Мощный импульсный блок питания: расчеты на микросхеме sg3525, ir2153 для 5, 12, и 24В

Мощный импульсный блок питания для УНЧ (2х50В, 12В)

Импульсные источники питания широко используются в современной радиоэлектронной аппаратуре. Вниманию читателей предлагается импульсный блок питания мощностью 800 Вт.

От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе — вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением.

Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что немного упрощает конструкцию и повышает КПД устройства. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство. Автором он используется для питания двухканального умощненного варианта УМЗЧ.

Входное напряжение ИБП — 180…240 В, номинальное выходное напряжение (при входном 220 В) — 2×50 В, максимальная мощность нагрузки — 800 Вт, рабочая частота преобразователя — 90 кГц.

Принципиальная схема

Принципиальная схема ИБП изображена на рис. 1. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр C1, L1, С2, предотвращающий попадание помех в сеть.

Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1…VD4, пульсации сглаживаются конденсатором C3. Выпрямленное постоянное напряжение (около 310 В) используется для питания высокочастотного преобразователя.

Устройство управления преобразователем выполнено на микросхемах DD1…DD3. Питается оно от отдельного стабилизированного источника, состоящего из понижающего трансформатора Т1, выпрямителя VD5 и стабилизатора напряжения на транзисторах VT1, VT2 и стабилитроне VD6. На элементах DD1.1, DD1.2 собран задающий генератор, вырабатывающий импульсы с частотой следования около 360 кГц.

Рис. 1. Принципиальная схема мощного импульсного блока питания для УНЧ (2х50В, 12В).

Далее следует делитель частоты на 4, выполненный на триггерах микросхемы DD2. С помощью элементов DD3.1, DD3.2 создаются дополнительные паузы между импульсами. Паузой является не что иное, как уровень логического 0 на выходах этих элементов, появляющийся при наличии уровня логической 1 на выходах элемента DD1.2 и триггеров DD2.1 и DD2.2.

Напряжение низкого уровня на выходе DD3.1 (DD3.2) блокирует DD1.3 (DD1.4) в «закрытом» состоянии (на выходе — уровень логической 1). Длительность паузы равна 1/3 от длительности импульса напряжений на выводах 1 DD3.1 и 13 DD3.2, чего вполне достаточно для закрывания ключевого транзистора.

С выходов элементов DD1.3 и DD1.4 окончательно сформированные импульсы поступают на транзисторные ключи (VT5, VT6), которые через резисторы RIO, R11 управляют затворами мощных полевых транзисторов VT9, VT10 (см. рис. 2).

Рис. 2. Графики работы.

Импульсы с прямого и инверсного выходов триггера DD2.2 поступают на входы устройства, выполненного на транзисторах VT3, VT4, VT7, VT8. Открываясь поочередно, VT3 и VT7, VT4 и VT8 создают условия для быстрой разрядки входных емкостей ключевых транзисторов VT9, VT10, т.е. их быстрого закрывания.

В цепи затворов транзисторов VT9 и VT10 включены резисторы относительно большого сопротивления R10 и R11. Вместе с емкостью затворов они образуют фильтры нижних частот, уменьшающие уровень гармоник при открывании ключей.

С этой же целью введены элементы VD9…VD12, R16, R17, С12, С13. В стоковые цепи транзисторов VT9, VT10 включена первичная обмотка трансформатора Т2. Выпрямители выходного напряжения выполнены по мостовой схеме на диодах VD13…VD20, что несколько уменьшает КПД устройства, но значительно (более чем в пять раз) снижает уровень пульсации на выходе ИБП.

Важно отметить, что форма колебаний, почти прямоугольная при максимальной нагрузке, плавно переходит в близкую к синусоидальной при уменьшении мощности до 10. ..20 Вт, что положительно сказывается на уровне шумов питаемого от этого блока УМЗЧ при малой громкости. Выпрямленное напряжение обмотки IV трансформатора Т2 используют для питания вентиляторов.

Детали

В устройстве применены конденсаторы К73-17 (С1, С2, С4), К50-17 (C3), МБМ (С12, С13), К73-16 (С14…С21, С24, С25), К50-35 (С5…С7), КМ (остальные). Вместо указанных на схеме допустимо применение микросхем серий К176, К564.

Диоды Д246 (VD1…VD4) заменимы на любые другие, рассчитанные на прямой ток не менее 5 А и обратное напряжение не менее 350 В (КД202К, КД202М, КД202Р, КД206Б, Д247Б), или диодный выпрямительный мост с такими же параметрами, диоды КД2997А (VD13…VD20) — на КД2997Б, КД2999Б, стабилитрон Д810 (VD6) — на Д814В.

В качестве VT1 можно использовать любые транзисторы серий КТ817, КТ819, в качестве VT2…VT4 и VT5, VT6 — соответственно, любые из серий КТ315, КТ503, КТ3102 и КТ361, КТ502, КТ3107, на месте VT9, VT10 — КП707В1, КП707Е1. Транзисторы КТ3102Ж (VT7, VT8) заменять не рекомендуется.

Трансформатор Т1 — ТС-10-1 или любой другой с напряжением вторичной обмотки 11…13 В при токе нагрузки не менее 150 мА. Катушку L1 сетевого фильтра наматывают на ферритовом (М2000НМ1) кольце типоразмера К31х18,5х7 проводом ПЭВ-1-1.0 (2×25 витков), трансформатор Т2 — на трех склеенных вместе кольцах из феррита той же марки, но типоразмера К45х28х12.

Обмотка I содержит 2×42 витка провода ПЭВ-2-1,0 (наматывают в два провода), обмотки II и III — по 7 витков (в пять проводов ПЭВ-2-0,8), обмотка IV — 2 витка ПЭВ-2-0,8. Между обмотками прокладывают три слоя изоляции из фторопластовой ленты.

Магнитопроводы дросселей L2, L3 — ферритовые (1500НМЗ) стержни диаметром 6 и длиной 25 мм (подстроечники от броневых сердечников Б48). Обмотки содержат по 12 витков провода ПЭВ-1-1,5. Транзисторы VT9, VT10 устанавливают на теплоотводах с вентиляторами, применяемых для охлаждения микропроцессоров Pentium (подойдут аналогичные узлы и от процессоров 486). Диоды VD13…VD20 закрепляют на теплоотводах с площадью поверхности около 200 см2.

При монтаже ИБП следует стремиться к тому, чтобы все соединения были возможно короче, а в силовой части использовать провод возможно большего сечения. ИБП желательно заключить в металлический экран и соединить его с выводом 0 В выхода источника, как показано на рис. 3.

Общий провод силовой части с экраном соединяться не должен. Поскольку ИБП не оснащен устройством защиты от короткого замыкания и перегрузки, в цепи питания необходимо включить предохранители на 10 А. В налаживании описанный ИБП практически не нуждается. Важно только правильно сфазировать половины первичной обмотки трансформатора Т2.

 

Рис. 3. Подключение экрана.

При исправных деталях и отсутствии ошибок в монтаже блок начинает работать сразу после включения в сеть. Если необходимо, частоту преобразователя подстраивают подбором резистора R3. Для повышения надежности ИБП желательно эксплуатировать его с УМЗЧ, в котором предусмотрена сквозная продувка вентилятором.

Первоисточник: неизвестен.

Мощный импульсный блок питания на IR2153

Мощный импульсный блок питания на IR2153

Схема блока питания

  Ещё одна схема мощного импульсного сетевого блока питания на микросхеме IR2153, обеспечивает выходную мощность до 1000 ватт. Блок питания предназначен для питания усилителей мощности звука.
   Схема базируется на микросхеме IR2153, это специализированная микросхема, предназначенная для использования в качестве драйвера управления полевыми и IGBT транзисторами в схемах преобразователей типа полумоста. Поэтому здесь не применяется стабилизация выходного напряжения, оно и не особо нужно для питания усилителей мощности звука. Проседание напряжения на выходной мощности 1000 ватт составляет около 9 вольт на оба плеча выхода. В схеме блока питания предусмотрено плавное включение, присутствует защита от короткого замыкания и от перенапряжения по входу.

Защита от короткого замыкания работает следующим образом. Резисторы R11 и R12 включены в качестве датчика тока и при коротком замыкании или перегрузке на резисторах R11 и R12 образуется падение напряжения достаточной величины для открывания маломощного тиристора Т1, который открываясь закорачивает питание микросхемы генератора на основную массу, таким образом на микросхему не поступает питающее напряжение и она прекращает работу. Питание поступает на тиристор через светодиод HL1, светодиод будет гореть и свидетельствовать о наличии перегрузки или короткого замыкания. Что бы вывести блок питания из защиты, нужно отключить его от сети и устранить причину короткого замыкания, затем дождаться пока погаснет светодиод HL1, только потом включить блок питания. Настроить защиту можно регулируя переменный многооборотный резистор R9. Транзисторы и выпрямительные диоды необходимо будет установить на теплоотвод, за неимением указанных на схеме транзисторов можно установить IRFP460, либо другой аналогичный.
На схеме указан резистор R5 47 кОм по питанию микросхемы, его следует заменить  на 30 кОм 5 ватт, а лучше поставить 10 ваттный, это что бы при большой нагрузке хватило тока микросхеме IR2153, иначе она может уйти в защиту от недостатка тока, либо начнётся пульсирование выходного напряжения, что отразится на качестве звука. В качестве сердечника трансформатора выбран Ш-образный магнитопровод марки ETD49, который на рабочей частоте 56 кГц имеет мощность 1400 ватт, мы же будем использовать только 1000 из них. Первичная обмотка содержит 20 витков в пять жил в параллель проводом диаметра 0,63 мм, вторичная обмотка содержит 2х11 витков в 4 жилы проводом 0,63 диаметра. На выходе получим около 80 вольт двуполярного напряжения.
   При первом запуске блока питания обязательно установите в разрыв сетевого кабеля и ИБП лампочку 60 ватт. Если при первом включении лампочка не загорелась, это уже хорошо. При первом пуске может включиться защита от короткого замыкания и загорится светодиод HL1, так как электролиты большой емкости и в момент включения берут огромный ток, в случае если это произошло, то надо многооборотный резистор перекрутить по часовой стрелке до упора, а потом ждать пока погаснет светодиод  в выключенном состоянии и пробовать включать заново что бы удостовериться в работоспособности блока питания, а потом регулировать защиту.
Если все правильно спаяли и использовали правильные номиналы деталей, устройство запустится. Далее, когда удостоверились, что блок питания включается и есть все напряжения на выходе, нужно установить порог срабатывания защиты. При настройке защиты обязательно нагрузите устройство между двумя плечами основной выходной обмотки  лампочкой 100 ватт. Когда при включении под нагрузкой (лампочка 100 ватт) загорается светодиод HL1, нужно понемногу крутить переменный многооборотный резистор R9 2.2 кОм против часовой стрелки пока не будет срабатывать защита при включении. Когда при включении будет загораться светодиод, нужно выключить и дождаться пока он погаснет и по понемногу подкручивая по часовой стрелке в выключенном состоянии и включая опять его пока не перестанет срабатывать защита, только нужно крутить понемногу например 1 оборот и не сразу на 5-10 оборотов, т.е. выключил подкрутил и включил, сработала защита — опять такая же процедура в несколько раз пока не достигнете нужного результата.
Когда вы установите нужный порог, то в принципе блок питания готов к использованию и можно убрать лампочку по сетевому напряжению и пробовать нагрузить блок питания активной нагрузкой ну например ватт 500.На этом наладку можно считать законченной.

Следующее Предыдущее Главная страница

Как разработать более совершенные сильноточные импульсные источники питания для транспортных средств ADAS

к Ин Ченг