Обозначение конденсаторов расшифровка: Маркировка конденсаторов — цифровая, цветная её расшифровка

Содержание

Обозначение конденсаторов переменного тока



Что такое конденсатор, типы конденсаторов и их обозначение на схемах

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах, а от 0,1 мкФ и выше — в микрофарадах.

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования. Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны, т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак ?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 . 2 и длиной 15 . 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2. 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут что такое резистор?

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Источник

Маркировка конденсаторов

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

  1. Как маркируются большие конденсаторы
  2. Расшифровка маркировки конденсаторов
  3. Обозначение цифр
  4. Обозначение букв
  5. Маркировка керамических конденсаторов
  6. Смешанная буквенно-цифровая маркировка
  7. Прочие маркировки

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 C, X = -55 C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 45 С, 4 – 65 С, 5 – 85 С, 6 – 105 С, 7 – 125 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Источник

Маркировка керамических конденсаторов

Содержание статьи

  • Физические величины, используемые в маркировке емкости керамических конденсаторов
  • Численные и численно-буквенные коды в маркировках конденсаторов
  • Способы маркировки емкости конденсатора
  • Маркировка SMD конденсаторов
  • Цветовая маркировка керамических конденсаторов

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Физические величины, используемые в маркировке емкости керамических конденсаторов

Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.

Таблица единиц емкости, применяемых для бытовых керамических конденсаторов

Наименование единицы Варианты обозначений Степень по отношению к Фараду
Микрофарад Microfarad мкФ, µF, uF, mF 10 -6 F
Нанофарад Nanofarad нФ, nF 10 -9 F
Пикофарад Picofarad пФ, pF, mmF, uuF 10 -12 F

Редко применяется внемаркировочная единица миллифарад – 1 мФ (10 -3 Ф).

Численные и численно-буквенные коды в маркировках конденсаторов

Обозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя.

Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов

Напряжение, В Код Напряжение, В Код
1 I 63 K
1,6 R 80 L
3,2 A 100 N
4 C 125 P
6,3 B 160 Q
10 D 200 Z
16 E 250 W
20 F 315 X
25 G 400 Y
32 H 450 U
40 C 500 V
50 J

Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом.

Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ

Допуск при -60°C…+80°C, +/-, % Буквенный код Допуск при -60°C…+80°C, +/-, % Буквенный код
20 Z 70 E
30 D 90 F

Третья позиция – номинальная емкость, которая может указываться несколькими способами.

Способы маркировки емкости конденсатора

На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.

Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное. Возможны следующие варианты.

Три цифры

Если в маркировке присутствуют три цифры, то первые две обозначают величину емкости, последняя – множитель нуля. Если последняя цифра находится в диапазоне 0-6, то к числу, состоящему из первых двух цифр, добавляют нули в указанном количестве. Если последняя цифра – 8, то число из первых двух цифр умножают на 0,01, если 9, то – на 0,1. После определения числового значения емкости необходимо установить единицу измерения. Емкость мелких деталей обычно измеряется в пикофарадах. После числового значения может стоять буква, указывающая на единицу измерения: p – пикофарад, µ – микрофарад, n – нанофарад.

Пример 353p = 35 х 10 3 пФ.

Четырьмя цифрами

Этот вариант похож на описанный выше. Только значащая часть содержит три цифры, а четвертая – это показатель степени для 10. Единица измерения – обычно пикофарады.

Буквенно-цифровая маркировка

При таком способе обозначения емкости буква указывает на место, где должна находиться запятая. Буква R применяется для маркировки емкости в микрофарадах. Если перед буквой R стоит 0, то единица измерения – пикофарад. Например, 0R4 = 4 пФ, R47 = 0,45 мкФ.

Функции десятичной точки может выполнять буква, указывающая на единицу измерения. Например, емкость, равная 0,43 мкФ, на конденсаторах импортного производства обозначается как m43 или µ43. В русском варианте в качестве десятичной точки применяют буквы «п» – пикофарады, «н» – нанофарады, «м» – микрофарады.

В некоторых случаях на корпус конденсаторов наносятся допуски для номинального значения емкости. На деталях большой площади они указаны числами, обозначающими процент допуска. На маленькие конденсаторы допуски обычно нанесены в закодированном виде.

Таблица буквенного кодирования допусков

Буквенное обозначение Допуск, % Буквенное обозначение Допуск, %
B +/- 0,1 M +/- 20
C +/- 0,25 N +/- 30
D +/- 0,5 Q -10…+30
F +/- 1 T -10…+50
G +/- 0,2 Y -10…+100
J +/- 0,5 S -20…+50
K +/- 10 Z -20…+80

Маркировка SMD конденсаторов

Габариты деталей, предназначенных для поверхностного монтажа, очень скромные, поэтому обозначение содержит минимум информации, нанесенной максимально лаконично. Значение напряжения наносится буквенным кодом в соответствии с таблицей, представленной выше. Другие элементы маркировки:

  • первая латинская буква характеризует производителя компонента;
  • вторая латинская буква – код значащей части (мантиссы) номинальной емкости;
  • цифра означает степень, в которую необходимо возвести закодированное число, чтобы получить номинал емкости в пикофарадах.

Например, КT3 – конденсатор от известного производителя Kemet номинальной емкостью 5,1х10 3 пФ = 5,1 нФ.

Таблица кодирования мантиссы

Буква Мантисса Буква Мантисса Буква Мантисса
A 1.0 J 2.2 S 4.7
B 1.1 K 2.4 T 5.1
C 1.2 L 2.7 U 5.6
D 1.3 M 3.0 V 6.2
E 1.5 N 3.3 W 6.8
F 1.6 P 3.6 X 7.5
G 1.8 Q 3.9 Y 8.2
H 2.0 R 4.3 Z 9.1

Цветовая маркировка керамических конденсаторов

Цветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9.

Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 10 3 , желтый – 10 4 , зеленый – 10 5 .

В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В.

Была ли статья полезна?

Комментарии

Оптовая продажа электронных компонентов и радиодеталей с доставкой по всей России

Источник

Как обозначаются конденсаторы на схеме?

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Единицы измерения

Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10 -6
  • 1 нанофарада – одна миллиардная часть фарады. 10 -9
  • 1 пикофарада -10 -12 фарады.
код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Источник

Обозначение конденсаторов на схеме расшифровка

Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию. Если разобрать до деталей несколько радиоэлектронных устройств, и сосчитать их, то окажется, что количество, рассматриваемых в данной статье элементов, превысит количество других отдельных радиоэлектронных приборов, в том числе и резисторов. Ввиду такого обстоятельства, нам следует уделить особое внимание конструкции, устройству и принципу работы конденсаторов. Для большего понимания принципа работы конденсатора рассмотрим его конструкцию. Простейший конденсатор состоит из двух металлических пластин, называемых обкладками. Между обкладками расположен диэлектрик, то есть веществом, которое практически не пропускает электрический ток.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: КАК ОПРЕДЕЛИТЬ ЛЮБОЙ SMD КОМПОНЕНТ

Маркировка конденсаторов


В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости. Первые две цифры указывают на значение емкости в пикофарадах пф , последняя — количество нулей.

Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1. Буква R используется в качестве десятичной запятой. Например, код равен 1. Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах pF. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения.

В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Оставить комментарий. Обнаружен блокировщик рекламы. Сайт Паяльник существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Как это сделать? Главная Справочники. Призовой фонд на октябрь г. Тестер компонентов LCR-T4. Модуль радиореле на 4 канала. Металлоискатель MDII. Комментарии 6 Подписаться OK. Иностранный конденсатор FU 33 пф вольт Чем его можно заменить?

Или где купить аналог? Похоже он был бумажный. Но это не точно. Может быть даже слюдяной. Serg-Spb Например: JV , сколько это? Везде одна и та же статья, а толку от нее не очень. Vorgen Кто знает? Сергей Григорьевич Александр С разборки платы старого телевизора попался конденсатор с маркировкой.

I: точка-I-двоеточие , ниже Нигде нет расшифровки подобных обозначений. Если есть возможность, ответьте. Добавить комментарий. В чем измеряется сила тока? Я согласен с правилами публикации комментариев Оставить комментарий. USB-реле 2 канала. Кодировка 3-мя цифрами Первые две цифры указывают на значение емкости в пикофарадах пф , последняя — количество нулей.

Кодировка 4-мя цифрами Возможны варианты кодирования 4-значным числом. Маркировка ёмкости в микрофарадах Вместо десятичной точки может ставиться буква R. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.


Обозначение конденсаторов на схеме

Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях. Базовая структура конденсатора имеет простое объяснение.

Обозначение емкости конденсаторов на электрических схемах. Текстовые метки: конденсатор, фарад, микрофарад, пикофарад Как устроен транзистор и как он обозначается · Что такое триггер · Разъем 9 pin .

Маркировка постоянных конденсаторов. Обозначение конденсаторов на схемах

Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC табл. При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах пФ , а последняя цифра — количество нулей. При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, — мкФ. Таблица 2. Кодировка номинальной емкости конденсаторов тремя цифрами. Пикофарады пф ; pF. Нанофарады нФ ; nF. Микрофарады мкФ ; mF. Кодировка номинальной емкости конденсаторов четырьмя цифрами. ТКЕ температурный коэффициент емкости — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды.

Маркировка конденсаторов

Самодельные электронные схемы собираются с применением конденсаторов, которые нужно правильно подобрать. К слову, могут быть использованы конденсаторы, уже бывшие в употреблении. Прежде чем применять их, следует тщательно проверить, в особенности это касается электролитических видов, сильно подверженных старению. В этой статье рассмотрим обозначение конденсаторов, и как они маркируются. Конденсаторами называют двухполюсники с переменным или определенным значением емкости и малой проводимостью.

Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение.

Правила расшифровки маркировки конденсаторов

Маркировка конденсаторов расшифровка нанесенных на их корпус закодированных данных, указывают значения электрических параметров данных компонентов. Без конденсаторов невозможно собрать практически никаких электронных схем. Поэтому если вы занимаетесь ремонтом или созданием определенных устройств, то вам обязательно нужно знать как расшифровываются такие обозначения размещенные на корпусе элемента. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду. С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой.

Что такое конденсатор, типы конденсаторов и их обозначение на схемах

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению. При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно.

Конденсаторы. Кодовая маркировка

Маркировка конденсаторов. Маркировка тремя цифрами. В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Маркировка четырьмя цифрами.

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости. Первые две цифры указывают на значение емкости в пикофарадах пф , последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1. Буква R используется в качестве десятичной запятой.

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом.

При выборе какой-либо схемы важное значение отдаётся маркировке конденсаторов. Она довольно разнообразная и большая, по сравнению с маркировкой резисторов. Больше всего вызывает затруднение прочтение небольших обозначений на поверхности конденсаторов, которые, в свою очередь, также не отличаются большими размерами. Профессионалы регулярно используют маркировку и должны верно трактовать обозначения. Оглавление: Обозначение конденсаторов, больших по размеру Маркировка керамических конденсаторов Трактовка Другие маркировки.

Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов : Кодовая маркировка 3 цифрами; Кодовая маркировка 4 цифрами; Буквенно цифровая маркировка; Специальная маркировка для планарных конденсаторов. Последняя цифра это показатель степени по основанию


Условные обозначения конденсаторов

Сокращенное условное обозначение конденсаторов в соответствии с ГОСТ 11 076-69 и ОСТ 11.074.008-78 состоит из следующих элементов.

Первый элемент — одна или две буквы — определяет тип кон-денсатора: К — конденсатор постоянной емкости; КП — конденсатор переменной емкости;КТ — конденсатор подстроенный.

Второй элемент — цифры — обозначает используемый тип диэлектрика между обкладками и группу по рабочему напряжению. В табл. 7 приведена расшифровка второго элемента обозначения конденсаторов.

Третий элемент представляет собой порядковый номер разработки конкретного типа, в состав которого может входить и бувенное обозначение (Ч — для работы в цепях переменного тока, П — для работы в цепях постоянного и переменного тока, И — для работы в импульсном режиме, У — универсальные). Отсутствие третьего элемента обозначения указывает на то, что конденсатор предназначен для работы с постоянным и пульсирующим током.

Таблица 7. Типы конденсаторов в зависимости от вида диэлектрика и их обозначение

Полное условное обозначение конденсатора включает в себя его сокращенное обозначение, а также значения основных параметров и характеристики, необходимые для заказа и записи в конструкторской документации.

Так, например, К75-10-250В-0,1 мкФ + 5% В ОЖО.484.865 ТУ обозначает пленочный конденсатор К75-10 с номинальным на-пряжением 250 В, номинальной емкостью 1,0 мкФ, допустимым отклонением по емкости +5 % и группой по климатическому ис-полнению В; ОЖО.484.865 ТУ — документ на поставку.

В состав маркировки может вводиться также группа по температурному коэффициенту емкости (ТКЕ). Этот параметр характеризует изменение емкости конденсатора под действием темпера-туры и выражается в миллионных долях номинальной емкости на градус (10-6/°С). Если с повышением температуры емкость увеличивается, то ТКЕ считается положительным, а если уменьшается — отрицательным.

Группа по ТКЕ маркируется двумя элементами — буквой (буквами), указывающей знак ТКЕ (М — отрицательный, П — поло-жительный, МП — близкий к нулю), и цифрами, указывающими значение ТКЕ (измеряется на частотах 0,3…5 МГц).

Для конденсаторов, используемых в качестве элементов низкочастотных и разделительных фильтров, ТКЕ не имеет существенного значения и не нормируется. Для керамических конденсаторов такого назначения ТКЕ маркируется буквой «Н», а цифры указывают, на сколько процентов может изменяться емкость во всем рабочем интервале температур по сравнению с емкостью, измеренной при температуре 20 °С.

Для маркировки малогабаритных керамических конденсаторов Используется также цветная кодировка. Кроме того, она применяется для маркировки конденсаторов, номинальное рабочее на-пряжение которых не превышает 63 В (табл. 8, лев. часть). Маркировка на-носится в виде цветных точек или полос (рис. 12).

Рис. 12 Маркировки керамических конденсаторов с номинальным напряжением до 63

 

Каждому цвету соответствует определенное цифровое значение. Маркировочные знаки на конденсаторах сдвинуты к одномуиз выводов и располагаются слева направо. Ширина полос, обозначающих величину ТКЕ, делается примерно в два раза больше других.

Конденсаторы с малой величиной допуска (0,1…10 %) маркируются шестью цветовыми кольцами. Первые три кольца обозначают числовое значение емкости в пикофарадах, четвертое кольцо — множитель, пятое кольцо — допуск, шестое кольцо — ТКЕ (табл. 8 прав. часть). Конденсаторы с величиной допуска ±20 % маркируются четырьмя цветовыми кольцами. Первые два кольца — числовое значение емкости в пикофарадах (ноль в третьем разряде не мар-кируется), третье кольцо — множитель, четвертое кольцо — ТКЕ. Величина допуска (пятое кольцо) не маркируется.

 

Таблица 8. Цвета, используемые для маркировки конденсаторов с номинальным напряжением до 63 В и цветная маркировка конденсаторов с малой величиной допуска

Для маркировки малогабаритных керамических конденсаторов применяется также цветная кодировка значений ТКЕ (табл.9).

Таблица 9 Цветовая кодировка значений ТКЕ

 


Маркировка и обозначения конденсаторов

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Для маркировки конденсаторов используются коды значений емкостей, состоящие из набора букв и цифр, а также различных маркировочных цветов.

В основе классификации конденсатора лежит принцип распределения их на группы по конструктивным и эксплуатационным признакам (конденсаторы постоянной емкости, переменной емкости и подстроечные), а также марка применяемого диэлектрика. При этом вид и марка использованного диэлектрика определяют основные электрические параметры конденсатора: номинальную емкость, номинальное напряжение, сопротивление изоляции, стабильность работы конденсатора; электрические потери, КПД и т.д.

Первый элемент обозначения конденсатора состоит из одной или двух заглавных букв русского алфавита: К – конденсатор постоянной емкости; КТ – конденсатор подстроечный; КП – конденсатор переменной емкости.

Второй элемент обозначения состоит из одной или двух цифр, которые определяют вид примененного диэлектрика.

Третий элемент обозначения пишется через дефис и обозначает порядковый номер разработки конденсатора данного типа.

Для старых типов конденсаторов условные обозначения определяются в основном конструктивными, технологическими признаками. Например, слюдяные конденсаторы обозначаются буквами КС, конденсаторы слюдяные опрессованные – КСО, конденсаторы металлобумажные – КМ, конденсаторы дисковые – КЛ, конденсаторы электролитические – КЭ, конденсаторы трубчатые проходные – КТП.

Важное место в обозначениях конденсаторов занимает маркировка основных параметров, а также дополнительных информационных сведений, позволяющих наиболее точно применить конденсатор в конкретной аппаратуре и в конкретных условиях эксплуатации. К таким сведениям можно отнести класс конденсатора, его назначение, материал диэлектрика, номинальную емкость и допускаемые отклонения, значение номинального напряжения, температурный коэффициент емкости, марку завода – изготовителя, дату изготовления.

В зависимости от габаритных размеров конденсаторов применяют полное или сокращенное (кодированное) обозначение номинальной емкости и их допускаемых отклонений.

Полное обозначение номинальной емкости конденсатора состоит из ее цифрового значения и из обозначения единиц измерения: pF – пикофарады, nF – нанофарады, μА – микрофарады. В этом случае полностью обозначается и допускаемое отклонение от номинальной емкости, например: 1000 pF ± 10 % или 1000 пФ ± 10 %.

Сокращенное обозначение номинальной емкости конденсатора состоит из нескольких знаков, включающих цифру и букву. При этом буква имеет дополнительную функцию, она заменяет запятую. Например, конденсатор емкостью 2,2 μФ обозначается 2μ2, конденсатор емкостью 1500 рF – 1n5 (или 1N5).

Табл.7. Маркировка допускаемых отклонений номинальной емкости буквами русского и латинского алфавитов

Допускаемые отклонения емкости, %

Буквенный код

Русские

Латинские

± 0,1

± 0,25

± 0,5

± 1,0

± 2,0

± 5,0

± 10,0

± 20,0

± 30,0

+30,0… -10,0

+50,0… -10,0

+100,0… -10,0

+50,0… -20,0

+80,0… -20,0

Ж

У

Д

Р

Л

И

С

В

Ф

Э

Ю

Б

А

B

C

D

F

G

I

K

M

N

O

T

Y

S

Z

При номинальном напряжении конденсатор обеспечивает работоспособность последнего в течение всего срока службы с сохранением установленных параметров. При эксплуатации конденсаторов рабочее напряжение не должно превышать номинального значения даже кратковременно. Если конденсатор работает в цепи, где кроме постоянного напряжения присутствует и переменное, то номинальное напряжение должно быть не менее суммы постоянного напряжения и амплитудного значения переменной составляющей. Значение номинального напряжения наносится на корпус конденсатора полностью в буквенно-цифровом виде или кодируется буквами латинского алфавита. На керамических конденсаторах номинальное значение напряжения не указывается.

Рис.2. Обозначения неполярных постоянных конденсаторов отечественного производства емкостью: а – 0,01 мкФ, ± 5 %; б – 3,3 мкФ, ± 10 %; в – 1 мкФ, ± 5 %

Табл.8. Цветная маркировка конденсаторов отечественного производства

Цвет маркировочного пояса

Первая цифра кода (с, pF)

Множитель

Допускаемое отклонение

Номинальное напряжение

(U, В)

Расшифровка цветовых поясов (или точек)

Черный

Коричневый

Красный

Оранжевый

Желтый

Зеленый

Голубой

Фиолетовый

Серый

Белый

Серебряный

Золотой

10

12

15

18

22

27

33

39

47

56

68

82

1

10

102

103

104

105

106

107

10-2

10-1

± 20 %

± 1 %

± 2 %

± 25 %

± 0,5 %

± 5 %

± 2 %

— 20 .. + 50 %

— 20.. + 80 %

± 10 %

4,0

6,3

10

16

10

25 (20)

32 (30)

50

63

2,5

1,6

Табл.9. Цветная маркировка конденсаторов зарубежного производства

Цвет маркировочного пояса

Первая и вторая цифры (с, pF)

Третья цифра, множитель

Допускаемое отклонение

Напряжение

(U, В)

Расшифровка цветовых поясов (или точек)

Черный

Коричневый

Красный

Оранжевый

Желтый

Зеленый

Голубой

Фиолетовый

Серый

Белый

0

1

2

3

4

5

6

7

8

9

10

102

103

104

105

106

20

10

4

6

10

15

20

25

35

50

Идентификация

— Помощь в определении/декодировании керамического конденсатора Идентификация

— Помощь в определении/декодировании керамического конденсатора
Сеть обмена стеками

Сеть Stack Exchange состоит из 179 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетите биржу стека
  1. 0
  2. +0
  3. Войти
  4. Зарегистрироваться

Электротехника Stack Exchange — это сайт вопросов и ответов для специалистов в области электроники и электротехники, студентов и энтузиастов.Регистрация занимает всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Любой может задать вопрос

Любой может ответить

Лучшие ответы голосуются и поднимаются на вершину

спросил

Просмотрено 2к раз

\$\начало группы\$

Мне трудно определить высоковольтный керамический конденсатор, который необходимо заменить.Я долго пытался исследовать это сам, но безрезультатно. Я надеюсь, что кто-то там может помочь мне с этим. За исключением первой строки на конденсаторе, которую я читаю как 220 пФ ± 10%, я не знаю, как интерпретировать остальные. Я не могу найти значение символа внизу, который представляет собой полукруг с бабочкой посередине, и что означает тильда в этом контексте? Невозможно определить напряжение и т. д. Спасибо!

Всплеск напряжения♦

62.4k3131 золотой знак6464 серебряного знака175175 бронзовых знаков

спросил 23 окт. 2018 в 18:48

\$\конечная группа\$ \$\начало группы\$

Кепка мурата, производство Тайланд.Вот ссылка на PDF

Имеет значение 220 пф Наверное один из таких на дигикей

Добавить комментарий

Ваш адрес email не будет опубликован.