Какие существуют типы транзисторных выходов датчиков. Как подключать датчики с PNP и NPN выходами. В чем разница между PNP и NPN транзисторами. Как работают датчики с транзисторными выходами. Какие преимущества и недостатки у датчиков с PNP и NPN выходами.
Основные типы транзисторных выходов датчиков
Датчики с транзисторным выходом широко применяются в промышленной автоматизации для определения положения объектов, подсчета деталей и других задач. Существует два основных типа транзисторных выходов датчиков:
- PNP-выход
- NPN-выход
Главное отличие между ними заключается в принципе коммутации выходного сигнала:
- PNP-датчик коммутирует положительный полюс питания
- NPN-датчик коммутирует отрицательный полюс питания
Это определяет особенности подключения и применения датчиков с разными типами выходов.
Схемы подключения датчиков с PNP и NPN выходами
Рассмотрим типовые схемы подключения датчиков с PNP и NPN транзисторными выходами:

Подключение PNP-датчика:
- Коричневый провод (+) подключается к положительному полюсу источника питания
- Синий провод (-) подключается к отрицательному полюсу источника питания
- Черный провод (выход) подключается к нагрузке, второй конец которой соединен с минусом питания
Подключение NPN-датчика:
- Коричневый провод (+) подключается к положительному полюсу источника питания
- Синий провод (-) подключается к отрицательному полюсу источника питания
- Черный провод (выход) подключается к нагрузке, второй конец которой соединен с плюсом питания
Таким образом, основное отличие в том, что у PNP-датчика нагрузка подключается между выходом и минусом, а у NPN — между выходом и плюсом питания.
Принцип работы датчиков с PNP и NPN выходами
Рассмотрим принцип работы датчиков с транзисторными выходами на примере индуктивного датчика:
- В неактивном состоянии выходной транзистор закрыт, ток через нагрузку не протекает
- При приближении металлического объекта в датчике возникают вихревые токи
- Электронная схема датчика открывает выходной транзистор
- Через нагрузку начинает протекать ток
- При удалении объекта транзистор закрывается, ток прекращается
Отличие PNP от NPN заключается в том, через какой полюс питания коммутируется нагрузка:

- PNP подключает нагрузку к положительному полюсу
- NPN подключает нагрузку к отрицательному полюсу
Основные различия между PNP и NPN транзисторами
Чтобы лучше понять разницу между датчиками с PNP и NPN выходами, рассмотрим ключевые отличия самих транзисторов:
PNP-транзистор:
- Состоит из областей p-n-p
- Ток эмиттера течет от эмиттера к базе
- Коллектор имеет отрицательный потенциал относительно эмиттера
- Управляется отрицательным напряжением на базе
NPN-транзистор:
- Состоит из областей n-p-n
- Ток эмиттера течет от базы к эмиттеру
- Коллектор имеет положительный потенциал относительно эмиттера
- Управляется положительным напряжением на базе
Эти фундаментальные различия определяют особенности применения PNP и NPN транзисторов в выходных каскадах датчиков.
Преимущества и недостатки датчиков с PNP и NPN выходами
Рассмотрим основные плюсы и минусы датчиков с разными типами транзисторных выходов:
Преимущества PNP-датчиков:
- Более высокая помехозащищенность
- Меньше подвержены ложным срабатываниям
- Проще подключать к контроллерам с общим минусом
Недостатки PNP-датчиков:
- Более высокая стоимость
- Меньший выбор на рынке
Преимущества NPN-датчиков:
- Низкая стоимость
- Широкий ассортимент
- Проще подключать к контроллерам с общим плюсом
Недостатки NPN-датчиков:
- Более чувствительны к помехам
- Выше вероятность ложных срабатываний
Выбор типа датчика зависит от конкретной задачи и особенностей применения.

Области применения датчиков с PNP и NPN выходами
Датчики с транзисторными выходами широко используются в различных отраслях промышленности и автоматизации:
- Станкостроение — контроль положения рабочих органов
- Робототехника — определение наличия захваченных деталей
- Конвейерные линии — подсчет количества продукции
- Упаковочное оборудование — контроль уровня заполнения
- Автоматические двери — обнаружение приближения человека
- Системы безопасности — детектирование проникновения
PNP-датчики чаще применяются в ответственных системах, требующих высокой надежности. NPN-датчики популярны в бюджетных решениях массового применения.
Рекомендации по выбору между PNP и NPN датчиками
При выборе типа датчика следует учитывать следующие факторы:
- Тип входов используемого контроллера или устройства
- Уровень электромагнитных помех в зоне установки
- Требования к надежности и помехозащищенности
- Бюджет проекта
- Доступность датчиков на рынке
В большинстве случаев рекомендуется использовать PNP-датчики, если нет жестких ограничений по стоимости. Они обеспечивают более стабильную работу и меньше подвержены ложным срабатываниям.

NPN-датчики подойдут для простых применений в условиях низких помех, особенно если важна минимальная цена компонентов.
Заключение
Датчики с транзисторными PNP и NPN выходами играют важную роль в современных системах промышленной автоматизации. Понимание их принципов работы, особенностей подключения и применения позволяет грамотно выбирать оптимальный тип датчиков для конкретных задач.
Несмотря на некоторые различия, оба типа датчиков успешно применяются в самых разных отраслях. Правильный выбор между PNP и NPN выходом зависит от требований к надежности, совместимости с другим оборудованием и экономических факторов.
Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия
Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.
Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:
— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.
— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.
Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:
— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;
— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.
Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.
Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:
— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)
— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)
Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.
Принципиальное отличие логики PNP от NPN
Чаще применяется вариант с выходом на основе транзистора PNP, поскольку большее распространение получила схемотехника с общим минусовым проводом источника питания. Выходное напряжение зависит от напряжения питания датчика и обычно находится в узком диапазоне, например, 20…28 В.
Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.
Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:
— PNP NO (НО)
— PNP NC (НЗ)
— NPN NO (НО)
— NPN NC (НЗ)
Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым).
Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:
— внесение изменений в конструкцию, инициирующую датчик
— внесение изменений в программу (смена алгоритма)
— переключение выходной функции датчика (при наличии такой возможности)
Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.
Замена датчика PNP на NPN
Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.
Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.
Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.
Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.
Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути.
Схемы подключения датчиков PNP к устройству со входом NPN и наоборот
Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.
Устройство, принцип работы и различие N-P-N и P-N-P транзисторов | Энергофиксик
Существуют два основных вида транзисторов: полевые и биполярные. Биполярные транзисторы, в свою очередь, также разделяются на тип с P-N-P и N-P-N переходом. В этом материале я вам расскажу об устройстве биполярных транзисторов и мы поговорим о принципе работы и в чем их основное различие. Итак, поехали.
Согласно записям официальной истории дату 16.12.1947 года можно считать официальным днем рожденья одного из главных элементов всей электроники современности. Именно в этот день был представлен общественности первый транзистор, который был собран тремя учеными, а именно: Д. Бардин, У. Шокли и У. Браттейн.
yandex.ruПоявление биполярного транзистора позволило отказаться от использования электронных ламп. Вся современная электроника была бы невозможна без этого изделия. Вот такое важное открытие было совершено в середине 20-го столетия. Теперь от истории перейдем к нашим биполярным транзисторам.
Как устроен биполярный транзисторИтак, биполярный транзистор схематически можно представить следующим образом:
Посмотрите внимательно на изображение, вам оно ничего не напоминает? Да, вы правы, если присмотреться и мысленно разделить зону N – перехода, то перед нами два соединенных между собой диода (запомните этот момент, в дальнейшем он нам понадобится).
Для определения какой проводимости перед нами диод, достаточно прочитать направление P-N перехода. На рисунке выше у нас проводимость типа P-N-P. Это означает, что перед нами транзистор прямой проводимости (так как принято считать, что ток проходит от плюса к минусу).
А вот у транзистора N-P-N типа проводимость обратная
Вы заметили, что в обоих вариантах исполнения присутствуют три вывода под названием:
Эмиттер (источник, генератор), База (основа) и Коллектор (сборщик, накопитель).
Схематическое обозначение транзисторовИз всего выше написанного вы уже наверняка поняли, что есть транзисторы обратной и прямой последовательности, а это значит, что и на схемах такие элементы должны иметь различия. Давайте их рассмотрим.
Итак, обозначение транзистора прямой проводимости на схемах будет следующее:
А вот транзистор обратной проводимости обозначается уже так:
В старых советских мануалах транзисторы маркировались буквой «Т», а теперь обозначение сменили на «VT».
На самом деле определить по схеме тип биполярного транзистора довольно просто, достаточно помнить следующее правило:
Как известно в N – полупроводнике имеется большое количество свободных электронов, а в полупроводнике P–типа расположены «дырки» — положительно заряженные частицы. А по общепринятой теории ток протекает от «плюса» к «минусу».
Если вы посмотрите на схему, то увидите, что эмиттер изображен со стрелкой, которая либо направлена к базе либо от нее. Так вот если транзистор N-P-N типа, то есть база выполнена из P– полупроводника, то ток течет от базы (стрелка эмиттера от базы). Если же база выполнена из N — полупроводника, то ток (стрелка) втекает в базу.
Как работает P-N-P транзисторС обозначением и устройством вроде все понятно, а вот как он работает давайте разбираться:
Давайте представим биполярный транзистор в виде водяной трубы с задвижкой с пружинным механизмом.
Как видно из рисунка сверху беспрепятственному протеканию воды по трубе мешает задвижка с пружинным механизмом, если мы приложим небольшое усилие (откроем задвижку сжав пружину), то вода беспрепятственно потечет по трубе. Если же мы отпустим пружину, то она распрямится и вернет задвижку на место, тем самым перекрыв трубу и поток воды будет остановлен.
Теперь вообразите, что данная труба — это транзистор P-N-P типа, значит его выводы можно представить следующим образом:
Получается, чтобы ток протекал от эмиттера к коллектору (напоминаю, что направление тока совпадает с направлением стрелки на эмиттере) нужно сделать так, чтобы ток выходил из базы, или говоря по простому: подать на базу минус.
Давайте наглядно проверим работу такого транзистора. Для этого возьмем КТ814Б и соберем простенькую схему с двумя источниками питания.
Для того, чтобы правильно подключить транзистор необходимо знать какой вывод является эмиттером, базой и коллектором. Для этого находим техническую документацию и определяем:
Лампочку я буду использовать самую обычную автомобильную, рассчитанную на 12 Вольт. Собранная схема будет выглядеть так:
Итак, чтобы наша схема заработала выставляем на источнике питания №2 12 Вольт. А на первом источнике питания начинаем очень плавно (с нуля) поднимать напряжение ровно до того момента, пока не загорится наша лампа.
Схема заработала при напряжении 0,66 Вольт на первом источнике.
То есть произошло «открытие» транзистора и через цепь эмиттер-коллектор начал проходить ток.
Иначе говоря, напряжение, которое открыло наш транзистор — это ни что иное как падение напряжения на P-N переходе база-эмиттер, которое как раз и находится в пределах от 0,5 до 0,7 В для кремниевых транзисторов.
А как дела обстоят с транзисторами, где используется N-P-N переход.
Принцип работы N-P-N транзистора
Если внимательно посмотреть на техническую документацию к транзистору КТ814Б, то можно найти запись о том, что комплиментарной парой к этому транзистору является КТ815Б, а он различается лишь тем что здесь используется N-P-N переход.
yandex.
И схема подключения будет выглядеть так:
Посмотрите внимательно на эту схему и схему включения КТ814Б, вы ничего не заметили? Все верно, единственное различие между этими двумя транзисторами заключено в том, что транзистор с P-N-P переходом открывается «минусом» (так как на базу подается отрицательный потенциал), а вот транзистор N-P-N открывается «плюсом».
Заключение
В этом материале мы с вами познакомились с устройством биполярных транзисторов, их устройстве и принципе работы, а также с тем как они обозначаются на схемах. Если статья оказалась вам интересна или полезна, то оцените ее лайком. Спасибо за ваше внимание!
Чем отличается pnp транзистор от npn
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:
- Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
- Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
- Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
- Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении.
Используется очень редко.
В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):
А в PNP ток протекает от эмиттера к коллектору:
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.
PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:
Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.
Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:
- Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
- Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
- Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
- Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.
В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):
А в PNP ток протекает от эмиттера к коллектору:
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.
PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:
Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.
Устройство согласования PNP/NPN сигналов на Дин рейку, Россия
Снят с производства замена УСМ
УС-М01-1-15 DC10-30B УХЛ4 |
НАЗНАЧЕНИЕ РЕЛЕ
Устройство согласования предназначено для согласования логических выходов датчиков с любым типом транзисторных выходов для подключения к нагрузке и возможностью инвертирования выходного сигнала.
Напряжение питания, В | DC 10…30 |
Максимальный ток нагрузки, мА | 100 |
Ток потребления под нагрузкой, мА | < 50 |
Ток потребления без нагрузки, мА | < 20 |
Тип выходов | NPN, PNP |
Входное сопротивление, Ом | 3000.![]() |
Время переключения, мкс | < 5 |
Индикация: Питание Срабатывание
| Зеленый Желтый
|
Защита от переполюсовки | Есть |
Защита от перегрузки | Нет |
Защита от короткого замыкания | Нет |
Степень защиты реле: по корпусу/по клеммам | IP40/IP20 |
Категория климатического исполнения | УХЛ4 |
Диапазон рабочих температур | -25… +55° С |
Температура хранения | -40… +60° С |
Относительная влажность воздуха | до 80% при 25°С |
Высота над уровнем моря | до 2000 м |
Рабочее положение в пространстве | произвольное |
Режим работы | круглосуточный |
Габаритные размеры | 17,5х90х66 |
Масса не более | 0.![]() |
КОНСТРУКЦИЯ РЕЛЕ
Устройство выпускаются в унифицированном пластмассовом корпусе с передним присоединением проводов питания и коммутируемых электрических цепей. Крепление осуществляется на монтажную шину DIN шириной 35мм или на ровную поверхность. Для установки реле на ровную поверхность, фиксаторы замков необходимо переставить в крайние отверстия, расположенные на тыльной стороне корпуса. Конструкция клемм обеспечивает надежный зажим проводов сечением до 2,5 мм2. На лицевой панели расположены: зеленый индикатор включения напряжения питания «U», желтый индикатор срабатывания встроенного транзистора.
УСЛОВИЯ ЭКСПЛУАТАЦИИ РЕЛЕ
Окружающая среда – взрывобезопасная, не содержащая пыли в количестве, нарушающем работу устройства, а так же агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию. Вибрация мест крепления устройства с частотой от 1 до 100 Гц при ускорении до 9,8 м/с2. Воздействие электромагнитных полей, создаваемых проводом с импульсным током амплитудой до 100 А, расположенным на расстоянии не менее 10 мм от корпуса. Устройство устойчиво к воздействию помех степени жесткости 3 в соответствии с требованиям ГОСТ Р 51317.4.1-2000, ГОСТ Р 51317.4.4-99, ГОСТ Р 51317.4.5-99.
СХЕМА ПОДКЛЮЧЕНИЯ РЕЛЕ |
КОНТРОЛЬ НАПРЯЖЕНИЯ |
ГАБАРИТНЫЕ РАЗМЕРЫ РЕЛЕ
ТУ 3428-004-31928807-2014
Наименование | Заказной код (артикул) | Файл для скачивания (паспорт) | Дата файла |
УС-М01-1-15 DC10-30B УХЛ4 | Скачать | 28.![]() |
Проверка биполярного транзистора — Основы электроники
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.
Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
Фотоэлектрические датчики | Reflex Array
Фотоэлектрические датчики | Reflex Array | SICKобзор семейств продукции Русский Cesky Dansk Deutsch English Español Suomi Français Italiano 日本語 – Японский 한국어 – Корейский Nederlands Polski Portugues Svenska Türkçe Traditional Chinese Китайский
Фотоэлектрический датчик с 2D световой полосой: универсальность и экономичность
Преимущества
- Снижает общую стоимость обнаружения почти на 50 % по сравнению с другими решениями
- Обнаружение объектов размером ≥ 1 мм в световой полосе высотой 20 мм, либо ≥ 3 мм, ≥ 5 мм или ≥ 10 мм в световой полосе высотой 55 мм, либо ≥ 5 мм в световой полосе высотой 25 мм
- Подавление транспортёрной ленты: вручную или через IO-Link
- Точечный светодиод обеспечивает очень хорошую видимость световой полосы и простое и быстрое оптическое выравнивание
- Профилактическое техническое обслуживание с AutoAdapt сокращает время простоя
Обзор
Фотоэлектрический датчик с 2D световой полосой: универсальность и экономичность
В сочетании с отражателем многозадачный фотоэлектрический датчик Reflex Array распознает внутри своей световой полосы передние кромки малогабаритных, плоских, прозрачных или неравномерно сформированных объектов на транспортёрных лентах. Обнаружение происходит независимо от того, где и как объекты лежат на транспортёрной ленте. Фотоэлектрический датчик надёжно обнаруживает, например, стеклянные бутылки или полиэтиленовые пакеты. Reflex Array с лёгкостью справляется даже с обнаружением перфорированных объектов – без многократных переключений. Это снижает общие затраты и ускоряет ввод в эксплуатацию. По сравнению с другими решениями, в которых используются отдельные фотоэлектрические датчики или небольшие световые завесы, Reflex Array обеспечивает значительные ценовые преимущества.
Краткий обзор
- RAY10: световая полоса высотой 25 мм, обнаруживает объекты размером ≥ 5 мм
- RAY26: световая полоса высотой 55 мм, три варианта, обнаруживает объекты размером ≥ 3 мм, ≥ 5 мм или ≥ 10 мм
- Индикатор профилактического технического обслуживания на датчике; передача сигналов технического обслуживания в ПЛК через IO-Link
- Подавление конвейерной ленты для RAY26P
Преимущества
Простое и быстрое выравнивание благодаря точечному светодиоду
Световая полоса многозадачного фотоэлектрического датчика Reflex Array очень хорошо видна благодаря точечному светодиоду. После выравнивания фотоэлектрического датчика требуется только провести обучение датчика и он готов к обнаружению.
Reflex Array
RAY10: хорошая видимость световой полосы на отражателе RAY26: хорошая видимость световой полосы на отражателеБлагодаря быстрой юстировке и простой настройке время ввода в эксплуатацию фотоэлектрического датчика очень коротко
Профилактическое техническое обслуживание
Во время работы синие светодиоды отображают степень загрязнения датчика и отражателя. IO-Link обеспечивает соответствующую передачу данных в ПЛК. Это позволяет своевременно планировать техническое обслуживание или очистку устройства. Это позволяет избежать нежелательных простоев.
Reflex Array
BluePilot на RAY10: чем меньше расстояние между синими светодиодами друг от друга, тем выше степень загрязнения BluePilot на RAY26: чем меньше расстояние между синими светодиодами друг от друга, тем выше степень загрязненияПрофилактическое техническое обслуживание предотвращает простой
Подавление конвейерной ленты
Подавление транспортёрной ленты позволяет постепенно деактивировать зону обнаружения (A) непосредственно над транспортёрной лентой. Благодаря этому во время работы установки подавляются возмущающие воздействия транспортёрной ленты, которые приводят к переключению датчика.
Conveyor belt suppression, manually
Conveyor belt suppression, via IO-LinkБыстро и без особых усилий обеспечить эксплуатационную готовность оборудования с подавлением конвейерной ленты
Применение
Технические данные
Загрузки
Наверх Пожалуйста, подождите.. .
Ваш запрос обрабатывается, это может занять несколько секунд.
Наименование составных транзисторов выделено цветом. Особенностью справочника является то, что импортные транзисторы взяты не из справочников, а из прайсов интернет-магазинов (т.е., с большой вероятностью доставаемые) | Справочник предназначен для подбора компонентов по электрическим параметрам, для выбора замены (аналога) транзистору с известными характеристиками, подбора комплементарной пары. За основу справочника взяты отечественные транзисторы, расположенные в порядке возрастания напряжения и тока. Импортные современные транзисторы в справочник взяты из прайс-листов магазинов. Импортные и отечественные транзисторы, расположенные в одной колонке, имеют близкие параметры, хотя и не обязательно являются полными аналогами. ![]() Справочник по отечественным мощным транзисторам. Полевые транзисторы. Справочник. Маломощные транзисторы. Справочник. Транзисторы средней мощности. Справочник. Отечественные smd транзисторы. Справочник. Главная страница. | ||||||
Показать только: 40В 60В 70В 80В 100В 160В 200В 250В 300В 400В 500В 600В 700В 800В 900В 1500В 2000В ВСЕ | |||||||
Отечеств.![]() | Корпус | Тип | Imax, A | Импортный | Корпус | ||
Внешний вид корпусов ТО: | |||||||
Транзисторы на напряжение до 40В: | |||||||
КТ668 (А-В) | ТО-92 | pnp | 0.1 | BC557 BC857 | TO-92 smd | современный pnp транзистор 40В 0.1А | |
КТ6111 (А-Г) | ТО-92 | npn | 0.1 | BC547 BC847 | TO-92 smd | npn транзистор 40В 0.1А | |
КТ6112 (А-В) | ТО-92 | pnp | 0.1 (0.15) | 2SA1266 2SA1048 | TO-92 TO-92 | pnp транзистор 40В 0.1А | |
КТ503 А,Б | ТО-92 | npn | 0.![]() | 2SC1815 | TO-92 | описание npn транзистора КТ503 на 40В 0.15А | |
2Т3133А | ТО-126 | npn | 0.3 | npn транзистор 40В 0.3А | |||
КТ501 Ж,И,К | ТО-92 | pnp | 0.3 (0.2) | 2N3906 | TO-92 | описание транзистора биполярного кт501, характеристики и графики | |
КТ645Б | ТО-92 | npn | 0.3 (0.2) | 2N3904 | TO-92 | npn транзистор 40В 0.3А | |
КТ646Б | ТО-126 | npn | 0.5 (0.6) | 2N4401 MMBT2222 | TO-92 smd | описание и характеристики npn транзистора КТ646 на 40В 0.5А | |
КТ626А | ТО-126 | pnp | 0.5 | 2N4403 BC807 | TO-92 smd | транзистор биполярный кт626, характеристики | |
КТ685 А,В | ТО-92 | pnp | 0.![]() | транзистор биполярный кт685, характеристики | |||
КТ686 А,Б,В | ТО-92 | pnp | 0.8 | BC327 | ТО-92 | характеристики транзистора кт686 | |
КТ660А | ТО-92 | npn | 0.8 | BC337 BC817 | ТО-92 smd | npn транзистор 40В 0.8А | |
КТ684А | ТО-92 | npn | 1 | BC635 | TO-92 | npn транзистор 40В 1А | |
КТ692А | ТО-39 | pnp | 1 | BC636 | TO-92 | pnp транзистор 40В 1А | |
КТ815А | ТО-126 | npn | 1.5 | BD135 | TO-126 | npn транзистор КТ815 на 40В 1.5А | |
КТ639А,Б,В | ТО-126 | pnp | 1.![]() | BD136 | TO-126 | npn транзистор КТ639 на 40В 1.5А | |
КТ814А | ТО-126 | pnp | 1.5 | pnp транзистор КТ814А на 40В 1.5А | |||
2Т860В | ТО-39 | pnp | 2 | 2SA1020 | TO-92L | транзистор биполярный 2т860 | |
КТ852Г | ТО-220 | pnp | 2 | FMMT717 | sot23 | транзистор биполярный кт852 на 40В 2А | |
КТ943А | ТО-126 | npn | 2 | транзистор биполярный кт943 | |||
КТ817А,Б | ТО-126 | npn | 3 | описание транзистора кт817 на 40В 3А | |||
КТ816Б | ТО-126 | pnp | 3 | 2SB856 | TO-220 | транзистор биполярный кт816 | |
КТ972Б КТ8131А | ТО-126 | | npn | 4 | описание составного транзистора кт972 на 40В 4А | ||
КТ973Б КТ8130А | ТО-126 | | pnp | 4 | 2SB857 | TO-220 | описание транзистора кт973 |
КТ835Б | ТО-220 | pnp | 7.![]() | описание транзистора кт835 на 40В 7А | |||
2Т837В,Е | ТО-220 | pnp | 8 | транзистор биполярный 2т837 | |||
КТ829Г | ТО-220 | npn | 8 | описание составного транзистора кт829 на 40В 8А | |||
КТ853Г | ТО-220 | pnp | 8 | характеристики транзистора кт853 | |||
КТ819А,Б | ТО-220, ТО-3 | npn | 10 | TIP34 | TO-247 | описание транзистора кт819 на 40В 10А | |
КТ818А | ТО-220, ТО-3 | pnp | 10 | TIP33 | TO-247 | описание транзистора кт818 | |
КТ863А | ТО-220 | npn | 10 (12) | 2SD1062 | TO-220 | транзистор биполярный кт863 и импортный 2sd1062 | |
2Т877В | ТО-3 | pnp | 20 | составной 2Т877 на 40В 20А | |||
Транзисторы на напряжение до 60В: | |||||||
КТ503В,Г | ТО-92 | npn | 0.![]() | 2SC3402 2SC3198 BC546 | TO-92 TO-92 TO-92 | описание транзистора КТ503 на 60В 0.1А | |
КТ645А | ТО-92 | npn | 0.3 | ||||
КТ662А | ТО-39 | pnp | 0.4 (0.1) | BC556 | TO-92 | импортный транзистор 60В 0.1А в справочнике | |
КТ646А | ТО-126 | npn | 0.5 | BD137 BCV49 | TO-126 smd | описание транзистора КТ646 на 60В 0.5А | |
КТ626Б | ТО-126 | pnp | 0.5 | BD138 BCV48 | TO-126 smd | транзистор 60В 0.5А в справочнике | |
КТ685Б,Г | ТО-92 | pnp | 0.![]() | BC638 | TO-92 | ||
КТ644(А-Г) | ТО-126 | pnp | 0.6 | описание транзистора КТ644 | |||
КТ661А КТ529А | ТО-39 TO-92 | | pnp | 0.6 (1) | 2SA684 MMBT2907 | TO-92L smd | |
КТ630Д,Е КТ530А | ТО-39 TO-92 | | npn | 1 | BC637 BSR41 | TO-92 smd | транзистор на 60В 1А |
КТ683Д,Е | ТО-126 | npn | 1 | 2SD1616 | TO-92 | транзистор на 60В 1А | |
КТ659А | ТО-39 | npn | 1.2 | ||||
КТ961В | ТО-126 | npn | 1.![]() | BD137 | TO-126 | ||
КТ639Г,Д | ТО-126 | pnp | 1.5 | BD138 | TO-126 | ||
КТ698В | ТО-92 | npn | 2 | 2SC2655 2SD1275 | TO-92 TO-220FP | транзистор на 60В 2А | |
2Т831Б | ТО-39 | npn | 2 | ||||
2Т830Б | ТО-39 | pnp | 2 | ||||
2Т880В | ТО-39 | pnp | 2 | ||||
2Т881В | ТО-39 | npn | 2 | ||||
КТ852В | ТО-220 | pnp | 2 | составной биполярный транзистор на 60В 2А | |||
2Т708Б | ТО-39 | pnp | 2.![]() | ||||
КТ817В | ТО-126 | npn | 3 (4) | 2N5191 2SD1266 | ТО-126 TO-220FP | транзистор КТ817 на 60В 3А | |
2Т836В | ТО-39 | pnp | 3 | ||||
КТ816В | ТО-126 | pnp | 3 | 2SB1366 2SB1015 | TO-220FP TO-220FP | транзистор КТ816В на 60В 3А | |
КТ972А КТ8131Б | ТО-126 | | npn | 4 | BD677 | TO-126 | составной отечественный транзистор на 60В 4А |
КТ973А КТ8130Б | ТО-126 | | pnp | 4 (5) | BD678 2SA1469 2SB1203 | TO-126 TO-220 smd | описание составного транзистора КТ973А на 60В 5А |
КТ829В | ТО-220 | npn | 8 (5) | TIP120 | TO-220 | транзистор на 60В 5А | |
КТ8116В | ТО-220 | npn | 8 | транзистор КТ8116 на 60В 8А | |||
КТ853В | ТО-220 | pnp | 8 | транзистор на 60В 8А | |||
2Т837Б,Д | ТО-220 | pnp | 8 | ||||
2Т709В | ТО-3 | pnp | 10 | MJE2955 | TO-220 | биполярный транзистор на 60В 10А | |
2Т875В | ТО-3 | npn | 10 | MJE3055 | TO-220 | транзистор на 60В 10А | |
2Т716В,В1 | ТО-3 ТО-220 | | npn | 10 | |||
КТ8284А | ТО-220 | npn | 12 (15) | TIP3055 | TO-218 | составной транзистор на 60В 15А | |
2Т825В2 | ТО-220 | pnp | 15 | ||||
КТ827В | ТО-3 | npn | 20 | составной транзистор КТ827 на 60В 20А | |||
2Т825В | ТО-3 | pnp | 20 | транзистор на 60В 20А | |||
2Т877Б | ТО-3 | pnp | 20 | транзистор на 60В 20А | |||
КТ8106Б | ТО-220 | npn | 20 | составной транзистор КТ8106 на 60В 20А | |||
КТ896Б | ТО-220 | pnp | 20 | составной транзистор КТ896 на 60В 20А | |||
КТ8111В9 | ТО-218 | npn | 20 | составной транзистор КТ8111 на 60В 20А | |||
Транзисторы на напряжение до 70В: | |||||||
КТ815В | ТО-126 | npn | 1.![]() | 2SC5060 | TO-92S | на 70В 1А | |
КТ814В | ТО-126 | pnp | 1.5 | ||||
КТ698Б | ТО-92 | npn | 2 | отечественный на 70В 2А | |||
2Т831В | ТО-39 | npn | 2 | ||||
2Т860Б | ТО-39 | pnp | 2 | ||||
КТ943 Б,Д | ТО-126 | npn | 2 | ||||
2Т837А,Г | ТО-220 | pnp | 8 | на 70В 8А | |||
КТ808ГМ | ТО-3 | npn | 10 | ||||
КТ818В | ТО-220, ТО-3 | pnp | 10 | описание транзистора КТ818В на 70В 10А | |||
2Т876Б | ТО-3 | pnp | 10 | ||||
2Т875Б | ТО-3 | npn | 10 | ||||
Транзисторы на напряжение до 80В: | |||||||
КТ503Д | ТО-92 | npn | 0.![]() | 2SC1627 | TO-92 | транзистор на 80В 0.1А | |
КТ626В | ТО-126 | pnp | 0.5 (0.7) | 2SA935 | TO-92L | транзистор на 80В 0.5А | |
КТ684Б | ТО-92 | npn | 1 | транзистор на 80В 1А | |||
КТ961Б | ТО-126 | npn | 1.5 | транзистор на 80В 1.5А | |||
2Т881Б | ТО-39 | npn | 2 (1.5) | BD139 | TO-126 | транзистор на 80В 2А | |
2Т830В | ТО-39 | pnp | 2 (1.5) | BD140 BCP53 | TO-126 smd | транзистор на 80В 2А | |
2Т880Б | ТО-39 | pnp | 2 | транзистор на 80В 2А | |||
КТ852Б | ТО-220 | pnp | 2 | транзистор на 80В 2А | |||
КТ943В,Г КТ8131В | ТО-126 | | npn | 2 (4) | 2N6039 | TO-126 | составной транзистор на 80В 4А |
2Т836А,Б КТ8130В | ТО-39 ТО-126 | | pnp | 3 | характеристики составного транзистора КТ8131 на 80В 4А | ||
КТ829Б | ТО-220 | npn | 8 (5) | BD679 TIP121 MJD44h21 | TO-126 TO-220 smd | транзистор 80В 5А, составной транзистор на 80В 4А | |
КТ8116Б | ТО-220 | npn | 8 (10) | 2SD2025 BDX33B | TO-220FP TO-220 | составной транзистор на 80В 10А | |
КТ853Б | ТО-220 | pnp | 8 (10) | BDX34B | TO-220 | составной транзистор на 10А 80В | |
2Т709Б | ТО-3 | pnp | 10 | TIP33B | TO-247 | транзистор на 80В 10А | |
2Т876А,Г | ТО-3 | pnp | 10 | ||||
2Т716Б,Б1 | ТО-3 ТО-220 | | npn | 10 | транзистор на 80В 10А | ||
КТ808ВМ | ТО-3 | npn | 10 | ||||
КТ819Б,В* | ТО-220 ТО-3 | npn | 10 | TIP34B | TO-247 | ||
2Т875А,Г | ТО-3 | npn | 10 | ||||
КТ8284Б | ТО-220 | npn | 12 | на 80В 12А | |||
2Т825Б2 | ТО-220 | pnp | 15 | транзистор на 80В 15А | |||
КТ827Б | ТО-3 | npn | 20 | транзистор на 80В 20А | |||
2Т825Б | ТО-3 | pnp | 20 | транзистор на 80В 20А | |||
2Т877А | ТО-3 | pnp | 20 | транзистор на 80В 20А | |||
КТ8111Б9 | ТО-218 | npn | 20 | составной транзистор на 80В 20А | |||
КТ8106А | ТО-220 | npn | 20 | составной транзистор на 80В 20А | |||
КТД8280А | ТО-218 | npn | 60 | составной транзистор на 80В 60А | |||
КДТ8281А | ТО-218 | pnp | 60 | транзистор на 80В 60А | |||
КТД8283А | ТО-218 | pnp | 60 | ||||
Транзисторы на напряжение до 100-130В: | |||||||
КТ601А,АМ | ТО-126 | npn | 0.![]() | биполярный транзистор на 100В 30мА | |||
КТ602А,АМ | ТО-126 | npn | 0.075 | ||||
КТ638А,Б | ТО-92 | npn | 0.1 | 2SC2240 | TO-92 | биполярный транзистор на 100В 100мА | |
КТ503Е | ТО-92 | npn | 0.15 | ||||
КТ807А,Б | ТО-126 | npn | 0.5 | ||||
КТ630А,Б,Г | ТО-39 | npn | 1 | биполярный транзистор на 100В 1А | |||
КТ684В | ТО-92 | npn | 1 | BC639 | TO-92 | биполярный npn транзистор на 100В 1А | |
КТ683Б,В,Г | ТО-126 | npn | 1 | биполярный транзистор на 100В 1А | |||
КТ719А | ТО-126 | npn | 1.![]() | ||||
КТ815Г | ТО-126 | npn | 1.5 | биполярный транзистор на 100В 1.5А | |||
КТ961А | ТО-126 | npn | 1.5 | биполярный транзистор на 100В 1.5А | |||
КТ814Г | ТО-126 | pnp | 1.5 (1) | 2N5400 BC640 2SA1358 | TO-92 TO-92 TO-126 | биполярный pnp транзистор на 100В 1.5А | |
КТ6103А | ТО-92 | npn | 1.5 | биполярный транзистор на 100В 1.5А | |||
КТ6102А | ТО-92 | pnp | 1.5 | биполярный транзистор на 100В 1.5А | |||
КТ698А | ТО-92 | npn | 2 | BD237 | TO-126 | биполярный транзистор на 100В 2А | |
2Т831Г | ТО-39 | npn | 2 | SD1765 | TO-220FP | биполярный транзистор на 100В 2А | |
2Т881А,Г | ТО-39 | npn | 2 | биполярный транзистор на 100В 2А | |||
2Т860А | ТО-39 | pnp | 2 | биполярный pnp транзистор на 100В 2А | |||
2Т830Г | ТО-39 | pnp | 2 | биполярный pnp транзистор на 100В 2А | |||
2Т880А,Г | ТО-39 | pnp | 2 | биполярный pnp транзистор на 100В 2А | |||
КТ852А | ТО-220 | pnp | 2 | составной pnp транзистор на 100В 2А | |||
2Т708А | ТО-39 | pnp | 2.![]() | составной pnp транзистор на 100В 2.5А | |||
КТ817Г | ТО-126 | npn | 3 | транзистор 100В на 3А | |||
КТ816Г | ТО-126 | pnp | 3 (5) | TIP42C TIP127 | TO-220 | pnp транзистор 100В 3А, pnp транзистор на 100В 5А | |
КТ805БМ,ВМ | ТО-220 | npn | 5 | npn транзистор на 100В 5А | |||
КТ829А | ТО-220 | npn | 8 (5) | TIP122 | TO-220 | составной npn транзистор на 100В 8А | |
КТ8116А | ТО-220 | npn | 8 | составной npn транзистор на 100В 8А | |||
КТ853А | ТО-220 | pnp | 8 (5) | составной pnp транзистор на 100В 8А | |||
КТ8115А | ТО-220 | pnp | 8 | составной pnp транзистор на 100В 8А | |||
2Т709А | ТО-3 | pnp | 10 | BDX34C | TO-220 | составной pnp транзистор на 100В 10А | |
2Т716А,А1 | ТО-3 ТО-220 | | npn | 10 | BDX33C | TO-220 | составной npn транзистор на 100В 10А |
КТ808 АМ,БМ | ТО-3 | npn | 10 | npn транзистор на 100В 10А | |||
КТ819А,Г | ТО-220 ТО-3 | npn | 10 | TIP34C | TO-247 | npn транзистор на 100В 10А | |
КТ818Г | ТО-220 ТО-3 | pnp | 10 | TIP33B 2SA1265 | TO-247 | pnp транзистор на 100В 10А | |
КТ8284В | ТО-220 | npn | 12 | составной npn транзистор на 100В 12А | |||
КТ8246 А,Б | ТО-220 | npn | 15 | составной npn транзистор на 100В 15А | |||
2Т825А2 | ТО-220 | pnp | 15 | составной pnp транзистор на 100В 15А | |||
ПИЛОН-3А | ТО-220 | npn | 15 | составной npn транзистор на 100В 15А | |||
КТ827А | ТО-3 | npn | 20 | составной npn транзистор на 100В 20А | |||
2Т825А | ТО-3 | pnp | 20 | составной pnp транзистор на 100В 20А | |||
КТД8257А | ТО-220 | npn | 20 | составной npn транзистор на 100В 20А | |||
2Т935Б | ТО-220 | npn | 20 | npn транзистор на 100В 20А | |||
КТД8278Б,В | ТО-220 ТО-263 | npn | 20 | npn транзистор на 100В 20А | |||
КТ896А | ТО-220 | pnp | 20 | npn транзистор на 100В 20А | |||
КТ8111А9 | ТО-218 | npn | 20 | составной npn транзистор на 100В 20А | |||
КТД8280Б | ТО-218 | npn | 60 | составной npn транзистор на 100В 60А | |||
КТД8281Б | ТО-218 | pnp | 60 | pnp транзистор на 100В 60А | |||
КТД8283Б | ТО-218 | pnp | 60 | pnp транзистор на 100В 60А | |||
Транзисторы на напряжение до 160В: | |||||||
КТ611В,Г | ТО-126 | npn | 0.![]() | 2SC2230 2SD1609 | TO-92L TO-126 | ||
КТ940В | ТО-126 | npn | 0.1 | ||||
КТ6117 | ТО-92 | npn | 0.6 (0.3) | 2N5551 | TO-92 | ||
КТ6116 | ТО-92 | pnp | 0.6 (0.3) | 2N5401 | TO-92 | ||
КТ630В | ТО-39 | npn | 1 | 2SC2383 | TO-92L | ||
КТ683А | ТО-126 | npn | 1 | ||||
КТ850В | ТО-220 | npn | 2 | ||||
КТ8123А | ТО-220 | npn | 2 | ||||
КТ851В | ТО-220 | pnp | 2 (1) | 2SA940 KSA1013 2SA1306 | TO-220 TO-92L TO-220FP | ||
КТ805АМ | ТО-220 | npn | 5 | ||||
КТ855Б,В | ТО-220 | pnp | 5 | ||||
КТ899А | ТО-220 | npn | 8 | ||||
КТ712Б | ТО-220 | pnp | 10 | 2SA1186 | ТО-3Р | ||
КТ863БС | ТО-220 ТО-263 | npn | 12 | 2SC3907 | TO-3P ? | ||
КТ8246В,Г | ТО-220 | npn | 15 | ||||
КТ8101Б | ТО-218 | npn | 16 | ||||
КТ8102Б | ТО-218 | pnp | 16 | 2SA1216 | SIP3 | ||
КТД8257Б | ТО-220 | npn | 20 | ||||
ПИР-2 (КТ740А) | ТО-220 ТО-218 | npn | 20 | ||||
КТ879Б | КТ-5 | npn | 50 | ||||
Транзисторы на напряжение до 200В: | |||||||
КТ611А,Б | ТО-126 | npn | 0.![]() | 2SC1473 BFP22 | TO-92 TO-92 | биполярный транзистор на 200В 0.1А | |
КТ504Б | ТО-39 | npn | 1 | биполярный транзистор на 200В 1А | |||
КТ851А | ТО-220 | pnp | 2 | биполярный транзистор на 200В 2А | |||
КТ842Б | ТО-3 | pnp | 5 | биполярный транзистор на 200В 5А | |||
КТ864А | ТО-3 | npn | 10 (7) | BU406 | TO-220 | биполярный транзистор на 200В 10А | |
КТ865А | ТО-3 | pnp | 10 | биполярный транзистор на 200В 10А | |||
КТ712А | ТО-220 | pnp | 10 | составной биполярный транзистор на 200В 10А | |||
КТ945А | ТО-3 | npn | 15 | биполярный транзистор на 200В 15А | |||
КТ8101А | ТО-218 | npn | 16 | биполярный транзистор на 200В 15А | |||
КТ8102А | ТО-218 | pnp | 16 | 2SA1294 2SA1302 | TO-247 | биполярный транзистор на 200В 16А | |
КТД8257(А-Г) | ТО-220 | npn | 20 | составной биполярный транзистор на 200В 20А | |||
КТД8278А | ТО-220 ТО-263 | npn | 20 | составной биполярный транзистор на 200В 20А | |||
КТ897Б | ТО-218 | npn | 20 | составной биполярный транзистор на 200В 20А | |||
КТ898Б | ТО-218 | npn | 20 | составной транзистор на 200В 20А | |||
КТ867А | ТО-3 | npn | 25 | биполярный транзистор на 200В 25А | |||
КТ879А | КТ-5 | npn | 50 | биполярный транзистор на 200В 50А | |||
Транзисторы на напряжение до 250В: | |||||||
КТ605А,Б | ТО-126 | npn | 0.![]() | BF422 | TO-92 | ||
КТ940Б | ТО-126 | npn | 0.1 | ||||
КТ969А | ТО-126 | npn | 0.1 | ||||
КТ504В | ТО-39 | npn | 1 | ||||
2Т882В | ТО-220 | npn | 1 | ||||
КТ505Б | ТО-39 | pnp | 1 | ||||
2Т883Б | ТО-220 | pnp | 1 | 2SA1837 | TO-220FP | ||
КТ850А,Б | ТО-220 | npn | 2 | ||||
КТ851Б | ТО-220 | pnp | 2 | ||||
КТ855А | ТО-220 | pnp | 5 | ||||
КТ857А | ТО-220 | npn | 7 (8) | MJE15032 | TO-220 | ||
КТ844А | ТО-3 | npn | 10 | ||||
2Т862А,Б | ТО-3 | npn | 15 | ||||
Транзисторы на напряжение до 300В: | |||||||
КТ940А | ТО-126 | npn | 0.![]() | 2SC2482 2SC5027 BF820 | TO-92L TO-92L smd | npn транзистор на 300В 0.1А | |
КТ9115А | ТО-126 | pnp | 0.1 (0.05) | 2SA1091 BF821 | TO-92 smd | pnp транзистор на 300В 0.1А | |
КТ6105А | ТО-92 | npn | 0.15 | npn транзистор на 300В 0.1А | |||
КТ6104А | ТО-92 | pnp | 0.15 | 2SA1371 | TO-92L | pnp транзистор на 300В 0.1А | |
2Т882Б | ТО-220 | npn | 1 (0.5) | MJE340 MPSA42 | TO-126 TO-92 | npn транзистор на 300В 1А | |
КТ504А | ТО-39 | npn | 1 (1.![]() | MJE13002 | TO-220 | npn транзистор на 300В 1А | |
Т505А | ТО-39 | pnp | 1 (0.5) | MJE350 | TO-126 | ||
2Т883А | ТО-220 | pnp | 1 | ||||
КТ8121Б | ТО-220 | npn | 4 | npn транзистор на 300В 3А | |||
КТ8258Б | ТО-220 | npn | 4 | npn транзистор на 300В 4А | |||
КТ842А | ТО-3 | pnp | 5 | на 300В 5А | |||
КТ8124В | ТО-220 | npn | 7 | npn транзистор на 300В 6А | |||
КТ8109А,Б | ТО-220 | npn | 7 | составной npn транзистор на 300В 7А | |||
КТД8262(А-В) | ТО-220 | npn | 7 | составной npn транзистор на 300В 7А | |||
КТ8259Б | ТО-220 | npn | 8 | npn транзистор на 300В 8А | |||
КТ854Б | ТО-220 | npn | 10 | npn транзистор на 300В 10А | |||
КТД8279(А-В) | ТО-220 ТО-218 | npn | 10 | составной транзистор на 300В 10А | |||
КТ892А,В | ТО-3 | npn | 15 | npn транзистор на 300В 15А | |||
КТ8260А | ТО-220 | npn | 15 | npn транзистор на 300В 15А | |||
КТД8252(А-Г) | ТО-220 ТО-218 | npn | 15 | составной npn транзистор на 300В 15А | |||
КТ890(А-В) | ТО-218 | npn | 20 | составной npn транзистор на 300В 20А | |||
КТ897А | ТО-218 | npn | 20 | составной npn транзистор на 300В 20А | |||
КТ898А | ТО-218 | npn | 20 | составной npn транзистор на 300В 20А | |||
КТ8232А,Б | ТО-218 | npn | 20 | составной npn транзистор на 300В 20А | |||
КТ8285А КТ8143Ш | ТО-218 ТО-3 | | npn | 30 80 | мощный npn транзистор КТ8143 на напряжение 300В и ток 80А | ||
Транзисторы на напряжение до 400В: | |||||||
2Т509А | ТО-39 | pnp npn npn | 0.![]() 0.2 0.2 | 2SA1625 MPSA44 MJE13001 | TO-92 | npn транзистор на 400В 0.5А | |
2Т882А | ТО-220 | npn | 1 (1.5) | MJE13003 TIP50 | TO-220 TO-220 | npn транзистор на 400В 1А | |
КТ704Б,В | npn | 2.5 (2) | BUX84 | TO-220 | npn транзистор на 400В 2.5А | ||
КТ8121А | ТО-220 | npn | 4 | npn транзистор на 400В 3А | |||
КТ8258А | ТО-220 | npn | 4 | MJE13005 | TO-220 | npn транзистор на 400В 4А | |
КТ845А | ТО-3 | npn | 5 | BUT11 | TO-220 | npn транзистор на 400В 5А | |
КТ840А,Б | ТО-3 | npn | 6 | 2SD1409 | TO-220FP | npn транзистор на 400В 6А | |
КТ858А | ТО-220 | npn | 7 | 2SC2335 | TO-220 | npn транзистор на 400В 7А | |
КТ8124А,Б | ТО-220 | npn | 7 | 2SC3039 | TO-220 | npn транзистор на 400В 7А | |
КТ8126А | ТО-220 | npn | 8 | MJE13007 | TO-220 | npn транзистор на 400В 8А | |
КТ8259А | ТО-220 | npn | 8 | 2SC4834 | TO-220FP | npn транзистор на 400В 8А | |
КТ8117А | ТО-218 | npn | 10 | 2SC2625 | TO-247 | npn транзистор на 400В 9А | |
КТ841Б | ТО-3 | npn | 10 | 2SC3306 | TO-3P | npn транзистор на 400В 10А | |
2Т862Г | ТО-3 | npn | 10 | 2SC4138 | TO-3P | npn транзистор на 400В 10А | |
2Т862В | ТО-3 | npn | 10 (12) | MJE13009 2SC3042 | TO-220 TO-3P | биполярный транзистор на 400В 10А | |
КТД8279А | ТО-220 ТО-218 | npn | 10 | составной транзистор на 400В 10А | |||
КТ834В | ТО-3 | npn | 15 | составной транзистор на 400В 15А | |||
КТ848А | ТО-3 | npn | 15 | транзистор на 400В 15А | |||
КТ892Б | ТО-3 | npn | 15 | npn транзистор на 400В 15А | |||
КТ8260Б | ТО-220 | npn | 15 | npn транзистор на 400В 15А | |||
КТ8285Б | ТО-218 ТО-3 | npn | 30 | npn транзистор на 400В 30А | |||
2Т885А | ТО-3 | npn | 40 | npn транзистор на 400В 40А | |||
Транзисторы на напряжение до 500В: | |||||||
КТ6107А | ТО-92 | npn | 0.![]() | npn транзистор на 500В 0.1А | |||
КТ6108А | ТО-92 | pnp | 0.13 | ||||
КТ704А | npn | 2.5 (1.5) | 2SC3970 | TO-220FP | npn транзистор на 500В 2А | ||
КТ8120А | ТО-220 | npn | 3 (5) | BUL310 | TO-220FP | npn транзистор на 500В 3А | |
КТ812Б | ТО-3 | npn | 8 | npn транзистор на 500В 8А | |||
КТ854А | ТО-220 | npn | 10 | npn транзистор на 500В 10А | |||
2Т856В | ТО-3 | npn | 10 | npn транзистор на 500В 10А | |||
КТ8260В | ТО-220 | npn | 15 | npn транзистор на 500В 15А | |||
КТ834А,Б | ТО-3 | npn | 15 | npn транзистор на 500В 15А | |||
ПИР-1 | ТО-218 | npn | 20 | npn транзистор на 500В 20А | |||
КТ8285В | ТО-218 ТО-3 | npn | 30 | npn транзистор на 500В 30А | |||
2Т885Б | ТО-3 | npn | 40 | npn транзистор на 500В 40А | |||
Транзисторы на напряжение до 600В: | |||||||
КТ888Б | ТО-39 | pnp | 0.![]() | pnp транзистор на 600В 0.1А | |||
КТ506Б | ТО-39 | npn | 2 | npn транзистор на 600В 2А | |||
2Т884Б | ТО-220 | npn | 2 (3) | 2SC5249 | TO-220FP | npn транзистор на 600В 2А | |
КТ887Б | ТО-3 | pnp | 2 (1) | 2SA1413 | smd | pnp транзистор на 600В 2А | |
КТ828Б,Г | ТО-3 | npn | 5 (6) | 2SD2499 2SD2498 2SD1555 | TO-3PF TO-3PF TO-3PF | строчный транзистор на 600В 5А | |
КТ8286А | ТО-218 ТО-3 | npn | 5 (8) | 2SC5386 | TO-3P ? | строчный транзистор на 600В 5А | |
КТ856А1,Б1 | ТО-218 | npn | 10 | ST1803 | ISOW218 | строчный транзистор на 600В 10А | |
КТ841А,В | ТО-3 | npn | 10 | 2SC5387 | ISOW218 | npn транзистор на 600В 10А | |
КТ847А | ТО-3 | npn | 15 (20) | 2SC4706 2SC5144 | TO-3P TO-247 ? | мощный транзистор высоковольтный на 600В 15А | |
КТ8144Б | ТО-3 | npn | 25 | мощный высоковольтный транзистор на 600В 25А | |||
КТ878В | ТО-3 | npn | 30 | мощный npn транзистор на 600В 30А | |||
Транзисторы на напряжение до 700В: | |||||||
КТ826(А-В) | ТО-3 | npn | 1 | npn транзистор на 700В 1А | |||
КТ8137А | ТО-126 | npn | 1.![]() | npn транзистор на 700В 1.5А | |||
КТ887А | ТО-3 | pnp | 2 | pnp транзистор на 700В 2А | |||
КТ8286Б | ТО-218 ТО-3 | npn | 5 | npn транзистор на 700В 5А | |||
КТ8107(А-Г) | ТО-220 | npn | 8 | npn транзистор на 700В 8А | |||
КТ812А | ТО-3 | npn | 10 | BUh200 | TO-220 | высоковольтный транзистор на 700В 10А | |
2Т856Б | ТО-3 | npn | 10 | npn транзистор на 700В 10А | |||
Транзисторы на напряжение до 800В: | |||||||
КТ506А | ТО-39 | npn | 2 | высоковольтный npn транзистор 800В 1А | |||
2Т884А | ТО-220 | npn | 2 | npn транзистор на 800В 2А | |||
КТ859А | ТО-220 | npn | 3 | 2SC3150 | TO-220 | npn транзистор на 800В 3А | |
КТ8118А | ТО-220 | npn | 3 | npn транзистор на 800В 3А | |||
КТ828А,В | ТО-3 | npn | 5 | npn транзистор на 800В 4А | |||
КТ8286В | ТО-218 ТО-3 | npn | 5 | npn транзистор на 800В 5А | |||
КТ868Б | КТ-9 | npn | 6 (8) | 2SC5002 2SC4923 | TO-3PF TO-3PML | высоковольтный транзистор на 800В 6А | |
КТ8144А | ТО-3 | npn | 25 | 2SC3998 | TO-3PBL | высоковольтный транзистор на 800В 25А | |
КТ878Б | ТО-3 | npn | 30 | высоковольтный npn транзистор на 800В 30А | |||
Большая часть из приведенных здесь транзисторов на напряжение свыше 600В применяются в строчных развертках телевизоров и мониторов.![]() Транзисторы на напряжение до 900В: | |||||||
КТ888А | ТО-39 | pnp | 0.1 | транзистор высоковольтный на 900В 0.1А | |||
КТ868А | КТ-9 | npn | 6 (3) | 2SC3979 | TO-220 | npn транзисторы высоковольтные на 900В 6А | |
2Т856А | ТО-3 | npn | 10 | npn транзистор высоковольтный на 900В 10А | |||
КТ878А | ТО-3 | npn | 30 | высоковольтный npn транзистор на 900В 30А | |||
Транзисторы на напряжение до 1000-1500В: | |||||||
КТ838А | ТО-3 | npn | 5 | BU508 | TO-3PF | биполярный транзисторы высоковольтные на 1500В 5А | |
КТ846А | ТО-3 | npn | 5 | BU2506 | SOT-199 | современный высоковольтный строчный транзистор на 1500В 5А | |
КТ872А,Б | ТО-218 | npn | 8 | BU2508 2SC5447 | TO-3PFM SOT-199 | современные высоковольтные транзисторы на 1500В 8А | |
КТ886Б1 | ТО-218 | npn | 8 (10) | BU1508 | TO-220 | современный высоковольтный биполярный транзистор на 1000В 10А | |
КТ839А | ТО-3 | npn | 10 | BU2520 | TO-3PML | современный биполярный высоковольтный транзистор на 1500В 10А | |
КТ886А1 | ТО-218 | npn | 10 (12) | 2SC5270 | TO3-PF | современный высоковольтный npn транзистор на 1500В 10А | |
npn | 25 | 2SC5244 2SC3998 | TOP-3L ТО-3PBL | строчный транзистор на 1500В 25А | |||
Транзисторы на напряжение свыше 2000В | |||||||
2Т713А | ТО-3 | npn | 3 | транзистор высоковольтный на 2000В 3А | |||
КТ710А | ТО-3 | npn | 5 | npn транзистор высоковольтный на 2000В 5А |
: PNP против NPN и Sourcing против Sinking
Поскольку многие типичные датчики промышленной автоматизации работают при 24 В постоянного тока, важно понимать два основных варианта этих твердотельных устройств.
полагаются на дискретные сигналы ввода / вывода, такие как входы от датчиков и выходы для полевых устройств. В некоторых отраслях промышленности эти сигналы работают при напряжении 120 В переменного тока. Более безопасным и более распространенным вариантом является использование 24 В постоянного тока, и многие конечные пользователи выбирают устройства со штекерными разъемами для упрощения установки и обслуживания.Как оказалось, необходимо немного спланировать, чтобы обеспечить правильное подключение датчиков 24 В постоянного тока и модулей дискретных входов (DI) ПЛК.
Два типа датчиков 24 В постоянного тока называются PNP и NPN. Они должны быть правильно согласованы с опускающимися и исходящими модулями DI, чтобы они могли функционировать. Это несложно, и на самом деле существует что-то вроде стандартного или, по крайней мере, типичного подхода, как объясняется ниже.
Эффекты транзистора Твердотельная электроника для дискретных датчиков включения / выключения включает транзисторы, которые представляют собой полупроводниковые устройства, сконфигурированные для работы как крошечные реле. Они усиливают очень слабый сигнал, например, датчик положения бесконтактного переключателя, чтобы включить или выключить более сильный сигнал. Этот более мощный сигнал может поступать в точку DI или световой индикатор, или на любое другое устройство с приемлемым номинальным током. Транзисторы бывают двух типов: PNP (исходные) и NPN (проходящие).
Для транзисторов PNP и NPN «P» и «N» относятся к расположению полупроводниковых материалов. Транзисторы имеют соединения, называемые базой, коллектором и эмиттером.К счастью, для целей промышленной автоматизации совсем не обязательно разбираться в физике полупроводников.
PNP в сравнении с переключением NPNТвердотельные устройства активны, а не пассивны, и поэтому обычно требуют небольшого количества рабочей мощности. Обычно они проектируются как трехпроводные устройства с выводами или соединениями для:
- +24 В постоянного тока
- 0 В постоянного тока
- Коммутируемый или сенсорный сигнал
Питание устройства осуществляется по проводам +24 В постоянного тока и 0 В постоянного тока. Стиль PNP или NPN определяет, как датчик управляет переключаемым проводом. Вот две основные вещи, которые следует помнить о работе полевого датчика PNP и NPN при наличии сигнала «включено»:
В чем разница между PNP и NPN?
Что такое транзисторы PNP и NPN?
PNP и NPN — это транзисторы с биполярным переходом (BJT). БЮТ изготовлены из легированных материалов и допускают усиление тока. Его можно настроить как PNP и NPN.Транзисторы PNP и NPN обеспечивают возможность усиления или переключения.
В чем разница между PNP и NPN?
Легко запомнить, что NPN означает отрицательно-положительно-отрицательный транзистор, а PNP — положительно-отрицательно-положительный транзисторы. Давайте подробнее рассмотрим, как работают транзисторы NPN и PNP.
Транзистор NPN включается, когда от базы транзистора к эмиттеру подается достаточный ток.Таким образом, база транзистора NPN должна быть подключена к положительному напряжению, а эмиттер — к отрицательному напряжению, чтобы ток протек в базу. Когда от базы к эмиттеру течет достаточно тока, транзистор включает направление тока от коллектора к эмиттеру, а не от базы транзистора к эмиттеру. Транзистор PNP работает наоборот. В транзисторе PNP ток обычно течет от эмиттера транзистора к базе, и когда от эмиттера к базе течет достаточно тока, транзистор включает ток, направляя ток от эмиттера к коллектору.
Вкратце, транзистор NPN требует положительного тока от базы к эмиттеру, а PNP требует отрицательного тока к базе, но ток должен течь от базы к земле.
— базовый терминал; E — вывод эмиттера; C — вывод коллектора
Вот ссылка на видео ниже, которая может объяснить как работают транзисторы NPN и PNP подробнее:
PNP и NPN транзисторный выходной сигнал и нагрузка резистор
Различные оптические, индуктивные, емкостные и др. датчики имеют выходной сигнал с именами PNP NO, PNP NC, NPN NO, NPN NC. Все эти сигналы представляют собой просто переключатель ВКЛ / ВЫКЛ, но вместо сухого контакта у нас установлен выходной транзистор. Транзистор имеет выходную полярность (в отличие от сухого контакта). Как мы должны понимать эти результаты:
PNP — (транзистор PNP) NO — нормально открытый, это означает, что на выходе нет напряжения, пока датчик не сработал (см. Рисунок, выходной разъем датчика PNP № 4). При срабатывании датчика у нас будет +24 В на разъеме №2.4. Этот сигнал +24 В может быть подключен непосредственно к ПЛК или для любых других функций, таких как срабатывание реле, срабатывание сигнализации. Обычно ограничение тока в датчиках приближения составляет до 200 мА, поэтому на всех схемах показано, что выход подключается через резистор, на самом деле этот резистор встроен в ваш ПЛК, это может быть катушка вашего реле или индикаторная лампа. . Если мы подключим выход непосредственно к GND (минусовой провод), мы получим короткое замыкание, что означает, что ток будет расти и достигнет максимального тока источника питания.Таким образом, если у нас есть, например, источник питания 5A, короткое замыкание превысит предел тока датчика, и он будет поврежден.
Если у нас есть датчик NPN NC, это означает, что наш датчик оснащен транзистором NPN на выходе, а датчик нормально закрыт — это означает, что у нас есть выходной сигнал в высоком состоянии, в то время как датчик не срабатывает. Вместо заземления мы используем положительный кабель.
Разница между транзисторами NPN и PNP с таблицей сравнения
Одно из основных различий между транзисторами NPN и PNP заключается в том, что в транзисторе NPN ток протекает между коллектором и эмиттером, когда положительное питание подается на базу, тогда как в транзисторе PNP носитель заряда течет от эмиттера к коллектору при отрицательном поставка отдана на базу.Транзисторы NPN и PNP различаются ниже в сравнительной таблице с учетом различных других факторов.
NPN и PNP оба являются биполярным переходным транзистором. Это устройства управления током, которые в основном используются для переключения и усиления сигнала. В основном, в схеме используется NPN-транзистор, потому что в NPN-транзисторе ток проводимости создается в основном электронами, в то время как в транзисторе PNP ток проводимости возникает из-за отверстий. Поскольку электроны более подвижны, NPN имеет высокую проводимость.
Буквы PNP и NPN показывают напряжение, необходимое для эмиттера, коллектора и базы переходного транзистора. Транзисторы NPN и PNP, оба изготовлены из разного материала, из-за чего ток в них также различается. Иногда, когда на эмиттер подается напряжение, электроны пересекают базовый переход и достигают области коллектора. Это происходит потому, что база транзисторов NPN и PNP очень тонкая и слегка легированная.
Содержание: NPN против PNP транзистора
- Таблица сравнения
- Определение
- Ключевые отличия
Сравнительная таблица
Основа для сравнения | ТранзисторНПН | ТранзисторПНП |
---|---|---|
Определение | Транзистор, в котором два слоя n-типа разделены одним слоем P-типа | Два блока полупроводников p-типа разделены одним тонким блоком полупроводника n-типа. |
Символ | ||
Полная форма | Отрицательный Положительный и отрицательный | Положительный Отрицательный и положительный |
Направление тока | Коллектор к эмиттеру | Эмиттер к коллектору |
Включение | Когда электроны попадают в базу. | Когда отверстия входят в основание. |
Внутренний ток | Развивается из-за переменного положения электронов. | Возникают из-за различного положения отверстий. |
Внешний ток | Ток возникает из-за потока отверстий. | Ток возникает из-за потока электронов. |
Основной носитель заряда | Электрон | Отверстие |
Время переключения | Быстрее | Медленнее |
Несовершеннолетний носитель заряда | Отверстие | Электрон |
Положительное напряжение | Клемма коллектора | Клемма эмиттера |
Прямое смещение | Базовое соединение эмиттера | Базовое соединение эмиттера |
Обратное смещение | Разветвление основания коллектора | Разветвление основания коллектора |
Малый ток | Течение от эмиттера к базе | От базы к эмиттеру |
Сигнал заземления | Низкий | Высокий |
Определение транзистора PNP
Транзистор PNP имеет два блока из материала p-типа и один блок из материала n-типа.Он имеет три вывода: эмиттер, базу и коллектор. Эмиттер и коллектор PNP-транзистора изготовлены из материала p-типа, а их основание — из материала n-типа.
Переход эмиттер-база PNP подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением. Переход эмиттер-база подталкивает основной носитель заряда к базе, таким образом устанавливая ток эмиттера. Отверстие в материале p-типа объединяется с материалом n-типа, следовательно, составляет базовый ток.Оставшееся отверстие проходит через отрицательно смещенную область коллектор-база и собирается коллектором, из-за чего возникает ток коллектора. Таким образом, полный ток эмиттера протекает через цепь коллектора.
Ток эмиттера = ток коллектора + ток базы
Определение NPN-транзистора
Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем материала p-типа. Коллектор — это самая толстая область, а база — самая тонкая область NPN-транзистора.Область эмиттер-база транзистора находится под прямым смещением, а область коллекторной базы подключена с обратным смещением. Напряжение обратного смещения значительно меньше по сравнению с обратным смещением.
Переход эмиттер-база находится в прямом смещении, из-за чего большое количество электронов достигает базы. Это развивает ток эмиттера. Электрон в базовой области совмещен с дырками. Но база очень тонкая и слегка легированная, поэтому только маленькие дырки объединяются с электронами и составляют ток базы.Оставшиеся электроны проходят через область базы коллектора и развивают ток коллектора. Весь ток эмиттера протекает через коллекторную цепь.
Ток эмиттера = ток коллектора + ток базы
Ключевые различия между транзисторами NPN и PNP
- Транзистор NPN имеет два блока из полупроводниковых материалов n-типа и один блок из полупроводниковых материалов p-типа, тогда как транзистор PNP имеет один тонкий слой материала p-типа и два толстых слоя материала N-типа.
- Обозначения транзисторов NPN и PNP почти одинаковы, единственное различие между ними — это направление стрелки, которая указывает на эмиттер. В транзисторе NPN острие стрелки движется наружу к базе, а в PNP стрелка движется внутрь.
- В транзисторе NPN ток течет от коллектора к эмиттеру, потому что положительное питание подается на базу, тогда как в транзисторе PNP ток течет от эмиттера к коллектору.
- Транзистор NPN включается, когда электрон входит в базу, в то время как транзистор PNP включается, когда дыры входят в базу.
- Внутренний ток в транзисторе NPN составляет из-за переменного положения электронов, тогда как в транзисторе PNP внутренний ток возникает из-за переменного положения отверстий.
- В транзисторе NPN выходной ток существует из-за потоков дырок, а в PNP он создается из-за потоков электронов.
- В транзисторе NPN основным носителем заряда является электрон, тогда как в транзисторе PNP основная дырка является основным носителем заряда.
- Неосновным носителем заряда NPN-транзистора является дырка, а в PNP-транзисторе — электроны.
- Время переключения NPN-транзистора больше по сравнению с PNP-транзистором, потому что основной носитель заряда NPN-транзистора — электрон.
- Переход эмиттер-база как NPN-, так и PNP-транзисторов имеет прямое смещение.
- Примечание: передний базовый переход означает, что клемма p диода подключена к положительной клемме источника питания, а материал n-типа подключен к отрицательной клемме источника питания.
- Коллектор-база транзистора NPN и PNP соединена с обратным смещением.
- Примечание. Обратное смещение означает, что отрицательная область подключена к положительной клемме источника питания, а p-область подключена к положительной клемме источника питания.
- Транзистор NPN включается, когда небольшой ток течет от эмиттера к базе, тогда как для включения транзистора PNP небольшой ток течет от базы к эмиттеру.
- Сигнал заземления транзистора PNP поддерживается низким, тогда как в транзисторе PNP уровень сигнала заземления высокий.
Ключ к действию транзистора — это слаболегированная база между сильно легированным коллектором и эмиттером.
В чем разница между PNP и NPN?
Мы иногда используем партнерские ссылки в нашем контенте. Это вам ничего не будет стоить, но поможет нам компенсировать расходы на оплату труда нашей команды писателей. Вы можете поддержать нас прямо на BuyMeACoffee. Спасибо!
Здесь, в блоге, мы проводим много времени, работая с датчиками и контроллерами 5 В постоянного тока (например, Arduino). И многие из этих знаний являются отличным руководством для знакомства с промышленными контроллерами, такими как ПЛК (программируемые логические контроллеры).
Однако, когда вы начинаете работать с ПЛК и датчиками 24 В постоянного тока, вы должны следовать несколько иному способу подключения. Два очень распространенных, но сбивающих с толку термина в этом пространстве — это «PNP» и «NPN». Эта статья призвана объяснить эти термины и предоставить реальные примеры того, как подключать датчики PNP и NPN к ПЛК.
Как запомнить PNP и NPN (что есть что)?
Прежде чем мы углубимся в разводку, давайте поговорим о том, что такое PNP и NPN, и о некоторых методах их запоминания.Вы можете думать о «N» как о «отрицательном» и «P» как о «положительном». Средняя буква — это буква, подключенная к общей клемме. Для датчиков PNP отрицательная сторона соединена с общим. Для датчиков NPN положительная сторона подключена к общему проводу.
Утопить или истечь?
PNP также известен как «Sourcing». Устройства PNP переключают положительную сторону цепи.
Устройство PNP «подает» или подает +24 В на плату ввода, когда оно активно.
NPN известны как «тонущие» и могут переключать отрицательную сторону.Устройство NPN «втягивает» или подает -24 В на входную плату в активном состоянии.
Кроме того, одних терминов Sourcing и Sinking недостаточно для описания конфигурации, потому что SINKING обеспечивает путь к земле, а SOURCING обеспечивает путь к V +. Стандартное соглашение имеет NPN = SINKING и PNP = SOURCING.
Как выбрать датчик PNP или NPN?
ДатчикиPNP и NPN определяются типом цепи, используемой в системе. В большинстве ПЛК можно настроить карты как PNP или NPN.Следует также отметить, что датчики NPN и PNP никогда не следует смешивать на плате ввода ПЛК.
Кроме того, если у вас есть конкретный тип входной карты ПЛК, то есть NPN или PNP, важно убедиться, что вы выбрали подходящие датчики. Например, вы можете использовать датчики NPN с картой ввода NPN или картой ввода «типа источника». Однако вы не можете использовать датчики PNP с платой ввода NPN.
Этапы подключения промышленного датчика к ПЛК
Теперь давайте рассмотрим пример использования 3-проводного датчика приближения и карты дискретного ввода постоянного тока на нашем ПЛК.
1. Сначала выберите датчик, который соответствует входной плате ПЛК (дискретный ВХОД ПОСТОЯННОГО ТОКА) и имеет тот же тип разводки цепи (PNP или NPN). В этом примере мы подключим 3-проводной датчик приближения к плате дискретного входа постоянного тока и пройдемся по типам проводки PNP и NPN.
2. Затем проверьте лист данных на свой датчик. Провод 3 обычно подключается к нагрузке (или входу терминала на плате ввода ПЛК).
3. Затем следуйте одному из двух руководств по подключению для PNP или NPN, приведенных ниже.
Как подключить датчики PNP (источника) к плате ввода ПЛК
Для подключения нашего датчика приближения PNP вы можете использовать эту методику. Рекомендуется ознакомиться с техническими данными датчика, поскольку цвета и конфигурации проводов могут отличаться.
Сначала подключите коричневый провод или провод 1 к +24 В. Затем подключите провод 2 (синий провод) к общей клемме источника питания. Наконец, подключите черный провод или провод 3 к нагрузке или контакту на плате ввода ПЛК.
Как подключить датчики NPN к плате ввода ПЛК
ДатчикиNPN подключаются так же, за исключением того, что вы подключаете +24 В к общему
Протестируйте и запрограммируйте свой ПЛК
После подключения источника питания, ПЛК, платы ввода и датчика следующим шагом будет проверка его работы.Большинство современных ПЛК имеют световые индикаторы как для входных, так и для выходных контактов. Включите датчик приближения и убедитесь, что индикатор загорелся.
Изображение предоставлено курсом S7-1200 на Udemy
Наконец, вы можете войти в среду программирования ПЛК (Studio5000 для контроллеров Allen-Bradley или TIA Portal для контроллеров Siemens) и создать релейную логику.
Если вы новичок в программировании ПЛК, я рекомендую проверить этот курс программирования ПЛК от Udemy.Я прошел курс S7-1200, и он содержит очень подробное содержание, которое поможет вам начать работу с диаграммами лестничной логики и функциональных блоков.
Не пропустите!
Поддержка такого содержания
NPN vs PNP-транзистор | Разница между PNP и NPN
Биполярные переходные транзисторы бывают типов NPN и PNP. Эта статья призвана помочь вам понять разницу между этими двумя типами и способы их использования в цепи. Кроме того, это будет полезно инженерам по автоматизации и инженерам по КИП в понимании трехпроводных подключений датчиков.
Транзисторы изготавливаются путем объединения двух типов полупроводников: n-типа и p-типа. Полупроводники n-типа несут на себе атомов донора электронов и полупроводники p-типа c акцептора электронов атомов (дырок).
Транзисторы NPN: Содержит две области полупроводников n-типа с полупроводником p-типа посередине.
Транзисторы PNP: Содержит две области полупроводников p-типа с полупроводником n-типа посередине.
На рисунке показаны структуры транзисторов NPN и PNP и их обозначения.Транзистор с биполярным соединением — это устройство с регулируемым током. Выходом BJT можно управлять, управляя базовым током.
NPN и PNP: разница в подключении
Основное различие между NPN и PNP заключается в том, как они используются в схеме. С точки зрения датчика, датчики с конфигурацией выхода NPN действуют как выход с понижением частоты, а датчики с конфигурацией выхода PNP действуют как выход источника .
Подробнее: Цифровой ввод / вывод и аналоговый ввод / вывод
Сравнение транзисторов NPN и PNP
NPN | PNP | |||
---|---|---|---|---|
Полярность клемм | Излучатель — Отрицательный База — Положительный Коллектор — Положительный | Излучатель — Положительный База — Отрицательный Коллектор | — Отрицательный Подключение нагрузки Нагрузка подключается между плюсом и коллектором. | Нагрузка подключается между эмиттером и землей. |
Направление обычного тока | Направление обычного тока течет от собранного к эмиттеру. | Направление обычного тока — от эмиттера к коллектору. | ||
Разница между NPN и PNP транзистором
Привет, друзья, надеюсь, у вас все отлично. В сегодняшнем руководстве мы обсудим разницу между NPN и PNP транзистором .Основное различие между транзисторами NPN и PNP заключается в том, что в транзисторе NPN ток движется от коллектора к эмиттеру после подачи положительного напряжения на базу, тогда как в конфигурации PNP эмиттер протекает через коллектор после подачи отрицательного напряжения на клемме базы. И NPN, и PNP являются типами BJT или биполярных транзисторов. Это устройство, используемое для регулирования тока, а также его можно использовать в качестве переключателя или усилителя.
В основном в схемах используется транзистор NPN, поскольку в транзисторе NPN ток течет из-за электронов, в то время как в транзисторе PNP ток течет из-за дыр.Из-за быстрого движения электронов в NPN возникает высокая проводимость. В сегодняшнем посте мы подробно рассмотрим транзисторы NPN и PNP и сравним их, чтобы найти различия. Итак, давайте начнем с разницы между транзисторами NPN и PNP.
Разница между транзисторами NPN и PNP
Транзистор NPN
- Типы BJT, в которых 2 слоя типа N разделены слоем P, называются транзистором NPN.
- Полная форма транзистора NPN бывает отрицательной, положительной и отрицательной.
- Направление тока в транзисторе NPN — от коллектора к эмиттеру.
- Его работа начинается после попадания электронов в базу.
- В этом транзисторе ток генерируется за счет движения электронов.
- Его внешняя сторона тока генерируется из-за движения отверстий.
- В большинстве транзисторов носителями заряда являются электроны.
- Его скорость переключения выше, чем у PNP.
- Неосновные носители в этом транзисторе — дырки.
- Положительное напряжение подается на коллектор NPN-транзистора.
- Его эмиттерный переход находится в прямом смещенном состоянии.
- Коллектор-база имеет обратное смещение.
- Меньшее значение тока, протекающего от эмиттера к базе.
PNP-транзистор
- Тип транзистора, в котором 2 P-области разделены одним веществом N-типа.
- Полная форма PNP бывает положительной, отрицательной и положительной.
- Направление тока в этом транзисторе — от эмиттера к коллектору.
- Начинает работу после прохождения дыр в основании.
- Его внутренний ток, возникающий из-за движения отверстий.
- Его внешний ток возникает из-за движения электронов.
- Его скорость переключения меньше, чем у NPN-транзистора.
- В этом транзисторе электроны являются неосновными носителями заряда.
- Напряжение подается на эмиттер транзистора.
- Его базовый переход эмиттера находится в прямом смещенном состоянии.
- Его коллекторное соединение с базой находится в состоянии обратного смещения.
- От базы к эмиттеру течет небольшой ток.
Что такое транзистор PNP
- В этом транзисторе 2 P и одна N области сконфигурированы друг с другом. У транзистора 3 вывода: первый — база, второй — эмиттер, а третий — коллектор.
- Его коллектор и эмиттер созданы из вещества P-типа, а основание создано из вещества N-типа, которое обычно является центральной частью.
- Эмиттер и базовый переход соединены в прямом смещении, но переход коллектор-база находится в обратном смещенном состоянии.
- Переход эмиттер-база направляет дыры, которые являются положительными носителями, к базе и генерирует ток эмиттера.
- Дырки вещества P соединяются с электронами N-области и генерируют ток базы.
- Оставшиеся отверстия идут в область коллектор-база с обратным смещением, собираются у коллектора и вызывают ток коллектора.
- Следовательно, полный ток эмиттера проходит через коллектор.
Ток эмиттера = ток коллектора + ток базы
Что такое транзистор NPN
- В транзисторе NPN есть 2 N областей, которые разделены тонким слоем вещества p.
- Площадь коллектора больше, чем база транзистора, который тонкий, а коллектор толстый.
- Область эмиттер-база транзистора находится в прямом смещенном состоянии, а база коллектора смещена в обратном направлении.
- Значение напряжения при обратном смещении меньше, чем при прямом смещении.
- Поскольку переход эмиттер-база находится в прямом смещенном состоянии, многочисленные электроны направляются к базе. Благодаря этому на эмиттере течет ток.
- В базе электроны смешаны с дырками. Остальные электроны перемещаются в область коллектор-база и вызывают протекание коллекторного тока.
- Полный ток эмиттера проходит в цепи коллектора.
Сравнение между NPN и PNP транзистором
- В NPN-транзисторе P тонкая область окружена между двумя N областями, а в PNP-транзисторе тонкая N область окружена областью 2 P.
- Символическое представление транзисторов NPN и PNP аналогично, но разница в том, что стрелка транзистора NPN направлена наружу к базе, а стрелка PNP — внутрь.
- Из-за положительного питания на базе ток протекает от коллектора к эмиттеру в транзисторе NPN, в то время как в транзисторе PNP ток течет от эмиттера к коллектору.
- Транзистор NPN начинает работу после входа электрона в базу, а PNP начинает работу после входа в отверстия в базе.
- Внутренний ток NPN-транзистора генерируется из-за движения электронов, а в PNP-токе течет из-за движений дырок.
- Внешний ток NPN движется из-за холов, а внешний ток PNP движется из-за электронов.
- В NPN неосновными носителями заряда являются дырки, а в PNP — электроны.
- В NPN основными носителями заряда являются электроны, а в PNP — дырки.
- Из-за наличия основного носителя заряда электронов в транзисторе NPN время переключения NPN больше, чем у PNP.
- Для NPN и PNP переход эмиттер-база транзистора находится в прямом смещенном состоянии.
- Но переход коллектор-база обоих транзисторов имеет обратное смещение.
Это подробный пост о разнице между транзисторами NPN и PNP, если у вас есть какие-либо вопросы, задавайте их в комментариях. Спасибо за прочтение. Хорошего дня.
Автор: Генри
http://www.theengineeringknowledge.comЯ профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях промышленности.Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром. Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.
Пост-навигация
Транзисторы NPN и PNP
Введение
Транзисторы — невероятно полезные устройства. Мое любимое применение биполярных транзисторов (BJT) — переключатели. Подавая на них высокое (1) или низкое (0) напряжение, транзисторы переключаются из включенного состояния в выключенное или наоборот.Эти транзисторы также можно использовать для усиления тока. Их также можно использовать вместе с боковыми диодами для создания логических вентилей. Однако здесь мы остановимся на разнице между транзисторами NPN и PNP.
Как выбрать между транзисторами NPN и PNP
Два транзистора могут использоваться для выполнения одного и того же действия, например, переключения, но способы их использования различаются. Ниже я объясню, как работают как NPN, так и PNP, а затем, в зависимости от вашего приложения, вы можете выбрать наиболее подходящий транзистор.
Транзистор NPN
NPN-транзисторы пропускают ток от коллектора к эмиттеру. Как правило, эмиттер заземлен, а цепь, которая будет включаться и выключаться, размещается на стороне коллектора транзистора с питанием. Следует отметить, что хотя верхняя часть схемы может быть подключена к источнику напряжения, фактический ток не проходит через схему, пока она не будет подключена к земле, которая отделена от схемы транзистором NPN. Транзистор NPN включен, когда к базе подключено высокое напряжение (1), и выключен, когда к базе подключено низкое напряжение (0 — обычно земля). Также важно знать, что напряжение на выводе базы связано с тем, как транзистор включен в схему. Напряжение на выводе базы в этой конфигурации является заземлением, что, вероятно, связано с заземленным выводом эмиттера. Вот почему, когда базовый вывод NPN-транзистора затем подключается к высокому напряжению, например 5 В, ток течет в транзистор и соединяет эмиттер и коллектор.
Транзистор PNP
Транзисторы PNP пропускают ток от эмиттера к коллектору. Обычно на эмиттер подается питание, а цепь, которая будет включаться и выключаться, размещается на стороне коллектора транзистора, подключенного к земле. Следует отметить, что схема снова не будет запитана, если транзистор не будет включен. Транзистор PNP включен, когда к базе подключено низкое напряжение (0 — обычно земля), и выключен, когда к базе подключено высокое напряжение (1). В случае транзистора PNP напряжение на выводе базы приблизительно равно напряжению Vcc. Когда я тестировал это с 5 В постоянного тока, напряжение на базовом выводе составляло примерно 4,6 В. Вот почему, когда базовый вывод PNP подключен к земле, ток будет течь к транзистору, который соединяет эмиттер с коллектором.
Предупреждения
При работе с транзисторами, как и со всеми компонентами в цепях, необходимо внимательно проанализировать, как ток течет по цепи.