовательно, линейный ток, I L = 9 ампер

Так как это соединение звездой, фазный ток = линейный ток = 9 ампер

Фазное напряжение, В фаза = В L / √3 = 132.8 Вольт

Фазное сопротивление, Z фаза = В фаза / I фаза = 14,7 Ом

Теперь коэффициент мощности = сопротивление / импеданс

Следовательно, сопротивление катушки = полное сопротивление X коэффициент мощности = 7,4 Ом

Подставляя значения, получаем Реактивное сопротивление катушки = 12,7 Ом

Таким образом, индуктивность катушки, L = 0,03H

Q7. Для нагрузки с трехфазным соединением треугольником, питаемой от сети, соединенной звездой, мощность, передаваемая на нагрузку, составляет _____?

  1. 3 кВт
  2. 4.7 кВт
  3. 5 кВт
  4. 7 кВт

Показать пояснительный ответ

Ответ: 2. 4. 7 кВт

Пояснительный ответ:

Заданные значения:

Звезда Напряжение подключенных фаз, В PH = 230 В

Сопротивление фазной нагрузки, R PHLd = 20 Ом

Реактивное сопротивление фазной нагрузки, X PHLd = 40 Ом

Следовательно, полное сопротивление фазной нагрузки,

Напряжение сети, подключенной звездой, В L = V PHs = 398.37 В

Для нагрузки, подключенной треугольником, фазное напряжение, В PHLd = В L = 398,37 В

Следовательно, ток через каждую фазу нагрузки, I PHLd = V PHLd / Z PHLd = 8,9 А

Линейный ток для нагрузки, подключенной треугольником, I L = √3 I PHLd = 15,41 Ампер

Коэффициент мощности, p фс = R phLd / Z PHLd = 0,44

, тогда мощность, подаваемая на нагрузку, P L = V L I L p fs = 4.7 кВт

Q8. В трехфазной цепи переменного тока мощность измеряется ваттметром.

  1. True
  2. False

Показать пояснительный ответ

Ответ: 1. Верно

Пояснительный ответ:

Мощность измеряется с помощью ваттметра, который состоит из двух последовательно соединенных катушек — токовая катушка с нагрузкой, несущей ток нагрузки и катушку напряжения, подключенную параллельно нагрузке.

9 кв. Для многофазной системы количество ваттметров, необходимых для измерения мощности, равно ——

  1. Количество проводов
  2. На единицу меньше количества проводов
  3. Количество фаз
  4. Ни одного из вышеперечисленных

Показать пояснительный ответ

Ответ: 2. На единицу меньше количества проводов

Пояснительный ответ:

Количество ваттметров, необходимое для измерения мощности в многофазной системе, определяется с помощью теоремы Блонделла. 1/2 = 230.9 Вольт

Фазный ток, I фаза = 25 Ампер

Следовательно, коэффициент мощности, cosφ = P фаза / В фаза I фаза = 0,866

Импеданс, Z фаза = В фаза / I ф. = 9,236 Ом

Сопротивление, R = Z ф. cosφ = 8 Ом

Подставив значения в приведенное ниже уравнение, Реактивное сопротивление, X =

Следовательно, индуктивность, L = 0,02H

Q11. Для трехфазной трехпроводной системы два ваттметра показывают 4000 Вт и 2000 Вт соответственно.Коэффициент мощности, когда оба счетчика показывают прямые показания, равен _______?

  1. 1
  2. 0,5
  3. 0,866
  4. 0,6

Показать пояснительный ответ

Ответ: 3. 0,866

Пояснительный ответ:

Ваттметр 1 Показание ваттметра 1

Показания ваттметра 2, Вт 2 = 2000 Вт

Фазовый угол;

Коэффициент мощности, = 0,866

Q12. Для сбалансированной трехфазной трехпроводной системы с входной мощностью 10 кВт при 0.9, показания обоих ваттметров равны ————– соответственно

  1. 7кВт, 3кВт
  2. 6350Вт, 3650Вт
  3. 5000Вт, 5000Вт
  4. 7600Вт, 1200Вт

Показать пояснительный ответ

Ответ 6350 Вт, 3650 Вт

Пояснительный ответ:

Пусть показание одного ваттметра = Вт 1

Показание второго ваттметра = Вт 2

Входная мощность, P = Вт 1 9 2 = V L I L cosφ = 10 кВт ……………… (1)

Коэффициент мощности, cos φ = 0.9

Фазовый угол, φ = 25,8 градуса …… (т.е. Cos -1 = 09 = 25,8 °)

Следовательно,

W 1 = V L I L cos (30 — φ ) = 0,99 В L I L = 6350 Вт

W 2 = V L I L cos (30 + φ) = 0,56 V L L = 3650 W

Q13. Полифазная система создается за счет ——-

  1. Наличие двух или более обмоток генератора, разделенных одинаковым электрическим углом.
  2. Наличие обмоток генератора на равном расстоянии
  3. Ни одно из вышеперечисленных
  4. A и C

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Генератор с двумя или более электрическими генераторами обмотки, разделенные одинаковым электрическим углом, образуют многофазную электрическую систему.Электрический угол или смещение зависят от количества обмоток или фаз. Например, в трехфазной электрической системе генерируемые напряжения разделены друг от друга на 120 градусов.

Q14. В трехфазной цепи переменного тока сумма всех трех генерируемых напряжений составляет ————

  1. Бесконечное
  2. Ноль
  3. Один
  4. Ни одно из вышеперечисленных

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Трехфазные напряжения генерируются генератором переменного тока с тремя обмотками якоря, так что каждая обмотка смещена относительно другой на 120 градусов.Когда эти обмотки помещаются во вращающееся магнитное поле или вращаются в стационарном магнитном поле, в каждой катушке генерируется электродвижущая сила одинаковой величины и направления. Рассмотрим диаграмму ниже.

Рисунок 1: 3-фазные осциллограммы переменного тока

Как видно, ЭДС, генерируемая в катушке R-R1, равна R , которая в данном случае является эталонной. ЭДС, генерируемая в катушке Y-Y1, равна e Y , которая на 120 градусов опережает e R , а ЭДС, генерируемая в катушке B-B1, равна e B , которая на 240 градусов опережает e R .

Следовательно, уравнения напряжения приведены ниже.

Суммируя все три уравнения, мы получаем

Следовательно, сумма всех трех напряжений равна нулю.

Q15. Для трехфазной цепи переменного тока, соединенной звездой ———

  1. Фазное напряжение равно линейному напряжению, а фазный ток в три раза превышает линейный ток
  2. Фазное напряжение равно квадратному корню, в три раза умноженному на линейное напряжение, а фазный ток равен линейному току
  3. Фазное напряжение равно линейному напряжению, а линейный ток равен фазному току
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Звезда подключена Цепь переменного тока достигается путем подключения каждого конца обмотки к общей точке, известной как нейтральная точка, и оставляя другой конец каждой обмотки свободным.В то время как напряжение на каждой катушке является фазным напряжением, разность потенциалов между каждым свободным концом является линейным напряжением.

Рассмотрим схему ниже

Теперь, как сказано выше, фазные напряжения равны

Следовательно, V NR = V NY = V NB = V ph

Теперь, сейчас,

Следовательно, линейное напряжение, В Ry = В фаза √3

Поскольку линейный провод включен последовательно с фазной обмоткой, через линейный проводник будет протекать такой же ток, как и через фазные обмотки, следовательно, фаза ток равен фазному току.

Q16. В трехфазном соединении треугольником ——-

  1. Линейный ток равен фазному току
  2. Линейное напряжение равно фазному напряжению
  3. Ни одно из вышеперечисленных
  4. Линейное напряжение и линейный ток равны нулю

Показать пояснения Ответ

Ответ: (2)

Пояснительный ответ:

Схема переменного тока, соединенная треугольником, достигается путем соединения начального конца обмотки с конечным концом другой обмотки, так что все три обмотки образуют сетку.Поскольку каждый конец обмоток образует соединение линии, напряжение на каждой обмотке равно разности потенциалов между соответствующими линиями, взятыми от этой обмотки. Следовательно, фазное напряжение равно линейному напряжению.

Q17. Для сети, соединенной звездой, потребляемая мощность 1,8 кВт и коэффициент мощности 0,5, индуктивность и сопротивление каждой катушки при напряжении питания 230 В, 60 Гц составляет ——-

  1. 0,01H, 8 Ом
  2. 0,05H , 10 Ом
  3. 0.03H, 7,4 Ом
  4. 1H, 7 Ом

Показать пояснительный ответ

Ответ: (3)

Пояснительный ответ:

Значения:

Напряжение сети, В L

Частота сети, f = 60 Гц

Коэффициент мощности, cosφ = 0,5

Потребляемая мощность = P = 1800 Вт = √3V L I L cosφ

Следовательно, линейный ток, I L = 9 Амперы

Так как это соединение звездой, фазный ток = линейный ток = 9 Ампер

Фазное напряжение, В фаза = В L /3 ^ 1/2 = 132.8 Вольт

Фазовое сопротивление, Z фаза = V фаза / I фаза = 14,7 Ом

Теперь коэффициент мощности = сопротивление / импеданс

Следовательно, сопротивление катушки = полное сопротивление X коэффициент мощности = 7,4 Ом

Реактивное сопротивление катушки,

Подставляя значения, мы получаем Реактивное сопротивление

э катушки = 12,7 Ом

Таким образом, индуктивность катушки, L = 0,03H

Q18. Для нагрузки с трехфазным соединением треугольником, питаемой от сети, соединенной звездой, мощность, передаваемая нагрузке, составляет _

  1. 3 кВт
  2. 7 кВт
  3. 5 кВт
  4. 7 кВт

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Приведенные значения:

Напряжение фазы подключенной звездой, В фаз = 230 В

Сопротивление фазной нагрузки, R phLd = 20 Ом

нагрузка реактивное сопротивление, X phLd = 40 Ом

Следовательно, полное сопротивление фазной нагрузки, =

Линейное напряжение, подключенное звездой, В L = √3V phs = 398.37 В

Для нагрузки, подключенной треугольником, фазное напряжение, В phLd = V L = 398,37 В

Следовательно, ток через каждую фазу нагрузки, I phLd = V phLd / Z phLd = 8,9 ампер

Линейный ток для нагрузки, подключенной по схеме треугольник, I L = √3I phLd = 15,41 ампер

Коэффициент мощности, p fs = R phLd / Z phLd = 0,44

, мощность, подаваемая на нагрузку, P L = √3 V L I L p fs = 4.7 кВт

Q19. В трехфазной цепи переменного тока мощность измеряется ваттметром.

  1. True
  2. False

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Мощность измеряется с помощью ваттметра, который состоит из двух катушек — токовая катушка, соединенная последовательно нагрузка, несущая ток нагрузки и катушку напряжения, подключенная параллельно нагрузке.

Q20. Для многофазной системы количество ваттметров, необходимых для измерения мощности, равно ——

  1. Количество проводов
  2. На единицу меньше количества проводов
  3. Количество фаз
  4. Ни одного из вышеперечисленных

Показать пояснительный ответ

Пояснительный ответ:

Количество ваттметров, необходимое для измерения мощности в многофазной системе, определяется с помощью теоремы Блонделла. В соответствии с этим количество требуемых ваттметров на единицу меньше количества проводов в цепи.Например, в трехфазной четырехпроводной системе (сеть «звезда») требуется три ваттметра.

Q21. Для сети, соединенной звездой с равным сопротивлением, если показание ваттметра составляет 5 кВт, а показание амперметра — 25 ампер, коэффициент мощности, сопротивление и индуктивность составляют ———— соответственно

  1. 1, 5 Ом, 0,1 Гн
  2. 0,866, 8 Ом, 0,02H
  3. 0,5, 10 Ом, 0,01H
  4. 0,4, 8 Ом, 0,02H

Показать пояснительный ответ

Пояснительный ответ:

Учитывая

88 Напряжение сети, В L = 400 В

Частота, f = 60 Гц

Линейный ток, I L = 25 Ампер

Мощность на фазу, P ф. 1/2 = 230.9 Вольт

Фазный ток, I фаза = 25 Ампер

Следовательно, коэффициент мощности, cosφ = P фаза / В фаза I фаза = 0,866

Импеданс, Z фаза = В фаза / I ф. = 9,236 Ом

Сопротивление, R = Z ф. cosφ = 8 Ом

Реактивное сопротивление,

Следовательно, индуктивность, L = 0,02H

Q22. Для трехфазной трехпроводной системы два ваттметра показывают 4000 Вт и 2000 Вт соответственно.Коэффициент мощности, когда оба счетчика показывают прямые показания, составляет ———–

  1. 1
  2. 0,5
  3. 0,866
  4. 0,6

Показать пояснительный ответ

Ответ: (3)

005 Пояснительный ответ 3:

Показания ваттметра 1, W1 = 4000 Вт

Показания ваттметра 2, W2 = 2000 Вт

Фазовый угол, = 30 градусов

Коэффициент мощности, = 0,866

Q23. Для сбалансированной трехфазной трехпроводной системы с входной мощностью 10 кВт при коэффициенте мощности 0,9 показания на обоих ваттметрах равны ————– соответственно

  1. 7 кВт, 3 кВт
  2. 6350 Вт, 3650 Вт
  3. 5000 Вт, 5000 Вт
  4. 7600W, 1200W

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Пусть показание одного ваттметра = W1

Показание второго входного ваттметра = W2

=

Вт2

W1 + W2 = √3V L I L cosφ = 10000 ……………… 1

Коэффициент мощности, cosφ = 0.9

Фазовый угол, φ = 25,8 градуса

Следовательно, W1 = V L I L cos (30-φ) = 0,99 В L I L = 6350 Вт

W2 = V L I L cos (30 + φ) = 0,56 В L I L = 3650 Вт

Q24. В трехфазном асинхронном двигателе электрическая энергия, подаваемая на обмотки статора, преобразуется в механическую энергию в виде вращающихся обмоток ротора

  1. Верно
  2. Ложно

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Рисунок 1: 3-фазный асинхронный двигатель

Трехфазный асинхронный двигатель состоит из двух частей — статора (неподвижная часть) и ротора (вращательная часть). ), причем последний отделен от первого небольшим воздушным зазором.Трехфазное напряжение, подаваемое на обмотки статора, создает вращающееся магнитное поле. Когда магнитный поток прорезает обмотки ротора через воздушные зазоры, в обмотке индуцируется ЭДС, которая, в свою очередь, индуцирует ток. Когда индуцированный ток взаимодействует с полем статора, возникают силы, которые заставляют обмотки ротора вращаться.

Q25. Название асинхронного двигателя происходит от того факта, что ——-

  1. Работа двигателя зависит от наведенного напряжения в статоре
  2. Работа двигателя зависит от величины обмоток катушки
  3. Работа двигателя зависит от на индуцированное напряжение в проводниках ротора
  4. Ни один из этих

Показать пояснительный ответ

Ответ: (3)

Пояснительный ответ:

Вращающееся магнитное поле, создаваемое обмоткой статора при воздействии трехфазное питание вызывает наведение напряжения в обмотках неподвижного ротора.Когда цепь ротора замкнута, ток начинает течь из-за индуцированного напряжения. Этот индуцированный ток, в свою очередь, создает собственное магнитное поле. Когда токопроводящие проводники помещаются в магнитное поле, создается сила, которая действует по касательной и создает крутящий момент, который заставляет проводники ротора вращаться. Таким образом, работа двигателя зависит от наведенного напряжения в проводниках ротора, и двигатель называется асинхронным.

Q26. Асинхронный двигатель ———

  1. Самозапускающийся
  2. Требуется внешнее питание
  3. A или C
  4. Ни один из этих

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Поскольку вращение проводов ротора обычно инициируется из-за силы, возникающей из-за взаимодействия между наведенным током и магнитным полем ротора, внешнее питание не требуется, и асинхронный двигатель запускается автоматически.

Q27. Скольжение асинхронного двигателя находится в пределах ——-

  1. от 0 до 10%
  2. от 0 до 400 об / мин
  3. от 0 до 5%
  4. от 0 до 4000 об / мин

Показать пояснительный ответ

Ответ: (3)

Пояснительный ответ:

Скольжение — это разница между скоростью вращающегося поля и фактической скоростью ротора. Скорость ротора должна быть меньше скорости вращающегося поля, иначе не было бы относительного движения и вращательное движение перестало бы существовать.Скорость ротора должна быть такой, чтобы величина тока ротора была достаточной для создания необходимого крутящего момента. Скорость скольжения обозначает скорость ротора относительно скорости поля. Хотя он измеряется в оборотах в минуту, чаще он обозначается в процентах и ​​колеблется от 0 до 5%.

Q28. В трехфазном асинхронном двигателе частота тока ротора составляет ——

  1. Равно частоте питания
  2. Пропорционально скольжению и частоте питания
  3. Равно частоте меньше частоты питания
  4. Равно синхронной скорость

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Асинхронный двигатель похож на трансформатор в том, что оба включают передачу энергии от первичной обмотки ко вторичной.Однако, хотя в трансформаторе частота первичного напряжения равна частоте вторичного напряжения, в асинхронном двигателе первичная частота, то есть частота токов статора, отличается от частоты тока ротора.

Частота тока статора при синхронной скорости N s и числе полюсов P —

f = PNs / 120 ………………………… ..1

Когда ротор начинает вращаться, частота является переменной и зависит от скольжения или разницы между синхронной скоростью и скоростью ротора N r .

Таким образом, частота ротора, ……………… 2

Теперь, скольжение, ……………… 3

Таким образом, объединяя уравнения 1, 2 и 3, получаем частоту ротора, f r = Sf.

Q29. В асинхронном двигателе с короткозамкнутым ротором пазы ротора:

  1. Расположены на одной линии с валом ротора
  2. Скошены под определенным углом к ​​валу ротора
  3. Параллельно валу ротора
  4. Ни один из них

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Ротор с короткозамкнутым ротором состоит из многослойного стального цилиндра с прорезями, в которых используются алюминиевые проводники, отлитые под давлением из медных стержней.Эти стержни закорочены с обоих концов толстыми концевыми кольцами из тех же материалов. Чтобы уменьшить магнитный шум и, следовательно, обеспечить более равномерный крутящий момент, а также предотвратить возможное магнитное блокирование ротора со статором, пазы ротора смещены под определенным углом к ​​валу ротора.

Q30. В асинхронном двигателе с контактным кольцом внешние резисторы подключены к цепи ротора

  1. True
  2. False

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Контактное кольцо Ротор состоит из обмоток ротора, соединенных звездой, при этом открытые концы цепи звезды соединены с тремя контактными кольцами, которые установлены на валу с опорой на них щеткой.Эти контактные кольца и щетки служат средством для подключения внешних резисторов. Эти резисторы служат для увеличения пускового момента, тем самым уменьшая пусковой ток и регулируя скорость двигателя.

Q31. ЭДС, индуцированная ротором, почти ———– максимального значения

  1. 5%
  2. 20%
  3. 15%
  4. 10%

Показать пояснительный ответ

Ответ: (2)

Пояснительный :

Поток, отсекаемый в секунду проводниками статора или ротора, когда ротор находится в состоянии покоя, задается как, PφN / 60

Теперь, среднеквадратичное значение наведенной ЭДС на проводник,

Где f — частота статора

Следовательно, ЭДС, наведенная статором для 2T 1 , количество проводников (с учетом шага и коэффициента распределения) составляет:

E 1 = 4.44K c K D fφT 1

Таким образом, наведенная ротором ЭДС в состоянии покоя для 2T 2 количество проводников составляет —

E 20 = 4.44K c K 2

Когда ротор начинает вращаться, наведенная ЭДС составляет

E 2 = 4,44K c K D SfφT 2

Таким образом, наведенная ЭДС максимальна в начале и изменяется из-за изменения скольжения.Поскольку величина проскальзывания при нормальных условиях составляет около 5%, значение наведенной ЭДС составляет 20% от максимального значения.

Q32. Характеристики скольжения для асинхронного двигателя представляют собой кривую, потому что

  1. Для малых значений скольжения крутящий момент прямо пропорционален
  2. Для больших значений скольжения крутящий момент обратно пропорционален
  3. Оба a и c
  4. Ни один из них

Показать пояснительный ответ

Ответ: (3)

Пояснительный ответ:

В рабочих условиях крутящий момент двигателя определяется как:

Где R 2 — сопротивление ротора, а X 2 — реактивное сопротивление ротора, а S — скольжение

Ниже кривой между крутящим моментом и скольжением

Рисунок 2: Характеристическая кривая крутящего момента-скольжения

При S = ​​0, T = 0.Следовательно, кривая начинается в начале координат. При нормальной скорости S мала, поэтому SX 2 ничтожно мала. Таким образом, характеристики крутящего момента, T S и крутящего момента-скольжения представляют собой прямую линию от нулевого скольжения до скольжения при полной нагрузке.

По мере того, как проскальзывание увеличивается за пределами полной нагрузки, крутящий момент увеличивается и становится максимальным при S = ​​R 2 / X 2 . Поскольку скольжение превышает значение скольжения при максимальном крутящем моменте, значение SX 2 намного больше по сравнению с R 2 и, следовательно. T ∝ 1 / S

Таким образом, для меньших значений скольжения крутящий момент прямо пропорционален, а для больших значений скольжения он обратно пропорционален.

Q33. Для 8-полюсного асинхронного двигателя, питаемого от 6-полюсного генератора переменного тока при 1200 об / мин, значение скорости двигателя при скольжении 3% составляет —

  1. 800 об / мин
  2. 400 об / мин
  3. 873 об / мин
  4. 900 Об / мин

Показать пояснительный ответ

Пояснительный ответ:

Учитывая

Скорость генератора, N = 1200 об / мин

Число полюсов генератора, P = 6

Частота сети, f = PN / 120 = 60 Гц

Следовательно, для числа 8 полюсов в асинхронном двигателе синхронная скорость или скорость вращения поля равна: N с = 120f / P = 900 об / мин

Пусть N r — это фактическая скорость двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *