Намотка тороидального трансформатора своими руками: пошаговая инструкция

Как намотать тороидальный трансформатор самостоятельно. Какие материалы и инструменты понадобятся. Пошаговое руководство по намотке обмоток. Советы по расчету и изоляции.

Содержание

Что такое тороидальный трансформатор и его преимущества

Тороидальный трансформатор — это устройство для преобразования напряжения, имеющее кольцевой сердечник. Его главные преимущества:

  • Высокий КПД (до 98%)
  • Компактные размеры
  • Низкий уровень шума и вибраций
  • Малые потери на рассеяние магнитного поля
  • Высокая надежность

Благодаря этим достоинствам тороидальные трансформаторы широко применяются в аудиотехнике, источниках питания, сварочных аппаратах и другом оборудовании.

Необходимые материалы и инструменты для намотки

Чтобы намотать тороидальный трансформатор своими руками, потребуются:

  • Тороидальный сердечник нужного размера
  • Обмоточный провод (медный эмалированный)
  • Изоляционные материалы (лакоткань, каптон)
  • Челнок для намотки
  • Подставка для крепления сердечника
  • Мультиметр
  • Паяльник

Также пригодятся изолента, ножницы, плоскогубцы и другие вспомогательные инструменты.


Расчет параметров обмоток трансформатора

Перед намоткой нужно рассчитать основные параметры обмоток:

  1. Определить требуемые входные и выходные напряжения
  2. Рассчитать количество витков на 1 вольт
  3. Вычислить необходимое число витков для каждой обмотки
  4. Подобрать сечение провода исходя из тока нагрузки

Для точного расчета рекомендуется использовать специальные программы или онлайн-калькуляторы трансформаторов.

Подготовка сердечника к намотке

Перед началом намотки необходимо подготовить тороидальный сердечник:

  1. Тщательно очистить поверхность от загрязнений
  2. Обмотать сердечник изоляционной лентой в один слой
  3. Закрепить сердечник на намоточной подставке

Правильная подготовка сердечника обеспечит качественную намотку и надежную изоляцию обмоток.

Пошаговая инструкция по намотке первичной обмотки

Намотка первичной обмотки выполняется следующим образом:

  1. Закрепить начало провода на сердечнике
  2. Намотать расчетное количество витков равномерно по всей окружности
  3. Витки укладывать плотно друг к другу
  4. Через каждые 20-30 витков закреплять намотку изолентой
  5. Вывести и закрепить конец обмотки

Витки первичной обмотки должны располагаться максимально равномерно по всей поверхности сердечника.


Особенности намотки вторичных обмоток

При намотке вторичных обмоток следует учитывать несколько моментов:

  • Наматывать поверх первичной обмотки
  • Между слоями обмоток проложить изоляцию
  • Использовать провод подходящего сечения
  • Равномерно распределять витки по окружности
  • Закреплять намотку изолентой

Качественная намотка и изоляция вторичных обмоток обеспечат надежную работу трансформатора.

Изоляция и отделка готового трансформатора

После завершения намотки необходимо изолировать и отделать трансформатор:

  1. Тщательно изолировать все выводы обмоток
  2. Обмотать весь трансформатор изоляционной лентой
  3. Надеть защитный кожух (при необходимости)
  4. Припаять выводные концы к клеммам

Правильная изоляция обеспечит электробезопасность и защиту обмоток от внешних воздействий.

Проверка и тестирование намотанного трансформатора

Готовый трансформатор необходимо проверить перед использованием:

  • Измерить сопротивление обмоток мультиметром
  • Проверить отсутствие замыканий между обмотками
  • Измерить выходные напряжения под нагрузкой
  • Проконтролировать нагрев трансформатора

Тщательное тестирование позволит выявить возможные дефекты намотки и убедиться в работоспособности трансформатора.


Типичные ошибки при самостоятельной намотке

При намотке трансформатора своими руками часто допускаются такие ошибки:

  • Неправильный расчет числа витков
  • Неравномерная укладка витков
  • Недостаточная изоляция между слоями
  • Использование провода неподходящего сечения
  • Плохая пропитка обмоток лаком

Чтобы избежать этих ошибок, следует внимательно выполнять все этапы намотки и придерживаться рекомендаций.

Советы по улучшению характеристик тороидального трансформатора

Для повышения эффективности трансформатора рекомендуется:

  • Использовать качественный сердечник с малыми потерями
  • Применять провод с минимальным сопротивлением
  • Тщательно изолировать обмотки друг от друга
  • Равномерно распределять витки по поверхности
  • Пропитывать обмотки специальным лаком

Соблюдение этих рекомендаций позволит получить трансформатор с высоким КПД и низким уровнем потерь.


Тороидальные трансформаторы: самостоятельная намотка, проведение расчетов

Намотка трансформатора своими руками — задача несложная, если к ней подготовиться заранее. Люди, которые изготавливают различную радиоаппаратуру или силовые инструменты, имеют потребность в трансформаторах для конкретных нужд. Поскольку далеко не всегда предоставляется возможность приобрести определенные изделия, то мастера зачастую наматывают тороидальные трансформаторы самостоятельно. Те, кто в первый раз пытаются провести обмотку, сталкиваются с трудностями: не могут определить правильность расчетов, подобрать соответствующие детали и технологию. Необходимо понимать, что разные типы наматываются по-разному.

Также кардинально отличаются тороидальные устройства. Расчет тороидального трансформатора и его намотка будут особыми. Так как радиолюбители и мастера создают детали под силовое оборудование, но не всегда обладают достаточными знаниями и опытом для их изготовления, то этот материал поможет данной категории людей разобраться с нюансами.

Подготовка к проведению намотки

  • В первую очередь нужно провести правильный расчет тороидального трансформатора по сечению сердечника. Вычисляется нагрузка, для этого суммируют все подключенные устройства (двигатели, передатчики и т. п. ), питание которых будет обеспечиваться. К примеру, радиостанция имеет 3 канала, мощность которых по 15, 10 и 15 Ватт. Суммарно это 40 Ватт.
  • Далее следует поправка на КПД схемы (в большинстве передатчиков около 70%). У трансформатора также имеется собственный КПД, составляющий 95%, но нужно сделать поправку на самоделку и выставить уровень КПД не более 90%. Значит, требуемая мощность возрастет до 63,5 Вт. Стандартный вес устройств с такой мощностью — до 1,5 кг.
  • Следующий шаг — определяют входное и выходное напряжение. Если 220 В — входное, а 12 В — выходное со стандартной частотой 50 Гц, количество витков составит на одну обмотку 220*0,73=161 виток (округляют до целых чисел), а снизу получится 12*0,73=9 витков.
  • Затем — определение диаметра провода. Для этого необходимо обладать информацией относительно плотности и протекания тока, на 1 кВт выставляют значение до 3 А/мм2.

Необходимые материалы

Материалы для намотки требуют тщательного выбора, важное значение имеет каждая из деталей. В частности, вам понадобятся:

  1. Каркас трансформаторный. Он используется для изоляции сердечника от обмоток, а также удерживает обмоточные катушки. Его изготавливают из прочных и тонких диэлектрических материалов, чтобы не занимать слишком много места в интервалах («окнах») сердечника. Можно воспользоваться картонками, микрофибрами, текстолитом. Толщина материала не должна быть более 2 мм. Каркас склеивают, пользуясь обычным клеем для столярных работ (нитроклеем). Его форма и размеры полностью зависят от сердечника, высота — немного больше, чем у пластины (высота обмотки).
  2. Сердечник. Эту роль, как правило, выполняют магнитопроводы. Лучшим решением станет применение пластин из разобранных трансформаторов, поскольку они произведены из подходящих сплавов и рассчитаны на некоторое количество витков. Магнитопроводы имеют разнообразную форму, но чаще всего встречаются изделия в виде буквы «Ш». Кроме того, их можно вырезать из различных заготовок, которые есть в наличии. Чтобы определить точные размеры, предварительно наматывают провода обмоток.
  3. Провода. Здесь нужно использовать два вида: для обмотки и для выводов. Оптимальное решение для трансформирующих устройств — медные провода, имеющие эмалевую изоляцию (тип ПЭЛ или ПЭ). Их хватит даже для силовых трансформаторов. Широкий выбор сечений позволяет подобрать самый подходящий вариант. Также часто применяют провода ПВ. Для вывода лучше всего брать провода с разноцветной изоляцией, чтобы не путаться при подключении.
  4. Изоляционные подкладки. Помогают увеличить изоляцию провода обмотки. Как правило, используют тонкую и плотную бумагу (отлично подойдет калька), которую следует уложить между рядов. Но бумага должна быть целой, разрывы и проколы, даже самые незначительные, — отсутствовать.

Как ускорить рабочий процесс

У многих радиолюбителей в арсенале имеются простые специальные агрегаты, с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.

На оси надеваются катушечные каркасы, которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).

Как сделать тороидальный трансформатор своими руками?

Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.

Как устроен трансформатор?


Основа прибора – замкнутый магнитопровод. На него наматываются обмотки – от двух и более. При появлении на первичной обмотке переменного напряжения, в основе возбуждается магнитный поток. Он наводит на остальных обмотках переменное напряжение с аналогичной частотой.

Разница в количестве витков между обмотками определяет коэффициент изменения величины напряжения. Проще говоря, если вторичная обмотка имеет вдвое меньше витков, на ней возникнет напряжение, в два раза меньшее, чем в первичной. Мощность остается прежней, что позволяет работать с большими токами при меньшем напряжении.

Важно! Трансформатор может работать только с переменными или импульсными токами. Преобразовать постоянное напряжение таким образом невозможно.

Конструктивное исполнение различается по форме магнитопровода.

Броневой

Образует два витка магнитного поля, рассчитан на большие нагрузки. Магнитопровод разъемный, удобен в сборке – на центральный стержень надевается готовая обмотка. Недостаток – тяжелый, габаритный. Крайние и поперечные стержни магнитопровода эффективно не используются.

Стержневой

Конструкция аналогична броневому, магнитное поле одновитковое, соответственно мощность меньше. Также имеет разборную конструкцию. Эффективность использования поверхности магнитопровода не выше 40%.

Тороидальный трансформатор

Имеет самый высокий КПД. Это достигается за счет 100% использования площади магнитопровода. Поэтому, при одинаковой мощности, такие трансформаторы имеют меньшие размеры. Еще одно преимущество – за счет распределения обмоток по всей площади основы, охлаждение витков более эффективное. Это позволяет еще больше нагрузить преобразователь без превышения критической температуры. Недостаток один – такие трансформаторы сложно собирать, поскольку основа неразъемная.

Материалы для магнитопровода:

Железные основы набираются из пластин, наматываются ленточным способом, или отливаются монолитно. Наиболее эффективный материал – феррит. Чаще всего применяется именно в торах, увеличивая их КПД.

Какие бывают трансформаторы по конструкции, мы рассмотрели. При покупке готового прибора, вас мало волнует, насколько сложно его сделать.

Тороидальная конструкция удобна в монтаже (занимает мало места, крепится одним винтом). Однако стоит такой прибор выше, чем стержневые или броневые преобразователи напряжения. Часто его цена перекрывает экономию от самостоятельного изготовления всей электроустановки.

Тороидальный трансформатор, как сделать своими руками?

Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.

Но тороидальный сердечник не разбирается, если пропускать через «бублик» пару тысяч (или даже сотен) витков, на перемотку уйдут месяцы. Да и вероятность повредить оболочку проволоки при таком способе довольно высока.

Важно! Намоточная медная проволока имеет защитное лаковое покрытие. Иногда тряпичное, для мощных обмоток. Дополнительная изоляция увеличивает сечение, соответственно объем обмотки вырастает втрое. Поэтому при наматывании, витки укладываются без продольного перемещения (протяжки), чтобы не повреждать изоляцию.

Чтобы не задаваться вопросами типа: «Что можно сделать из трансформатора от микроволновки?» (из него делают споттеры для точечной сварки), логичнее будет подбирать трансформатор под конкретную задачу, а не наоборот.

Если ваш электроприбор компактный, ищите тороидальный преобразователь. Кстати, в микроволновых печах применяются бронированные трансформаторы, достаточно крупного размера.

Имея представление о характеристиках собираемого блока питания, вы должны знать, как рассчитать мощность трансформатора. Получив эту важную характеристику, начинаете поиски донора. Если приобретенный трансформатор имеет заводскую этикетку, или еще лучше, паспорт изделия – вы пользуетесь этой информацией. А если у вас в руках безымянное изделие?

Первый вопрос, который возникнет: «Как определить выводы трансформатора?» Необходимо произвести замеры сопротивления между контактами с помощью мультиметра. Надо найти первичную обмотку. Как правило, контакты первички не соединены с вторичными обмотками.

То есть, если прозвонка показала гарантировано обособленную обмотку, это первичка. По результатам замеров рисуем схему, и приступаем к определению коэффициентов понижения напряжения.

Важно! Вы должны точно быть уверенными в том, что перед вами именно трансформатор напряжения на 220 вольт, а не дроссель или прибор, рассчитанный на иное входное напряжение.

На контакты первичной обмотки подводим напряжение 220 вольт. Для безопасности можно ограничить ток какой-нибудь нагрузкой. Например, последовательно включить лампу накаливания мощностью 40-60 Вт. Лампа шунтируется обычным тумблером. Подключение производится через предохранитель, или бытовой удлинитель с защитным автоматом (на случай короткого замыкания).

Необходимо дать поработать тору несколько минут «в холостую» с включенной лампой. Затем отключите питание, и оцените температуру устройства. Если избыточного нагрева нет – шунтируйте лампу выключателем и снова дайте время на проверку нагрева.

После этого можно приступать к составлению диаграммы напряжения на вторичных обмотках. Произведите замеры на контактах во всех возможных комбинациях. Результаты отобразите на схеме. Получив полную картину, подайте на обмотки нагрузку, соответствующую напряжению. Лучший способ – та же лампа накаливания.

Внимание! Проверка вторичных обмоток под нагрузкой – косвенный способ, как узнать мощность трансформатора.

Оценить возможности прибора можно по степени нагрева под нагрузкой. Нормальная температура – не более 45°С. То есть, сразу после отключения от сети, трансформатор можно трогать рукой без температурного дискомфорта.

Рассмотрим как производится расчет мощности трансформатора

Для начала определяем сечение основы. Магнитопровод должен не только выдержать магнитное поле определенной интенсивности, он еще рассеивает выделяемое тепло. Существует упрощенный метод исчисления площади сечения в см². Она равна квадратному корню от требуемого значения мощности в ваттах.

Это максимальное значение, реальный трансформатор должен иметь запас +50%. Иначе сердечник попадет в область магнитного насыщения, что приведет к резкому локальному нагреву. Для сердечников тороидальной формы достаточно запаса 30% от расчетной площади.

Далее необходимо знать, как определить параметры провода для обмоток, чтобы обеспечить расчетную мощность трансформатора. Первая величина – количество витков на вольт (речь идет о первичной обмотке).

Для этого воспользуемся несложной формулой: константу 60 делим на площадь сечения в см². Например, сечение магнитопровода 6 см². Значит, на каждый вольт входного напряжения, требуется 10 витков провода. То есть при питании 220 вольт, первичная обмотка будет состоять из 2200 витков.

Расчет вторичных обмоток производится в пропорции коэффициента трансформации. Если необходимо 20 вольт на выходе, при константе 10 витков на вольт, потребуется 200 витков вторичной обмотки. Это абсолютное значение, без учета потерь при нагрузке. Истинное количество витков получаем, умножив значение на 1,2.

Прежде чем намотать трансформатор, надо знать сечение провода. Минимальный диаметр проволоки рассчитывается по формуле: D=0.7*√I

D – диаметр проводника в мм

Важно! Диаметр проводника замеряется без учета толщины изолирующего лака. Его надо смыть ацетоном в месте измерения. Это актуально для проводов с малым сечением.

0,7 – установочный коэффициент

√I – квадратный корень из значения силы тока в амперах

Экономить на проводе не стоит. Меньший диаметр плохо рассеивает тепло, и обмотка может перегореть. Чем тоньше провод, тем выше сопротивление. Возможны потери мощности и снижение расчетных характеристик.

Перемотка трансформатора своими руками

Расчет произвели, параметры «донора» определили, требуется перемотка вторичной обмотки. На стержневом или бронированном трансформаторах все просто – обмотка мотается на коробочку из электротехнического картона, затем надевается на разборный магнитопровод.

А как намотать тороидальный трансформатор?

Намотка тороидального трансформатора своими руками — видео.

Есть два способа, отработанных десятилетиями.

С помощью челнока. На вилочный челнок предварительно наматываем требуемое количество проводника. Лучше рассчитать его с запасом, возможны потери от перекосов на витках.

Этот способ годится в случаях, когда внутренний диаметр тора достаточно большой, а проводник тонкий и гибкий. Количество витков также имеет значение. Мотать обмотку даже в 500-700 витков вы будете очень долго.
Вторая технология более прогрессивная. Намотка с помощью размыкаемого обода.

Намоточный обод продевается в «дырку от бублика» и соединяется в единое кольцо. Затем на него наматывается требуемое количество проволоки. После чего проводник сматывается с обода на тороид, с одновременным его вращением для равномерной укладки.

Несмотря на кажущуюся сложность приспособления, его можно изготовить самостоятельно.

About sposport

View all posts by sposport

КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР СВОИМИ РУКАМИ

КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР

      Технология намотки и способ изоляции на самом деле очень прост и не предполагает ни в коем случае ни какой обмотки, ни лакотканью, ни чем-либо другим. Дело в том, что при любой обмотки сердечника трансформатора лакотканью или другими изоляторами внутреннее окно ТОРА мгновенно заполняются, так как, на внешней стороне получается один слой, а на внутренней 5- 10 слоев, да еще неровных.
    Я давно собирался написать статью о способе качественной намотки тороидальных трансформаторов. Это довольно долго объяснять и лучше показать на фото. Причем после намотки обмотки не превращаются в колесо, а сам трансформатор не становиться, яйцеобразным и расход провода минимален. Ввиду всего этого и КПД трансформатора максимален. А что из этого получается, Вы можете посмотреть в моем усилителе.
    Сразу оговорюсь, речь идет о мощных тороидальных трансформаторах. Габаритная мощность, которых более 500 Вт. Которые мотаются проводами от 1 до 3 мм. естественно виток к витку. И, как правила, сетевая обмотка которых лежит в приделах от 100 до 400 витков, всего, то есть 0,5-2 витка на вольт. Мотать таким способом менее мощные трансформаторы хлопотно, но при желании можно.
    Что нужно для намотки:
    1) Необходимо сделать подставку для намотки тороида, делается это очень просто. Берем квадратный кусок ДСП или фанеры толщиной 10-15мм. Размерами 200Х200мм еще нам нужны два деревянных бруска длинной 200мм и с квадратом 20Х20мм. Эти два бруска нам нужно либо приклеить по центру нашей площадки, параллельно друг другу, на расстоянии между ними 100мм. А еще лучше привернуть к площадке эти бруски с помощью шурупов, но с потайными головками и головки утопить в фанеру иначе они будут царапать стол. Теперь если на эту подставку поставить то- роид, он будет прочно и устойчиво стоять.
    2) Нужен челнок, челнок я выпиливаю из оргстекла толщиной 5-бмм. Ширина обычно 30-40мм. длинна 300-400мм. Торцевые пропилы я делаю не углом, а полукругом и обрабатываю их напильником, что бы не портилась изоляция провода и даже проклеиваю одним двумя полосками изоленты опять же для защиты провода. На челнок мы наматываем провод, не страшно, если провода не хватит, можно аккуратно спаять провод и мотать дальше. Но лучше все-таки рассчитать, так что бы провода хватило.
    3) Теперь нам нужен материал для изоляции между слоями, это очень просто нужно найти тонкий картон (упаковочный), я например, применяю коробки от динамиков для автомобилей. Главное что бы это был не толстый, но и не тонкий материал — толщина картона, где-то 0,5мм. Если он будет с одной стороны глянцевый, то это тоже хорошо.
    4) Еще нам потребуется нитки толстые 10-20 номер. Но на худой конец можно и 40 номер. Сама намотка ведется от себя в правую сторону.

    А теперь самое главное, это изготовление самих изоляционных прокладок между слоями. Нам потребуется штангель-циркуль, с острыми концами.
    Измеряем, внешний диаметр нашего тора, прибавляем 20мм. (для нахлеста) и делим пополам. Например, внешний диаметр тора 150 мм.+ 20 мм.= 170 мм. 170мм./2 = 85 мм.
    Выставляем штангель на 85мм. и фиксируем винтом. Сам штангель мы будем использовать как циркуль для черчения кругов на картоне. Почему именно штангелем, а не обычным циркулем, которым и проще и удобнее? А все очень просто, когда мы будем острым и прочным концом штангеля чертить по картону, то на картоне останется продавленная борозда и именно она поможет нам. Эта борозда очень полезна для удобства сгибания внутренней рассеченной окружности наших прокладок. В общем, сами поймете, что штангелем лучше, чем удобным циркулем.

    И так чертим, внешний круг на картоне и вырезаем его ножницами, в принципе внешний круг можно нарисовать и обычным циркулем.
    Далее замеряем внутренний диаметр тора ничего не прибавляем, не убавляем, а просто делим пополам. Например, диаметр 60мм./2 = 30 мм. Выставляем, именно штангель-циркуль, на 30мм. фиксируем винтом и чертим внутренний диаметр на картоне.

    Далее мы берем карандаш и линейку и работаем над внутренним кругом, сначала рисуем крест, то есть, делим круг на 4 части, потом на 8 частей, если внутренний диаметр ТОРА больше 60мм. то еще и на 16 частей.
    Далее мы рисуем обычным циркулем еще один круг, который меньше внутреннего в два раза, то есть, раздвигаем циркуль на 15 мм.
    А теперь нам потребуется ровный кусок, фанеры или ДСП на который, мы положим нашу картонную заготовку для прорезания концом острого скальпеля или ножа, нанесенных карандашом наших частей. Прорезать нужно по кругу от внешнего края окружности к центральной точке, не далее иначе картон будет задираться. Прорезать нужно насквозь картона.

    Потом ножницами вырезаем внутренний круг нарисованный нами обычным циркулем. Полученные дольки отгибаем перпендикулярно заготовки. Понятно, что таких заготовок нужно на каждый слой по две штуки, каждый раз замеры диаметров делаются вновь, так как от слоя к слою их значение меняется.

    Далее меряем высоту тора и вырезаем две полоски картона такой же ширины. Одну полоску вставляем внутрь тора, так что бы нахлест был не более 10 мм. Вторую полоску накручиваем одним слоем на внешнюю сторону тора с таким же нахлестом. Надеваем обе круглые заготовки на торцы тора, крепим ниткой в трех-че- тырех местах по кругу. И далее начинаем мотать.

    Самые опасные места для пробоя это углы окружностей ТОРА внешний и особенно внутренний. Поэтому если во время намотки мы увидим, что провод может соприкасаться с проводом внутреннего слоя, особенно по внутреннему углу окружности ТОРА. То необходимо подложить под провод полоски такого же картона шириной 10 мм. и длинной по 20-30 мм., там, где это необходимо.

    На внешней стороне, как правила этого делать не приходится, так как внешняя сторона заготовки наслаивается на край и хорошо предохраняет провод от замыкания. Вся разметка и прорезка картонных заготовок делается с матовой стороны картона, применять картон с двух сторон глянцевый не желательно. Перед тем как начать мотать тор, на пальцы рук нужно намотать два слоя изоленты на оба сгиба мизинца и на сгиб указательного пальца, иначе будут огромные водяные мозоли.

    Многих интересует, как рассчитать тороидальный трансформатор.

    Дело в том что количество витков будет зависеть от качества железа но приблизительный расчет делается просто, как и у обычного трансформатора только коэффициент берем 20-30.
    Ну, например измеряем высоту, она = 10 см.
    Измеряем толщину стенки, она = 5 см. 10×5=50 см.
    25/50=0,5 витков на 1вольт.
    220×0,5=110 витков сетевой обмотки.

    Теперь начинаем мотать сетевую обмотку трансформатора, намотав приблизительно 90 витков пробуем включить в сеть, меряя при этом ток холостого хода.
    Совсем несложно подключить кончик провода прямо на челноке. Постепенно доматывая провод, доводим ток холостого хода до 50-100 мА и на этом прекращаем мотать, полученное количество витков и будет реально.
    Теперь это реальное количество делим на 220 и получаем реальное значение количества витков на 1 вольт. И в соответствии с этой цифрой рассчитываем все выходные обмотки.
    Имейте ввиду, что при включении трансформатора в сеть первичный мгновенный бросок тока очень большой. И для того, что бы не спалить тестер нужно делать так:сетевой провод подключаем через замкнутый тумблер параллельно тумблеру включаем тестер, включаем вилку в розетку и только потом размыкаем тумблер, что бы посмотреть ток холостого хода.
    Кстати, именно из за мощного первичного броска тока трансформаторы мощностью более 1 КВт, обязательно нужно включать с помощью схемы мягкого включения. Тем более схема эта очень проста.

Федотов Алексей Геннадьевич. (UA3VFS)    
   


Адрес администрации сайта: [email protected]
   

 

Намотка тороидального трансформатора: этапы работы

Для преобразования тока на сегодняшний день используют разнообразные устройства Тороидальный трансформатор – это наиболее распространенное устройство, которое применяется не только для сварочного аппарата. Намотка тороидального трансформатора считается популярной услугой.

Чтобы выполнить намотку тороидального трансформатора в домашних условиях, вам следует прочесть нашу инструкцию.

Конструкция трансформатора

Этот замечательный трансформатор был изготовлен еще Фарадеем. Тороидальный автотрансформатор – это специальный прибор, который предназначен для преобразования переменного тока. Использовать их можно в разнообразных линейных установках. Это электромагнитное устройство может быть однофазным и трехфазным.

На этом фото вы сможете увидеть, что конструкция состоит из следующих элементов:

  1. Металлический диск, который изготовлен из рулонной магнитной стали.
  2. Специальные резиновые прокладки.
  3. Выводы первичной обмотки.
  4. Вторичная обмотка.
  5. Изоляция, которая располагается между обмотками.
  6. Экранирующая обмотка.
  7. Дополнительный слой, который располагается между первичной и экранирующей обмоткой.
  8. Первичная обмотка.
  9. Изоляционное покрытие сердечника.
  10. Тороидальный сердечник.
  11. Предохранитель.
  12. Крепежные элементы.
  13. Слой покрывной изоляции.

Чтобы соединить обмотки производитель использует магнитопровод. Этот тип преобразователя квалифицируется по: назначению, охлаждению и типу магнитопровода. По назначению можно разделить на импульсный, силовой и частотный преобразователь. По охлаждению трансформаторы воздушными или масляными. Если вам будет интересно, тогда можете прочесть про тороидальный трансформатор.

Устройство этого типа может использоваться в стабилизаторах или системах охлаждения. Главным отличием конструкции будет считаться количество обмоток, которое содержит трансформатор. Кольцевая форма считается наиболее распространенной. В этом случае намотка тороидального преобразователя выполняется равномерно. Благодаря этому расположению катушек преобразователь охлаждается быстро и не будет нуждаться в использовании кулеров.

Достоинства тороидального трансформатора

Если вы планируете использовать тороидальный трансформатор, тогда помните, что он может иметь ряд преимуществ:

  1. Конструкция имеет небольшие габариты.
  2. Сигнал на торе считается достаточно сильным.
  3. Обмотки могут иметь небольшую длину. Но из-за этого при работе вы сможете услышать определенный фон.
  4. Простота в самостоятельной установке.

Преобразователь может использоваться, как сетевой трансформатор, зарядное устройство или блок для галогенных ламп. При необходимости вы можете прочесть про принцип действия трансформатора тока.

Если вы желаете получить детальную информацию о том, как выполнить намотку тороидального трансформатора своими руками, тогда необходимо посмотреть видео, которое расположено ниже:

Намотка тороидального трансформатора

Изготовление тороидального трансформатора может выполнить, даже молодой электрик. Намотка не представляет ничего сложного. Вот инструкция, которая поможет узнать, как правильно мотать тороидальный магнитопровод для полуавтомата:

  • Для намотки трансформатора на ферритовом сердечнике, вам необходимо использовать специальный станок. Он позволяет значительно ускорить работу и при этом вы легко сможете уменьшить вероятность соскока железа. Его можно выполнить по типу зажима для накрутки провода.
  • Латры, которые нужны для намотки должны иметь одинаковые размеры. При наматывании вам необходимо следить, чтобы между витками не было свободного места. Если силовой трансформатор будет иметь небольшие щели, тогда их можно заполнить железными листами от другого трансформатора.

  • После намотки железа необходимо приварить специальные выводы. Чтобы приварить изделие будет достаточно 2 или 3 сварочных точки.
  • Теперь вам необходимо промазать торцы магнитопровода с помощью эпоксидного клея. При необходимости кромки можно округлить.
  • Поверх усилителя вам следует намотать изоляцию. Чтобы выполнить намотку можно использовать лист картона. Присоединить его можно с помощью малярного скотча. Повторить это действие необходимо по всей площади картона.
  • Теперь вы можете намотать изоленту, которая выполнена из текстиля. Поверх слоя также можно использовать малярный скотч.
  • К последнему этапу относится намотка провода выбранного сечения. Рассчитать количество витков вы сможете с помощью специальной программы. После накрутки изделие необходимо покрыть лаком NC.

  • Изоляция для тороидального трансформатора должна быть выполнена из лакоткани или текстильной изоленты. Эта обмотка называется вторичной и ее также следует покрыть лаком. Это действие следует продолжать до появления необходимого уровня витков.

  • Провод для вторичной обмотки обычно имеет большое сечение. Если сетевой трансформатор нужен для дуговой сварки, тогда в конце следует добавить необходимое количество витков.

Один виток способен переносить 0,84 Вольт. Схема намотки тороидального трансформатора выполняется следующим образом:

Так вы сможете легко самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Эту схему вы легко сможете подключить, как для дуговой, так и для полуавтоматической сварки. Все параметры необходимо рассчитывать исходя из сечения провода. Характеристики устройства также позволяют производить ступенчатую регулировку. Среди его достоинств можно встретить достаточно высокую производительность и доступность.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно практически в любом городе. На фото ниже вы сможете увидеть стоимость преобразователя:

Надеемся, что наша информация будет полезной и вы сможете правильно выполнить намотку тороидального трансформатора. Как видите, намотка тороидального трансформатора не занимает много времени.

Читайте также: что такое сухие трансформаторы?

Как рассчитать и намотать тороидальный трансформатор не заморачиваясь на формулах, + советы и нюансы.

Видео по этой теме:

В этой статье постараюсь рассказать о том, как сделать своими руками силовой трансформатор с нужными характеристиками на основе использования тороидального сердечника. Для новичков и не знающих стоит сказать о достоинствах использования трансформаторов с круглой формой магнитопровода. Дело в том, что по сравнению с сердечниками Ш-образной и П-образной формы тороидальный сердечник (круглая форма) имеет ряд значительных преимуществ. Прежде всего это максимально возможный КПД (коэффициент полезного действия), что ведет к большей экономии электроэнергии. Также при одинаковой габаритной мощности у трансформатора круглой формы будут значительно меньше размеры и масса, в сравнении с другими видами сердечников. Тороидальные сердечники при своей работе меньше шумят, либо трансформаторное жужжание может вовсе отсутствовать при качественно изготовленном как сердечнике, так и самого готового трансформатора. Также и ток холостого хода у данного типа трансформаторов минимальный. Причем, если покупать только один сердечник тора, то он вам может обойтись практически в копейки. В общем использование круглого сердечника для трансформаторов полностью оправдано и по возможности лучше использовать именно их.

Пожалуй единственным существенным недостатком тороидальных трансформаторов является то, что их весьма затруднительно и проблематично наматывать вручную. Но, к счастью это от отчасти так. Дело в том, что чем больше мощность у трансформатора, тем меньше количество витков приходится на 1 вольт. И габаритную мощность до 100 Вт действительно затруднительно наматывать самому. Поскольку и количество витков будет большим и толщина намоточного провода для первичной обмотки будет мала, из-за чего этот самый провод при намотке может легко порваться. Но вот трансформаторы мощностью где-то от 100 Вт и допустим до 500 Вт уже гораздо легче наматывать своими руками. Мощность более 500 Вт уже сложна по причине существенных размеров и массы самого трансформатора.

Чтобы не заморачиваться на сложных формулах и расчетах тороидального трансформатора можно просто воспользоваться любым онлайн калькулятором, как это сделал я. Итак, заходим в свой интернет. Допустим в поисковике гугла вбиваем такой запрос – калькулятор для расчета тороидального трансформатора.

И первые, появившиеся ссылки приведут вас к странице с таким калькулятором. Ну, а далее вам понадобится знать или узнать размеры своего сердечника, который у вас возможно уже имеется под рукой. А именно нужны внешний диаметра круглого магнитопровода, внутренний диаметр и высота. Учтите, что в калькулятор скорей всего нужно вносить эти значения в сантиметрах (хотя возможно вы найдете калькулятор с миллиметрами).

Для расчета вам в калькуляторе нужно узнать следующие важные параметры, а именно – габаритную мощность сердечника, количество витков на 1 вольт, диаметр провода для первичной и вторичной обмотки. Зная количество витков, которые приходятся на 1 вольт вы легко можете посчитать общее количество витков как для первичной обмотки, так и для вторичной. К примеру, для габаритной мощности моего трансформатора в 160 Вт на 1 вольт приходится 4 витка провода. Следовательно, чтобы узнать общее количество витков для первичной обмотки мне нужно 220 вольт умножить на 4, и я получу 880 витков. Ну, и таким же простым образом узнаем количество витков для своей вторичной обмотки.

Зная габаритную мощность своего сердечника вы также легко можете посчитать величину выходного напряжения и тока. Формула электрической мощности простая, это напряжение умноженное на силу тока. Если, к примеру, для моей мощности трансформатора в 160 Вт мне на выходе трансформатора нужно иметь напряжение 16 вольт, то для того чтобы узнать максимальный ток, который может мне обеспечить такой трансформатор с такой мощностью, мне нужно 160 Вт поделить на мое выходное напряжение 16 вольт. И я получу силу максимального тока в 10 ампер. Определившись с величиной выходного тока и напряжения в онлайн калькулятор также вбиваем эти параметры, после чего калькулятор выдаст количество витков для вторичной обмотки и диаметр провода для нее.

Ну, с расчетами разобрались и тут как видно все достаточно просто. А теперь несколько слов о том, как правильно наматывать сам тороидальный трансформатор. Допустим, вы приобрели, или у вас уже имеется голый железный сердечник круглой формы. Сразу наматывать обмотки на этот железный сердечник нельзя. Обязательно сначало нужно намотать на железо изоляционную ленту.

Обычная изолента ПВХ тут не подойдет, поскольку даже при относительно небольшой нагреве трансформатора такая изолента может потерять свои изоляционные качества. Для этих целей лучше использовать следующие виды изоляционных лент для трансформатора – это лавсановая лента, обычная киперная, черная изолента ХБ, термостойкая стеклотканевая лента, майларовая или каптоновая (также термостойкая). Некоторые еще используют ФУМ ленту (которой уплотняют резьбу на трубах), но она нравится не всем, поскольку относительно тонкая и скользкая. Ее стоит наносить на сердечник трансформатора в несколько слоев.

Сначала на сердечник наматывают первичную обмотку. Метод намотки очень прост. Для начала стоит обзавестись очень простым приспособлением, а именно челноком, который очень легко можно сделать своими руками из любого подходящего материала. На этот намоточный челнок изначально наматывают провод в нужном количестве и нужного диаметра. После этого уже путем пропускания челнока сквозь отверстие трансформаторного сердечника мы виток за витком производим намотку обмоток. Причем обмотки рекомендуется наматывать максимально вплотную виток к витку. Это позволит магнитному полю максимально взаимодействовать с витками провода, что существенно повысит КПД тороидального трансформатора. После намотки одного полного слоя мы делаем намотку изоляционной ленты, и уже поверх изоляции снова наматываем имеющейся намоточный провод обмоток. К концам выводом медного обмоточного провода желательно припаять небольшие куски более гибкого многожильного, изолированного провода примерно такого же диаметра или даже больше. Ну, вот в принципе и все, что стоит знать о расчетах и намотке тороидального трансформатора.

P.S. На первый взгляд намотка тороидального трансформатора своими руками может показаться относительно сложным делом. Но, сложного тут ничего нет. Расчеты делаются просто, для намотки трансформаторов мощностью от 100 Вт и до 500 Вт может понадобится всего несколько часов, если не отрываться от своего намоточного дела. Поскольку даже первичная обмотка у таких трансформаторов содержит не так уж и много витков. Да и провод по диаметру вполне толстый, что упрощает эту самую намотку круглых трансформаторов. А когда вы сделаете первые шаги, то дальше дело уже пойдёт быстрее и увереннее.

Как намотать трансформатор: пошаговая инструкция

Трансформатор представляет собой агрегат, предназначенный для передачи электроэнергии с измененными показателями по сети к конечному потребителю. Это оборудование отличается определенной схемой. Трансформаторы могут понижать или повышать напряжение.

Со временем сердечнику может потребоваться перемотка. В этом случае радиолюбитель сталкивается с вопросом, как намотать трансформатор. Этот процесс занимает достаточно много времени и требует концентрации внимания. Однако сложного ничего в перемотке контура нет. Для этого существует пошаговая инструкция.

Конструкция

Трансформатор работает по принципу электромагнитной индукции. Он может иметь различную конструкцию магнитопривода. Однако одной из самых распространенных является тороидальная катушка. Ее конструкция была изобретена еще Фарадеем. Чтобы понимать, как намотать тороидальный трансформатор или прибор любой другой конструкции, необходимо изначально рассмотреть конструкцию его катушки.

Тороидальные устройства преобразуют переменное напряжение одной мощности в другую. Бывают однофазные и трехфазные конструкции. Они состоят из нескольких элементов. В состав конструкции входит сердечник из ферромагнитной стали. Есть резиновая прокладка, первичная, вторичная намотка, а также изоляция между ними.

Обмотка имеет экран. Изоляционным материалом покрыт и сердечник. Также применяется предохранитель, крепежные элементы. Чтобы соединить обмотки в единую систему, применяется магнитопривод.

Изготовление своими руками

Чтобы изготовить тороидальную электрическую машину вам необходимо определиться с ее типом. Всего выделяют повышающий и понижающий трансформатор, в первом случае с низкого напряжения, к примеру, 220В получают высокое — 600В, а во втором, с высокого низкое, как наиболее распространенный вариант с 220В – 12В. Важным параметром для изготовления и расчета тороидального агрегата является коэффициент трансформации, показывающий, во сколько раз изменяется электрическая величина во вторичной обмотке по отношению к первичной. Для его определения используется одно из следующих соотношений:

Приспособление для намотки

Тороидальные трансформаторы могут быть разных видов. Это необходимо учитывать в процессе создания контура. Намотать трансформатор 220/220, 12/220 или прочие разновидности можно при помощи специального инструмента.

Чтобы упростить процесс, можно изготовить особый аппарат. Он состоит из деревянных стоек, которые скреплены между собой металлическим прутом. Он имеет форму рукояти. Этот вертел поможет быстро намотать контуры. Прутик должен быть не толще 1 см. Он будет пронизывать каркас насквозь. При помощи дрели выполнить этот процесс будет проще.

Дрель крепится на плоскости стола. Она будет находиться параллельно. Рукоять должна свободно вращаться. Прут вставляется в патрон дрели. Перед этим на металлический штырь нужно надеть колодку с каркасом будущего трансформатора. Прут может иметь резьбу. Этот вариант считается предпочтительнее. Колодку можно будет зажать с обеих сторон при помощи гайки, текстолитовыми пластинами или дощечками из дерева.

Намотка тороидального трансформатора для УМЗЧ

Основным элементом блока питания является трансформатор. Иногда его можно приобрести в специализированных магазинах, на радиорынке либо через интернет. Но чаще всего трансформатор с необходимыми параметрами купить не удается. Для изготовления трансформатора самостоятельно вначале нужно определиться с типом железа. Наиболее распространены трансформаторы из Ш-образных пластин. Вместе с тем, трансформаторы на тороидальном железе (бублик из железной ленты) в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин имеют меньший вес и габариты. Также торы отличаются лучшими условиями охлаждения обмоток и повышенным КПД. При равномерном распределении обмоток по периметру тороидального сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформатора. Хотя при построении качественного усилителя экраном пренебрегать не стоит.

Кроме этого, даже на самом лучшем железе при индукции 15000 Гс в тороидальном трансформаторе ток намагничивания имеет форму импульсов с пикфактором 5…50. Это является источником мощных помех с довольно широким спектром. Более-менее синусоидальным ток х.х. становится при индукции менее 6000 Гс для стали 3410 и 8000…9000 Гс для 3425. Пониженная индукция заметно удорожает и утяжеляет трансформатор, что для серийной аппаратуры крайне нежелательно. Однако, для снижения помех в усилителе мощности звуковой частоты имеет смысл идти на снижение индукции в трансформаторе блока питания. В данном случае работает правило — «Чем меньше индукция, тем лучше».

Для расчета параметров тороидального трансформатора очень удобно пользоваться калькулятором. Он позволяет быстро посчитать параметры трансформатора, имея в наличии готовый тор. Для Hi-End УМЗЧ рекомендуется индукцию в сердечнике из российского (советского) железа не выбирать более 1,0 Тл. Для импортного железа (тор из старого ИБП) допустимо 1,2 Тл. В таком случае будет получена низкая магнитная наводка и минимальный акустический шум от трансформатора.

Перед намоткой тороидального трансформатора необходимо подготовить выбранный сердечник: вначале снять фаску полукруглым напильником со всех острых краев бублика, затем по торцу тора обвести карандашом и вырезать из плотной бумаги (открытки) щечки, приклеить щечки на боковинки тора, обклеить внешнюю и внутреннюю сторону сердечника обычной бумагой. Возможны другие варианты изоляции сердечника. Главное предотвратить возможное замыкание первичной обмотки на сердечник трансформатора в результате возможного продавливания изоляции и повреждения лака обмоточного провода на острых краях тора при намотке.

Для намотки тороидального трансформатора я использую челнок из дерева или текстолита на концах которого делаю вырезы в виде ласточкиного хвоста. Челнок легко изготовить из деревянной ученической линейки длиной 20 – 30 см. А чтобы она не треснула вдоль при намотке на нее моточного провода «ласточкин хвост» укрепляется бумажным скотчем (3 – 4 витка в поперек). При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить широко распространенный моточный провод ПЭВ-2 или ПЭТВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента, я же использовал фторопластовую пленку.

После намотки расчетного количества витков первичной обмотки желательно измерить ток холостого хода трансформатора. Для этого подключаем тестер последовательно с первичной обмоткой в режиме амперметра. Для избегания всяких ЧП последовательно с первичкой можно включить лампочку на 220 В и мощностью 40 Вт. Лампочка будет гореть если число витков мало. Если транс намотан правильно, то нить накала должна иметь розовый оттенок. Тороидальный трансформатор имеет большие пусковые токи, в момент запуска перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не через тестер, а при помощи «перемычки», которая потом размыкается и ток начинает течь через тестер.

Для измерения тока холостого хода я использую следующую схему:

Последовательно с первичной обмоткой трансформатора включаю резистор номиналом 10 Ом, подаю напряжение сети и замеряю на нем падение напряжения. Соответственно ток холостого хода равен I=U/R. В моем случае 0,045 В / 10 Ом = 0,0045 А. или 4,5 мА.

Норма тока холостого хода для каждого трансформатора индивидуальна и обычно не превышает 50 мА при напряжении 220 В. Здесь основное правило — «Чем ниже ток х.х., тем лучше», тем форма тока холостого хода больше похожа на синус.

Для тороида в блоке питания УМЗЧ ток х.х.:

  • 20-30 мА — «удовлетворительно»,
  • 10-20 — «хорошо»,
  • меньше 10 мА — «отлично».

Для вычисления количества витков первичной обмотки любым подручным проводом (в моем случае мгтф) наматываю вторичную обмотку, подав сетевое напряжение на первичную обмотку замеряю напряжение на вторичной обмотке.

У меня на 4 витках вторички тестер показывает 0,581 В. Соответственно количество витков первичной обмотки будет равно: U сети х N вторички / U вторички. На момент измерений в сети было 230 В. В цифрах получаем: 230 В х 4 витка / 0,581 В = 1583 витка.

Еще пару слов о намотке трансформатора. В целях максимального уменьшения помех, излучаемых тороидальным трансформатором, необходимо равномерно заполнять моточным проводом каждый слой обмоток. Если первую половину обмотки вы укладывали витки вправо, то вторую половину обмотки витки необходимо укладывать влево, не меняя при этом направление укладки самих витков вокруг сердечника. Если необходимо намотать две одинаковые обмотки (характерно для УМЗЧ) на шпулю сматвается двойной провод, а затем со шпули укладываются витки двух вторичек одновременно, как показано на фото.

В моем случае три слоя первички уложены в одну сторону, и еще три слоя в другую. Выводы первички сделаны как можно ближе друг к другу. Две вторички намотаны аналогично, два слоя укладывались в одну сторону и еще 2 слоя в другую. С соблюдением данных правил мною был изготовлен тороидальный трансформатор мощностью 120 Ват для усилителя Василича с N-канальным выходным каскадом Алексея Никитина, обеспечивший минимальные наводки на входные цепи УМЗЧ.

Буду рад если мой опыт изготовления тороидальных трансформатором будет полезен Вам.

С уважением!

Иван Васильевич.

Другие инструменты

Чтобы намотать трансформатор 12/220, импульсный, ферритовый или прочие разновидности конструкций, необходимо подготовить еще несколько инструментов. Вместо представленной выше конструкции можно воспользоваться индуктором от телефона, устройством для перемотки пленки, машиной для шпули с ниткой. Вариантов существует множество. Они должны обеспечить плавность, равномерность процесса.

Также потребуется подготовить прибор для размотки. По своему принципу подобное оборудование похоже на представленные выше устройства. Однако при обратном процессе можно производить вращение без ручки.

Чтобы не считать число витков самостоятельно, следует приобрести специальный прибор. Он будет учитывать количество витков на катушке. Для этих целей может подойти обыкновенный водяной счетчик или велосипедный спидометр. При помощи гибкого валика выбранный прибор учета соединяется с наматывающим оборудованием. Можно сосчитать количество витков катушки устно.

Как перемотать вторичную обмотку трансформатора под нужное напряжение и ток, расчет.

Трансформатор является электрической машиной, которая за счет взаимодействия с электромагнитными полями способна преобразовывать электрическую энергию. Устройство трансформатора очень простое. У самого простого варианта трансформатора имеется электромагнитный сердечник, имеющий несколько основных разновидностей по форме, на который наматываются обмотки провода. Эти обмотки принято разделять на первичную и вторичную. Первичная обмотка трансформатора считается входной, вторичная обмотка, это выходная. Количество первичных и вторичных обмоток на трансформаторе может быть различное, в зависимости от конкретных задач этой электрической машины.

Итак, давайте с вами разберемся с этими самыми трансформаторными обмотками, что они собой представляют, от чего зависят, и на что влияет их длина и и сечение. Для начала должна быть определенность с мощностью трансформатора, который нужно пустить в дело. Именно от мощности зависит, какой размер будет иметь эта электрическая машина. Стоит заметить, что при одной и той же номинальной мощности, но имея различный тип (по форме изготовления) и используемому материалу магнитопровода, будут отличатся общие размеры трансформатора.

Допустим Вы решили сделать зарядное устройство для автомобильных аккумуляторов, которое должно иметь максимальный выходной ток порядка 10 ампер, и регулируемое выходное напряжение с максимальным значением в 15 вольт. Воспользовавшись формулой для нахождения электрической мощности (нужно напряжение в вольтах умножить на силу тока в амперах, получим мощность в ваттах) можно подсчитать, что нам нужна рабочая мощность порядка 150 ватт. А поскольку трансформаторы (если брать усредненное значение) имеют коэффициент полезного действия около 90%, то к рабочим 150 ваттам нужно добавить еще 10% потерь. Помимо этого правильно делать некий запас по мощности, чтобы не было ровно впритык. Пусть запас будет в 25%. В итоге для наших нужд понадобится силовой понижающий трансформатор мощностью где-то около 200 ватт.

А как связать мощность трансформатора с его размерами? Для этого есть очень простая формула зависимости:

Теперь когда нам известны мощность и размеры трансформатора можно перейти и к самим обмоткам. Итак, наматывать трансформатор с нуля, и первичную и вторичную обмотку, это достаточно трудоемкое дело. Для новичка такая задача будет весьма сложная, особенно это касается первичной обмотки, которая имеет большое количество витков, и обычно мотается достаточно тонким проводом, что также усложняет дело. Думаю, что гораздо правильнее и быстрее будет подыскать готовый силовой, понижающий трансформатор, который имеет подходящую мощность и имеет уже намотанную первичную обмотку, рассчитанную на напряжение 220 вольт. Вторичную же, если она не подходит, можно достаточно легко домотать или перемотать. Вторичка содержит относительно небольшое количество витков и ее перемотка под силу даже новичку, при достаточном желании.

Некоторые типы трансформаторов имеют простую конструкцию и могут легко разбираться. Что и стоит сделать для последующей намотки вторичной обмотки трансформатора. Другие же типы трансформаторов может быть не так легко разобрать, хотя при осторожном и аккуратном подходе домотать или перемотать вторичку можно даже не разбирая трансформатор.

Теперь, что касается самих трансформаторных обмоток. Определенной мощности трансформатора (при стандартной частоте электросети в 50 гц.) соответствует свое количество витков, наматываемых для получения 1 вольта.

Это значение узнается изначально при расчетах. Поскольку мы решили взять готовый трансформатор, который был уже рассчитан в начале своего создания, то нам нужно просто узнать это самое количество витков на один вольт. Если Вы решили полностью размотать вторичную обмотку, то сначала измерьте на ней выходное переменное напряжение, после чего в процессе размотки посчитайте, сколько она содержит витков провода. Ну, а далее подсчитанное количество витков разделите на измеренное напряжение, в итоге получив то самое количество витков на один вольт.

Если разматывать вторичку Вы не планируете, а лишь хотите ее домотать, то поверх нее просто намотайте, допустим, 10 витков изолированного провода, подайте на трансформатор входное напряжение, измерьте выходное напряжение на этой обмотке в 10 витков, и по пропорции узнайте искомые витки для получения одного вольта. Если забыли как пользоваться пропорцией, то вот вариант еще проще. Намотали несколько витков, измерили напряжение, если меньше вольта, то намотайте еще несколько, опять измерили, ну и так далее, пока не получите этот самый вольт или не намотав обмотку вообще до нужного выходного напряжения в 15 вольт. Думаю идея ясна. Когда уже известно количество витков на 1 вольт, то нужно это количество перемножить на то напряжение, которое Вы хотите получить на выходе, в нашем случае это 15 вольт. Это будет общее количество витков для вторичной обмотки.

Теперь, что касается диаметра наматываемого провода. Если от количества витков зависит величина напряжения, то от сечения обмоточного провода зависит сила тока, который можно получить на выходной обмотке трансформатора. Зависимость сечения провода обмотки трансформатора и тока приведено в следующей формуле:

Если Вы решили наматывать вторичную обмотку заново, новым проводом, то по формуле узнайте нужный диаметр провода и наматывайте его. Если же решили домотать провод к той обмотке, что уже имеется, и которой не хватает, чтобы получить нужное напряжение на выходе, то учтите – диаметр должен быть такой же (можно больше, но это уже не целесообразно и не экономно). До намотав провод меньшим диаметром Вы снизите выходную силу тока (ограничив ее).

Вот, в принципе, и все, что касается перемотки вторичной обмотки трансформатора под нужное напряжение и ток. Если у Вас вовсе нет желания заниматься намоткой, перемоткой, то просто, зная нужную мощность, величину выходного (и входного) напряжения, и силу тока купите подходящий силовой трансформатор. Наиболее эффективными трансформаторами (имеющих железный магнитопровод) считаются торы (трансформаторы круглой формы). Их самому трудновато мотать, но если их покупать, то это будет лучшим вариантом. У них максимальный КПД, имеют они для своей мощности минимальные габариты. Так что учтите это.

P.S. В итоге зная общую мощность трансформатора, и то что она равна произведению тока на напряжение, можно получать нужное выходное напряжение и силу тока. Просто мощность разделите на напряжение, и вы получите силу тока, что можно получить на вторичной обмотке (подобрав затем соответствующий диаметр провода). Или мощность разделите на силу тока, и Вы получите напряжение, что будет на выходной обмотке (намотав для этого нужное количество витков на сердечник трансформатора).

Расчеты

Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.

Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до 150 Вт мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.

Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:

  • П = 12 х 50/10 = 60 витков.
  • В = 220 х 50/10 = 1100 витков.

Чтобы определить в них токи, применяется следующая формула:

  • Тп = 150 : 12 = 12,5 А.
  • Тв = 150 : 220 = 0,7 А.

Полученный результат необходимо учесть при выборе материалов для создания нового прибора.

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Изоляция слоев

Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать изоляционные материалы. Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.

Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.

Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.

Как намотать двухполярный трансформатор

Основным элементом блока питания является трансформатор. Иногда его можно приобрести в специализированных магазинах, на радиорынке либо через интернет. Но чаще всего трансформатор с необходимыми параметрами купить не удается. Для изготовления трансформатора самостоятельно вначале нужно определиться с типом железа. Наиболее распространены трансформаторы из Ш-образных пластин. Вместе с тем, трансформаторы на тороидальном железе (бублик из железной ленты) в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин имеют меньший вес и габариты. Также торы отличаются лучшими условиями охлаждения обмоток и повышенным КПД. При равномерном распределении обмоток по периметру тороидального сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформатора. Хотя при построении качественного усилителя экраном пренебрегать не стоит.

Кроме этого, даже на самом лучшем железе при индукции 15000 Гс в тороидальном трансформаторе ток намагничивания имеет форму импульсов с пикфактором 5. 50. Это является источником мощных помех с довольно широким спектром. Более-менее синусоидальным ток х.х. становится при индукции менее 6000 Гс для стали 3410 и 8000. 9000 Гс для 3425. Пониженная индукция заметно удорожает и утяжеляет трансформатор, что для серийной аппаратуры крайне нежелательно. Однако, для снижения помех в усилителе мощности звуковой частоты имеет смысл идти на снижение индукции в трансформаторе блока питания. В данном случае работает правило — «Чем меньше индукция, тем лучше».

Для расчета параметров тороидального трансформатора очень удобно пользоваться калькулятором. Он позволяет быстро посчитать параметры трансформатора, имея в наличии готовый тор. Для Hi-End УМЗЧ рекомендуется индукцию в сердечнике из российского (советского) железа не выбирать более 1,0 Тл. Для импортного железа (тор из старого ИБП) допустимо 1,2 Тл. В таком случае будет получена низкая магнитная наводка и минимальный акустический шум от трансформатора.

Перед намоткой тороидального трансформатора необходимо подготовить выбранный сердечник: вначале снять фаску полукруглым напильником со всех острых краев бублика, затем по торцу тора обвести карандашом и вырезать из плотной бумаги (открытки) щечки, приклеить щечки на боковинки тора, обклеить внешнюю и внутреннюю сторону сердечника обычной бумагой. Возможны другие варианты изоляции сердечника. Главное предотвратить возможное замыкание первичной обмотки на сердечник трансформатора в результате возможного продавливания изоляции и повреждения лака обмоточного провода на острых краях тора при намотке.

Для намотки тороидального трансформатора я использую челнок из дерева или текстолита на концах которого делаю вырезы в виде ласточкиного хвоста. Челнок легко изготовить из деревянной ученической линейки длиной 20 – 30 см. А чтобы она не треснула вдоль при намотке на нее моточного провода «ласточкин хвост» укрепляется бумажным скотчем (3 – 4 витка в поперек). При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить широко распространенный моточный провод ПЭВ-2 или ПЭТВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента, я же использовал фторопластовую пленку.

После намотки расчетного количества витков первичной обмотки желательно измерить ток холостого хода трансформатора. Для этого подключаем тестер последовательно с первичной обмоткой в режиме амперметра. Для избегания всяких ЧП последовательно с первичкой можно включить лампочку на 220 В и мощностью 40 Вт. Лампочка будет гореть если число витков мало. Если транс намотан правильно, то нить накала должна иметь розовый оттенок. Тороидальный трансформатор имеет большие пусковые токи, в момент запуска перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не через тестер, а при помощи «перемычки», которая потом размыкается и ток начинает течь через тестер.

Для измерения тока холостого хода я использую следующую схему:

Последовательно с первичной обмоткой трансформатора включаю резистор номиналом 10 Ом, подаю напряжение сети и замеряю на нем падение напряжения. Соответственно ток холостого хода равен I=U/R. В моем случае 0,045 В / 10 Ом = 0,0045 А. или 4,5 мА.

Норма тока холостого хода для каждого трансформатора индивидуальна и обычно не превышает 50 мА при напряжении 220 В. Здесь основное правило — «Чем ниже ток х.х., тем лучше», тем форма тока холостого хода больше похожа на синус.

Для тороида в блоке питания УМЗЧ ток х.х.:

  • 20-30 мА — «удовлетворительно»,
  • 10-20 — «хорошо»,
  • меньше 10 мА — «отлично».

Для вычисления количества витков первичной обмотки любым подручным проводом (в моем случае мгтф) наматываю вторичную обмотку, подав сетевое напряжение на первичную обмотку замеряю напряжение на вторичной обмотке.

У меня на 4 витках вторички тестер показывает 0,581 В. Соответственно количество витков первичной обмотки будет равно: U сети х N вторички / U вторички. На момент измерений в сети было 230 В. В цифрах получаем: 230 В х 4 витка / 0,581 В = 1583 витка.

Еще пару слов о намотке трансформатора. В целях максимального уменьшения помех, излучаемых тороидальным трансформатором, необходимо равномерно заполнять моточным проводом каждый слой обмоток. Если первую половину обмотки вы укладывали витки вправо, то вторую половину обмотки витки необходимо укладывать влево, не меняя при этом направление укладки самих витков вокруг сердечника. Если необходимо намотать две одинаковые обмотки (характерно для УМЗЧ) на шпулю сматвается двойной провод, а затем со шпули укладываются витки двух вторичек одновременно, как показано на фото.

Каркас

Чтобы понять, как правильно намотать трансформатор, следует уделить внимание каждой детали этого процесса. Подготовив изоляцию, провод и инструмент, следует сделать каркас. Для этого можно взять картон. Внутренняя часть каркаса должна быть больше стержня сердечника.

Для О-образного магнитопривода необходимо подготовить 2 катушки. Для сердечника Ш-образной формы потребуется один контур. В первом варианте круглый сердечник необходимо покрыть изоляционным слоем. Только после этого приступают к намотке.

Если же магнитопривод будет Ш-образный, каркас выкраивают из гильзы. Из картона вырезаются щетки. Катушку в этом случае необходимо будет завернуть в компактную коробку. Щетки надеваются на гильзы. Подготовив каркас, можно приступать к намотке проводника.

Пошаговая инструкция намотки

Намотать трансформатор своими руками будет достаточно просто. Для этого катушку с проводом следует установить в оборудовании для размотки. С нее будет снят старый провод. Каркас будущего трансформатора нужно поставить в оборудование для намотки. Далее можно производить вращательные движения. Они должны быть размеренные, без рывков.

В процессе такой процедуры провод со старой катушки будет перемещен на новый каркас. Между проводом и поверхностью стола расстояние должно составлять не менее 20 см. Это позволит положить руку и фиксировать кабель.

На стол нужно заранее выложить все необходимые инструменты и оборудование. Под рукой должна быть бумага изоляционная, ножницы, наждачная бумага, паяльник (включенный в сеть), ручка или карандаш. Одной рукой необходимо поворачивать ручку устройства для наматывания, а второй – проводник фиксировать. Нужно чтобы витки укладывались равномерно, ровно.

Рекомендации о намотке

Рассматривая пошаговую инструкцию, как намотать трансформатор, следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать. Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.

Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.

В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.

Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.

Подготовка к намотке


Схема намотки сварочного трансформатора.

Первым делом необходимо произвести правильный расчет трансформатора. Следует вычислить нагрузку на трансформатор. Она вычисляется суммированием всех подключенных устройств (двигателей, передатчиков и т.д.), которые будут запитаны от трансформатора. Например, на радиостанции имеется 3 канала с мощностью 15, 10 и 15 Ватт. Суммарная мощность будет равна 15+10+15 = 40 Ватт. Далее берут поправку на КПД схемы. Так большинство передатчиков имеют КПД около 70% (точнее будет в описании конкретной схемы), поэтому такой объект следует запитать не 40 Вт, а 40/0,7 = 57,15 Вт. Стоит отметить, что и трансформатор имеет свой КПД. Обычно КПД трансформатора составляет 95-97 %, однако следует взять поправку на самоделку и принять КПД равном 85-90% (выбирается самостоятельно). Таким образом, требуемая мощность увеличивается: 57,15/0,9 = 63,5 Вт. Стандартно трансформаторы такой мощности весят около 1,2-1,5 кг.

Далее определяются с входными и выходными напряжениями. Для примера возьмем понижающий трансформатор с напряжениями 220 В входное и 12 В выходное, частота стандартная (50 Гц). Определяют количество витков. Так, на одной обмотке их количество равно 220*0,73 = 161 виток (округляется в большую сторону до целого числа), а на нижней 12*0,73 = 9 витков.

После определения количества витков приступают к определению диаметра провода. Для этого необходимо знать протекающий ток и плотность тока. Для установок до 1 кВт плотность тока выбирают в пределах 1,5 – 3 А/мм2, сам ток примерно рассчитывают, исходя из мощности. Так, максимальный ток для выбранного примера будет составлять около 0,5-1,5 А. Поскольку трансформатор будет работать максимум со 100Вт нагрузки с естественным воздушным охлаждением, то плотность тока принимаем равной около 2 А/мм2. Исходя из этих данных, определяем сечение провода 1/2 = 0,5 мм2. В принципе сечения достаточно для выбора проводника, однако иногда требуется и диаметр. Поскольку сечение находится по формуле pd2/2, то диаметр равен корню из 2*0,5/3,14 = 0,56 мм.

Таким же образом находят сечение и диаметр второй обмотки (или, если их больше, то всех остальных).

Процесс соединения

Рассматривая, как намотать трансформатор, необходимо изучить процесс соединения проводов. Если при наматывании жила оборвется, следует произвести процесс спайки. Эта процедура может потребоваться и в том случае, если изначально предполагается создавать контур из нескольких отдельных кусков проволоки. Спайку выполняют в соответствии с толщиной провода.

Для проволоки толщиной до 0,3 мм необходимо очистить концы на 1,5 см. Затем их можно просто скрутить и спаять при помощи соответствующего инструмента. Если же жила толстая (более 0,3 мм), можно спаять концы напрямую. Скручивание в этом случае не потребуется.

Если же провод очень тонкий (менее 0,2 мм), его можно сварить. Их скручивают без проведения процедуры зачистки. Место соединения подносят в пламя зажигалки или спиртовки. В месте соединения должен появиться наплыв из металла. Место соединения проводов нужно обязательно изолировать лакотканью или бумагой.

Испытание

Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.

Далее производится испытание работы трансформатора. Его первичный контур подключается к сети. Последовательно к источнику питания подсоединяют лампу. Это позволит выявить короткое замыкание.

Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров. Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током.

Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.

Делаем машину для намотки тороидальных катушек на базе Arduino / Хабр

Перевод с сайта Electric DIY Lab

Всем привет, представляю вам изготовленную мною машину для намотки тороидальных катушек на базе Arduino. Машина автоматически наматывает проволоку и поворачивает тороид. В качестве интерфейса я использовал энкодер и ЖК-экран 16×2. Пользователь может вводить такие параметры, как диаметр катушки, количество оборотов и угол намотки.

В данной статье я расскажу, как построить эту машину и дам подробности её работы.

На видео всё подробно описано – можно посмотреть его или прочесть статью.



Комплектующие

Список комплектующих для самостоятельной сборки:


Подробности сборки


Намоточное кольцо


Кольцо я изготовил из фанеры 12 мм. Внешний диаметр – 145 мм, внутренний – 122 мм. Имеется углубление длиной 43 мм и глубиной 5 мм для катушки.

В кольце я сделал один разрез и замок для его открывания. Открыв замок, мы размещаем тороидальную катушку внутри кольца.

Также у кольца есть углубление по внешней стороне, 8 мм шириной и 4 мм глубиной, в котором размещается ремень шириной 6 мм.

Катушка


Катушка для медного провода, которую я выточил из нейлонового стержня. Все размеры показаны на картинке.

Материал выбран потому, что нейлон, во-первых, легче алюминия, во-вторых, его легко точить на станке. Кроме того, когда машина работает, он не колеблется так сильно.

Корпус машины


Корпус также сделан из фанеры 12 мм. На нём закреплены три направляющих ролика, расставленные примерно в 120° друг от друга.

Ролики сделаны из подшипников 626Z, гаек и болтов. На них будет вращаться наше деревянное намоточное кольцо.

Верхняя часть кольца откидывается, а после закрытия зажимается при помощи барашковой гайки. Откинув эту часть, мы устанавливаем кольцо внутрь машины. Вернув её на место, нужно прижать к ней ролик так, чтобы он вошёл в бороздку.

Ролики-держатели тороида


Это ролик, вращающий катушку, и одновременно удерживающий её. Я выточил их из нейлонового стержня на моём токарном мини-станке. Все размеры приведены на фото.

Ролики я снабдил поролоновой лентой, она хорошо держит катушку и та не проскальзывает. Важно использовать барашковые гайки для закрепления направляющих – обычные от вибрации откручиваются.

Сверху и снизу каждого ролика я поставил по фланцевому подшипнику.

Крепление шагового двигателя


Так я закрепил шаговый двигатель, NEMA17. Он вращает катушку, что позволяет автоматически наматывать проволоку по всей её окружности и не требует ручного вращения.

Двигатель постоянного тока


Этот мотор вращает намоточное кольцо. Я использовал Orange Jhonson 12v Dc Motor 300 RPM. Вам советую взять мотор на 600 RPM или 1000 RPM.

Ремень имеет 600 мм в длину и 6 мм в ширину. Держатель мотора, крепящийся к алюминиевому профилю, также сделан из фанеры.

Инфракрасный датчик


Your browser does not support HTML5 video.

Я использовал датчик от SeedStudio. Он отправляет сигнал на контакт обработки прерываний Arduino – таким образом Arduino может подсчитывать количество оборотов кольца.

Я закрепил датчик на алюминиевом профиле так, чтобы замок кольца заодно работал и отражающей поверхностью, на которую реагирует датчик.

Данный датчик выдаёт по 2 сигнала за один поворот кольца – когда дерево сменяется металлом, сигнал меняется с низкого напряжения на высокое, а потом наоборот. Обработчик прерываний регистрирует два изменения состояния. Поэтому для подсчёта реального количества поворотов мне пришлось делить количество срабатываний пополам.

Основание аппарата


Основание тоже сделано из фанеры 12 мм, имеет размеры 300х200 мм. Четыре резиновых ножки будут прочно и хорошо держать машину, и помогут избежать ненужной вибрации.

Для установки компонентов я закрепил на основании алюминиевый профиль. Обожаю его за гибкость в использовании. Все компоненты можно легко устанавливать на профиле и двигать вдоль него. Позволяет легко выравнивать компоненты относительно друг друга.

Корпус контроллера


Коробочка распечатана на 3D-принтере, внутрь установлены плата, ЖК-дисплей и энкодер. Корпус придаёт профессиональный вид всему проекту, а также обеспечивает удобную настройку аппарата. Корпус закреплён на основании при помощи металлической скобы.

Схема подключения


Код


Навигация в меню

ЖК-дисплей используется для вывода информации, а энкодер – для ввода.

Первый экран с приветствием.

На втором экране нужно ввести внешний диаметр катушки – аппарат поддерживает катушки разных диаметров.

На третьем экране нужно ввести количество витков.

На четвёртом экране нужно ввести угол покрытия катушки. 360° означает, что катушка будет покрыта проволокой целиком. 720° означает, что катушка будет обмотана проволокой дважды по окружности.

На 5-м экране можно проверить все входные данные пред тем, как запустить машину. Если всё верно, нажимаете на энкодер, и машина стартует.

6-й экран демонстрирует количество витков в реальном времени.

7-й экран появляется по окончанию работы.

См. также:

Что такое тороидальный силовой трансформатор?

Трансформаторы — это устройства, используемые для передачи энергии между двумя частями электрической цепи, создавая изоляцию при изменении тока и напряжения. Трансформаторы служат неотъемлемыми компонентами большинства электрических систем.

Силовые трансформаторы, в частности, используются, когда требуется передача энергии с высоким КПД. В зависимости от конкретного применения устройства могут работать непрерывно или прерывисто при полной нагрузке. Как и все трансформаторы, силовые трансформаторы основаны на принципе электромагнитной индукции.Две катушки с магнитной связью образуют первичную и вторичную обмотки.

Тороидальные силовые трансформаторы

Тороидальные трансформаторы — это силовые трансформаторы с тороидальным сердечником, на который намотаны первичная и вторичная обмотки. Когда ток протекает через первичную обмотку, он индуцирует электродвижущую силу (ЭДС), а затем ток во вторичной обмотке, тем самым передавая мощность от первичной обмотки к вторичной обмотке.

Уникальная форма тороидального трансформатора позволяет использовать более короткие катушки, уменьшая резистивные потери или потери в обмотке и повышая общий КПД.

Поделитесь этим изображением на своем сайте

Пожалуйста, укажите ссылку на https://info.triadmagnetics.com/ с этим изображением.

 Что такое тороидальный силовой трансформатор? | Инфографика

Преимущества и применение тороидальных силовых трансформаторов

Тороидальные трансформаторы могут быть намного компактнее обычных силовых трансформаторов того же номинала.Кроме того, повышение эффективности может привести к снижению температуры.

Тороидальные сердечники позволяют использовать и наматывать 100% сердечника, тогда как сердечники других форм всегда имеют участки, которые должны доходить до обмоток для создания обратного магнитного пути. Эти секции всегда увеличивают вес и потери, которые не требуются для тороидальных сердечников.

Рассеянные магнитные поля создаются концами катушек, где не все силовые линии связаны с сердечником. Хорошо сконструированные тороиды не имеют конца обмотки, а это означает, что нет физического зазора между началом и концом обмотки, чтобы допустить излучаемые наружу поля рассеяния.Они также обладают высокой устойчивостью к любым наложенным на них внешним магнитным полям.

Компактные размеры тороидальных трансформаторов делают их идеально подходящими для применения в электронных схемах, поэтому эти трансформаторы часто используются в компьютерах, инверторах и множестве подобных устройств. Тороидальные модели также гудят меньше, чем обычные варианты, что делает их идеальными для применения в усилителях, телевидении и аудиосистемах.

Тороидальные силовые трансформаторы особенно хорошо подходят для критически важного оборудования и устройств в медицинской промышленности, так как высокая эффективность важна в медицинских системах, требующих низких токов утечки, бесшумной и надежной работы.Поскольку эти трансформаторы легкие и компактные, их можно легко интегрировать в медицинские инструменты, в которых нехватка места и веса являются ключевыми соображениями при проектировании.

Узнать больше

Triad Magnetics — ведущий производитель стандартных и нестандартных тороидальных силовых трансформаторов, и мы с гордостью предлагаем более 45 различных моделей для удовлетворения конкретных потребностей клиентов. Наши медицинские силовые трансформаторы оснащены двойными обмотками для последовательного и параллельного подключения в зависимости от потребностей системы.

Поскольку эти трансформаторы часто используются в системах с ограниченным пространством с другими чувствительными электронными компонентами, превышение температуры рассчитано таким образом, чтобы оставаться в пределах от 25 ºC (55 ºF) до 55 ºC (131 ºF). Наши тороидальные модели имеют очень низкие потери, а регулировка поддерживается в пределах от 0,7% до 12,3%.

Мы понимаем, что работа каждого клиента уникальна, поэтому мы тесно сотрудничаем с клиентами, чтобы определить лучший тороидальный силовой трансформатор для их конкретного применения. Чтобы узнать больше о нашем ассортименте тороидальных медицинских силовых трансформаторов, запросите расценки у нашей группы экспертов сегодня.

безопасность — обмотка тороидального трансформатора

Любой трансформатор, подключенный к 240 В переменного тока, должен иметь достаточную индуктивность в первичной обмотке, чтобы не потреблять большой ток намагничивания — просто подумайте о первичной обмотке и пока не обращайте внимания на вторичную — представьте, что вы делаете только индуктор для подключения к Переменный ток — вы же не хотите, чтобы он потреблял десять ампер сам по себе.

Конечно, есть техническая причина не брать десять ампер — это почти наверняка насытит ядро ​​и поджарится.

Итак, вооружившись деталями, которые у вас есть на тороиде, такими как значение \ $ A_L \ $, это поможет вам понять, сколько витков необходимо для получения индуктивности (скажем) 10 генри. 10 генри будут иметь импеданс около 3000 Ом при 50 Гц и потреблять ток около 80 мА при подключении к 240 В переменного тока.

Затем нужно решить, пропитает ли это сердцевину и обжарится. Вы использовали \ $ A_L \ $ и заданную индуктивность 10 генри, чтобы сказать вам, сколько витков вам нужно намотать, вы можете рассчитать магнитодвижущую силу (ампер-витки).Затем разделите MMF на чистую длину вокруг вашего ториода, чтобы получить H (напряженность магнитного поля, ампер-витки на метр), и вы почти у цели.

Ссылаясь на кривую BH в паспорте тороида и используя только что вычисленное значение H, определите, какую плотность магнитного потока (B) вы получите из обычно поставляемых графиков — если она больше примерно 0,4 Тесла, то вы, вероятно, столкнетесь с проблемы с насыщением.

Я не занимаюсь математикой, но это будет очень близко к вопросу о том, достаточно ли велик этот тороид, чтобы выдерживать сетевое напряжение на первичной обмотке — ферритовые тороиды обычно не используются в качестве обычных трансформаторов переменного тока — они лучше подходят для гораздо более высокая частота (по сравнению с тем, что вы получаете в автономном переключателе) из-за этой проблемы.

Если вы не знаете, из чего сделан феррит, забудьте об этом (я имею в виду именно это).

Намотка вторичной обмотки по сравнению с этим несложна, но прежде чем давать какие-либо рекомендации, необходимо детально изучить материал тороида.

Конструкция и производство трансформатора с тороидальной катушкой

на заказных катушках, США

Трансформатор с тороидальной катушкой, как следует из названия, имеет тороидальную или кольцевую форму. Он имеет магнитопровод из слоистого железа, феррита или порошкового железа.Благодаря своей уникальной форме он имеет минимальные электромагнитные помехи, что увеличивает эффективность оборудования. Custom Coils является производителем тороидальных трансформаторов и предлагает эти трансформаторы в очень компактных конфигурациях и для различных применений. Custom Coils имеет более чем 50-летний опыт производства тороидальных силовых трансформаторов на заказ. Мы предлагаем тороидальные сердечники из различных материалов, таких как кремнистая сталь, никель, феррит, порошкообразное железо и молиберпермский сплав. Наши тороидальные силовые трансформаторы высокого напряжения легкие и компактные.Мы также поможем вам выбрать тот, который соответствует вашим требованиям.
Наш ассортимент тороидальных силовых трансформаторов известен своей эксплуатационной эффективностью, электрическими характеристиками, совместимостью и т. Д. Мы поставляем индивидуальные тороидные силовые трансформаторы с высокими характеристиками по привлекательным ценам. В Custom Coils мы используем передовые технологии и проверенную методологию для проектирования и производства тороидных силовых трансформаторов в соответствии со спецификациями, требуемыми нашими клиентами.

Тороидальные трансформаторы: особенности и характеристики

Наша уникальная конструкция тороидального трансформатора без воздушных зазоров и с ровной обмоткой обладает всеми этими функциями и форматами:

Характеристики

  • Катушки индуктивности до 20 ампер
  • Трансформаторы тока (ТТ)
  • Импульс до 250 кГц
  • Синфазный дроссель

Форматы

  • Горизонтальный
  • Вертикальный
  • Заголовки шпульки для ПК
  • Поверхностное крепление

Дополнительные возможности

Custom Coils — известный производитель высококачественных тороидальных трансформаторов.Благодаря следующим дополнительным характеристикам тороидальных трансформаторов, которые мы предлагаем, они широко используются в нескольких промышленных приложениях.
  • Оптимизированная производительность
  • Меньше внешнего магнитного потока
  • Нижнее сопротивление обмотки
  • Меньшие потери в обмотке
  • Более эффективно рассеивает тепло
  • Наименьший размер по объему / весу
  • Меньшая индуктивность рассеяния

Сопутствующие товары

Элементы конструкции и работа тороидального трансформатора

Как мы все знаем, трансформатор помогает изменять уровни напряжения по мере необходимости.Но изготовленный на заказ тороидальный силовой трансформатор имеет определенные преимущества благодаря своей форме и размеру. Вход тороидального трансформатора подключен к первичной обмотке. Когда ток проходит через обмотку, в ней создается положительное магнитное поле. В конечном итоге напряжение падает, и положительное магнитное поле становится отрицательным. Это первая часть всего цикла. Эти положительные и отрицательные магнитные поля проходят через вторичную обмотку, и вырабатывается выходное напряжение. Таким образом, в этом случае количество генерируемого напряжения пропорционально соотношению витков между первичной и вторичной обмотками.

Сердечник этого трансформатора помогает магнитным полям формироваться и разрушаться, что вызывает максимальное напряжение во вторичной обмотке. Это повышает КПД трансформатора.

Конструкция тороидального трансформатора

Эти трансформаторы доступны во множестве размеров и конфигураций. Custom Coils предлагает оборудование, которое может наматывать тороиды диаметром от 0,5 дюйма до 6,5 дюймов.

Использование различных челноков и головок дополнительно улучшает производительность этих мотальных машин.Челноки позволяют наматывать провода калибра от 13GA до 40GA. Тороиды обычно оборачиваются майларом или лентой для более высоких значений изоляции. Таким образом, сердечники тороидального трансформатора изолированы от обмоток, а обмотки изолированы друг от друга.

Несмотря на небольшие размеры, в объеме, и в весе, эти трансформаторы имеют большую площадь поверхности, что позволяет ему рассеивать тепло более эффективно. Сердечник в форме пончика уменьшает внешний магнитный поток, что приводит к уменьшению индуктивности рассеяния.

Преимущества тороидальных трансформаторов

Трансформатор с тороидальной катушкой имеет чрезвычайно гибкую, а также компактную конструкцию, которая предлагает множество преимуществ. Здесь мы перечислили некоторые из них.

  • Низкие потери при разгрузке: Поскольку магнитное поле хорошо экранировано, для его поддержания в сердечнике требуется меньше энергии. Таким образом, трансформаторы с тороидальной катушкой имеют гораздо меньшую мощность возбуждения, чем другие типы.
  • Минимальный внешний магнитный поток: Тороидальные трансформаторы излучают гораздо меньшее магнитное поле, чем другие типы.Обмотки здесь действуют как экран, поэтому для минимизации рассеивания не требуется специального экранирования.
  • Нижнее сопротивление обмотки: Обмотки тороидального трансформатора равномерно распределены по сердечнику; это помогает снизить сопротивление обмотки.
  • Более низкий уровень шума: Механический гул в тороидальных трансформаторах намного меньше, чем в большинстве других типов. Таким образом, это работает тихо, поскольку здесь снижается шум из-за магнитострикции.
  • Наименьший размер по объему / весу: Хотя тороидальные трансформаторы доступны во всех размерах, наименьший размер важен и подходит для многих областей применения. Кроме того, они гибкие, легкие и удобные. Это упрощает их установку.
  • Более низкая индуктивность рассеяния: Тороидальные трансформаторы применяются в силовой электронике, где требуется конкретное значение индуктивности рассеяния трансформатора.

Применение тороидальных трансформаторов

Изготовленный на заказ тороидальный силовой трансформатор имеет множество применений, и он особенно используется в чувствительных устройствах, таких как усилители, часы и схемы таймера, промышленная обработка и медицинское оборудование.Вот несколько областей применения тороидальных силовых трансформаторов.

  • Aerospace: Точность и точность имеют первостепенное значение в аэрокосмическом секторе, и нет никаких возможностей для компромисса в деталях, и эти трансформаторы поддерживают качественную радиочастотную передачу и генерацию высоких частот в самолетах.
  • Военная и аэрокосмическая промышленность: Тороидальные трансформаторы находят применение в обороне, а также в коммерческой авиации, источниках питания компьютеров и радиопередаче
  • Связь / обработка данных: Тороидальные трансформаторы помогают передавать сигналы в случае устройств беспроводной передачи и обработки данных.
  • Пневматические системы: Гидравлические датчики, датчики давления и двухходовые регулирующие клапаны, среди прочего, используют тороидальные трансформаторы для создания электрического тока, который помогает в работе этих пневматических регулирующих устройств.
  • Geophysical: Тороидальные трансформаторы находят применение в задачах горной промышленности, бурения нефтяных скважин и добычи полезных ископаемых, где они используются для сбора и интерпретации сейсмических данных, регистрации движения в слоях земли и автоматической термопечати.
  • Трансформатор тока: Эти трансформаторы используются для измерения высоковольтных электрических устройств и силовых цепей; поскольку они минимизируют частоту ошибок, поскольку их электромагнитные помехи очень низкие.
  • Биомедицина: Этот сектор имеет огромное применение для тороидальных трансформаторов. Сюда входят электрические устройства, используемые в различном медицинском оборудовании, таком как рентгеновские аппараты, системы визуализации, электронные кардиографы, лазеры, сканеры плотности кости и многое другое.
  • Источники питания: Это наиболее распространенные области применения тороидальных трансформаторов, поскольку они регулируют уровни текущего напряжения для обеспечения бесперебойного питания.
  • Аудиосистемы: Типичные особенности тороидальных трансформаторов, такие как низкий магнитный поток и шум, малый размер, гибкость и легкий вес, делают их применимыми в аудиосистемах и усилителях.

Знайте преимущества использования тороидальных трансформаторов в промышленных приложениях

Тороидальные трансформаторы — это небольшие трансформаторы, которые находят применение во многих отраслях промышленности.Эти устройства имеют кольцевую или кольцевую структуру и известны как тороидальные трансформаторы. Аэрокосмическая промышленность, биомедицинское оборудование, военная промышленность, пневматические системы — вот лишь некоторые из отраслей, в которых часто используются эти тороидальные трансформаторы. Эти трансформаторы широко используются из-за очевидных преимуществ, которые они предлагают. В этом посте обсуждаются различные преимущества тороидальных силовых трансформаторов и то, что делает их идеальным выбором для промышленного применения.

Преимущества тороидальных силовых трансформаторов

Тороидальные трансформаторы представляют собой трансформаторы кольцевого или кольцевого типа, которые имеют обмотку, плотно намотанную на магнитный сердечник.Эти пассивные электронные устройства имеют магнитный или ферромагнитный сердечник, который поддерживает магнитный поток. Из-за их формы поток утечки в этих трансформаторах считается незначительным. Ниже перечислены преимущества трансформаторов с тороидальной катушкой, которые делают эти устройства идеальными для сложных промышленных приложений.

  1. Компактная конструкция: Тороидальные трансформаторы могут быть примерно вдвое меньше стандартных трансформаторов. Благодаря уменьшению размера на 50% эти трансформаторы с тороидальной катушкой имеют преимущества в размере и весе.Он имеет асимметричную и равноудаленную обмотку сердечника, поэтому занимает меньше места. Вот почему эти трансформаторы можно легко установить в сложных промышленных помещениях.
  2. Более тихая работа: В тороидальных трансформаторах тока обмотка довольно плотно охватывает сердечник, что снижает магнитострикцию. Магнитострикция — одна из наиболее частых причин механического шума. Таким образом, акустический шум значительно снижен по сравнению со стандартными трансформаторами.
  3. Низкое энергопотребление и потери: Тороидальные трансформаторы тока имеют гораздо меньшую мощность возбуждения или покоя по сравнению со стандартными трансформаторами. Поддержание постоянного магнитного поля в тороидальных трансформаторах потребляет минимальную мощность, а также снижаются потери в сердечнике.
  4. Низкое магнитное поле рассеяния: Трансформаторы с тороидальной катушкой излучают гораздо более низкое электромагнитное поле по сравнению с обычными трансформаторами. Они демонстрируют примерно на 85-90% меньше паразитного магнитного поля, и нет необходимости в каком-либо экранировании.
  5. Более высокий КПД: Тороидальные электрические трансформаторы требуют небольшого входного тока в качестве мощности возбуждения и обеспечивают более высокую выходную мощность за счет минимальных потерь. Это увеличивает электрический КПД тороидальных трансформаторов. Кроме того, тороиды со стальным сердечником эффективны в поддержании магнитного поля, которое повышает производительность за счет уменьшения рассеяния магнитного потока.
  6. Удобный монтаж: Большинство тороидальных трансформаторов имеют простой механизм крепления с помощью одного центрального болта.Это экономит время и упрощает монтаж.

Чтобы реализовать преимущества тороидальных трансформаторов, необходимо проанализировать правильную конструкцию и характеристики. С этой целью важно приобретать высококачественные тороидальные трансформаторы у проверенных производителей, таких как Custom Coils. Компания имеет более чем 50-летний опыт производства трансформаторов. Они предлагают тороидальные трансформаторы с настраиваемыми передаточными числами сердечника и поворотов в соответствии с требованиями промышленного применения.

Знакомство с преимуществами использования тороидальных трансформаторов в промышленных приложениях Последнее изменение: 21 декабря 2020 г., автор: gt stepp

О gt stepp

GT Stepp — инженер-электрик с более чем 20-летним опытом, специалист в области исследований, оценки, тестирование и поддержка различных технологий.Посвящен успеху; с сильными аналитическими, организационными и техническими навыками. В настоящее время работает менеджером по продажам и операциям в Custom Coils, разрабатывая стратегии продаж и маркетинга, которые увеличивают продажи, чтобы сделать Custom Coils более узнаваемыми и уважаемыми на рынке.

Тороидальных трансформаторов — Gowanda

Тороидальные трансформаторы с ленточным сердечником изготавливаются путем наматывания тонких длинных полос магнитного материала вокруг намоточного сердечника.Первоначально тороиды с ленточным сердечником были разработаны для замены электронных ламп. Вакуумные лампы были хрупкими и требовали частой замены. Тороидальные трансформаторы с ленточным сердечником были более надежными. Магнитная связь позволяла смешивать сигналы при сохранении гальванической развязки между цепями. Тороидальные трансформаторы с ленточным сердечником также развивались по другому пути. В ранних тороидальных трансформаторах использовались тонкие кольцевые пластинки, штампованные из электротехнической стали. Сталь из центра была отходами.Ядро было сделано путем наложения этих колец на желаемую высоту. Ламинированный пакет снижает вихревые токи в сердечнике. Меньшие вихревые токи приводят к меньшим потерям в сердечнике. Чем тоньше пластина, тем меньше потери, но тем больше времени требуется на обработку и укладку пластин. Разработчики адаптировали процесс намотки сердечника к трансформаторам общего назначения. Намотка тороидальных трансформаторов с ленточным сердечником выполнялась намного быстрее, чем штабелирование тороидальных сердечников; следовательно, использование более тонкого материала стало более практичным.Затем процесс был адаптирован для прямоугольных ядер, известных как ядра C.

Сегодня тороидальные трансформаторы с ленточным сердечником могут изготавливаться из ленты толщиной до 0,000125 дюймов. Они доступны в сплавах кремнистой стали, никель-железо, кобальт-железо и аморфных металлов. Некоторые материалы обрабатываются для улучшения свойств квадратной петли. При соответствующем снижении мощности по Гауссу тонкая полоса расширяет полезный частотный диапазон до 10–20 килогерц в зависимости от типа материала. Ферритовые сердечники имеют более низкие потери в сердечнике и меньшую стоимость на единицу веса, но их уровни насыщения намного ниже.Малый вес и минимальное пространство являются желательными характеристиками для авиационных и аэрокосмических приложений. Следовательно, для этих применений тороиды с ленточным сердечником обычно предпочтительнее ферритов при условии, что рабочая частота не слишком высока.

Тороиды с ленточным сердечником, намотанные из никель-железных сплавов, особенно чувствительны к ударам и вибрации. Эти сердечники необходимо поместить в защитную коробку с демпфирующей средой, например, силиконовым маслом. Сплавы кремнистой стали наименее чувствительны. Кремнистая сталь часто используется без защитной коробки.Это зависит от конкретного приложения.

Руководство по выбору тороидальных трансформаторов: типы, характеристики, применение

Тороидальные трансформаторы — это электрические компоненты, изготовленные с использованием металлического сердечника кольцевой формы с проволочной обмоткой. Кольцевые круглые трансформаторы известны как тороидальные , потому что их основная конструкция включает тороид, твердую форму геометрического тора. Тороиды неофициально можно описать как «пончикообразные».

Сердечник тороидального трансформатора сначала наматывается проводом, образующим первичную (входную) катушку, а затем покрывается изоляцией.Затем вторичный (выходной) провод наматывается поверх изоляции. На изображении ниже (8) представляет первичную обмотку, (4) представляет вторичную обмотку, а (5), (6) и (7) — слои изоляции между катушками.

Тороидальный трансформатор в разобранном виде. Изображение предоставлено: A + azon

Тороидальные трансформаторы имеют несколько преимуществ по сравнению с традиционными устройствами:

Перекрывающиеся катушки , в отличие от двух отдельных катушек, позволяют использовать устройства гораздо меньшего размера.

Магнитный поток обычно ограничивается тороидальным сердечником , что означает, что тороидальные трансформаторы по существу защищают себя от создания электромагнитных помех (EMI).

Тороидальные трансформаторы , требующие меньшего количества витков на катушку, имеют более высокую индуктивность по сравнению с традиционными трансформаторами аналогичного размера.

Тороидальные трансформаторы также имеют присущие им недостатки.Поскольку каждая обмотка катушки должна проходить через центральное отверстие трансформатора, автоматическая намотка становится сложной и может потребовать специальной намоточной машины, специально предназначенной для тороидальных устройств. Уникальная обмотка катушки также делает производство тороидальных трансформаторов более дорогим.

Преимущества тороидальных трансформаторов лучше всего реализуются в небольших специализированных устройствах. По мере увеличения размера трансформатора преимущества имеют тенденцию уменьшаться. По этой причине тороидальные трансформаторы лучше всего подходят для сигнальных приложений, таких как аудио и радиочастоты (RF), в чувствительных цепях из-за миниатюрной конструкции продукта и свойств ограничения шума.Тороидальные трансформаторы, как правило, подходят не для всех источников питания, кроме самых низких напряжений, из-за их небольшого размера.

Технические характеристики

Конфигурация

Конфигурация трансформатора относится к количеству входных напряжений, которые он может принимать, и, соответственно, к количеству выводов, которые он должен включать. По мере увеличения количества выводов и требуемой медной проводки, производство и стоимость продукции также возрастают.

Типичные конфигурации тороидального трансформатора включают:

Одиночные трансформаторы конфигурации включают только одну первичную обмотку катушки и поэтому могут принимать одно входное напряжение.

Устройства с двойной конфигурацией имеют две обмотки в первичной обмотке и могут принимать два разных напряжения. Для переключения входных напряжений необходимо использовать двухпроводной переключатель напряжения вместе с трансформатором.

5-выводные трансформаторы подключены к пяти различным входным напряжениям. Как и другие продукты с множественной конфигурацией, они должны использоваться с коммутационным устройством.

Крепление

Тороидальный трансформатор может быть установлен одним из нескольких различных способов.

  • Шасси Устройства крепления привинчиваются к внутреннему каркасу с помощью встроенных язычков.
  • Chip Трансформаторы представляют собой интегральные схемы (ИС), изготовленные по тонкопленочной технологии.
  • Тарелка / диск Крепежные изделия крепятся к плоской поверхности с помощью простой резиновой шайбы и металлического диска. В этом методе обычно используется сквозное отверстие для навинчивания устройства на поверхность.
  • Н-образная рама В установке используется Н-образная рама для крепления трансформатора к плоской поверхности и используется в приложениях с высокой вибрацией или сильными ударами.
  • Некоторые трансформаторы совместимы с модульными гнездами , такими как RJ-45.
  • Печатная плата
  • или PCB , устройства подключаются непосредственно к печатной плате с использованием технологии сквозного или поверхностного монтажа и часто требуют пайки.

Трансформатор на шасси, подключенный к печатной плате с помощью выводов | Преобразователь микросхемы поверхностного монтажа (SMD)

Изображение предоставлено: Домашний кинотеатр HiFi | Belden

Дополнительные характеристики

Для получения дополнительной информации об основных принципах работы трансформатора, номинальной мощности и стандартах, пожалуйста, посетите Руководство по выбору трансформаторов.

Список литературы

A + azon — О тороидальных трансформаторах

Изображение предоставлено

захваченное освещение.org | A + azon | Домашний кинотеатр HiFi | Belden


Внутренняя работа тороидального трансформатора

В Premier Magnetics мы часто получаем вопросы от мастеров по изготовлению самодельных изделий о различных компонентах, которые мы продаем, и о том, какой вариант подходит для их конкретных потребностей. Наши сотрудники всегда готовы помочь, но для начала мы хотели бы предоставить базовую информацию об использовании тороидального трансформатора.

Как и все типы трансформаторов, он предназначен для изменения переменного тока без необходимости какого-либо движения или действия со стороны компонента.Как и катушки индуктивности, все эти трансформаторы считаются пассивными электрическими компонентами, потому что они на самом деле ничего не «делают», чтобы вызвать изменения.

Вместо этого, когда ток проходит через обмотки или проволока наматывается на сердечник трансформатора из феррита или другого материала, создается магнитное поле, которое затем разрушается. Это приводит к постоянному и определенному выходному напряжению. Сама форма трансформатора обеспечивает большую эффективность, меньше электромагнитных помех или электромагнитных помех, а также снижает требования к габаритным размерам.Это важно в электронике и других небольших типах устройств.

Благодаря конструктивным преимуществам, можно измерить, что тороидальная форма на пятьдесят процентов эффективнее сердечника стандартного линейного типа. Его также можно установить в любом направлении на плате или в устройстве, что делает его очень хорошим выбором для большинства приложений.

Детали

На самом деле работа или эффекты тороидального трансформатора — это нечто большее, чем это.В частности, происходит то, что переменный ток поступает в трансформатор и постоянно меняет направление, создавая синусоидальную волну, достигающую пика и падающую до нуля в обоих направлениях. Результат известен как циклы, и при переменном токе он составляет 60 циклов в секунду, измеряемый как 60 Гц.

Ток в трансформаторе, который выглядит как пончик или леденец-спасатель, сделанный из феррита или порошкового железа и обернутый проволокой, создает положительное магнитное поле в первичной катушке (проводе).Это достигнет пика и схлопнется, а затем возникнет и исчезнет отрицательное поле. При каждом коллапсе напряжение падает до нуля.

Из первичной катушки магнитные поля, создаваемые и разрушающиеся, проходят через вторичную катушку, также намотанную вокруг того же ферромагнитного сердечника.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *