Что такое мощность электрического тока. Как рассчитать мощность по формулам. Какие бывают виды мощности в цепях переменного тока. В каких единицах измеряется мощность тока. Как измерить мощность на практике.
Что такое мощность электрического тока
Мощность электрического тока — это физическая величина, характеризующая скорость совершения работы электрическим током или скорость преобразования электрической энергии в другие виды энергии. Проще говоря, мощность показывает, какую работу способен совершить электрический ток за единицу времени.
Основная формула для расчета мощности постоянного тока:
P = U * I
где:
- P — мощность (Вт)
- U — напряжение (В)
- I — сила тока (А)
Эта формула справедлива как для постоянного, так и для переменного тока, если нагрузка чисто активная. Для цепей переменного тока с реактивной нагрузкой используются более сложные формулы, учитывающие сдвиг фаз между током и напряжением.
Основные формулы для расчета мощности

- P = I^2 * R — мощность через ток и сопротивление
- P = U^2 / R — мощность через напряжение и сопротивление
- P = A / t — мощность через работу и время
Для цепей переменного тока:
- P = U * I * cos φ — активная мощность
- Q = U * I * sin φ — реактивная мощность
- S = U * I — полная мощность
где φ — угол сдвига фаз между током и напряжением.
Виды мощности в цепях переменного тока
В цепях переменного тока различают три вида мощности:
1. Активная мощность (P)
Активная мощность характеризует скорость преобразования электрической энергии в другие виды энергии (механическую, тепловую и т.д.). Измеряется в ваттах (Вт).
2. Реактивная мощность (Q)
Реактивная мощность связана с обменом энергии между источником и нагрузкой. Она не совершает полезной работы, но нагружает сеть. Измеряется в вольт-амперах реактивных (вар).
3. Полная мощность (S)
Полная мощность — это геометрическая сумма активной и реактивной мощностей. Характеризует полную нагрузку на сеть. Измеряется в вольт-амперах (ВА).

Единицы измерения мощности электрического тока
Основные единицы измерения мощности:
- Ватт (Вт) — основная единица измерения мощности в СИ
- Киловатт (кВт) = 1000 Вт
- Мегаватт (МВт) = 1000000 Вт
- Вольт-ампер (ВА) — единица измерения полной мощности
- Вольт-ампер реактивный (вар) — единица измерения реактивной мощности
Также иногда используется внесистемная единица — лошадиная сила (л.с.):
1 л.с. = 735,5 Вт
Как измерить мощность электрического тока на практике
Для измерения мощности электрического тока используются следующие приборы и методы:
1. Ваттметр
Ваттметр — это специальный прибор для прямого измерения мощности. Он измеряет одновременно ток и напряжение, вычисляя их произведение с учетом сдвига фаз.
2. Амперметр и вольтметр
Мощность можно рассчитать, измерив отдельно ток амперметром и напряжение вольтметром, а затем умножив эти значения.
3. Токовые клещи
Современные токовые клещи часто имеют функцию измерения мощности. Они измеряют ток бесконтактным способом и напряжение через щупы.

4. Счетчик электроэнергии
Электросчетчик измеряет потребленную энергию. Зная время работы, можно рассчитать среднюю мощность.
Примеры расчета мощности электрического тока
Рассмотрим несколько примеров расчета мощности для разных случаев:
Пример 1: Расчет мощности лампочки
Дано: лампочка работает при напряжении U = 220 В и потребляет ток I = 0,5 А.
Решение: P = U * I = 220 В * 0,5 А = 110 Вт
Пример 2: Расчет мощности нагревателя
Дано: электрический нагреватель имеет сопротивление R = 40 Ом и работает от сети 220 В.
Решение: P = U^2 / R = 220^2 / 40 = 1210 Вт
Пример 3: Расчет активной мощности в цепи переменного тока
Дано: В цепи переменного тока U = 380 В, I = 10 А, cos φ = 0,8.
Решение: P = U * I * cos φ = 380 * 10 * 0,8 = 3040 Вт = 3,04 кВт
Практическое применение расчетов мощности
Умение рассчитывать мощность электрического тока важно во многих практических ситуациях:
- Выбор проводов и кабелей нужного сечения
- Расчет нагрузки на электрическую сеть
- Подбор автоматических выключателей
- Расчет потребления электроэнергии
- Оценка эффективности электрооборудования
Например, зная мощность всех электроприборов в доме, можно рассчитать, какой мощности нужен стабилизатор напряжения или источник бесперебойного питания.

Мощность в трехфазных цепях
В трехфазных цепях расчет мощности имеет свои особенности. Основные формулы для симметричной нагрузки:
- P = √3 * Uл * Iл * cos φ — активная мощность
- Q = √3 * Uл * Iл * sin φ — реактивная мощность
- S = √3 * Uл * Iл — полная мощность
где Uл — линейное напряжение, Iл — линейный ток.
При несимметричной нагрузке мощность рассчитывается как сумма мощностей отдельных фаз.
Потери мощности в электрических цепях
При передаче электроэнергии неизбежно возникают потери мощности. Основные виды потерь:
- Потери в проводах (нагрев проводников)
- Потери в трансформаторах
- Потери на коронный разряд в высоковольтных линиях
- Потери из-за токов утечки
Формула для расчета потерь мощности в проводах:
P пот = I^2 * R
где R — сопротивление провода.
Для снижения потерь используют провода большего сечения, повышают напряжение при передаче энергии на большие расстояния, применяют компенсацию реактивной мощности.
Мощность в физике — обозначение, формулы и примеры
Определение мощности
Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.
Мощность в физике — это количество работы, которая совершается за единицу времени. |
Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.
В электромеханике эта величина имеет еще одно определение.
Мощность — это скалярная физическая величина, которая характеризует мгновенную скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии. |
Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).
Мощность человека в зависимости от деятельности
Вид деятельности | Мощность, Вт |
---|---|
Неспешная ходьба | 60–65 |
Бег со скоростью 9 км/ч | 750 |
Плавание со скоростью 50 м/мин | 850 |
Игра в футбол | 930 |
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Как обозначается мощность: единицы измерения
В таблице выше вы увидели обозначение в ваттах, и читая инструкции к бытовой технике, можно заметить, что среди характеристик прибора обязательно указано количество ватт. Это единица измерения механической мощности, используемая в международной системе СИ. Она обозначается буквой W или Вт.
Измерение мощности в ваттах было принято в честь шотландского ученого Джеймса Уатта — изобретателя паровой машины. Он стал одним из родоначальников английской промышленной революции.
В физике принято следующее обозначение мощности: 1 Вт = 1 Дж / 1с.
Это значит, что за 1 ватт принята мощность, необходимая для совершения работы в 1 джоуль за 1 секунду.
В каких единицах еще измеряется мощность? Ученые-астрофизики измеряют ее в эргах в секунду (эрг/сек), а в автомобилестроении до сих пор можно услышать о лошадиных силах.
Интересно, что автором этой последней единицы измерения стал все тот же шотландец Джеймс Уатт. На одной из пивоварен, где он проводил свои исследования, хозяин накачивал воду для производства с помощью лошадей. И Уатт выяснил, что 1 лошадь за секунду поднимает около 75 кг воды на высоту 1 метр. Вот так и появилось измерение в лошадиных силах. Правда, сегодня такое обозначение мощности в физике считается устаревшим.
Одна лошадиная сила — это мощность, необходимая для поднятия груза в 75 кг за 1 секунду на 1 метр. 🐴
Единицы измерения | Вт |
---|---|
1 ватт | 1 |
1 киловатт | 103 |
1 мегаватт | 106 |
1 эрг в секунду | 10-7 |
1 метрическая лошадиная сила | 735,5 |
Подготовка к ОГЭ по физике онлайн поможет снять стресс перед экзаменом и получить высокий балл.
Все формулы мощности
Зная определения, несложно понять формулы мощности, используемые в разных разделах физики — в механике и электротехнике.
В механике
Механическая мощность (N) равна отношению работы ко времени, за которое она была выполнена.
Основная формула:
N = A / t, где A — работа, t — время ее выполнения.
Если вспомнить, что работой называется произведение модуля силы, модуля перемещения и косинуса угла между ними, мы получим формулу измерения работы.
Если направления модуля приложения силы и модуля перемещения объекта совпадают, угол будет равен 0 градусов, а его косинус равен 1. В таком случае формулу можно упростить:
A = F × S
Используем эту формулу для вычисления мощности:
N = A / t = F × S / t = F × V
В последнем выражении мы исходим из того, что скорость (V) равна отношению перемещения объекта на время, за которое это перемещение произошло.
В электротехнике
В общем случае электрическая мощность (P) говорит о скорости передачи энергии. Она равна произведению напряжения на участке цепи на величину тока, проходящего по этому участку.
P = I × U, где I — напряжение, U — сила тока.
В электротехнике существует несколько видов мощности: активная, реактивная, полная, пиковая и т. д. Но это тема отдельного материала, сейчас же мы потренируемся решать задачи на основе общего понимания этой величины. Посмотрим, как найти мощность, используя вышеуказанные формулы по физике.
Задача 1
Допустим, человек поднимает ведро воды из колодца, прикладывая силу 60 Н. Глубина колодца составляет 10 м, а время, необходимое для поднятия — 30 сек. Какова будет мощность человека в этом случае?
Решение:
Найдем вначале величину работы, используя тот факт, что мы знаем расстояние перемещения (глубину колодца 10 м) и приложенную силу 60 Н.
A = F × S = 60 Н × 10 м = 600 Дж
Когда известно значение работы и времени, найти мощность несложно:
N = A / t = 600 Дж / 30 сек = 20 Вт
Ответ: мощность человека при поднятии ведра — 20 ватт.
Задача 2
В комнате включена лампа мощностью 100 Вт. Напряжение домашней электросети — 220 В. Какая сила тока проходит через эту лампу?
Решение:
Мы знаем, что Р = 100 Вт, а U = 220 В.
Поскольку P = I × U, следовательно I = P / U.
I = 100 / 220 = 0,45 А.
Ответ: через лампу пройдет сила тока 0,45 А.
Бесплатные занятия по английскому с носителем
Занимайтесь по 15 минут в день. Осваивайте английскую грамматику и лексику. Сделайте язык частью жизни.
Вопросы для самопроверки
Что характеризует механическая мощность?
Какие существуют единицы измерения мощности в физике?
Какая из единиц измерения считается устаревшей?
Мощность можно назвать скалярной величиной? Что это означает?
Как из формулы нахождения мощности получить работу?
Какой буквой обозначается мощность в механике, а какой — в электротехнике?
Какую работу производит за 30 минут устройство мощностью 600 Вт?
Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?
Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?
Допустим, автобус отвез пассажиров из города А в город В за 1 час.
Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?
Формула мощности тока. Фактическая и номинальная мощность
Активная мощность (P)
Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть
потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.
Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:
В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.
Формулы для активной мощности
P = U I — в цепях постоянного тока
P = U I cosθ — в однофазных цепях переменного тока
P = √3 U L I L cosθ — в трёхфазных цепях переменного тока
P = 3 U Ph I Ph cosθ
P = √ (S 2 – Q 2) или
P =√ (ВА 2 – вар 2) или
Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или
кВт = √ (кВА 2 – квар 2)
Реактивная мощность (Q)
Также её мощно было бы назвать бесполезной или безваттной мощностью.
Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).
Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.
Реактивная мощность определяется, как
и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.
Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.
Формулы для реактивной мощности
Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)
вар =√ (ВА 2 – P 2)
квар = √ (кВА 2 – кВт 2)
Полная мощность (S)
Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.
Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.
Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.
Единицу измерения мощности получим, подставив в формулу единицы измерения напряжения и тока:
[P]=1 B∙1 A=1 BA.
Единица измерения электрической мощности, равная 1 ВА, называется ватом (Вт). Название вольт-ампер (ВА) используется в технике переменного тока, но только для измерения полной и реактивной мощности.
Единицы измерения электрической и механической мощности связаны следующими соотношениями:
1 Вт =1/9,81 кГ м/сек ≈1/10 кГ м/сек;
1 кГ м/сек =9,81 Вт ≈10 Вт;
1 л.с. =75 кГ м/сек =736 Вт;
1 кВт =102 кГ м/сек =1,36 л.с.
Если не учитывать неизбежных потерь энергии, то двигатель мощностью 1 кВт может перекачивать каждую секунду 102 л воды на высоту 1 м или 10,2 л воды на высоту 10 м.
Электрическая мощность .
Примеры
1. Нагревательный элемент электрической печи на мощность 500 Вт и напряжение 220 В выполнен из проволоки высокого сопротивления. Рассчитать сопротивление элемента и ток, который через него проходит (рис. 2/10000=48400/10000=4,84 Ом; I=P/U=10000/220=45,45 А.
Рис. 6.
7. Каково напряжение U на зажимах генератора, если при токе 110 А его мощность равна 12 кВт (рис. 7)?
Так как P=U∙I, то U=P/I=12000/110=109 В.
Рис. 7.
8. На схеме на рис. 8 показана работа электромагнитной токовой защиты. При определенном токе электромагнит ЭМ, который удерживается пружиной П, притянет якорь, разомкнет контакт К и разорвет цепь тока. В нашем примере токовая защита разрывает токовую цепь при токе I≥2 А. Сколько ламп по 25 Вт может быть одновременно включено при напряжении сети U=220 В, чтобы ограничитель не сработал?
Рис. 8.
Защита срабатывает при I=2 А, т. е. при мощности P=U∙I=220∙2=440 Вт.
Разделив общую мощность одной лампы, получим: 440/25=17,6.
Одновременно могут гореть 17 ламп.
9. Электрическая печь имеет три нагревательных элемента на мощность 500 Вт и напряжение 220 В, соединенных параллельно.
Каковы общее сопротивление, ток и мощность при работе печи (рис. 2/P=48400/75=645,3 Ом.
Ток I=P/U=75/220=0,34 А.
11. Плотина имеет перепад уровней воды h=4 м. Каждую секунду через трубопровод на турбину попадает 51 л воды. Какая механическая мощность превращается в генераторе в электрическую, если не учитывать потерь (рис. 11)?
Рис. 11.
Механическая мощность Pм=Q∙h=51 кГ/сек ∙4 м =204 кГ м/сек.
Отсюда электрическая мощность Pэ=Pм:102=204:102=2 кВт.
12. Какую мощность должен иметь двигатель насоса, перекачивающего каждую секунду 25,5 л воды с глубины 5 м в резервуар, расположенный на высоте З м? Потери не учитываются (рис. 12).
Рис. 12.
Общая высота подъема воды h=5+3=8 м.
Механическая мощность двигателя Pм=Q∙h=25,5∙8=204 кГ м/сек.
Электрическая мощность Pэ=Pм:102=204:102=2 кВт.
13. получает из водохранилища на одну турбину каждую секунду 4 м3 воды. Разница между уровнями воды в водохранилище и турбине h=20 м. Определить мощность одной турбины без учета потерь (рис. 2/40=1210 Ом.
Сопротивление холодной нити (при 20 °С) определим по формуле rt=r∙(1+α∙∆t),
откуда r=rt/(1+α∙∆t)=1210/(1+0,004∙(2500-20))=1210/10,92=118 Ом.
Через нить лампы в горячем состоянии проходит ток I=P/U=40/220=0,18 А.
Ток при включении равен: I=U/r=220/118=1,86 А.
При включении ток примерно в 10 раз больше, чем ток горячей лампы.
17. Каковы потери напряжения и мощности в медном контактном проводе электрифицированной железной дороги (рис. 16)?
Рис. 16.
Провод имеет сечение 95 мм2. Двигатель электропоезда потребляет ток 300 А на расстоянии 1,5 км от источника тока.
Потеря (падение) напряжения в линии между точками 1 и 2 Uп=I∙rп.
Сопротивление контактного провода rп=(ρ∙l)/S=0,0178∙1500/95=0,281 Ом.
Падение напряжения в контактном проводе Uп=300∙0,281=84,3 В.
Напряжение Uд на зажимах двигателя Д будет на 84,3 В меньше, чем напряжение U на зажимах источника Г.
Падение напряжения в контактном проводе во время движения электропоезда меняется. Чем дальше электропоезд удаляется от источника тока, тем длиннее линия, а значит, больше ее сопротивление и падение напряжения в ней. Ток по рельсам возвращается к заземленному источнику Г. Сопротивление рельсов и земли практически равно нулю.
Мощность электрического тока – скорость выполняемой цепью работы. Простое определение, морока с пониманием. Мощность подразделяется на активную, реактивную. И начинается…
Работа электрического тока, мощность
При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии. Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.
Электрическая дуга
На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.
Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.
Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):
Выражения мощности тока
- Мощность – скорость выполнения работы.
- Мощность равна произведению напряжения на ток.
- Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
- Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.
Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.
Трехфазные цепи
Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:
Трехфазная цепь с изолированной нейтралью
- Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны.
Поскольку нейтрали нет.
- Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.
Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости — опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I jωL.
Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.
В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.
А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:
- Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат. Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
- Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами.
Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
- В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.
На практике измерить мощность тока
Намекнули, можно воспользоваться токовыми клещами. Прибор позволит определить крейсерские параметры дрели. Разгон можно засечь только при многократных опытах, процесс чрезвычайно быстрый, частота смены индикации не выше 3-х раз в секунду. Токовые клещи демонстрируют погрешность. Практика показывает: достичь погрешности, указанной в паспорте, сложно.
Чаще для оценки мощности используют счетчики (для выплат компаниям-поставщикам), ваттметры (для личных и рабочих целей). Стрелочный прибор содержит пару неподвижных катушек, по которым течет ток цепи, подвижную рамку, для заведения напряжения путем параллельного включения нагрузки. Конструкция рассчитана сразу реализовать формулу полной мощности (см. рис.). Ток умножается на напряжение и некий коэффициент, учитывающий градуировку шкалы, также на косинус сдвига фаз между параметрами. Как говорили выше, сдвиг умещается в пределах 90 — минус 90 градусов, следовательно, косинус положителен, крутящий момент стрелки направлен в одну сторону.
Отсутствует возможность сказать индуктивная ли нагрузка или емкостная. Зато при неправильном включении в цепь показания будут отрицательными (завал набок). Произойдет аналогичное событие, если потребитель вдруг станет отдавать мощность обратно нагрузке (бывает такое). В современных приборах происходит нечто подобное же, вычисления ведет электронный модуль, интегрирующий расход энергии, либо считывающий показания мощности. Вместо стрелки присутствует электронный индикатор и множество других полезных опций.
Особые проблемы вызывают измерения в асимметричных цепях с изолированной нейтралью, где нельзя прямо складывать мощности каждой линии. Ваттметры делятся принципом действия:
- Электродинамические. Описаны разделом. Состоят из одной подвижной, двух неподвижных катушек.
- Ферродинамические. Напоминает двигатель с расщепленным полюсом (shaded-pole motor).
- С квадратором. Используется амплитудно-частотная характеристика нелинейного элемента (например, диода), напоминающая параболу, для возведения электрической величины в квадрат (используется в вычислениях).
- С датчиком Холла. Если индукцию сделать при помощи катушки пропорциональной напряжению магнитного поля в сенсоре, подать ток, ЭДС будет результатом умножения двух величин. Искомая величина.
- Компараторы. Постепенно повышает опорный сигнал, пока не будет достигнуто равенство. Цифровые приборы достигают высокой точности.
В цепях с сильным сдвигом фаз для оценки потерь применяется синусный ваттметр. Конструкция схожа с рассмотренной, пространственное положение таково, что вычисляется реактивная мощность (см. рис.). В этом случае произведение тока и напряжения домножим на синус угла сдвига фаз. Реактивную мощность измерим обычным (активным) ваттметром. Имеется несколько методик. Например, в трехфазной симметричной цепи нужно последовательную обмотку включить в одну линию, параллельную – в две другие. Затем производятся вычисления: показания прибора умножаются на корень из трех (с учетом, что на индикаторе произведение тока, напряжения и синуса угла между ними).
Для трехфазной цепи с простой асимметрией задача усложняется. На рисунке показана методика двух ваттметров (ферродинамических или электродинамических). Начала обмоток указаны звездочками. Ток проходит через последовательные, напряжение с двух фаз подается на параллельную (одно через резистор). Алгебраическая сумма показаний обоих ваттметров складывается, умножается на корень из трех для получения значения реактивной мощности.
Прохождение электрического тока через любую проводящую среду объясняется наличием в ней некоторого количества носителей заряда: электронов – для металлов, ионов – в жидкостях и газах. Как найти её величину, определяет физика силы тока.
В спокойном состоянии носители движутся хаотично, но при воздействии на них электрического поля движение становится упорядоченным, определяемым ориентацией этого поля – возникает сила тока в проводнике. Количество носителей, участвующих в переносе заряда, определяется физической величиной – силой тока.
От концентрации и заряда частиц-носителей, или количества электричества, напрямую зависит сила тока, проходящего через проводник. Если принять во внимание время, в течение которого это происходит, тогда узнать, что такое сила тока, и как она зависит от заряда, можно, используя соотношение:
Входящие в формулу величины:
- I – сила электрического тока, единицей измерения является ампер, входит в семь основных единиц системы Си. Понятие «электрический ток» ввёл Андре Ампер, единица названа в честь этого французского физика. В настоящее время определяется как ток, вызывающий силу взаимодействия 2×10-7 ньютона между двумя параллельными проводниками, при расстоянии 1 метр между ними;
- Величина электрического заряда, применённая здесь для характеристики силы тока, является производной единицей, измеряется в кулонах. Один кулон – это заряд, проходящий через проводник за 1 секунду при токе 1 ампер;
- Время в секундах.
Сила тока через заряд может вычисляться с применением данных о скорости и концентрации частиц, угла их движения, площади проводника:
I = (qnv)cosαS.
Также используется интегрирование по площади поверхности и сечению проводника.
Определение силы тока с использованием величины заряда применяется в специальных областях физических исследований, в обычной практике не используется.
Связь между электрическими величинами устанавливается законом Ома, который указывает на соответствие силы тока напряжению и сопротивлению:
Сила электрического тока здесь как отношение напряжения в электрической цепи к её сопротивлению, эти формулы используются во всех областях электротехники и электроники. Они верны для постоянного тока с резистивной нагрузкой.
В случае косвенного расчета для переменного тока следует учитывать, что измеряется и указывается среднеквадратичное (действующее) значение переменного напряжения, которое меньше амплитудного в 1,41 раза, следовательно, максимальная сила тока в цепи будет больше во столько же раз.
При индуктивном или емкостном характере нагрузки вычисляется комплексное сопротивление для определённых частот – найти силу тока для такого рода нагрузок, используя значение активного сопротивления постоянному току, невозможно.
Так, сопротивление конденсатора постоянному току практически бесконечно, а для переменного:
Здесь RC – сопротивление того же конденсатора ёмкостью С, на частоте F, которое во многом зависит от его свойств, сопротивления разных типов ёмкостей для одной частоты значительно различаются. В таких цепях сила тока по формуле, как правило, не определяется – используются различные измерительные приборы.
Для нахождения значения силы тока при известных значениях мощности и напряжения, применяются элементарные преобразования закона Ома:
Тут сила тока – в амперах, сопротивление – в омах, мощность – в вольт-амперах.
Электрический ток имеет свойство разделяться по разным участкам цепи. Если их сопротивления различны, то и сила тока будет разной на любом из них, так находим общий ток цепи.
Электрическая энергия является наиболее распространенным видом энергии и по праву может считаться основой современной цивилизации. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Трудно перечислить все наименования электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрический ток и его мощность
Современная наука еще не может до конца объяснить природу электричества. Нам, впрочем, вполне достаточно представления о том, что электрический ток — это направленное движение электронов в проводнике. И что этот самый ток может совершать работу, например, вращать электродвигатель, нагревать электроплитку, давать свет. Эта работа является следствием того, что под действием электрического поля происходит перенос, перемещение электронов в проводнике, что тоже означает совершение некоторой работы.
Как вы помните, электрический ток характеризуется двумя основными параметрами: напряжением и силой тока.
Напряжение есть разность потенциалов между двумя полюсами источника тока при замкнутой электрической цепи.
Сила тока — это количество электричества, проходящего через поперечное сечение цепи в течение одной секунды.
Легко заметить, что оба термина «напряжение» и «сила тока» не являются первичными, они определяются через другие понятия, в данном случае — «потенциал» и «количество электричества». Но мы снова не будем углубляться в физические теории, ограничившись приведенными определениями, приняв их за первичные. В конце концов, нам важно только научиться применять эти понятия на практике.
Вы, конечно, знаете еще со школы, напряжение принято обозначать буквой U и единицей измерения напряжения является вольт (В). Сила тока измеряется в амперах (А) и обозначается латинской буквой I.
Как уже было сказано в предыдущей статье , способность производить работу характеризуется величиной, которая называется энергией. А отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени называется мощностью. Поскольку ток тоже может совершать работу, понятие мощности применимо и в этом случае.
Мощность постоянного электрического тока обозначается буквой P и вычисляется по формуле P=U*I, то есть является произведением напряжения на силу тока. То есть чем больше напряжение и сила тока, тем больше совершается работы в единицу времени, то есть больше мощность электрического тока. Мы не будем заниматься выяснением того, почему это именно так, примем это утверждение на веру (оно обосновано в физике и вы можете при желании найти это обоснование).
Единицей электрической мощности является ватт (Вт).
Один ватт — это мощность, которую развивает электрический ток величиной в один ампер при напряжении в один вольт.
Более крупными единицами мощности являются:
- 1 киловатт (кВт) = 1000 Вт.
- 1 мега ватт (МВт) = 1000 кВт.
Более мелкие единицы:
- 1 милливатт (мвт) = 10 -3 Вт;
- 1 микроватт (мквт) = 10 -6 Вт.
Мощность будет нам встречаться при оценке солнечных батарей, ветро-генераторов и других устройств, способных производить электрический ток.
Электрическая цепь
Электрическая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Электрические цепи подразделяют на линейные и нелинейные. Линейные цепи — это такие, которые состоят только из линейных элементов — проводников, сопротивлений, конденсаторов, катушек индуктивности без ферромагнитных сердечников. У линейных элементов электрическое сопротивление постоянно и ток находится в прямо пропорциональной зависимости по отношению к напряжению, что выражается известным законом Ома:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи,
Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Величину R принято называть электрическим сопротивлением. В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А. Проводники, подчиняющиеся закону Ома, называются линейными.
Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры. То есть большинство реальных электрических цепей являются нелинейными.
Нелинейные цепи содержат элементы, электрическое сопротивление которых существенно зависит от тока или напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Зависимость тока от напряжения в нелинейных цепях выражается так называемой вольт-амперной характеристикой, получаемой экспериментально и изображаемой некоторым графиком в системе координат «ток-напряжение».
Нелинейные элементы (усилители, генераторы и т.п.) придают электрическим цепям свойства, недостижимые в линейных цепях (стабилизация напряжения или тока, усиление постоянного тока и др.).
Мощность переменного тока
Закон Ома в той форме, как он был сформулирован ваше (I=U/R), справедлив только для цепей постоянного тока. Следовательно и формула мощности тока P=I*U, тоже действует только для цепей постоянного тока. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Мощность в цепи переменного тока выражается комплексным числом вида P+i*Q. При этом его действительная часть называется активной мощностью, мнимая часть реактивной мощностью.
Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока
Единицей измерения активной мощности является по прежнему ватт, а единицей измерения реактивной мощности — вольт-ампер реактивный (VAr, ВАр, вар).
Но практическое значение имеет полная мощность, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии.
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S=U*I; связана с активной и реактивной мощностями соотношением: S = sqrt , где P — активная мощность, Q — реактивная мощность, sqrt — символ квадратного корня.
Единица полной электрической мощности — вольт-ампер (V·A, В·А).
Формула мощности электрического тока, расчет по мощности и напряжению
Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.
Содержание
- Что такое мощность (Р) электротока
- Что влияет на мощность тока
- Отличия мощности при постоянном и переменном напряжении
- По какой формуле вычисляется
- Расчет силы тока по мощности и напряжению в сети постоянного тока
- Однофазные нагрузки
- Расчет в трехфазной сети
- Средняя P в активной нагрузке
- Подбор номинала автоматического выключателя
- Видео о законах электротехники
Что такое мощность (Р) электротока
Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.
Что влияет на мощность тока
На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.
Отличия мощности при постоянном и переменном напряжении
Ведем обозначения электрических величин, которые приняты в нашей стране:
- Р − активная мощность, измеряется в ваттах, обозначается Вт;
- Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
- S − полная мощность, измеряется в вольт амперах, обозначается ВА;
- U − напряжение, измеряется в вольтах, обозначается ВА;
- I − ток, измеряется в амперах, обозначается А;
- R − сопротивление, измеряется в омах, обозначается Ом.
Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.
Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.
По какой формуле вычисляется
Расчет силы тока по мощности и напряжению в сети постоянного тока
Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.
Расчет силы тока по мощности и напряжению:
I = U ÷ R
Измеряется в амперах.
Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.
Формула расчета мощности по току и напряжению:
P = U × I
Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.
Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:
P = I2 × R
P = U2 ÷ R
Однофазные нагрузки
В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.
S = P + Q
В скалярном виде это будет выглядеть так:
S = √P2 + Q2
В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.
S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).
Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.
Расчет в трехфазной сети
Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.
Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.
При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.
Эти два U связаны между собой соотношением:
UЛ = UФ × √3
Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ
Форма расчета S при соединении звездой:
S = SA + SB + SC = 3 × U × I
Активная P:
Р = 3 × Uф × Iф × cosφ
Реактивная Q:
Q = √3 × Uф × Iф × sinφ.
При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ
Линейный I при соединении треугольником определяется по формуле:
IЛ = IФ × √3
Формулы мощности электрического тока при соединении треугольником:
- S = 3 × Sф = √3 × Uф × Iф;
- Р = √3 × Uф × Iф × cosφ;
- Q = √3 × Uф × Iф × sinφ.
Средняя P в активной нагрузке
В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.
При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.
Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.
Подбор номинала автоматического выключателя
Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.
При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.
Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.
У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.
Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.
Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.
Видео о законах электротехники
Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.
3 шага, чтобы сделать все правильно
Независимо от того, переезжаете ли вы в новый дом или планируете большой проект реконструкции, расчет электрической нагрузки, безусловно, является важным шагом. Это поможет вам понять электрическую мощность вашего дома, а также выбрать соответствующую электрическую услугу. Если вы живете в старом доме, скорее всего, ваша существующая служба действительно недостаточно велика, учитывая современные потребности семьи.
Чтобы понять, как рассчитать электрическую нагрузку, сначала нужно узнать, к чему она относится. Термин «мощность электрической нагрузки» определяется как общее количество энергии, которую ваш основной источник электроэнергии обеспечивает для вашего дома. Он используется всеми цепями вашего дома, а также всеми розетками, приборами или светильниками, подключенными к этим цепям.
Еще одна важная вещь – размер. Общая мощность электрической системы вашего дома измеряется в силе тока или амперах. В более новых, современных домах есть электричество на 200 ампер, а в элитных домах установлено электричество на 400 ампер. Чтобы определить, что вам нужно, необходимо учитывать несколько факторов, но вам также необходимо понимать некоторые основные принципы. Вам также нужно будет немного посчитать, чтобы сравнить общую емкость с нагрузкой, которая будет на нее возложена.
1. Понимание ватт, вольт и амперов
Как упоминалось выше, расчет электрической нагрузки означает суммирование силы тока всех ваших светильников и приборов. Из соображений безопасности всегда лучше предусмотреть запас прочности. Как правило, лучше всего, если нагрузка не превышает 80 % вашей электрической мощности. Однако для математических расчетов вам необходимо понимать, что такое ватты, вольты и амперы, а также взаимосвязь между ними:
- Ампер = ватт / вольт
- Вольт x ампер = ватт
Это две упрощенные формулы, которые помогут вам рассчитать мощность не только всей вашей электросети, но и отдельных цепей. Например, если у вас есть услуга на 100 ампер с цепью на 240 вольт, то ваша общая мощность составляет 24 000 ватт.
Поскольку рекомендуется не превышать 80 % от общей мощности, это дает вам 19 200 Вт. Это означает, что все ваши приборы, устройства, светильники и т. д. не должны превышать 19,200 Вт в любой момент времени во избежание перегрузки .
Все лампочки и электроприборы имеют номинальную мощность, поэтому рассчитать общую мощность не составит труда.
2. Произведите расчет
Как было сказано выше, как только вы узнаете мощность ваших отдельных цепей или всей сети вашего дома, вы можете приступить к ее измерению в зависимости от нагрузки. Сложите номинальные мощности всех приборов и приспособлений, которые будут одновременно потреблять энергию.
Вам не нужно добавлять все лампочки, все подключаемые устройства и все проводные устройства, потому что вы редко будете запускать все одновременно. Вы точно не будете включать кондиционер и печь одновременно. Точно так же вряд ли получится запустить пылесос и кухонную помощницу одновременно. Существуют альтернативные методы определения подходящего размера для вашей электросети. Вот один из них:
- Начните с суммирования мощности всех ответвленных цепей освещения.
- Добавьте номинальную мощность всех штепсельных розеток.
- Добавьте мощность всех стационарных приборов, таких как стиральная машина/сушилка, электрическая плита или водонагреватели.
- Вычтите 10 000 и умножьте это число на 0,40
- Прибавьте 10 000.
- Добавьте мощность вашего переменного тока или нагревательных приборов (печь + обогреватели), в зависимости от того, что больше — не добавляйте оба!
- Разделите на 240.
Результатом будет рекомендуемая сила тока, необходимая для надлежащего питания вашего дома. Если этот тип расчета электрической нагрузки слишком сложен, у многих электриков есть простое практическое правило, в котором говорится, что 100-амперной сети обычно достаточно для небольшого дома или дома среднего размера со стандартными параллельными цепями и одной или двумя постоянными. электрические приборы, такие как водонагреватель или плита. Дом площадью менее 2500 квадратных футов подойдет, если отопление работает на газе.
Вам потребуется 200-амперная служба, если у вас электрическое отопление и охлаждение или если площадь вашего дома составляет менее 3000 квадратных футов. Для больших домов со всеми электроприборами и системами отопления/охлаждения рекомендуется использовать ток 300 или 400 ампер.
3. Думайте наперед
Хотя эти расчеты помогут вам получить представление о том, каким должен быть размер вашего электроснабжения, лучше всего, если вы берете цифры с долей скептицизма и всегда завышаете. Заранее подумайте о том, как ваша семья может расшириться, или о любом дополнении, которое вы, возможно, запланируете позже.
Вам также следует обдумать свои планы относительно гаража. Если вы планируете приобрести электромобиль или даже два, то это, безусловно, добавит нагрузки. Если у вас есть хобби, такое как работа по дереву или гончарное дело, это тоже может пригодиться. Инвестирование в негабаритный сервис позволит вам легко запустить вспомогательную панель в свой гараж для зарядного устройства для электромобиля или в мастерскую любого типа.
Простая модернизация электрооборудования может повысить качество вашей жизни
Правильная модернизация электрооборудования может значительно улучшить стоимость и внешний вид любого дома или предприятия. Вы будете поражены тем, насколько правильная модернизация электрооборудования может изменить ваш дом или бизнес. Убедитесь, что, когда вы выбираете электрическую компанию для модернизации вашего дома и решили довести свою модернизацию до уровня, когда вам требуется электрическая модернизация, что техник в компании имеет хорошие рабочие знания и опыт, чтобы правильно руководить вы в этой области.
Когда вы решите провести модернизацию, наши хорошо обученные и сертифицированные электрики обладают всем опытом и знаниями, необходимыми для выполнения вашего проекта по модернизации электрощита от начала до конца, с минимумом суеты и беспокойства. Пожалуйста, свяжитесь с нами сразу по адресу: 310-800-2401
Имя *
Фамилия *
Электронная почта *
Телефон *
Тип * Тип проекта *
Тип проекта * 0003
Адрес проекта *
Город *
StateStateCA
Почтовый индекс *
Сведения о проекте
Служба конфиденциальности и применение Политики конфиденциальности Google.
Эта контактная форма деактивирована, поскольку вы отказались принять службу Google reCaptcha, которая необходима для проверки любых сообщений, отправленных формой.
О нас
Если вы владелец дома или бизнеса в радиусе 20 миль от Редондо-Бич и ищете лучшего подрядчика по электроснабжению в Южном заливе, позвоните в Penna Electric.
Как с нами связаться
Чтобы составить предварительную смету для бесплатной оценки, выполненной настоящим квалифицированным электриком, позвоните нам.
(310) 800-2401
Почтовый адрес
Penna Electric
4825 Rosecrans Ave
Hawthorne, CA
Наши офисные часы
MO-FR: 8: Формулы для однофазных и трехфазных цепей постоянного и переменного тока
Вернемся к основам. Ниже приведены простые формулы для расчета электроэнергии для однофазной цепи переменного тока, трехфазной цепи переменного тока и цепи постоянного тока. Вы можете легко найти электрический мощность в ваттах с использованием следующих формул электрической мощности в электрических цепях .
Содержание
Основная формула мощности в цепях переменного и постоянного тока
Формула мощности в цепях постоянного тока- P = V x I
- P = I 2 x R
- Р = В 2 / Р
- P = V x I x Cos Ф
- P = I 2 x R x Cos Ф
- P = В 2 / R (Cos Ф)
- P = √3 x V L x I L x Cos Ф
- P = 3 x V Ph x I Ph x Cos Ф
- P = 3 x I 2 x R x Cos Ф
- P = 3 (V 2 /R) x Cos Ф
Где:
- P = мощность в ваттах
- В = напряжение в вольтах
- I = ток в амперах
- R = сопротивление в омах (Ом)
- Cos Ф = Коэффициент мощности
две части, то есть реальная и мнимая часть. Величина Комплексной мощности называется Полная мощность |S|.
Где
- P — реальная мощность
- Q — реактивная мощность
Действительная часть представляет собой комплексную мощность «S», известную как активная или действительная мощность «P» , а мнимая часть известна как реактивная мощность «Q».
- S = P + jQ
- P = V I cosθ
- Q = V I sinθ
Где
θ — фазовый угол между напряжением и током.
Коэффициент мощности:Коэффициент мощности «PF» — отношение активной мощности «P» к полной мощности «|S|» . Математически коэффициент мощности представляет собой косинус угла θ между реальной мощностью и кажущейся мощностью.
Где
|S| = √(P 2 +Q 2 )
Другие формулы, используемые для коэффициента мощности, следующие:
Cosθ = R/Z
Где:
- Cosθ = коэффициент мощности
- R = Сопротивление
- Z = Impedance (Resistance in AC circuits i.
e. X L , X C and R known as Inductive reactance , capacitive reactance and resistance respectively).
Cosθ = кВт/кВА
Где
- Cosθ = коэффициент мощности
- кВт = реальная мощность в ваттах
- кВА = полная мощность в вольт-амперах или ваттах
Дополнительные формулы, используемые для коэффициента мощности.
- Cosθ = P / V I
- Cosθ = кВт/кВА
- Cosθ = Истинная мощность/Полная мощность
Где
- В действующее значение и I действующее значение – среднеквадратичное значение напряжения и тока соответственно.
- V L-N & I L-N — это напряжение и ток между фазой и нейтралью соответственно.
- В L-L и I L-L — линейное напряжение и ток соответственно.
- Cosθ – коэффициент мощности PF.
Где
θ = фазовый угол, т. е. разность фаз между напряжением и током.
В следующей таблице показаны различные формулы электрической мощности в цепях переменного и постоянного тока.
Количество | DC | Переменный ток (1 фаза) | Переменный ток (3 фазы) |
Мощность (Ш) |
|
|
|
Связанные формулы и уравнения Посты:
- Основные формулы и уравнения электротехники
- Формулы основных электрических величин
- Формулы и уравнения в области электротехники и электроники
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
AC DC Формула расчета тока полной нагрузки
Ток полной нагрузки используется для проектирования системы защиты электрооборудования.
Ток полной нагрузки — это не что иное, как максимально допустимый ток. Входной ток машины превышает ток полной нагрузки, что может привести к повреждению электрической машины. Из-за избыточного тока машина выделяет дополнительное тепло (Из-за P=I 2 * R). Это может привести к повреждению изоляции или обмотки электрооборудования. Следовательно, работа машины при токе ниже полной нагрузки увеличивает срок службы электрооборудования.
Нагрузки двигателей переменного тока (переменный ток) :
Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок. Резистивными нагрузками являются водонагреватели, комнатные обогреватели и т. д. Индуктивными нагрузками являются индукционные печи, однофазные асинхронные двигатели, трехфазные двигатели и т. д.
Расчет тока при полной нагрузке 3-фазный двигатель:
В большинстве трехфазных систем потребление электроэнергии происходит через соединение звезда и треугольник. Входная мощность (P) в систему одинакова, независимо от соединения.
Мощность в кВт (киловаттах)
В= Напряжение +/- 10 % в Вольтах
I= Ток полной нагрузки в Амперах
Cos pi = коэффициент мощности
Трехфазная мощность P = 3 В*I* Cos Пи Следовательно, Ток трехфазного двигателя при полной нагрузке I = P / (3 * V * Cos pi)
кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке.
Посмотрите на приведенную выше формулу, трехфазный ток полной нагрузки равен мощности, деленной на произведение линейного напряжения на нейтраль и коэффициента мощности, умноженное на 3.
Как мы уже говорили, полный ток нагрузки трехфазной системы зависит от типа подключения. Здесь
Iph => Фазный ток
Iline => Линейный ток
Для соединения по схеме «звезда» ток полной нагрузки Iline равен Iph
Iph = Iline
Для соединения треугольником ток полной нагрузки Iline равен Iph
Iph/1,732 = Iline
Следовательно, трехфазный ток полной нагрузки I равен
I= P/(1,732*V*Cos pi)
Здесь трехфазный ток полной нагрузки равен мощности, разделенной на 1,732 умноженное на линейное напряжение и коэффициент мощности.
Ток полной нагрузки однофазного двигателя I равен мощности P, деленной на коэффициент мощности, умноженный на напряжение между фазой и нейтралью.
P = V * I * Cos pi
Ток полной нагрузки I = P / (V x Cos pi) Ампер
V= Напряжение +/- 10 % в вольтах
I= ток полной нагрузки в амперах
Cos pi = коэффициент мощности
кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке двигателя.
Расчет тока полной нагрузки Трехфазный нагревательный элемент:
Для трехфазного тока полный ток резистивной нагрузки равен трехфазной мощности, деленной на напряжение в 1,732 раза. Здесь коэффициент мощности будет равен единице для резистивных нагрузок.
Как известно, формула мощности
P = 1,732 x V x I
Ток полной нагрузки I,
I =P / 1,732 * В Ампер.