Как расшифровать маркировку конденсаторов. Какие бывают способы обозначения номиналов конденсаторов. Как правильно читать маркировку отечественных и импортных конденсаторов.
Основные характеристики конденсаторов и их маркировка
Конденсаторы являются одними из самых распространенных радиокомпонентов наряду с резисторами. Основными характеристиками конденсатора, которые указываются в его маркировке, являются:
- Номинальная емкость
- Номинальное напряжение
- Допустимое отклонение емкости
- Температурный коэффициент емкости
- Полярность (для электролитических конденсаторов)
- Дата производства
Маркировка наносится на корпус конденсатора и может быть буквенно-цифровой или цветовой. Рассмотрим основные способы маркировки подробнее.
Буквенно-цифровая маркировка емкости конденсаторов
Емкость конденсатора указывается на первом месте в маркировке и обозначается в следующих единицах:
- p или П — пикофарада (пФ)
- n или Н — нанофарада (нФ)
- μ или М — микрофарада (мкФ)
Буква, обозначающая единицу измерения, ставится на месте запятой в дробном значении. Например:

- 2n2 = 2,2 нФ = 2200 пФ
- 68n = 68 нФ = 0,068 мкФ
- μ68 = 0,68 мкФ
Важно учитывать, что номиналы в пикофарадах или микрофарадах могут указываться без буквенных обозначений. В этом случае нужно ориентироваться на габариты конденсатора.
Обозначение допустимого отклонения емкости
Допустимое отклонение емкости от номинального значения обозначается буквами латинского алфавита:
- F — ±1%
- G — ±2%
- J — ±5%
- K — ±10%
- M — ±20%
- N — ±30%
Эта буква указывается после обозначения емкости. Например, 100nK означает конденсатор емкостью 100 нФ с допуском ±10%.
Маркировка номинального напряжения конденсаторов
Номинальное напряжение обычно указывается цифрами с символом V (или В для старых конденсаторов). Например:
- 25V — 25 вольт
- 400V — 400 вольт
- 1kV — 1 киловольт
Для малогабаритных конденсаторов применяется буквенное кодирование напряжения латинскими буквами:
- A — 50В
- C — 100В
- E — 160В
- G — 250В
- J — 400В
- K — 500В
Цветовая маркировка конденсаторов
Цветовая маркировка применяется для быстрого определения параметров конденсатора и обычно наносится в виде цветных полос:

- 1-я и 2-я полосы — значение емкости
- 3-я полоса — множитель
- 4-я полоса — допуск
- 5-я полоса — номинальное напряжение
Цвета полос соответствуют определенным цифрам и множителям согласно стандартной цветовой кодировке. Первая полоса обычно делается шире или располагается ближе к краю.
Маркировка SMD конденсаторов
Для миниатюрных SMD конденсаторов применяется сокращенная буквенно-цифровая маркировка:
- Буква обозначает значение емкости в пикофарадах
- Цифра — множитель в виде степени десяти
Например, G4 означает 1,8*10^5 пФ (180 нФ). Для электролитических SMD конденсаторов часто указывается емкость в виде десятичной дроби и напряжение с буквой V.
Как правильно читать маркировку конденсаторов?
Чтобы правильно расшифровать маркировку конденсатора, следуйте этим рекомендациям:
- Определите тип маркировки — буквенно-цифровая или цветовая
- Найдите обозначение емкости — это первый параметр в маркировке
- Обратите внимание на единицы измерения емкости (пФ, нФ, мкФ)
- Определите допустимое отклонение по соответствующей букве
- Найдите обозначение номинального напряжения
- Для электролитических конденсаторов проверьте маркировку полярности
При возникновении сомнений сверяйтесь со справочными таблицами для конкретного типа конденсатора.

Обозначение конденсаторов на электрических схемах
На электрических схемах конденсаторы обозначаются следующим образом:
- Постоянные конденсаторы — двумя параллельными отрезками
- Полярные электролитические конденсаторы — со знаком «+» у положительной обкладки
- Переменные конденсаторы — с диагональной стрелкой между обкладками
- Подстроечные конденсаторы — с короткой наклонной чертой между обкладками
Рядом с обозначением конденсатора указывается его буквенное обозначение (С1, С2 и т.д.) и номинальная емкость. Номинальное напряжение обычно не указывается, за исключением высоковольтных или электролитических конденсаторов.
Стандартные ряды номиналов конденсаторов
Номиналы конденсаторов, как и резисторов, выпускаются стандартными рядами. Наиболее распространены следующие ряды:
- E3 — 3 значения в каждом десятичном интервале (10, 22, 47)
- E6 — 6 значений (10, 15, 22, 33, 47, 68)
- E12 — 12 значений
- E24 — 24 значения
Каждый последующий ряд включает в себя значения предыдущего. Выбор конкретного ряда зависит от требуемой точности номиналов в схеме.

Как выбрать конденсатор с нужными параметрами?
При выборе конденсатора для конкретной схемы необходимо учитывать следующие параметры:
- Требуемую емкость согласно расчетам схемы
- Рабочее напряжение в цепи
- Допустимое отклонение емкости
- Температурный коэффициент емкости
- Тип диэлектрика (керамика, пленка, электролит и т.д.)
- Габаритные размеры
- Стоимость
Важно выбирать конденсатор с запасом по напряжению и учитывать особенности его применения в конкретной схеме. Для ответственных узлов рекомендуется использовать конденсаторы с меньшим допуском.
Условные обозначения конденсаторов
Основным параметром конденсатора является его номинальная емкость, измеряемая в фарадах ( Ф
) микрофарадах ( мкФ
) или пикофарадах ( пФ
).
Допустимые отклонения емкости конденсатора от номинального значения указаны в стандартах и определяют класс его точности. Для конденсаторов, как и для сопротивлений, чаще всего применяются три класса точности I
( E24
), II
( Е12
) и III
( E6
), соответствующие допускам ±5 %
, ±10 %
и ±20 %
.
Конденсаторы
По виду изменения емкости конденсаторы делятся на изделия с постоянной емкостью, переменной и саморегулирующиеся. Номинальная емкость указывается на корпусе конденсатора. Для сокращения записи применяется специальное кодирование:
П
– пикофарады –пФ
Н
– одна нанофарадаМ
– микрофарад –мкФ
Ниже в качестве примера приводятся кодированные обозначения конденсаторов:
51П
–51 пФ
-
5П1
–5,1 пФ
h2
–100 пФ
1Н
–1000 пФ
1Н2
–1200 пФ
68Н
–68000 пФ
=0,068 мкФ
100Н
–100 000 пФ
=0,1 мкФ
МЗ
–300 000 пФ
=0,3 мкФ
3М3
–3,3 мкФ
10М
–10 мкФ
Числовые значения ёмкостей 130 пФ
и 7500 пФ
целые числа ( от 0
до 9999 пФ
)
Конструкции конденсаторов постоянной емкости и материал, из которого они изготовляются, определяются их назначением и диапазоном рабочих частот.
Высокочастотные конденсаторы имеют большую стабильность, заключающуюся в незначительном изменении емкости при изменении температуры, малые допустимые отклонения емкости от номинального значения, небольшие размеры и вес. Они бывают керамическими (типов
, КЛС
, КМ
, КД
, КДУ
, КТ
, КГК
, КТП
и др.), слюдяными ( КСО
, КГС
, СГМ
), стеклокерамическими ( СКМ
), стеклоэмалевыми ( КС
) и стеклянными ( К21У
).
Конденсатор с дробной ёмкостью
от 0
до 9999 Пф
Для цепей постоянного, переменного и пульсирующего токов низкой частоты требуются конденсаторы с большими емкостями, измеряемыми тысячами микрофарад. В связи с этим выпускаются бумажные (типов БМ
, КБГ
), металлобумажные ( МБГ
, МБМ
), электролитические ( КЭ
, ЭГЦ
, ЭТО
К50
, К52
, К53
и др.) и пленочные ( ПМ
, ПО
, К73
, К74
, К76
) конденсаторы.Конструкции конденсаторов постоянной емкости разнообразны. Так, слюдяные, стеклоэмалевые, стеклокерамические и отдельные типы керамических конденсаторов имеют пакетную конструкцию. В них обкладки, выполненные из металлической фольги или в виде металлических пленок, чередуются с пластинами из диэлектрика (например, слюды).
Емкость конденсатора 0,015 мкФ
Конденсатор с ёмкостью 1 мкФ
Для получения значительной емкости формируют пакет из большого числа таких элементарных конденсаторов. Электрически соединяют между собой все верхние обкладки и отдельно – нижние. К местам соединений припаивают проводники, служащие выводами конденсатора. Затем пакет спрессовывают и помещают в корпус.
Применяется и дисковая конструкция керамических
В электролитических конденсаторах диэлектрик представляет собой оксидную пленку, наносимую на алюминиевую или танталовую пластинку, являющуюся одной из обкладок конденсатора, вторая обкладка – электролит.
Электролитический конденсатор 20,0 × 25В
Металлический стержень ( анод
) должен подключаться к точке с более высоким потенциалом, чем соединенный с электролитом корпус конденсатора ( катод
). При невыполнении этого условия сопротивление оксидной пленки резко уменьшается, что приводит к увеличению тока, проходящего через конденсатор, и может вызвать его разрушение.
Такую конструкцию имеют электролитические конденсаторы типа КЭ
. Выпускаются также электролитические конденсаторы с твердым электролитом ( типа К50
).
Проходной конденсатор
Конденсатор переменной ёмкости от 9 пФ
до 270 пФ
Площадь перекрытия пластин или расстояние между ними у конденсаторов переменной емкости можно изменять различными способами. При этом меняется и емкость конденсатора. Одна из возможных конструкций конденсатора переменной емкости ( КПЕ
) изображена на рисунке справа.
Конденсатор переменной ёмкости от 9 пФ
до 270 пФ
Здесь емкость изменяется путем различного расположения роторных (подвижных) пластин относительно статорных (неподвижных). Зависимость изменения емкости от угла поворота определяется конфигурацией пластин. Величина минимальной и максимальной емкости зависит от площади пластин и расстояния между ними. Обычно минимальная емкость
, измеряемая при полностью выведенных роторных пластинах, составляет единицы (до 10
– 20
) пикофарад, а максимальная емкость Смакс
, измеряемая при полностью выведенных роторных пластинах, – сотни пикофарад.
В радиоаппаратуре часто используются блоки КПЕ
, скомпонованные из двух, трех и более конденсаторов переменной емкости, механически связанных друг с другом.
Конденсатор переменной ёмкости от 12 пФ
до 497 пФ
Благодаря блокам КПЕ
можно изменять одновременно и на одинаковую величину емкость различных цепей устройства.
Разновидностью КПЕ
являются подстроечные конденсаторы. Их емкость так же, как и сопротивление подстроечных резисторов, изменяют лишь с помощью отвертки. В качестве диэлектрика в таких конденсаторах могут использоваться воздух или керамика.
Конденсатор подстроечный от 5 пФ
до 30 пФ
На электрических схемах конденсаторы постоянной емкости обозначаются двумя параллельными отрезками, символизирующими обкладки конденсатора, с выводами от их середин. Рядом указывают условное буквенное обозначение конденсатора – букву С
(от лат. Capacitor – конденсатор).
После буквы С ставится порядковый номер конденсатора в данной схеме, а рядом через небольшой интервал пишется другое число, указывающее на номинальное значение емкости.
Емкость конденсаторов от 0
до 9999 пФ
указывают без единицы измерения, если емкость выражена целым числом , и с единицей измерения – пФ
, если емкость выражена дробным числом.
Подстроечные конденсаторы
Емкость конденсаторов от 10 000 пФ (0,01 мкФ)
999 000 000 пФ (999 мкФ)
указывают в микрофарадах в виде десятичной дроби либо как целое число, после которого ставят запятую и нуль. В обозначениях электролитических конденсаторов знаком «+
» помечается отрезок, соответствующий положительному выводу – аноду, и после знака «х
» – номинальное рабочее напряжение.Конденсаторы переменной емкости (КПЕ
) обозначаются двумя параллельными отрезками, перечеркнутыми стрелкой.
Если необходимо, чтобы к данной точке устройства подключались именно роторные пластины, то на схеме они обозначаются короткой дугой. Рядом указываются минимальный и максимальный пределы изменения емкости.
В обозначении подстроечных конденсаторов параллельные линии пересекаются отрезком с короткой черточкой, перпендикулярной одному из его концов.
Номиналы конденсаторов, ряды конденсаторов
Номиналы конденсаторов очень похожи на номиналы резисторов. Наиболее часто используемые ряды при производстве конденсаторов — ряд Е3 и рад Е6, т.к. многие типы конденсаторов сложно изготовить с большой точностью.
Ряды конденсаторов
Чтобы производить реальный диапазон конденсаторов, необходимо увеличивать шаг между номиналами ёмкостей по мере их увеличения. Стандартные ряды конденсаторов основаны на этой идее и их значения похожи в каждом интервале, кратном десяти.
Ряд Е3 (3 значения в каждом интервале, кратном десяти)
10, 22, 47, … затем это продолжается так: 100, 220, 470, 1000, 2200, 4700 и т.д.
Обратите внимание, как значение шага увеличивается по мере увеличения ёмкости (емкость каждый раз примерно удваивается).
Ряд Е6 (6 значений в каждом интервале, кратном десяти)
10, 15, 22, 33, 47, 68, … затем: 100, 150, 220, 330, 470, 680, 1000 и т.д.
Видите, это тот же ряд Е3, но с дополнительными промежуточными значениями.
Кодовая маркировка конденсаторов описана здесь.
Таблица номиналов конденсаторов по рядам Е3 и Е6
Кодовое обозначение | пкФ (pF) | нФ (nF) | мкФ (µF) | |
---|---|---|---|---|
Ряд Е3 | Ряд Е6 | |||
109 | 109 | 1.0 | 0.001 | |
159 | 1.5 | 0.0015 | ||
229 | 229 | 2.2 | 0.0022 | |
339 | 3.3 | 0.0033 | ||
479 | 479 | 4.7 | 0.0047 | |
689 | 6.8 | 0.0068 | ||
100 | 100 | 10 | 0.01 | |
150 | 15 | 0.015 | ||
220 | 220 | 22 | 0.022 | |
330 | 33 | 0.033 | ||
470 | 470 | 47 | 0.047 | |
680 | 68 | 0.068 | ||
101 | 101 | 100 | 0.1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 | |
221 | 221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 | |
471 | 471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 | |
102 | 102 | 1000 | 1.0 | 0.001 |
152 | 1500 | 1.5 | 0.0015 | |
222 | 222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0.0033 | |
472 | 472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 | |
103 | 103 | 10000 | 10 | 0.01 |
153 | 15000 | 15 | 0.015 | |
223 | 223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 | |
473 | 473 | 47000 | 47 | 0.047 |
683 | 68000 | 68 | 0.068 | |
104 | 104 | 100 | 0.1 | |
154 | 150 | 0.15 | ||
224 | 224 | 220 | 0.22 | |
334 | 330 | 0.33 | ||
474 | 474 | 470 | 0.47 | |
684 | 680 | 0.68 | ||
105 | 105 | 1000 | 1.0 |
Редко используемые единицы номиналов в таблице пропущены
Маркировка конденсаторов таблица с расшифровкой
Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.
Конденсаторы различных типов
Зачем нужна маркировка
Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:
- собственно, емкость – основная характеристика;
- максимально допустимое значение напряжения;
- температурный коэффициент емкости;
- допустимое отклонение емкости от номинального значения;
- полярность;
- год выпуска.
Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.
Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.
Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.
Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.
Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.
Маркировка отечественных конденсаторов
Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.
Емкость
На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:
- p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
- n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
- μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
- m или И – миллифарада, 1 mF = 10-3 F;
- F или Ф – фарада.
Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:
- 2n2 = 2.2 нанофарад или 2200 пикофарад;
- 68n = 68 нанофарад или 0,068 микрофарад;
- 680n или μ68 = 0.68 микрофарад.
Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF. Здесь на помощь приходят габариты конденсатора и здравый смысл.
Пример обозначения
Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.
Допустимое отклонение
Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.
Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.
Температурный коэффициент емкости
Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.
Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.
Номинальное напряжение
Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.
В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.
Пример обозначения напряжения
Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.
Год и месяц выпуска
Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.
Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.
Расположение маркировки на корпусе
Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.
Подобным же методом наносится маркировка пленочных конденсаторов.
Пример маркировки различных характеристик
Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.
Цветовая маркировка отечественных радиоэлементов
С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.
Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.
Цветовая маркировка
Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.
Маркировка конденсаторов импортного производства
Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.
Трехзначная кодировка
Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.
Цветовая маркировка импортных конденсаторов
Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.
Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.
Маркировка SMD компонентов
SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.
Маркировка SMD
Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.
Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.
Видео
Оцените статью:Система сокращённого обозначения номиналов резисторов и конденсаторов
По системе сокращённого обозначения номиналы малогабаритных резисторов и конденсаторов обозначают на их корпусах условными буквенными и цифровыми знаками.
Сокращённое обозначение номиналов резисторов
Единицу сопротивления Ом сокращенно обозначают буквой Е, килом — буквой К, мыгаом — буквой М. Сопротивления резисторов от 100 до 910 Ом выражают в долях килоома, а сопротивления от 100 000 до 910 000 Ом — в долях мегаома.
Если номинальное сопротивление резистора выражают целым числом, то буквенное обозначение единицы измерения ставят после этого числа, например: 33Е (33 Ом), 47К (47 кОм), 1М (1 МОм). Когда же сопротивление резистора выражают десятичной дробью меньше единицы, то буквенное обозначение единицы измерения располагают перед числом, например: К22 (220 Ом), М47 (470 кОм). Выражая сопротивление резистора целым числом с десятичной дробью, целое число ставят впереди буквы, а десятичную дробь — после буквы, символизирующей единицы измерения (буква заменяет запятую после целого числа). Примеры: 1Е5 (1,5 Ом), 2К2 (2.2 кОм), 1M5 (1,5 МОм).
Сокращённое обозначение номиналов конденсаторов
Номинальные емкости конденсаторов до 91 пФ, выражают в пикофарадах, используя для обозначения этой единицы емкости букву П. Емкости от 100 до 9100 пФ выражают в долях нанофарады (1 нФ — 1000 пФ или 0.001 мкФ), а от 0,01 до 0,091 мкФ — в нанофародах, обозначая нанофараду буквой Н. Емкости от 0,1 мкФ и больше выражают в микрофарадах, используя для обозначения этой единицы емкости букву М. Если емкость конденсатора выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пФ). 15Н (15 нФ — 15 000 пФ, или 0,015 мкФ), 10М(10мкФ).
Чтобы номинальную емкость выразить десятичной дробью, буквенное обозначение единицы емкости располагают перед числом: Н15 (0,15 нФ — 150 пФ), М22 (0.22 мкФ). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ею запятую, например: 1П2 (1,2 пФ), 4Н7 (4.7 нФ — 4700 пФ), 1М5 (1.5 мкФ).
Примечание:
Всё изложенное выше относится к обозначению номиналов резисторов и конденсаторов Российского производства…
Маркировка постоянных конденсаторов. Обозначение конденсаторов на схемах
Наряду с самыми распространенными радиокомпонентами резисторами, конденсаторы по праву занимают второе место по использованию в электрических цепях и схемах. Основные характеристиками конденсатора являются номинальная ёмкость и номинальное напряжение. Чаще всего в схемах радиоэлектроники применяются постоянные конденсаторы, и значительно реже — переменные и подстроенные.
Номинальное напряжение конденсаторов обычно на схемах не указывают, хотя иногда и встречается в некоторых случаях, например, в высоковольтных схемах питающего рентгеновского устройства с обозначением номинальной емкости часто пишут и номинальное напряжение. Для оксидных, их еще называют электролитических конденсаторов номинал напряжения, также очень часто указывают.
Большинство оксидных конденсаторов полярные, поэтому включать их в электрическую схемуь можно только с соблюдением полярности. Чтобы отобразить это на схеме, у символа положительной обкладки имеется знак «+» .
Для развязки цепей питания в высокочастотных схемах по переменному току применяют проходные конденсаторы . Они имеют три вывода: два — от одной обкладки («вход» и «выход»), а третий от другой, наружной, которую соединяют с экраном. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора. Наружную обкладку рисуют короткой дугой, а также одним или двумя отрезками прямых линий с выводами от середины. С той же задачей, что и проходные, используют опорные конденсаторы. Обкладку, соединяемую с корпусом, выделяют в обозначении такого конденсатора тремя наклонными линиями, говорящим о « ».
Обозначение конденсаторов переменной емкости (КПЕ) на схемах |
КПЕ используются для оперативной регулировки и состоят из статора и ротора. Такие конденсаторы широко применяются, например, для регулировки частоты радиовещательных и телевизионных приёмников. КПЕ допускают многократную регулировку ёмкости в заданных пределах. Это их свойство отображается на схемах знаком регулировки — наклонной стрелкой, пересекающей базовый символ под углом 45° , а возле него обычно пишут минимальную и максимальную емкость). Если требуется обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора
Для одновременного изменения емкости в нескольких цепях применяются блоки, из двух, грех и большего количества КПЕ. Принадлежность КПЕ к блоку указывают на схемах штриховой линией механической связи. При отображении КПЕ блока в разных частях схемы, механическую связь не показывают, ограничиваясь только соответствующей нумерацией секции.
Саморегулирумые конденсаторы (другое название нелинейные) обладают свойством изменять номинал емкость под действием внешних условий. В радиоэлектронных самоделках и конструкциях часто используют вариконды . Их уровень емкости меняется в зависимости от приложенного к обкладкам напряжения. Буквенный код варикондов — CU , обозначаются на схемах с латинской буквой U
Аналогичным образом обозначают термоконденсаторы . Буквенный код этой разновидности конденсаторов — СK а на схемах указывается символом t°
Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код изготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF.2 PF) конденсатор от фирмы Kemet.
Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.
В общем случае керамические конденсаторы на
основе диэлектрика с высокой проницаемостью обозначаются
согласно EIA тремя символами, первые два из которых указывают
на нижнюю и верхнюю границы рабочего диапазона температур, а
третий – допустимое изменение емкости в этом диапазоне.6pF = 4. 7mF
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.
Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 3.1 и их определяет соответствующий ГОСТ .
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4 ). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2 ).
Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.другое изображение обкладок конденсатора (см. рис.3.2 , С2 и СЗ).
С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение
Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы . У них тоже три вывода: два — от одной обкладки («вход» и «выход»), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3 , С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы. Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3.3 , С4).
Конденсаторы переменной ёмкости (КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 3.4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 3.4, С2).
Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, трех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 3.5 ). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 3.5 , С2.1, С2.2, С2.3).
Разновидность КПЕ — подстроенные конденсаторы . Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки). В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 3.6 ). Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 3.6 , СЗ, С4).
Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able) — переменный и cond(enser) — еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения, см. табл. 1.1), УГО в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).
Аналогично построено УГО термоконденсаторов. Буквенный код этой разновидности конденсаторов — СК (рис. 3,7 , конденсатор СК2). Температура среды, естественно, обозначается символом tº
Радио для всех — Цифробуквенная маркировка конденсаторов
junradio.com|jradio.ucoz.ru|junradio.com
Емкости до 100 пФ выражают в пикофарадах; для обозначения этой единицы измерения используют букву П. Емкости от 100 до 9100 пФ выражают в долях нанофарады, а от 0,01 до 0,091 мкФ в нанофарадах; для обозначения нанофарады применяют букву Н. Емкости от 0,1 мкФ, и выше выражают ,в микрофарадах; для обозначения этой единицы применяют букву М. Если номинальная емкость выражается целым числом, то обозначение единицы измерения ставят после этого числа (емкость 15 пФ обозначают 15П, а емкость 0,015 мкФ = 15 нФ обозначают 15Н). Если номинальная емкость выражается десятичной дробью, меньшей единицы, то нуль целых и запятая из маркировки исключается, а буквенное обозначение единицы измерения располагается перед числом. (емкость 150 пф = 0,15 нф обозначают Н15, а емкость 0,10 мкФ обозначают числом м10). Если номинальная емкость выражается целым числом с десятичной дробью, то целое число ставят впереди, а десятичную дробь после буквы, т. е. буква, обозначающая единицу измерения, заменяет запятую (емкость 1,5 пФ обозначают 1П5; а емкость 1500 пФ = 1,5 нФ обозначают 1Н5).
При повторении конструкций, необходимо уметь переводить одни величины в другие. |
В этом нам помогут три важные строчки. |
Пример
На отрывке принципиальной схемы указаны конденсаторы: С6-1500пф, С7-0,1мкф, С8-47нф. Определим номиналы деталей, которые можно поставить,в место указанных на схеме.
Решение
Смотрим внимательно на табличку. Определим номиналы: 1500 пф=1,5нф=0,0015мкф, 0,1мкф=100нф=100000пф, 47нф=0,047мкф=47000пф. Как видим, все просто. Теперь, когда нам предстоит собрать схему или заменить неисправную деталь, можем смело подобрать необходимый номинал. Фактическая емкость конденсатора может отличаться от обозначенной на нем на значение» не превышающее допускаемого отклонения, которое маркируется после обозначения номинальной емкости цифрами в процентах, пикофарадах или по коду.
Код отклонений от емкости, у конденсаторов широкого применения, такой же как и у резисторов.
Как видим, точный номинал воспроизвести в массовом производстве достаточно сложно. К основным «корректорам» емкости конденсатора относится еще и температура. Забежим немножко вперед. Возьмем обычный приемник. За окном солнечный день, жарко. Настроились на любимую радиостанцию и слушаем передачу. Пошел дождь, температура понизилась и стало прохладно. Передача не прервалась, так как для сохранения на нужную частоту используются конденсаторы у которых ТКЕ имеют разные знаки, и они компенсируют перепады емкости. Благодаря этой маленькой хитрости настройка остается неизменной.
Таблица допустимых отклонений номиналов конденсаторов советского производства.
Отклонение номинала конденсатора, при изменении температуры.
У некоторых типов конденсаторов, буквами кодируют номинальное напряжение и даже год выпуска.
В обозначении номинала емкости, встречаются различные цифро — буквенные комбинации. Они ставят начинающего радиолюбителя в тупик..
Часто встречающиеся номиналы
Попробуем ими воспользоваться, что бы определить номинал.
|
Запись К73-9 680n K 100в 0882 Тип детали К73-9 Емкость 680 нф Допуск 10% Напряжение 100в Год выпуска август 82г
|
Запись Н70 2n2 F ТКЕ (-70) Емкость 2,2 нф Допуск 1% | |
|
Запись 6V 12n J Тип детали КМ6 ТКЕ (-1500 или -1300) Емкость 12нф Допуск 5% |
|
Емкость 0,05 мкф = 50 нф = 50000 пф Напряжение 10в |
|
Запись М33 68П С ТКЕ (-33) Емкость 68 пф Допуск 0,25% |
|
Емкость 6,8 мкф Напряжение 16в Допуск 20% |
|
Емкость 2200 пф = 2,2 нф = 0,0022мкф Напряжение 10в Допуск 10% |
Отдельные производители наносят числовое значение и количество нулей.
| |
|
Емкость 4,7 мкф Напряжение 10в |
|
К числу 10 дописываем четыре нуля Емкость 100000 пф = 100 нф = 0,1 мкф
|
SMD (Surface Mount Tehnology) компоненты в основном маркируются по стандарту IEC.
Вместо десятичной запятой может стоять буковка R. Возможные комбинации смотрим в табличке.
Возможны варианты кодирования 4-х значным числом. Последняя цифра указывает количество нулей а первые три — емкость в пикофарадах.
| Емкость в пикофарадах 154 пф Количество нулей 00 Результат 15400 пф = 15,4 нф = 0, 015 мкф |
| Емкость 2,2 мкф Допуск 1% |
Следующий пример. Первые две цифры указывают на значение емкости в пикофарадах, последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1 пФ первая цифра «0». Буква R, как и в предыдущем примере, используется в качестве десятичной запятой Например, код 010 равен 1, 0 пФ, код 0R5 равен 0 ,5 пФ.
Емкость 5,6 пф Количество нулей нет Результат 5,6 пф
| Емкость в пикофарадах 22 пф Количество нулей 00 Результат 2200 пф | ||
Емкость в пикофарадах 47 пф Количество нулей 0000 Результат 470000 пф | Емкость в пикофарадах 33 пф Количество нулей 0 Результат 330 пф |
Некоторые фирмы устанавливают свои стандарты, путаются в них даже профессионалы. Следующий способ маркировки используют основные производители бытовой техники для электролитических конденсаторов. Полоска плюсовой электрод (+).
Для двух символов: первая буква — емкость, цифра — множитель. Напряжение не указывается.
Для трех символов: первая буква — напряжение, вторая — значение в фарадах , цифра — множитель.
Для четырех символов (Сном из таблицы не подойдет): первая буква — напряжение, вторая и третья цифра — целое значение в пикофарадах , последняя — множитель.
Перед буквами может ставиться цифра, указывающая на диапазон:
0- для напряжений до 10 В
1- для напряжений до 100 В
2- для напряжений до 1000 В
Пример 0Е — 2,5 В, 1Е — 25В. 2Е — 250 В
| Емкость в пикофарадах 1,5 пф Количество нулей 000000 Результат 1,5 мкф
|
| Емкость в пикофарадах 6,8 пф Количество нулей 0000000 Напряжение 4В Результат 68 мкф на 4в
|
Емкость 6,8 мкф Напряжение 10В Результат 6,8 мкф на 10В | Емкость в пикофарадах 47 пф Количество нулей 000000 Напряжение 6,3 или 7В Результат 47 мкф на 6,3 или 7В |
Таблица маркировки конденсаторов — виды и понятие обозначений
Что такое конденсатор?
Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.
Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).
Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.
Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.
Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.
Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Виды конденсаторов
Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Какие параметры могут быть указаны в маркировке
Для конденсаторов важны три параметра:
- ёмкость;
- номинальное (рабочее) напряжение;
- допуск по отклонению ёмкости.
С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили- , микро- , нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Согласно «ГОСТ 30668-2000 Изделия электронной техники. Маркировка», указываются буквы и цифры, обозначающие год и месяц выпуска.
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
ГодКод
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Маркировка конденсаторов тремя цифрами
При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.
Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка конденсаторов четырьмя цифрами
Все тоже самое что и выше только первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах.
Пример обозначения:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ
Физические величины, используемые в маркировке емкости керамических конденсаторов
Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.
Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Наименование единицы | Варианты обозначений | Степень по отношению к Фараду | |
Микрофарад | Microfarad | мкФ, µF, uF, mF | 10-6F |
Нанофарад | Nanofarad | нФ, nF | 10-9F |
Пикофарад | Picofarad | пФ, pF, mmF, uuF | 10-12F |
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).
На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.
Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.
Численные и численно-буквенные коды в маркировках конденсаторов
Обозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя.
Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов
Напряжение, В | Код | Напряжение, В | Код |
1 | I | 63 | K |
1,6 | R | 80 | L |
3,2 | A | 100 | N |
4 | C | 125 | P |
6,3 | B | 160 | Q |
10 | D | 200 | Z |
16 | E | 250 | W |
20 | F | 315 | X |
25 | G | 400 | Y |
32 | H | 450 | U |
40 | C | 500 | V |
50 | J |
Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом.
Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ
Допуск при -60°C…+80°C, +/-, % | Буквенный код | Допуск при -60°C…+80°C, +/-, % | Буквенный код |
20 | Z | 70 | E |
30 | D | 90 | F |
Третья позиция – номинальная емкость, которая может указываться несколькими способами.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Особенности хранения
Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.
Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:
- Соблюдение требований техпроцессов;
- Многоступенчатый контроль качества продукции;
- Соблюдение условий хранения;
- Выполнение требований к организации рабочего места для монтажа устройств на плату;
- Соблюдение рекомендуемого температурного режима пайки;
- Правильный выбор безопасных рабочих режимов;
- Соблюдение требований по эксплуатации.
Цветовая кодировка керамических конденсаторов
На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски. Как правило, номинал емкости оказывается закодирован первыми тремя полосками. Каждому цвету, в первых двух полосках,соответствует своя цифра: черный — цифра 0; коричневый — 1; красный — 2; оранжевый — 3; желтый — 4; зеленый — 5; голубой — 6; фиолетовый — 7; серый — 8; белый — 9. Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.
В третьей полоске цвета имеют следующие значение: оранжевый — 1000; желтый — 10000; зеленый — 100000. Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: белый — ± 10 %; черный — ± 20%. Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Источники
- https://hmelectro.ru/poleznye_statyi/markirovka-kondensatorov-tsifrovaya-tsvetnaya-eyo-rasshifrovka
- https://odinelectric.ru/equipment/electronic-components/kak-rasshifrovat-markirovku-kondensatora
- http://www.radiodetector.ru/markirovka-kondensatorov/
- https://www.RadioElementy.ru/articles/markirovka-keramicheskikh-kondensatorov/
- https://instanko.ru/elektroinstrument/markirovka-keramicheskih-kondensatorov-rasshifrovka-tablica.html
- https://ElectroInfo.net/kondensatory/kak-oboznachajutsja-kondensatory-na-sheme.html
Как читать информацию о конденсаторах
Всегда разряжайте конденсатор, удерживая его за изолированный ручкой отвертки и с помощью металлического лезвия коснитесь обоих выводов конденсатор в то же время, прежде чем отсоединять его от цепи или манипулировать Это. Конденсаторы могут сохранять заряд в течение продолжительных периодов времени и могут разряд через вас, если вы случайно коснетесь обоих контактов.
Конденсаторы оцениваются по их емкости в микрофарадах и
по максимальному напряжению, на которое рассчитан конденсатор.Наш номер детали
C216E250 имеет емкость в микрофарадах после буквы C (216) и
напряжение после буквы Е (250). Микрофарады на этикетке конденсатора могут быть
обозначается MFD, мкФ или мкФ после числа, и напряжение обычно равно
за которым следует буква V или VAC (вольт переменного тока) или символ, похожий на букву S, лежащую на боку.
В электрических цепях напряжения 110, 115, 120 и 125 являются то же самое, что и напряжения 220, 230, 240 и 250.
Конденсаторы электродвигателя делятся на два основных категории, пусковые конденсаторы и рабочие конденсаторы.
Пусковые конденсаторыпочти всегда в круглом черном пластиковом корпусе. за исключением некоторых иностранных брендов, и предназначены только для цепи в течение нескольких секунд, пока на двигатель сначала подается напряжение. Многие имеют диапазон емкостей на них, например 216-259 МФД. Когда конденсатор был изготовленных, фактическая стоимость конденсатора упала где-то в пределах этого диапазон.Некоторые производители указывают только одно значение, иногда в середине диапазона. а иногда и меньшее значение. Наша часть # — это меньшее число в этом диапазоне, но все наши списки показывают диапазон. Если у вашего конденсатора только одно значение, пока он находится в пределах досягаемости нашего конденсатора, его можно заменить этим конденсатор. Напряжение — это максимальное напряжение, которое может выдержать конденсатор. Всегда используйте запасной конденсатор, который имеет номинальное напряжение не ниже вашего. старый конденсатор, но если размер не является ограничивающим фактором, не помешает использовать новый конденсатор с номинальным напряжением выше, чем старый конденсатор.
Рабочие конденсаторы обычно заключены в металлические корпуса. Исключение составляют марки WEG, которые производят их в серых пластиковых корпусах. Рабочие конденсаторы бывают как в круглых, так и в овальных корпусах, и нет разницы в их номиналах, только форма и размер. Если пространство не рассматривается, круглые и овальные конденсаторы одинаковой емкости и напряжения являются взаимозаменяемыми. Только они иметь одно значение MFD со знаком + или — после него. Пример 30 MFD +/- 10%. Когда этот конденсатор был изготовлен, он показывал где-то между 27 и 33. МФД.Некоторые составляют +/- 5%, некоторые +/- 6% и некоторые +/- 10%, но они взаимозаменяемы. до тех пор, пока значение MFD такое же. Напряжение рабочих конденсаторов обычно составляет 370 В переменного тока или 440 В переменного тока для большинства двигателей и 250 В переменного тока или 400 В переменного тока для марки WEG или некоторых других другие моторы иностранного производства. Из-за скачки напряжения, наблюдаемые двигателем при нормальной работе, двигатели с номинальным напряжением 125 В обычно имеет рабочий конденсатор на 370 В переменного тока или, в случае WEG, на 250 VAC. Если двигатель имеет два номинала, например 115/230, пусковая обмотка работает на 115 В переменного тока, даже когда двигатель подключен к 230 В переменного тока, поэтому пусковой конденсатор будет 125 В переменного тока, а если у него есть рабочий конденсатор, это будет 370 В переменного тока.Конденсаторы WEG в той же ситуации будут запускать 110 В переменного тока и работать 250 В переменного тока. Больше, в двигателях с одним напряжением будут использоваться пусковые конденсаторы номиналом 250 В переменного тока, а для работы в режиме 370 В переменного тока используются пусковые конденсаторы. конденсаторы и более крупные WEG будут иметь пусковые конденсаторы 250 В переменного тока и работать на 400 В переменного тока. конденсаторы. Всегда заменяйте конденсатор на то же значение MFD и напряжение по крайней мере, такой же высокий, как у оригинального конденсатора.
Большинство электронных счетчиков, даже с микрофарадой
диапазон испытаний, не предназначены для испытания конденсаторов двигателя, поскольку их диапазоны
недостаточно высок, чтобы читать более 1 MFD.. Каждый раз, когда конденсатор проверяется и
значение вне указанного диапазона, больше или меньше, оно плохое и должно быть заменено.
Если в конденсаторе течет масло или наверху имеется вытолкнутый круг, это значит, что
плохой и подлежит замене. Рабочие конденсаторы предназначены для расширения верхней части, чтобы разорвать цепь к клеммам, когда они выходят из строя, поэтому, если верхняя часть рабочего конденсатора имеет выпуклую форму, а не плоскую, это плохо.
Конденсаторы рассчитываются по электрическому свойству, называемому индуктивность в цепи обмотки двигателя, содержащей конденсатор.В Емкость электрически компенсирует индуктивность обмотки. Если конденсатор заменяется на конденсатор с большей или меньшей емкостью, он будет не компенсирует индуктивность и сделает двигатель менее эффективным и менее мощный.
Если у вас есть вопросы, присылайте их по адресу [email protected] и мы сделаем все возможное, чтобы получить на них ответ.
Характеристики конденсатора и технические характеристики конденсатора
Существует множество характеристик и спецификаций конденсаторов, связанных со скромным конденсатором, и чтение информации, напечатанной на корпусе конденсатора, иногда может быть трудным для понимания, особенно при использовании цветов или числовых кодов.
Каждое семейство или тип конденсатора использует свой собственный уникальный набор характеристик конденсатора и систему идентификации, причем одни системы просты для понимания, а другие используют вводящие в заблуждение буквы, цвета или символы.
Лучший способ выяснить, какие характеристики конденсатора обозначает этикетка, — это сначала выяснить, к какому типу семейства принадлежит конденсатор, будь то керамический, пленочный, пластиковый или электролитический, и, возможно, будет легче определить конкретные характеристики конденсатора.
Даже если два конденсатора могут иметь одно и то же значение емкости, они могут иметь разные номиналы напряжения. Если конденсатор с меньшим номинальным напряжением заменяется конденсатором с более высоким номинальным напряжением, повышенное напряжение может повредить меньший конденсатор.
Также мы помним из предыдущего урока, что с поляризованным электролитическим конденсатором положительный вывод должен подключаться к положительному соединению, а отрицательный вывод — к отрицательному, иначе он может снова выйти из строя.Поэтому всегда лучше заменить старый или поврежденный конденсатор на тот же тип, что и указанный. Пример маркировки конденсаторов приведен ниже.
Характеристики конденсатора
Конденсатор, как и любой другой электронный компонент, имеет ряд характеристик. Эти характеристики конденсатора всегда можно найти в технических паспортах, которые производитель конденсаторов предоставляет нам, поэтому вот лишь некоторые из наиболее важных из них.
1. Номинальная емкость, (C)
Номинальное значение емкости Емкость , C конденсатора является наиболее важной из всех характеристик конденсатора. Это значение измеряется в пикофарадах (пФ), нанофарадах (нФ) или микрофарадах (мкФ) и маркируется на корпусе конденсатора цифрами, буквами или цветными полосами.
Емкость конденсатора может изменяться в зависимости от частоты цепи (Гц) y в зависимости от температуры окружающей среды. Керамические конденсаторы меньшего размера могут иметь номинальное значение всего один пикофарад (1 пФ), в то время как более крупные электролитические конденсаторы могут иметь номинальное значение емкости до одного фарада (1 Ф).
Все конденсаторы имеют допуски от -20% до + 80% для алюминиевых электролитов, влияющие на его фактическое или реальное значение. Выбор емкости определяется конфигурацией схемы, но значение, считываемое на стороне конденсатора, не обязательно может быть его фактическим значением.
2. Рабочее напряжение, (WV)
Рабочее напряжение — еще одна важная характеристика конденсатора, которая определяет максимальное непрерывное напряжение постоянного или переменного тока, которое может быть приложено к конденсатору без сбоев в течение его срока службы.Как правило, рабочее напряжение, напечатанное на стороне корпуса конденсатора, относится к его рабочему напряжению постоянного тока (WVDC).
Значения постоянного и переменного напряжения обычно не совпадают для конденсатора, поскольку значение переменного напряжения относится к среднеквадратичному значению. значение, а НЕ максимальное или пиковое значение, которое в 1,414 раза больше. Кроме того, указанное рабочее напряжение постоянного тока действительно в определенном диапазоне температур, обычно от -30 ° C до + 70 ° C.
Любое постоянное напряжение, превышающее рабочее напряжение, или чрезмерный пульсирующий ток переменного тока могут вызвать отказ.Отсюда следует, что конденсатор будет иметь более длительный срок службы при эксплуатации в прохладной среде и в пределах своего номинального напряжения. Стандартные рабочие напряжения постоянного тока составляют 10 В, 16 В, 25 В, 35 В, 50 В, 63 В, 100 В, 160 В, 250 В, 400 В и 1000 В и указаны на корпусе конденсатора.
3. Допуск, (±%)
Как и резисторы, конденсаторы также имеют рейтинг допуска , выраженный как положительное или отрицательное значение либо в пикофарадах (± пФ) для конденсаторов малой емкости, как правило, менее 100 пФ, либо в процентах (±%) для конденсаторов большей емкости, как правило. выше 100 пФ.
Значение допуска — это степень, в которой фактическая емкость может отличаться от ее номинального значения и может находиться в диапазоне от -20% до + 80%. Таким образом, конденсатор емкостью 100 мкФ с допуском ± 20% может законно изменяться от 80 мкФ до 120 мкФ и по-прежнему оставаться в пределах допуска.
Конденсаторыклассифицируются в зависимости от того, насколько близки их фактические значения к номинальной номинальной емкости с цветными полосами или буквами, используемыми для обозначения их фактического допуска. Наиболее частое отклонение допусков для конденсаторов составляет 5% или 10%, но некоторые пластиковые конденсаторы имеют номинальный уровень до ± 1%.
4. Ток утечки
Диэлектрик, используемый внутри конденсатора для разделения проводящих пластин, не является идеальным изолятором, что приводит к очень небольшому току, протекающему или «протекающему» через диэлектрик из-за влияния мощных электрических полей, создаваемых зарядом на пластинах при наложении. на постоянное напряжение питания.
Этот небольшой постоянный ток, протекающий в области наноампер (нА), называется конденсаторами Leakage Current . Ток утечки является результатом того, что электроны физически проходят через диэлектрическую среду, вокруг ее краев или между выводами и со временем полностью разряжают конденсатор, если напряжение питания снимается.
Когда утечка очень мала, например, в конденсаторах пленочного или фольгового типа, ее обычно называют «сопротивлением изоляции» (R p ), и ее можно выразить как высокое значение сопротивления параллельно конденсатору, как показано. Когда ток утечки высок, как в электролитах, это называется «током утечки», поскольку электроны проходят непосредственно через электролит.
Ток утечки конденсатора является важным параметром в цепях связи усилителя или в цепях источника питания, при этом лучшим выбором для приложений связи и / или хранения является тефлон и другие типы пластиковых конденсаторов (полипропилен, полистирол и т. Д.), Потому что чем ниже диэлектрическая постоянная , тем выше сопротивление изоляции.
Конденсаторы электролитического типа (танталовые и алюминиевые), с другой стороны, могут иметь очень высокую емкость, но они также имеют очень высокие токи утечки (обычно порядка 5-20 мкА на мкФ) из-за их низкого сопротивления изоляции, и поэтому не подходят для хранения или соединения. Кроме того, ток утечки для алюминиевых электролитов увеличивается с температурой.
5. Рабочая температура, (Т)
Изменения температуры вокруг конденсатора влияют на значение емкости из-за изменений диэлектрических свойств.Если температура воздуха или окружающей среды становится слишком горячей или холодной, значение емкости конденсатора может измениться настолько, что повлияет на правильную работу цепи. Нормальный рабочий диапазон для большинства конденсаторов составляет от -30 o C до +125 o C с номинальным напряжением, указанным для рабочей температуры , не более +70 o C, особенно для пластиковых конденсаторов.
Обычно для электролитических конденсаторов и особенно алюминиевых электролитических конденсаторов при высоких температурах (свыше +85 o C жидкости в электролите могут испаряться, а корпус конденсатора (особенно малых размеров) может деформироваться из-за внутреннее давление и прямая утечка.Также электролитические конденсаторы нельзя использовать при низких температурах, ниже примерно -10 o C, поскольку электролитный гель замерзает.
6. Температурный коэффициент, (TC)
Температурный коэффициент конденсатора — это максимальное изменение его емкости в заданном диапазоне температур. Температурный коэффициент конденсатора обычно выражается линейно в частях на миллион на градус Цельсия (PPM / o C) или в процентах изменения в определенном диапазоне температур.Некоторые конденсаторы являются нелинейными (конденсаторы класса 2) и увеличивают свое значение при повышении температуры, придавая им температурный коэффициент, который выражается как положительное значение «P».
Некоторые конденсаторы уменьшают свое значение при повышении температуры, придавая им температурный коэффициент, который выражается как отрицательный «N». Например, «P100» составляет +100 ppm / o C или «N200», что составляет -200 ppm / o C и т. Д. Однако некоторые конденсаторы не меняют своего значения и остаются постоянными в определенном диапазоне температур, например конденсаторы имеют нулевой температурный коэффициент или «НПО».Эти типы конденсаторов, такие как слюдяные или полиэфирные, обычно относятся к конденсаторам класса 1.
Большинство конденсаторов, особенно электролитические, теряют свою емкость при нагревании, но доступны конденсаторы с температурной компенсацией в диапазоне от P1000 до N5000 (от +1000 ppm / o C до -5000 ppm / o C). Также возможно подключить конденсатор с положительным температурным коэффициентом последовательно или параллельно с конденсатором, имеющим отрицательный температурный коэффициент, в результате чего два противоположных эффекта будут нейтрализовать друг друга в определенном диапазоне температур.Еще одно полезное применение конденсаторов с температурным коэффициентом — их использование для нейтрализации влияния температуры на другие компоненты в цепи, такие как катушки индуктивности, резисторы и т. Д.
7. Поляризация
Конденсатор Поляризация обычно относится к конденсаторам электролитического типа, но в основном к алюминиевым электролитическим конденсаторам в отношении их электрического соединения. Большинство электролитических конденсаторов поляризованного типа, то есть напряжение, подключенное к клеммам конденсатора, должно иметь правильную полярность, т.е.е. положительное на положительное и отрицательное на отрицательное.
Неправильная поляризация может привести к разрушению оксидного слоя внутри конденсатора, что приведет к протеканию очень больших токов через устройство, что приведет к разрушению, как мы упоминали ранее.
У большинства электролитических конденсаторов отрицательный полюс -ve четко обозначен черной полосой, полосой, стрелками или шевронами на одной стороне корпуса, как показано на рисунке, для предотвращения неправильного подключения к источнику постоянного тока.
У некоторых более крупных электролитиков металлическая банка или корпус соединены с отрицательной клеммой, но у высоковольтных электролизеров металлическая банка изолирована, а электроды выведены на отдельные лопаточные или винтовые клеммы для безопасности.
Кроме того, при использовании алюминиевых электролитов в сглаживающих цепях источника питания следует позаботиться о том, чтобы сумма пикового напряжения постоянного тока и пульсирующего напряжения переменного тока не превратилась в «обратное напряжение».
8. Эквивалентное последовательное сопротивление (ESR)
Эквивалентное последовательное сопротивление или ESR конденсатора — это импеданс конденсатора по переменному току при использовании на высоких частотах и включает в себя сопротивление диэлектрического материала, сопротивление постоянному току выводов клемм, сопротивление постоянного тока соединений. сопротивление диэлектрика и обкладки конденсатора измеряется при определенной частоте и температуре.
ESR Модель
В некотором смысле ESR противоположен сопротивлению изоляции, которое представляется как чистое сопротивление (без емкостного или индуктивного реактивного сопротивления) параллельно конденсатору. Идеальный конденсатор должен иметь только емкость, но ESR представляется как чистое сопротивление (менее 0,1 Ом), включенное последовательно с конденсатором (отсюда и название — эквивалентное последовательное сопротивление), и которое зависит от частоты, что делает его «ДИНАМИЧНОЙ» величиной.
Поскольку ESR определяет потери энергии «эквивалентного» последовательного сопротивления конденсатора, оно должно определять общие тепловые потери конденсатора I 2 R, особенно при использовании в цепях питания и коммутации.
Конденсаторы с относительно высоким ESR имеют меньшую способность пропускать ток к пластинам и от них во внешнюю цепь из-за большей постоянной времени заряда и разряда RC. ESR электролитических конденсаторов со временем увеличивается по мере высыхания электролита. Доступны конденсаторы с очень низким рейтингом ESR, которые лучше всего подходят при использовании конденсатора в качестве фильтра.
В заключение, конденсаторы с малой емкостью (менее 0,01 мкФ) обычно не представляют большой опасности для человека.Однако, когда их емкость начинает превышать 0,1 мкФ, прикосновение к выводам конденсатора может вызвать шок.
Конденсаторыобладают способностью накапливать электрический заряд в виде напряжения на самих себе, даже когда в цепи не течет ток, давая им своего рода память с большими емкостными конденсаторами электролитического типа, которые можно найти в телевизорах, фото вспышках и потенциально конденсаторных батареях. хранение смертельного заряда.
Как правило, никогда не прикасайтесь к выводам конденсаторов большой емкости после отключения источника питания.Если вы не уверены в их состоянии или безопасном обращении с этими конденсаторами большой емкости, обратитесь за помощью или советом к специалисту, прежде чем обращаться с ними.
Мы перечислили здесь только некоторые из множества характеристик конденсаторов, доступных как для идентификации, так и для определения условий его эксплуатации, а в следующем руководстве в нашем разделе о конденсаторах мы рассмотрим, как конденсаторы накапливают электрический заряд на своих пластинах и используем его для расчета его значение емкости.
X7R, X5R, C0G…: Краткое руководство по типам керамических конденсаторов
В этом техническом обзоре делается попытка рассеять туман, окружающий трехсимвольные криптограммы, используемые для описания керамических колпачков.
Инженер-электрик 1: «Конечно, я бы никогда не стал использовать конденсатор Y5V в подобном приложении».
Инженер-электрик 2: «Я тоже. Это было бы глупо!»
Инженер-механик: «Почему?»
Тишина.
Если вы думаете, что рискуете оказаться в разговоре, подобном приведенному выше, я надеюсь, что эта статья вам поможет. Практически каждый, кто проектировал печатную плату, знаком с трехсимвольными кодами, сопровождающими описание конденсатора, и я думаю, что большинство инженеров имеют общее представление о том, какие типы следует использовать — или, по крайней мере, какие типы должны быть , а не . использовано — в данной цепи.
Но что на самом деле означают эти коды? Почему в заметках приложений почти всегда рекомендуют X7R или X5R? Почему Y5V вообще существует? Если вы будете искать в Digi-Key керамический колпачок 0,1 мкФ 0805, почему будет более 400 результатов для X7R и ноль для C0G (он же NP0)?
Код
Трехзначный код в буквенно-цифровом формате используется для конденсаторов с диэлектриками класса 2 и класса 3. C0G является диэлектриком класса 1, поэтому в него не входит (подробнее об этом позже).X5R и X7R относятся к классу 2, а Y5V — к классу 3.
- Первый символ указывает самую низкую температуру, которую может выдержать конденсатор. Буква X (как в X7R, X5R) соответствует –55 ° C.
- Второй символ указывает максимальную температуру. Теоретический диапазон составляет от 45 ° C до 200 ° C; 5 (как в X5R) соответствует 85 ° C, а 7 (как в X7R) соответствует 125 ° C.
- Третий символ указывает максимальное изменение емкости в диапазоне температур детали.Спецификация для конденсаторов -R (таких как X5R и X7R) составляет ± 15%. Емкость деталей с кодом, оканчивающимся на V, может уменьшиться на 82%! Вероятно, это объясняет, почему конденсаторы Y5V не так популярны.
Следующий рисунок дает хорошее визуальное представление о том, насколько нестабильны Y5V и Z5U по сравнению с X5R и X7R.
Предоставлено Kemet.Эта диаграмма также помогает нам ответить на вопрос «почему Y5V вообще существует?» Потому что он подходит для устройств, которые всегда работают при комнатной температуре или близкой к ней.
Колпачки класса 1
Как вы могли заметить на диаграмме, C0G чрезвычайно стабилен (обратите внимание, что C0G и NP0 имеют ноль, а не прописную букву «O»). C0G — это диэлектрик класса 1 и суперзвезда универсальных конденсаторов: на емкость существенно не влияют температура, приложенное напряжение или старение.
Однако у него есть один недостаток, который стал особенно актуальным в наш век безжалостной миниатюризации: он неэффективен в отношении объема.Например, если вы перейдете на Digi-Key и выполните поиск конденсатора C0G 0,1 мкФ, наименьшей имеющейся на складе деталью будет 1206. Напротив, вы можете найти конденсатор X7R 0,1 мкФ в корпусе 0306 и с номинальным напряжением. (10 В) достаточно для цепей 3,3 В или даже 5 В.
Пакет 0306. Они действительно могут соответствовать развязывающей крышке X7R в этом крошечном форм-факторе. Изображение любезно предоставлено компанией Digi-Key.Конденсаторы шумные
Если вы разрабатываете аудиоустройства или просто предпочитаете тихие печатные платы, у вас есть еще одна причина выбрать C0G вместо X7R или X5R: колпачки класса 2 демонстрируют пьезоэлектрические свойства, которые могут заставить их работать как оба микрофона (что преобразует звук в электрический шум. ) и зуммеры (которые преобразуют сигналы переменного тока в слышимый шум).Конденсаторы класса 1 не имеют этой проблемы.
Схема «поющих конденсаторов» из этого документа TDK.Я уверен, что вы можете найти гораздо больше информации о типах конденсаторов и диэлектриках от таких производителей, как Kemet, AVX и TDK. Если вы хотите увидеть всю таблицу трехзначных кодов, щелкните здесь.
Capacitor Ceramics — обзор
CERAMICS AND MICAS
Названия, которые используются для типов конденсаторов, являются названиями диэлектрических материалов, потому что характеристики конденсатора так тесно связаны с типом материала, который используется для его изготовления. диэлектрик.Керамика покрывает любые материалы, состоящие в основном из оксидов металлов, сплавленных при очень высоких температурах; типичное сырье — оксид алюминия (оксид алюминия) и оксид титана. Слюда — это натуральный материал, который распадается на пластины, которые могут быть очень тонкими; его основная форма — минерал мусковит или рубиновая слюда. Когда этот материал разделен на пластины, пластины часто имеют серебристый вид (из-за воздушной пленки между оставшимися пластинами), поэтому их называют серебристо-слюдой . Это вызвало значительную путаницу, потому что покрытие листов слюды серебром создает композит, называемый посеребренной слюдой .
Из-за естественной формы сырья слюда используется для изготовления конденсаторов пластинчатой формы, круглой или прямоугольной. Керамике можно придать любую подходящую форму, включая пластины и трубки, так что диапазон форм конденсаторов больше для керамики, чем для слюды. Какой бы из этих двух типов изолятора не использовался, способ формирования конденсатора заключается в нанесении металлического слоя на каждую сторону диэлектрика.Это проще всего, когда материал имеет форму пластины, а осаждение металла может быть выполнено химическими методами (традиционный метод, который особенно легко осаждать серебро) или путем испарения или распыления. Металлический слой не должен касаться краев или протираться с краев, чтобы избежать коротких замыканий или потенциальных точек искрения. Затем соединительные провода можно припаять к металлическому слою, а весь конденсатор покрыть изолятором, который может быть из пластика или другого керамического материала.
Трубчатая керамика формируется так же, как и пластины, но процесс металлизации значительно сложнее, и для нанесения покрытия внутри трубки можно использовать только химический метод. Подключение к этому покрытию также является более сложным, но небольшой объем трубчатого типа иногда может быть преимуществом, так что этот тип конденсатора используется в течение многих десятилетий, хотя теперь он исчез из многих каталогов, потому что он может быть изготовлен только в наименьшие размеры емкости, для которых существует множество других вариантов.Пластинчатая форма конденсатора имеет значительное преимущество, заключающееся в том, что металлизированные пластины можно складывать вместе для увеличения емкости (рис. 4.4), при очень небольшом увеличении объема.
Слюдяные конденсаторы могут быть выполнены в виде однопластинчатых или уложенных друг на друга пластин. В прошлом конденсаторы с слюдяными пластинами изготавливались из фольги, проложенной между слюдяными пластинами, или с пластинами, скрепленными вместе с помощью металлических люверсов. Эти старые формы теперь устарели, и единственный оставшийся тип — это посеребренная слюдяная конструкция, которая имеет слои серебра, нанесенные на слюду, независимо от того, использует ли конденсатор одну пластину или несколько пластин.Конденсатор из посеребренной слюды обладает наилучшим сочетанием электрических, термических и механических свойств, которое можно найти у конденсатора низкой стоимости.
Натуральная слюда имеет значение относительной диэлектрической проницаемости около 5,4, и это значение сохраняется до очень высоких рабочих частот, особенно до 1 ГГц. Коэффициент рассеяния очень низок на частотах от 1 кГц и выше, порядка 0,0003, хотя при 50 Гц коэффициент рассеяния составляет около 0,005 из-за присутствия ионов в материале (что вызывает рубиновый цвет природного минерала).Диэлектрическая прочность удивительно высока, порядка 150–180 кВ / мм, и это связано с пластинчатой формой материала. Структура слюды состоит из плоских молекул силиката алюминия-калия, которые соединяются вместе в листы, которые в конечном итоге имеют толщину в одну молекулу. Через эти листы нет естественного пути проводимости, потому что расстояние между листами намного больше, чем расстояние между молекулами вдоль листа, так что любая проводимость должна быть вдоль листа, а не от листа к листу.Даже самые тонкие кусочки слюды, которые мы можем разрезать, состоят из множества листов, так что изоляция и электрическая прочность не имеют себе равных среди любого материала, в котором молекулы расположены в трехмерной структуре.
Объемное сопротивление природной слюды составляет 5 × 10 15 Ом · м, что не является самым высоким значением, но представляет собой среднее значение, не учитывающее огромных различий, вызванных разными направлениями измерения. Значение удельного сопротивления, измеренное в направлении листа слюды, будет намного меньше, чем значение, измеренное между листами, и указанное значение является средним.Слюда является примером анизотропного материала, физические свойства которого будут варьироваться в зависимости от направления измерения длины. Все кристаллические материалы анизотропны, и материалы, образующие плоские листы, такие как слюда, очень заметно. Это свойство не ограничивается минералами и кристаллами — древесина является примером очень известного анизотропного материала, прочность которого зависит от направления волокон.
Температурный коэффициент посеребренного слюдяного конденсатора положительный и находится в диапазоне +50 ± 50 ppm / ° C, что не так низко, как у типичной керамики.Чем больше емкость, тем меньше температурный коэффициент. Производимые посеребренные слюды доступны в диапазоне от 2,2 пФ до 100 пФ (10 нФ), а обычная инкапсуляция — это воск, покрытый керамическим цементом. Нормальный диапазон рабочих температур составляет от –40 ° C до + 80 ° C (в некоторых случаях до + 150 ° C и более), с коэффициентом мощности 0,002 и сопротивлением изоляции около 10 10 Ом. Рабочее напряжение обычно составляет максимум 350 В, и это значение включает импульсный режим.
Посеребренные слюды сейчас дороги в Великобритании по сравнению с конденсаторами других типов (в США это не так), но их комбинация параметров не может сравниться ни с одним другим типом, поэтому приложения, требующие максимально возможной стабильности, должны указывать эти конденсаторы.Типичные применения — это настроенные схемы и фильтры, для которых важна стабильность частоты. Из-за своей физической формы слюды имеют очень низкую самоиндукцию, поэтому их резонансная частота очень высока, а низкие потери (очень низкое эквивалентное последовательное сопротивление) делают эффективное значение добротности (отношение реактивного сопротивления к сопротивлению) очень большим. высокая.
Все конденсаторы имеют значение собственной индуктивности, которое низкое для значений низкой емкости, но довольно высокое для некоторых типов намотанной фольги.В результате для каждого значения емкости конденсатора будет резонансная частота, когда собственная индуктивность находится в последовательном резонансе с емкостью. На этой частоте конденсатор имеет минимальный импеданс, а выше этой частоты импеданс будет в большей степени индуктивным. Коэффициент добротности конденсатора также будет минимальным на резонансной частоте. Физическая форма посеребренных слюдяных конденсаторов делает их самоиндуктивность очень низкой, особенно когда конденсаторы изготовлены в форме, пригодной для поверхностного монтажа (см. Главу 8).Керамические конденсаторы большой емкости и типы фольги (кроме типов с расширенной фольгой) имеют сравнительно низкие значения собственного резонанса.
Керамические конденсаторы, напротив, очень часто используются в ситуациях, когда потери не имеют большого значения. В отличие от слюды, керамика, которая используется для конденсаторов, изготавливается искусственно, хотя и из натуральных материалов. Традиционные материалы, такие как силикат магния и оксид алюминия, были дополнены другими материалами, такими как титанат бария и диоксид титана, и производители склонны использовать смеси, состав и обработка которых не раскрываются.Большинство производителей теперь указывают буквы / цифры стандартных спецификаций, а не точные материалы.
Из этих стандартов, старый установленный N750T96 имеет номер 750, потому что это его температурный коэффициент при преобразовании в конденсатор, а N означает, что коэффициент отрицательный. Также доступен соответствующий материал N150, но наиболее стабильные конденсаторы изготавливаются из материалов COG (ранее известных как NPO) с нулевым температурным коэффициентом и низкой пропиткой.Все эти типы имеют низкие характеристики потерь и заменили посеребренную слюду для критических применений.
- •
Керамические конденсаторы емкостью 120 пФ и ниже почти всегда относятся к типу COG (NPO).
Многие другие типы керамики, особенно с высоким содержанием титана, имеют очень высокие значения диэлектрической проницаемости, в некоторых примерах доходящие до 6000. К сожалению, многие из этих керамических материалов также являются сильно анизотропными, что очень нежелательно — значение относительной диэлектрической проницаемости изменяется при изменении приложенного электрического поля, так что значение емкости изменяется по напряжению.Такие материалы, как титанат бария, по сути, являются пьезоэлектрическими, а это означает, что размеры всего кристалла будут изменяться при изменении напряжения на материале. Некоторые материалы обладают высокой относительной диэлектрической проницаемостью, которая сочетается с разумной стабильностью, и одна из спецификаций таких конденсаторов — X7R / 2C1. Для менее требовательных приложений, где допускается изменение значения емкости в зависимости от приложенного напряжения или температуры, можно использовать спецификацию Z5U / 2F4.
Для некоторых типов керамических конденсаторов коэффициент рассеяния может быть значительным, порядка 0.15% (0,0015) для типа C0G / NP0, возрастает до 3% (0,03) для типа Z5U, так что эквивалентное последовательное сопротивление этих типов сравнительно велико. Тип C0G / NP0 с номинальным нулевым температурным коэффициентом может иметь значения ± 30 ppm / ° C, что является приемлемо низким значением. Другие типы имеют гораздо более высокие температурные коэффициенты, которые могут изменяться, так что значение температурного коэффициента само будет изменяться при изменении температуры. Для этих конденсаторов обычно заменяют температурный коэффициент на процент максимального изменения.Например, если для керамического конденсатора вместо температурного коэффициента указаны цифры + 56%, –35%, это означает, что максимальное изменение, которое можно ожидать при крайних значениях температурного диапазона, будет составлять эти проценты. Номинальный диапазон температур для материала X7R составляет от –55 ° C до + 125 ° C, а для Z5U — от –10 ° C до + 85 ° C. Типичные максимальные изменения в этих диапазонах температур составляют от + 15% до –25% для X7R и от + 56% до –20% для Z5U.
Поэтому области применения керамических конденсаторов должны соответствовать типу используемого диэлектрика.Конденсаторы, в основном в диапазоне 10–100 пФ, в которых используется диэлектрик NPO, подходят для общих (обычно низковольтных) целей, включая схемы настройки генератора, схемы синхронизации и фильтры, характеристики которых не требуют использования посеребренных слюд. Более стабильный из материалов с высокой диэлектрической проницаемостью, X7R, указан для значений примерно до 0,1 мкФ, и эти конденсаторы используются в приложениях байпаса и развязки, менее требовательных схемах фильтрации, синхронизации и для приложений связи, в которых температурная стабильность ниже. важный.Диэлектрик Z5U имеет самый высокий диапазон значений относительной диэлектрической проницаемости и используется для получения очень высоких значений емкости в диапазоне от 0,22 мкФ до 1 мкФ. Эти конденсаторы используются в основном для развязки и байпаса, хотя их также можно использовать для связи в цепях, постоянная времени которых не обязательно должна быть стабильной. Сопротивление изоляции меньшего значения емкости составляет порядка 10 11 Ом, но для больших значений используется формула 10 9 / C Ом с C в микрофарадах, чтобы указать сопротивление.
- •
Из всех керамических конденсаторов только типы C0G / NP0 подходят для схем выборки и хранения. Эта керамика доступна в размерах до 0,01 мкФ.
Дисковая керамика с высокой относительной диэлектрической проницаемостью изготавливается специально для развязки аналоговых и цифровых схем. Большинство цифровых схем генерируют очень острые импульсы при включении и выключении устройств, и эти импульсы могут распространяться по линиям электропитания постоянного тока или линиям шины, если их не подавить.В большинстве примеров необходимо разместить развязывающий конденсатор на каждой ИС, подключенный между положительной линией питания и землей, но в некоторых схемах, использующих низкие тактовые частоты, это может быть уменьшено до одного конденсатора на каждые пять ИС. Стабильность значения не важна в таком приложении, где важными особенностями являются высокая емкость в небольшом объеме и низкая индуктивность.
Современная дисковая керамика хорошо подходит для этой цели с диапазоном емкости от 1 нФ до 100 нФ (0,1 мкФ). Они могут быть низковольтными, подходящими для цифровых схем, и высоковольтными, которые используются в телевизионных и радиолокационных схемах.Допустимое отклонение значения велико, в диапазоне от + 80% до –200%, и изменение в зависимости от температуры указывается редко. Типичное сопротивление изоляции 10 10 Ом. Более специализированная форма для цифрового использования — это низкопрофильный тип DIL, который имеет форму и размер ИС, но плоский, с четырьмя контактами, расположенными так, что два контакта будут соответствовать положительным и отрицательным положениям питания типичных ИС и две другие булавки — пустышки. Эти конденсаторы DIL можно установить в монтажное положение ИС под ИС, чтобы минимизировать индуктивность выводов, и, при необходимости, их можно установить поверх существующих ИС, если существующая развязка неадекватна.Диапазон выводов — для 14-, 16-, 20-, 24-, 28- и 40-выводных ИС.
- •
Обратите внимание, что старый тип дисковой керамики имел сравнительно высокую самоиндукцию, что делало их непригодными для развязки в критических приложениях. Более современные типы многослойных дисков намного превосходят их.
Конденсаторы с керамической пластиной также используются в качестве проходных (проходных) конденсаторов, используемых для фильтрации нижних частот, когда кабель питания проходит через металлическую панель. Значения варьируются от 100 пФ до 10 нФ, и комбинация последовательной индуктивности и параллельной емкости может быть указана в децибелах затухания для высокочастотных сигналов при стандартном сопротивлении линии 50 Ом.Проходные типы не эффективны для синусоидальных сигналов менее 10 МГц, но очень полезны для фильтрации цифровых цепей линий питания, особенно сейчас, когда в компьютерных схемах используются высокие тактовые частоты 800 МГц и выше. Значения затухания варьируются от 1 дБ для 10 МГц / 100 пФ до 63 дБ для 1 ГГц / 10 нФ.
Также существует линейка конденсаторов с низкой диэлектрической проницаемостью и отрицательными температурными коэффициентами, предназначенных для температурной компенсации. Принцип заключается в том, что, комбинируя основной конденсатор с положительным температурным коэффициентом в настроенной цепи с меньшим значением с отрицательным температурным коэффициентом, можно полностью устранить влияние температуры в разумном диапазоне частот.Поскольку основной конденсатор может быть слюдяного типа с очень низким положительным значением температурного коэффициента, необходимо параллельно подключить только небольшой конденсатор с отрицательным температурным коэффициентом; в качестве альтернативы можно использовать большое значение емкости, подключенное последовательно. Используемые диэлектрики относятся к типам от N150 до N750, и даже можно использовать тип C0G / NP0, поскольку его температурный коэффициент может находиться в диапазоне от +30 до 30 ppm / ° C. Обычно используемые значения находятся в диапазоне от 2,2 пФ до 220 пФ, но доступны и гораздо большие размеры, вплоть до 0.01 мкФ. Некоторые производители используют цветовую маркировку конденсаторов, чтобы указать применимый температурный коэффициент.
Высоковольтные конденсаторы и силовые резисторы
Конденсаторыобычно рассчитываются по напряжению постоянного тока. Этот рейтинг означает, что можно ожидать, что деталь будет надежно работать в течение длительного времени при таком напряжении постоянного тока и при номинальной температуре конденсатора. Поскольку в большинстве приложений присутствует некоторая составляющая переменного напряжения, важно понимать факторы, определяющие, сколько переменного тока может выдержать данная деталь с номинальным постоянным током.Эти факторы включают частоту, напряжение, номинальную мощность (размер), значение емкости и диэлектрические характеристики.
Влияние переменного тока на характеристики и надежность конденсатора частично зависит от типа используемого диэлектрика. Что касается керамических конденсаторов, все три первичных диэлектрика (NPO, X7R и Z5U) имеют разные изменения характеристик по отношению к приложенному переменному току. Например, для диэлектрика NPO значения емкости и коэффициента рассеяния будут оставаться относительно постоянными при подаче различных сигналов переменного тока.Однако X7R будет демонстрировать небольшие изменения с приложенной частотой и значительные изменения с величиной приложенного напряжения. Z5U изменится еще больше как с частотой, так и с напряжением. Конкретные конструкции конденсаторов будут влиять на количество изменений, которые произойдут в этих параметрах, поскольку они зависят как от используемого диэлектрика, так и от толщины этого диэлектрика для данного напряжения. Эти цифры относятся только к диэлектрику X7R. NPO не покажет никаких измеримых изменений ни напряжения, ни частоты.Z5U покажет изменения, аналогичные X7R, но гораздо более значимые. По этой причине Z5U редко используется в приложениях переменного тока.
В то время как изменения, связанные с частотой, можно легко отобразить для X7R (см. Рисунок 1), изменения, связанные с уровнем напряжения, зависят от диэлектрического напряжения (вольт на мил толщины диэлектрика) и будут разными для каждого номинального напряжения. Типичные значения для X7R показаны на рисунках с 2 по 5.
Для данного применения мощность, рассеиваемая в конденсаторе, может быть рассчитана по формуле P = i² R, где P = мощность в ваттах, i = среднеквадратичное значение тока через конденсатор и R = эквивалентное последовательное сопротивление (ESR) конденсатор.Тогда i = 2 pie fCE, где f = частота в герцах, C = емкость в фарадах и E = приложенное среднеквадратичное значение напряжения. Наконец, R = d / (2 pie fC), где d = коэффициент рассеяния. Комбинируя эти три уравнения, получаем формулу окончательной мощности: P = 2 pie fCE²d.
Теперь необходимо определить значения емкости и коэффициента рассеяния, предполагая, что нам известны приложенное напряжение и частота. Емкость может быть определена по рисункам 1, 2 и 3 путем изменения номинальной емкости по изменениям, показанным для данной частоты и напряжения.Коэффициент рассеяния может быть определен аналогичным образом из рисунков 1, 4 и 5. Обратите внимание, что эти значения являются типичными и будут варьироваться от одного производителя к другому. Колпачок, изменяющийся из-за напряжения, также может быть изменен производителем в соответствии с требованиями конкретного приложения.
После внесения вышеуказанных поправок в емкость и коэффициент рассеяния на основе напряжения и частоты цепи фактическое потребление энергии в конденсаторе можно рассчитать по формуле P = 2 pie fCE²d.Обратите внимание, что как значение емкости, так и частота напрямую влияют на мощность при заданном напряжении. Вот почему невозможно назначить общий рейтинг переменного тока (или коэффициент, применяемый к рейтингу постоянного тока) для конденсаторов. Это можно сделать только тогда, когда эти значения известны (как в приложениях с фиксированным значением 60 Гц).
После определения мощности необходимо выяснить, сможет ли данный конденсатор выдержать ее. Компания Johanson Dielectrics разработала таблицу номинальной мощности для конденсаторов различных размеров, чтобы ее можно было легко сравнить с расчетной мощностью (см. Таблицу 1).
Эти номинальные мощности основаны на повышении температуры на 25 ° C, измеренной на поверхности конденсатора при подаче питания. Характеристики также основаны на стандартном монтаже на печатной плате, отсутствии поблизости источников тепла и без внешнего покрытия или заливки, которые могут препятствовать теплопроводности.
Вот пример: микросхема размером 0,1 мкФ, 500 В, X7R, 2520, предназначенная для поверхностного монтажа и работающая при 30 В среднеквадратичном значении и 10 кГц. В каталоге диэлектриков Johanson выберите номер детали Johanson 501h57W104KV4.Чтобы использовать формулу P = 2 pie fCE²d, значения f (10,000) и E (30) известны, а значения C и d должны быть определены из рисунков с 1 по 5.
Соответственно, емкость из-за изменения частоты –2% из-за частоты (Рисунок 1) и + 25% из-за напряжения (используйте кривую 500 В постоянного тока на Рисунке 2). Это делает «C» фактической емкостью (.1) (. 98) (1.25) =. 123 мкФ. Аналогично, «d», коэффициент рассеяния с использованием большего из двух значений на рисунках 1 и 4 составляет 8% (.08).
Теперь значения известны:
f = 10000
C = .123 (e-6)
E = 30
d = .08
Расчетная мощность 0,56 Вт. Ссылаясь на таблицу 1, номинальная мощность для размера h57 составляет 1,3 Вт, поэтому конструкция подходит для этого применения.
Applications Инженерная помощь предоставляется на заводе-изготовителе для других конкретных приложений или вопросов.
Какой тип конденсатора следует использовать? | Блоги
Марк Харрис| & nbsp Создано: 7 октября 2020 г. & nbsp | & nbsp Обновлено: 27 января 2021 г.
Конденсаторы
Конденсаторыявляются одними из основных компонентов всех электронных устройств и жизненно важны для их работы.В современной электронике чаще всего встречаются керамические конденсаторы, разделяющие источники питания почти для каждой интегральной схемы (ИС) на печатной плате, или алюминиевые электролитические конденсаторы в качестве объемной емкости для регулятора напряжения. Однако конденсаторы используются в гораздо большем количестве применений, чем просто для обхода шума, и существует гораздо больше типов конденсаторов, чем только керамические и алюминиевые электролитические.
Конденсаторы используются для:
- Муфта
- Развязка
- Фильтры
- Накопление / поставка энергии
- Согласование импеданса
- Демпферы
- и многие другие приложения
В этой статье мы рассмотрим все типы конденсаторов и места их использования.Хотя мы можем думать о конденсаторах как о стабильной технологии, которая не менялась десятилетиями, реальность такова, что конденсаторы сегодня сильно отличаются от конденсаторов десятилетней давности, не говоря уже о 20-летней давности. Приложения, которые вы никогда не могли себе представить, используя конденсатор определенного типа в прошлом, сегодня совершенно разумны, учитывая достижения в конденсаторной технологии. Напротив, хотя некоторые конденсаторы сегодня могут считаться устаревшими и не имеющими практического применения по сравнению с другими типами конденсаторов, у них все еще есть свои нишевые приложения, в которых они преуспевают.
Хотя все конденсаторы имеют емкость — не все они равны. Емкость — не единственный важный параметр при выборе конденсатора, и каждый тип конденсатора используется в разных приложениях, поэтому иногда сделать правильный выбор — непростая задача. Было бы лучше, если бы вы рассмотрели емкость, максимальное напряжение, эквивалентное последовательное сопротивление (ESR), эквивалентную последовательную индуктивность (ESL), долговечность, размер, цену, доступность, параметры, которые меняются с температурой, и так далее.Например, при выборе байпасного конденсатора важны параметры ESR и ESL. С другой стороны, при выборе конденсатора для хранения энергии или внезапного изменения нагрузки утечка тока может быть более критичной.
Типы конденсаторов, их номинальное напряжение и емкостьВыбор конденсатора в первую очередь зависит от вашего приложения и бюджетных ограничений. Цена конденсаторов может варьироваться от менее цента до более 100 долларов.
Давайте посмотрим на типы конденсаторов, где они используются и когда один подходит больше, чем другой.
Конденсаторы керамические
Керамические конденсаторы — один из самых популярных и распространенных типов конденсаторов. Раньше керамические конденсаторы имели очень низкую емкость, но в настоящее время это не так. Многослойные керамические конденсаторы (MLCC) широко используются в схемах; их номинальная емкость может достигать сотен микрофарад (мкФ). Современные керамические конденсаторы могут использоваться вместо конденсаторов других типов для устаревшего оборудования / конструкций, таких как электролитические или танталовые, и обеспечивают более высокую производительность при более низкой стоимости.
Базовые сборки керамических конденсаторов SMTImage Source
MLCC имеют керамический диэлектрический корпус, который представляет собой смесь тонко измельченных гранул параэлектрических или сегнетоэлектрических материалов и других компонентов для достижения желаемых параметров. У них есть несколько слоев электродов, которые создают емкость. Керамика спекается при высоких температурах, образуя электрическую и механическую основу конденсатора.
Керамические слои обычно очень тонкие; однако это зависит от номинального напряжения компонента.Чем выше напряжение, тем больше толщина и размер конденсатора при той же емкости. Конденсатор обычно защищен от влаги и других загрязнений тонким покрытием.
Хотя, как и всегда, существуют версии керамических конденсаторов со сквозными отверстиями / выводами, по-настоящему сияют именно конденсаторы для поверхностного монтажа. Интересно, что если сегодня вы разобьете множество керамических конденсаторов со сквозными отверстиями, вы можете обнаружить конденсатор для поверхностного монтажа, прикрепленный к выводам под бусинкой! Объем производства и экономия на масштабе, которую обеспечивает объем для конденсаторов для поверхностного монтажа, удешевляют производителям простую переупаковку компонента для поверхностного монтажа в корпус со сквозными отверстиями.Керамические конденсаторы для поверхностного монтажа могут предложить весьма конкурентоспособные номинальные значения емкости для своего крошечного размера. MLCC — это самые маленькие конденсаторы на рынке с упаковками до 08004 (0201 метрическая система). Без конденсаторов этих крошечных размеров высокопроизводительные платы с высокой плотностью размещения не были бы жизнеспособными.
MLCCпопулярны не только потому, что они компактны с относительно высокой емкостью, но и потому, что они критически важны для многих приложений, где электролитический тип был бы совершенно непригоден.Керамические конденсаторы, как часто упускается из виду, обычно не загораются и не взрываются, если с ними неправильно обращаться. Они не имеют полярности и могут иметь напряжения, значительно превышающие их номинальные значения, без повреждения самого конденсатора. Напротив, алюминиевые электролитические и особенно танталовые конденсаторы имеют тенденцию превращаться в маленькие ракетные двигатели или взрываться, если к ним приложено даже незначительное обратное напряжение или их номинальные характеристики даже немного превышены.
Другие преимущества:
- Широкий диапазон емкости и напряжения
- Высокая надежность
- Лента и катушка для поверхностного монтажа
- Низкое СОЭ
- High Q на высоких частотах
Image Source
Несмотря на свои общие преимущества и преимущества, не все керамические конденсаторы одинаковы, и некоторые из них чрезвычайно дешевы, а другие дороги. Параметры конденсатора также зависят от нескольких факторов, например, от типа используемого керамического диэлектрика.Чаще всего используются диэлектрики C0G, NP0, X7R, Y5V и Z5U.
Есть два основных класса керамических конденсаторов:
Класс 1: обеспечивает высокую стабильность и низкие потери для резонансных схем (NP0, P100, N33, N75 и т. Д.).
Class 2: обеспечивает высокую объемную эффективность для приложений буфера, байпаса и соединения (X7R, X5R, Y5V, Z5U и т. Д.).
Керамические конденсаторы класса 1
Керамические конденсаторыкласса 1 обеспечивают высочайшую стабильность и самые низкие потери.Они обладают высокой толерантностью и точностью и более стабильны при изменении напряжения и температуры. Конденсаторы класса 1 подходят для использования в качестве генераторов, фильтров и требовательных аудиоприложений.
Коды допусков для керамических конденсаторов класса 1 приведены ниже:
Первый символ | Второй символ | Третий персонаж | |||
---|---|---|---|---|---|
Письмо | Sig. Фигуры | Цифра | Множитель (10х) | Письмо | Допуск |
С | 0.0 | 0 | –1 | G | +/- 30 |
B | 0,3 | 1 | -10 | H | +/- 60 |
L | 0,8 | 2 | -100 | Дж | +/- 120 |
А | 0,9 | 3 | -1000 | К | +/- 250 |
M | 1.0 | 4 | +1 | L | +/- 500 |
п. | 1,5 | 6 | +10 | M | +/- 1000 |
R | 2,2 | 7 | +100 | N | +/- 2500 |
S | 3,3 | 8 | +1000 | ||
Т | 4.7 | ||||
В | 5,6 | ||||
U | 7,5 |
Первый символ — это буква, обозначающая значащую цифру изменения емкости при изменении температуры в ppm / ° C.Второй символ числовой и обозначает множитель для первого символа. Третий символ — это буква, обозначающая максимальную ошибку в ppm // ° C.
Например, керамика : C0G предлагает один из самых стабильных диэлектриков конденсаторов на рынке. Изменение емкости в зависимости от температуры составляет 0 +/- 30 ppm / ° C, что составляет менее +/- 0,3% от номинальной емкости в диапазоне от -55 ° C до + 125 ° C. Дрейфом емкости или гистерезисом для керамики C0G можно пренебречь и составляет менее ± 0,05% по сравнению с ± 2% для пленочных конденсаторов.
Керамический диэлектрик C0G (NP0) обычно имеет «Q», превышающее 1000, и показывает небольшие изменения емкости или «Q» в зависимости от частоты. В дополнение к этому, диэлектрическое поглощение обычно составляет менее 0,6%; это похоже на слюду, которая известна своим очень низким поглощением. Это делает керамические конденсаторы превосходными для ВЧ-приложений, и обычно вы можете найти керамические конденсаторы, специально разработанные для ВЧ-цепей.
Керамические конденсаторы класса 2
Керамические конденсаторыкласса 2 имеют гораздо более высокий уровень диэлектрической проницаемости, чем конденсаторы класса 1.Это дает им гораздо более высокий уровень емкости на единицу объема. Однако в качестве компромисса для этой более высокой плотности они имеют более низкую общую точность и стабильность. В дополнение к более низкой точности и стабильности керамические конденсаторы класса 2 также демонстрируют нелинейный температурный коэффициент и емкость, которая в небольшой степени зависит от приложенного напряжения.
Такие конденсаторы идеально подходят для развязки и развязки, где точное значение емкости не критично, но где пространство может быть проблемой.Они также идеально подходят для измерения объемной емкости в цепях, которые имеют быстро меняющиеся нагрузки, но при этом должны иметь компактную площадь основания, например, ИС радиочастотного передатчика / приемопередатчика.
Коды символов для допусков керамических конденсаторов класса 2:
Первый символ | Второй символ | Третий персонаж | |||
---|---|---|---|---|---|
Письмо | Низкая температура | Цифра | Высокая температура | Письмо | Изменить |
X | -55 ° C (-67 ° F) | 2 | + 45 ° C (+ 113 ° F) | D | +/- 3.3% |
Y | -30 ° C (-22 ° F) | 4 | + 65 ° C (+ 149 ° F) | E | +/- 4,7% |
Z | + 10 ° C (+ 50 ° F) | 5 | + 85 ° C (+ 185 ° F) | F | +/- 7,5% |
6 | + 105 ° C (+ 221 ° F) | -P | +/- 10% | ||
7 | + 125 ° C (257 ° F) | R | +/- 15% | ||
S | +/- 22% | ||||
Т | + 22% / -33% | ||||
U | + 22% / -56% | ||||
В | + 22% / -82% |
Первый символ — это буква, обозначающая нижнюю границу диапазона рабочих температур.Вторая цифра указывает на верхний предел рабочей температуры. Третий символ — это буква, обозначающая изменение емкости во всем диапазоне рабочих температур.
Одним из наиболее распространенных и популярных керамических диэлектриков класса 2 является X7R, который имеет диапазон температур от -55 ° C до + 125 ° C и изменение емкости ± 15%, что является относительно невысокой стоимостью, но все же имеет относительно хорошие допуски. Конденсаторы Y5V также очень распространены, поскольку емкость или напряжение начинает достигать верхнего края данного корпуса.Он имеет диапазон температур от -30 до + 85 ° C и допуск в диапазоне + 22 / -82%, что по-прежнему подходит для многих требований к развязке или объемной емкости, которые должны быть компактными и экономичными.
Керамические конденсаторы класса 3
Исторически существуют также керамические конденсаторы класса 3, которые обеспечивают высокую емкость на единицу объема. Эти диэлектрики сложно найти все еще в производстве, поскольку современная многослойная керамика класса 2 может предложить аналогичные или более высокие емкости в сочетании с лучшими характеристиками в более компактном корпусе.
Конденсаторы танталовые
Тантал — это тип электролитического конденсатора, который изготовлен с использованием металлического тантала в качестве анода, покрытого тонким слоем оксида, который действует как диэлектрик. Тантал предлагает очень тонкий диэлектрический слой, что приводит к более высоким значениям емкости на единицу объема.
Танталовые конденсаторы SMTImage Source
Танталовые конденсаторы поляризованы, что означает, что они могут использоваться только с источником постоянного тока и размещены только в правильной ориентации.Танталовый конденсатор, используемый за пределами его номинального напряжения / температуры или с неправильной полярностью, быстро приведет к тепловому выходу из строя, вызывая пожары и даже небольшие взрывы. Их можно смягчить, используя в конструкции элементы безопасности, такие как ограничители тока или плавкие предохранители. Тем не менее, об этом следует помнить при использовании танталовых конденсаторов, близких к их номинальным.
По сравнению с керамическими конденсаторами эквивалентное последовательное сопротивление танталового конденсатора относительно велико, обычно на несколько порядков выше.Это делает танталовые конденсаторы плохим выбором для высокочастотных приложений.
Танталовые конденсаторы, как правило, значительно дороже, чем MLCC, поэтому использование танталовых крышек для общих приложений становится все более редким. У них действительно есть некоторые выдающиеся особенности, которые делают их идеальными для определенных приложений, несмотря на их дополнительную стоимость.
Линейное изменение емкости с температурой
Танталовые конденсаторы демонстрируют линейное изменение емкости в зависимости от температуры.Это линейное изменение упрощает расчет емкости в критических условиях. В дополнение к линейному изменению емкость танталовых конденсаторов увеличивается с температурой, что дает преимущества, например, для накопления энергии или стабильности при изменении нагрузки импульсного источника питания. Если танталовый конденсатор находится рядом с импульсным блоком питания, его емкость немного возрастет, поскольку блок питания подвергается большой нагрузке и нагревается.
Зависимость емкости MLCC и танталового конденсатора от температурыИсточник изображения
Ограниченные микрофонные / пьезоэлектрические эффекты
Благодаря пьезоэлектрическому эффекту керамические конденсаторы являются микрофонными, поскольку они вибрируют, генерируя напряжение, как пьезо микрофон.Этот эффект может вызвать дополнительный шум в цепи, что не идеально для плат в условиях высокой вибрации с чувствительными / низковольтными аналоговыми сигналами. Этот шум не является достаточно значительным, чтобы повлиять на цифровые или усиленные аналоговые сигналы, однако неусиленные аналоговые сигналы от преобразователей или другие очень чувствительные сигналы могут быть затронуты. Это одна из причин, по которой многие компоненты, связанные со звуком, не рекомендуют керамические конденсаторы. Танталовые конденсаторы обычно не обладают пьезоэлектрическими / микрофонными характеристиками, что делает их идеальными для аудио приложений или приложений, которые испытывают сильную вибрацию.
Керамический конденсатор и танталовый конденсатор Акустические эффектыИсточник изображения
Характеристики емкости в зависимости от напряжения
Танталовые конденсаторы очень стабильны при различных условиях постоянного напряжения, если эти условия не выходят за пределы номинальных значений конденсатора. Емкость многослойных керамических конденсаторов значительно изменяется с увеличением напряжения, уменьшаясь по мере увеличения напряжения. Это может быть жизненно важным для приложений с переменным напряжением, а также может сделать танталовый конденсатор сопоставимым по цене с MLCC в определенных приложениях.Танталовый конденсатор обычно дает полную заявленную емкость без каких-либо допусков. Для источников питания с низким уровнем шума и критических приложений развязки, где керамический конденсатор может работать при напряжении, близком к максимальному, вам потребуется 1/3 емкости от танталового конденсатора, как от керамического конденсатора. В качестве альтернативы вам понадобится 1/3 количества параллельных конденсаторов, чтобы иметь такую же реальную емкость, что может обеспечить значительную экономию места.
Емкость как функция смещения постоянного тока для танталового конденсатора (TC) и источника изображения MLCCСтабильность во времени
Диэлектрическая проницаемость керамических конденсаторов из-за деградации со временем поляризованных доменов в сегнетоэлектрических диэлектриках. Хотя это может звучать как линия технической болтовни из научно-фантастического сериала, реальный эффект заключается в уменьшении емкости с течением времени. С другой стороны, танталовые конденсаторы, как правило, остаются стабильными в течение всего срока службы.Танталовые конденсаторы также не высыхают и не разрушаются, как алюминиевые электролитические конденсаторы, что делает танталовые конденсаторы идеальными для приложений с длительным сроком службы, особенно в сценариях, где обслуживание дорого или невозможно, или где устройство критически важно.
Старение MLCC проявляется в уменьшении емкости с течением времениImage Source
Алюминиевые электролитические конденсаторы
Алюминиевые электролитические конденсаторы являются культовыми. Если вы будете искать изображения конденсаторов, вы, скорее всего, получите изображение алюминиевого электролитического конденсатора.В современной электронике алюминиевые конденсаторы в основном используются для емкостей большой емкости, где требуется значительная емкость из-за их большого размера, высокого ESR и утечки тока. Несмотря на то, что они были заменены во многих приложениях, они по-прежнему очень популярны из-за их огромных значений емкости, высоких значений максимального напряжения и низкой стоимости.
Основные алюминиевые электролитические конденсаторыИсточник изображения
Алюминиевый электролитический конденсатор состоит из жидкого электролита.Электролит представляет собой жидкость или гель с высокой концентрацией ионов. Как и танталовые конденсаторы, которые также являются электролитическими, алюминиевые электролитические конденсаторы поляризованы. Это означает, что положительный вывод должен иметь более высокий потенциал, чем отрицательный. В отличие от научно-фантастических шоу, где капитан призывает «поменять полярность», чтобы что-то заработало, если вы сделаете это с алюминиевым конденсатором, он быстро выйдет из строя, лопнет и потенциально загорится.
Структура алюминиевого электролитического конденсатораImage Source
Алюминиевые конденсаторы во многих приложениях были заменены более дешевыми многослойными керамическими конденсаторами, алюминиево-полимерными конденсаторами с низким ESR или танталовыми конденсаторами из-за большого количества недостатков алюминиевых электролитических конденсаторов.Алюминиевые конденсаторы имеют очень высокое эквивалентное последовательное сопротивление, что заставляет их рассеивать большую мощность, когда на конденсатор подаются сигналы с высокой частотой или большой амплитудой. Срок службы алюминиевого конденсатора сильно ограничен электролитом, который может высохнуть — срок службы значительно сокращается при высоких температурах эксплуатации. Ток утечки алюминиевого конденсатора значительно выше, чем у конденсаторов большинства других типов, что делает их менее идеальными для применения в соединительных устройствах.
Из-за недостатков эти конденсаторы непригодны для использования во многих современных приложениях. Тем не менее, алюминиевые конденсаторы никуда не денутся, поскольку у них есть несколько преимуществ, не в последнюю очередь из-за их мизерной стоимости при сопоставимой емкости / напряжении. Алюминиевые конденсаторы также предлагают значения емкости до нескольких фарад и гораздо более высокие напряжения, чем многие другие типы конденсаторов, по крайней мере, с учетом емкости. Несмотря на свой размер, они могут иметь меньшую площадь основания, чем эквивалентная емкость нескольких других конденсаторов другого типа, подключенных параллельно, поскольку для алюминиевых конденсаторов характерно высокое соотношение диаметра к высоте.Если вертикальный зазор не является проблемой, алюминиевый конденсатор может иметь исключительную емкость для его площади основания.
По сравнению с танталовыми конденсаторами, алюминиевые конденсаторы, как правило, меньше повреждают цепь при выходе из строя. Когда срок службы алюминиевого конденсатора подходит к концу, его емкость постепенно уменьшается. Если он выходит из строя из-за перенапряжения или другого неправильного обращения, он обычно лопнет или разбухнет, не повредив при этом кусок вашей печатной платы, или вызовет пожар.
В то время как полимерные версии алюминиевых конденсаторов обладают множеством преимуществ, простой алюминиевый конденсатор значительно дешевле, а также обеспечивает более высокое максимальное номинальное напряжение.
Алюминиевые электролитические конденсаторымогут быть заменены во многих приложениях, поскольку они не соответствуют строгим требованиям современной схемы, они по-прежнему непревзойденны в приложениях, где большие значения емкости требуются в рамках бюджета. Они используются во многих импульсных источниках питания для уменьшения пульсаций напряжения, аудио или других фильтров нижних частот, сглаживания или измерения объемной емкости.Хотя они могут быть не идеальным выбором, иногда они — единственный выбор или единственный способ добиться стабильной схемы в рамках бюджета.
Полимерные конденсаторы
Полимерные конденсаторы — это относительно новая технология, которая быстро становится распространенным типом электролитических конденсаторов. Они являются отличной альтернативой основным алюминиевым и танталовым конденсаторам, а в некоторых случаях даже многослойным керамическим конденсаторам. В этих конденсаторах в качестве электролита используются проводящие твердые полимеры, а не жидкие или гелевые электролиты, которые содержатся в традиционных электролитических конденсаторах.Поскольку и алюминиево-полимерные, и тантал-полимерные конденсаторы предлагаются в тех же корпусах, что и их родительские жидкие электролиты, можно легко модернизировать существующую конструкцию до полимерных конденсаторов и воспользоваться преимуществами.
Полимерные конденсаторыImage Source
Благодаря использованию твердых электролитов, полимерные конденсаторы позволяют избежать высыхания жидкого электролита, что серьезно ограничивает срок службы классических электролитических конденсаторов.
Полимерные конденсаторымогут использоваться в качестве замены танталовых электролитических конденсаторов в большинстве ситуаций, если они не превышают максимальное номинальное напряжение, которое, как правило, ниже, чем у классических электролитических конденсаторов.Чаще всего встречаются полимерные конденсаторы с номинальным напряжением до 35 В постоянного тока, но все еще существует множество вариантов примерно до 63 В постоянного тока. Существует ограниченное количество конденсаторов, рассчитанных на 250 В постоянного тока для алюминиевого полимера или 125 В постоянного тока для танталового полимера.
Другая причина, по которой существующие конструкции обычно не заменяют большинство танталовых или алюминиевых электролитических конденсаторов полимерными, заключается в том, что по сравнению с ними они относительно дороги. При этом есть несколько преимуществ использования полимерных конденсаторов в конструкциях, особенно в источниках питания.В нескольких моих статьях по проекту с открытым исходным кодом я указывал алюминиево-полимерные конденсаторы, поскольку их производительность на доллар была непревзойденной для этих конкретных приложений.
Характеристики емкости от напряжения
Подобно танталовым электролитическим конденсаторам, которые мы рассматривали ранее, полимерные конденсаторы имеют практически идентичные свойства, когда дело доходит до зависимости емкости от напряжения — емкость увеличивается линейно с увеличением температуры.
Зависимость емкости MLCC и полимерного конденсатора от времени и температурыИсточник изображения
Очень низкое ESR
Существенным недостатком традиционных танталовых и алюминиевых конденсаторов является их высокое эквивалентное последовательное сопротивление.При использовании для фильтрации приложений в импульсном источнике питания трудно получить мелкие пульсации напряжения или уменьшить кондуктивные электромагнитные помехи. ESR полимерных конденсаторов аналогичен многим керамическим конденсаторам, что делает их идеальными для применения в фильтрах, поскольку они предлагают значительно более высокие значения емкости, чем керамические конденсаторы. Хотя полимерные конденсаторы значительно дороже, чем их аналоги с жидким электролитом, они все же намного дешевле, чем эквивалентное количество параллельных керамических конденсаторов.Низкое ESR полимерных конденсаторов делает их идеальными для любых приложений с сильноточной пульсацией, где требуется большая емкость.
Высокая емкость
Алюминиевые полимерные конденсаторы в основном имеют очень высокую плотность емкости для занимаемой ими печатной платы. Танталовые полимерные конденсаторы обычно не выпускаются в высоких корпусах, как это делают алюминиевые конденсаторы. Высокие цилиндрические алюминиевые конденсаторы позволяют обеспечить исключительно высокую емкость за счет использования компонентов с высоким соотношением сторон, которые очень высоки по сравнению с занимаемой площадью — если позволяют зазоры.
Нет утечки
Алюминиевые конденсаторы известны своим выходом из строя из-за высыхания или утечки электролита. Протекающий конденсатор может повредить печатную плату, которую в противном случае можно было бы отремонтировать, просто заменив конденсатор. Благодаря твердому полимерному электролиту утечка невозможна.
Без пьезоэффекта
Как и их неполимерные аналоги, как обсуждалось ранее, полимерные варианты не имеют пьезоэлектрических / микрофонных проблем, что делает их идеальными для аудио и других чувствительных аналоговых приложений с малым сигналом.
Стабильность частоты
Как упоминалось ранее, полимерные конденсаторы превосходно подходят для высокочастотных приложений по сравнению с их аналогами с жидким электролитом. Хотя они не так хороши, как керамический конденсатор, они очень близки и могут предложить высокую емкость по той же цене и занимаемой площади на плате по сравнению с вариантом керамического конденсатора.
Параметр емкости полимерных, MLCC и танталовых конденсаторов в зависимости от частотыИсточник изображения
Это делает полимерные конденсаторы превосходными для источников питания и аудиоприложений.Хотя полимерный конденсатор обычно дороже, чем другие альтернативы, он может предложить экономию затрат по сравнению с керамическими конденсаторами из-за уменьшения емкости при напряжении в керамике, что требует меньшего количества полимерных конденсаторов для выполнения той же работы.
В качестве примера можно взять простой DC-DC понижающий блок питания:
Преобразователь постоянного тока в качестве примера замены MLCC полимерными конденсаторамиИсточник изображения
Для вышеуказанного приложения требуется емкость 250 мкФ на входе и емкость 450 мкФ на выходе.После рассмотрения ухудшения емкости керамического конденсатора, перенапряжения, старения и температуры, нам необходимо снизить характеристики керамического конденсатора примерно на 70%. Это снижение означает, что емкость должна быть около 833 мкФ на входе и 1500 мкФ на выходе. Для этого потребуется восемнадцать керамических конденсаторов по 47 мкФ на входе и пятнадцать керамических конденсаторов по 100 мкФ на выходе. Используя полимерные конденсаторы, мы могли бы вместо этого использовать два полимерных конденсатора по 150 мкФ на входе и один полимерный конденсатор емкостью 470 мкФ на выходе.Поскольку полимерные конденсаторы не нуждаются в снижении номинальных характеристик, они обеспечивают 30% -ную экономию затрат и 50% -ную экономию площади печатной платы.
Пленочные конденсаторы
Пленочные конденсаторы, как следует из названия, используют тонкую пластиковую пленку в качестве диэлектрика. Эти конденсаторы дешевы, очень стабильны во времени, имеют очень низкую самоиндукцию и эквивалентные параметры последовательного сопротивления. Некоторые пленочные конденсаторы могут выдерживать очень большие скачки реактивной мощности.
Пленочные конденсаторы переменного токаИсточник изображения
В процессе вытяжки изготавливается очень тонкая пленка, которую затем можно металлизировать или оставить без обработки в зависимости от свойств, требуемых для конденсатора.Затем добавляются электроды, и сборка устанавливается в корпус, защищающий конденсатор от воздействия окружающей среды.
Относительно плохой диэлектрик делает этот тип конденсатора очень большим по сравнению с другими типами, что придает ему очень низкую емкость на единицу объема, что позволяет использовать его в значительно различных приложениях по сравнению с другими вариантами, которые мы рассмотрели. Пленочные конденсаторы используются во многих приложениях, где требуются стабильность, низкая индуктивность и низкая стоимость.
Интересным аспектом металлизированных пленочных конденсаторов является их самовосстановление.Самовосстановление происходит, когда дефекты вызывают скачки внешнего напряжения. Любая дуга внутри конденсатора испаряет тонкую металлизацию пленки вокруг места повреждения. Это приводит к тому, что участок, который не смог потерять металлизированное покрытие — без проводящего материала больше не будет короткого замыкания, поэтому конденсатор перестает находиться в режиме отказа.
Полиэфирная пленка
Полиэфирные пленочные конденсаторы — это недорогие пленочные конденсаторы общего назначения с основным преимуществом, заключающимся в отличной стабильности при более высоких температурах (до 125 ° C).
Основные характеристики:
- Корпуса с выводами и для поверхностного монтажа
- Может работать при 125 ° C со снижением напряжения
- Высокий допуск
- Высокая диэлектрическая прочность для относительно небольших высоковольтных конденсаторов
- Низкое СОЭ
- High dV / dt — может использоваться в приложениях, где присутствуют резкие и быстрые всплески времени нарастания
Обычно они используются для:
- Цепи, в которых конденсатор должен выдерживать высокие пиковые уровни тока.
- Фильтрация, где не требуются высокие уровни допуска.
- Приложения общего назначения и развязки, а также блокировка по постоянному току.
- Источники питания, в которых не требуется очень высокая емкость электролитических конденсаторов.
- Аудиоприложения.
Источник изображения
Полипропиленовая (ПП) пленка
Конденсаторы с полипропиленовой пленкой широко доступны и могут использоваться в самых разных областях.
Ключевые особенности
- Чрезвычайно жесткий допуск (до 1%).
- Очень стабильны, так как они претерпевают очень низкие изменения емкости с течением времени и приложенного напряжения, а их температурный коэффициент довольно низкий, отрицательный и линейный.
- Большинство конденсаторов из полипропилена имеют очень низкое ESR и низкую самоиндукцию. Конденсаторы
- PP могут работать с экстремальными напряжениями (от u до 1 кВ).
- Довольно высокие температуры: до 100 ° C и выше.
- Доступен только как компонент с выводами.
- Доступно только для очень низкого диапазона емкости (от 100 пФ до 10 нФ).
PP используются во многих приложениях:
- Применения для цепей высокой мощности / высокого напряжения переменного тока.
- Цепи с высокими уровнями пикового тока.
- Высокочастотные резонансные контуры.
- Прецизионные схемы синхронизации.
- Системы балластного освещения.
- Импульсные источники питания.
- Цепи выборки и хранения.
- Аудиоприложения премиум-класса, которые, по мнению многих энтузиастов, обеспечивают лучшую производительность и, следовательно, лучшее качество звука.
- Цепи высокочастотного импульсного разряда.
Источник изображения
ПТФЭ / тефлоновая пленка
Пленочные конденсаторы из ПТФЭ могут быть как металлизированные, так и пленочные / фольговые. Эти конденсаторы выдерживают экстремальные температуры и обеспечивают стабильную работу. Однако эти конденсаторы относительно дороги и, как правило, используются для узкоспециализированных приложений.
Основные характеристики:
- Может работать при температуре до 200 ° C
Источник изображения
Пленка из полистирола
Пленка из полистирола традиционно известна как дешевые конденсаторы общего назначения с высокой стабильностью, низким рассеиванием и утечкой.
Основные характеристики:
- Высокая изоляция
- Низкая утечка
- Низкое диэлектрическое поглощение
- Низкие искажения (из-за этого они нравятся энтузиастам аудио)
- Хорошая температурная стабильность
Источник изображения Сравнение популярных пленочных конденсаторов
Источник изображения
Слюдяные конденсаторы
Слюдяные или серебряные слюдяные конденсаторы — это конденсаторы, в которых в качестве диэлектрика используется слюда.Слюда — очень электрически, химически и механически стабильный материал. Несмотря на то, что он обладает хорошими электрическими характеристиками и устойчивостью к высоким температурам, он имеет высокую стоимость сырья. Слюда также устойчива к большинству кислот, воды, масел и растворителей. Эти конденсаторы изготавливаются путем прослоения листов слюды с металлом с обеих сторон. Серебряные слюдяные конденсаторы встречаются редко, но все еще используются, когда требуются стабильные и надежные конденсаторы с очень низкими номиналами. У них очень низкие потери, их можно использовать для высоких частот, и их значения невероятно стабильно меняются с течением времени.
Серебряные слюдяные конденсаторыИсточник изображения
Основные характеристики слюдяных конденсаторов:
- Высокая точность — до 1% от номинального значения емкости.
- Высокая стабильность — эти конденсаторы очень стабильны, практически не разрушаются со временем, а сборка защищена эпоксидной смолой.
- Высокая устойчивость к температуре.
- Высокая устойчивость к напряжению (до 1кВ).
- Высокая устойчивость к частоте.
- High Q, low ESR / ESL Конденсаторы
- Mica громоздкие и довольно дорогие.
Серебряные слюдяные конденсаторы используются в:
- Фильтры — высокие уровни допуска и стабильности позволяют точно рассчитывать фильтры и быстро прогнозировать их эффективность.
- ВЧ-генераторы и другие ВЧ-схемы — в этих приложениях их низкие уровни потерь позволяют улучшить добротность настроенной схемы.
- ВЧ передатчики большой мощности.
- Приложения высокого напряжения.
Кремниевые конденсаторы
Кремниевые конденсаторы, по крайней мере, в качестве дискретных компонентов, являются относительно новым типом конденсаторов.Интересно отметить, что наиболее распространенным типом конденсаторов в мире по объему являются силиконовые конденсаторы, используемые в интегральных схемах, таких как RAM и flash. Этот тип дискретных конденсаторов основан на таких диэлектриках, как диоксид кремния и нитрид кремния, которые используются для изготовления конденсаторов высокой плотности. Такие конденсаторы весьма применимы в ситуациях, когда требуется высокая стабильность, надежность и устойчивость к высоким температурам.
Кремниевые конденсаторы для поверхностного монтажаИсточник изображения
Кремниевые конденсаторы имеют следующие преимущества:
- Высокая стабильность при высоких температурах — кремниевые конденсаторы выдерживают температуру до 250 ° C.
- Емкость не снижается из-за напряжения смещения постоянного тока.
- Чрезвычайно высокий потенциал миниатюризации.
- Очень низкий ток утечки и низкий коэффициент потерь.
- Низкая частота отказов.
- Минимальная СОЭ и ESL.
Ограничения кремниевых конденсаторов:
- Низкие значения емкости (до 5 мкФ).
- Утечка заряда.
- Чрезвычайно дорогой (от 5 до 5000 раз дороже, чем MLCC с тем же значением и номинальным напряжением).
Стоимость кремниевых конденсаторов гарантирует, что они используются только в очень специфических приложениях. Вы найдете их в абсолютно критически важных и, как правило, дорогих устройствах, где производительность и надежность являются наивысшим приоритетом, а стоимость второстепенна. Это означает, что вы найдете кремниевые конденсаторы в медицинских, военных и аэрокосмических приложениях, а также в высокопроизводительных ВЧ-устройствах.
Если приложение требует чрезвычайно жестких допусков при очень высоких характеристиках, нет другого типа конденсатора, который мог бы сравниться с кремниевыми конденсаторами.
Суперконденсаторы
Суперконденсаторы — это еще один тип конденсаторов, который нельзя сравнивать с другими. Этот тип конденсатора используется для совершенно иной цели, чем описанные выше. Суперконденсаторы, по крайней мере, в применении, больше похожи на батареи, чем другие типы конденсаторов, которые мы обсуждали. Основное назначение этих конденсаторов — аккумулирование энергии с помощью сильноточного источника питания или приложений резервного копирования памяти, таких как RAM или GPS.
В настоящее время вкладываются значительные средства в исследования и разработки суперконденсаторов в качестве альтернативы батареям для электромобилей.Следующее десятилетие будет очень интересным с быстрым развитием этой технологии.
Интересные плоские суперконденсаторы от MurataИсточник изображения
Диапазон емкости суперконденсаторов начинается от мФ до нескольких килофарад, что является значительным количеством энергии. Их емкость в тысячи или миллионы раз выше, чем у типичного конденсатора, который вы можете использовать в схемотехнике.
СуперконденсаторыImage Source
Хотя суперконденсаторы часто сравнивают с литий-ионными батареями, они имеют существенно другие свойства.Их не следует путать с «литиевыми конденсаторами», которые представляют собой литий-ионную или полимерную батарею в корпусе конденсатора.
Функция | Суперконденсатор | Литий-ионный аккумулятор |
---|---|---|
Время зарядки | 1-10 секунд | 10–60+ минут |
Срок службы | 1 миллион циклов / 30 000 часов | 500+ |
Напряжение элемента | 2.От 3 до 2,75 В | 3,6 В номинал |
Удельная энергия | 5 Втч / кг (номинал) | от 120 до 240 Втч / кг |
Удельная мощность | До 10 000 Вт / кг | от 1000 до 3000 Вт / кг |
Стоимость кВтч | 10 000 долл. США (номинал) | оптом 250–1000 долл. США |
Срок службы (промышленный) | 10-15 лет | 5-10 лет |
Температура заряда | от -40 до 65C (от -40 до 149F) | от 0 до 45 ° C (от 32 до 113 ° F) |
Температура нагнетания | от -40 до 65C (от -40 до 149F) | от -20 до 60 ° C (от -4 до 140 ° F) |
Достоинства суперконденсаторов:
- Очень большое количество циклов зарядки / разрядки.
- Колоссальная удельная мощность, позволяющая подавать очень большой ток.
- Длительный срок службы.
- Широкий диапазон рабочих температур.
Однако у этих конденсаторов есть и недостатки, например:
- Очень высокая стоимость.
- Очень низкие напряжения (от 1,5 В до 5 В максимум).
- Умеренно высокий ток утечки, что и делает их. Не подходит для длительного хранения энергии.
- Низкая плотность энергии по сравнению с батареями.
- Сравнительно большой размер.
Заключение
В заключение, каждый тип конденсатора имеет свое место, даже если оно меняется со временем, поскольку новые технологии и улучшения других типов конденсаторов меняют рынок. Некоторые типы конденсаторов могут превосходить другие. Однако, как мы видели, все еще существует множество приложений, в которых один тип конденсатора не может быть заменен для его идеального применения. Конденсаторы, как и любой другой тип компонентов в электронике, все еще развиваются и развиваются, движимые требованиями все более совершенных технологий.Мы часто думаем о конденсаторах как о решенной технологии, но многие конденсаторы, которые мы используем сегодня, значительно отличаются от тех, что были доступны в недавней истории.
ПриложенияMLCC быстро растут. Это самые популярные конденсаторы, и на то есть веские причины. Они дешевы, компактны, в целом имеют хорошие характеристики. Они предлагают идеальный компромисс между характеристиками и стоимостью для большинства основных приложений развязки, фильтрации и обхода.
Танталовые конденсаторы имеют более высокую стабильность при изменении температуры, смещения постоянного тока и времени.Кроме того, они не подвержены пьезоэлектрическому эффекту и более устойчивы к нагрузкам. К сожалению, они имеют высокое СОЭ, высокую цену и склонность взорваться или превратиться в небольшой огненный шар при незначительном обращении.
Алюминиевые электролитические конденсаторы обладают очень высокой емкостью и могут иметь высокое максимальное номинальное напряжение. Они также намного дешевле по тем же характеристикам, что и полимерные конденсаторы. Но они большие, имеют высокое СОЭ и со временем высыхают.
Алюминиевые полимерные и танталовые конденсаторы— это превосходная и захватывающая новая технология.Они обладают почти всеми преимуществами своих традиционных конденсаторов-аналогов, с добавлением низкого ESR. Однако в настоящее время они все еще относительно дороги и имеют довольно низкие значения максимального напряжения. Поскольку это относительно новая технология, я могу только вообразить улучшения в этих типах конденсаторов в ближайшие годы / десятилетия.
Существует много типов пленочных конденсаторов, каждый из которых предназначен для конкретного применения. Они большие и имеют низкую номинальную емкость, но стабильны и обладают рядом других преимуществ.
Слюдяные конденсаторы — самые необычные конденсаторы, которые мы когда-либо видели. У них высокая устойчивость, стабильность и точность, но они относительно редки и дороги.
Кремниевые конденсаторытермостабильны и надежны, но очень дороги и имеют низкую номинальную емкость. Когда для вашей схемы подойдет только лучшее, вам нужны кремниевые конденсаторы.
Суперконденсаторы больше похожи на элементы накопления энергии, чем другие конденсаторы, указанные выше. Их чрезвычайно высокая емкость — это фантастика, но цена, высокая утечка и низкое максимальное напряжение резко ограничивают их применение.В будущем суперконденсаторы станут прекрасной альтернативой батареям для многих устройств, предлагая практически мгновенную зарядку и невероятную плотность энергии. Автомобильные компании вкладывают много денег в исследования суперконденсаторов, и это технология, которая может радикально изменить мир и окружающую среду в будущем.
У каждого конденсатора есть место, и выбор, который вы выберете, будет зависеть от вашего применения, дизайна, бюджета и других требований.
Есть еще вопросы? Вызовите специалиста Altium.
Интернет-магазин керамических конденсаторов| Future Electronics
Дополнительная информация о керамических конденсаторах …
Что такое керамический конденсатор?Керамический конденсатор — это конденсатор с фиксированной величиной, в котором керамический материал действует как диэлектрик. Он состоит из двух или более чередующихся слоев керамики и металлического слоя, действующих как электроды. Состав керамического материала определяет электрические характеристики и, следовательно, области применения.
Чаще всего используются дисковые конденсаторы, особенно многослойные керамические конденсаторы или многослойные микросхемные конденсаторы MLCC.
Керамический конденсатор — Характеристики- Точные допуски и прецизионность — Керамические конденсаторы в основном используются для обеспечения высокой стабильности и в устройствах с низкими потерями. Эти устройства обеспечивают очень точные результаты, а также значения емкости этих конденсаторов стабильны по отношению к приложенному напряжению, частоте и температуре.
- Преимущества небольшого размера — В случаях, когда требуется плотность упаковки для компонентов с высокой плотностью упаковки, эти устройства имеют большое преимущество по сравнению с другими конденсаторами. Например, многослойный керамический конденсатор «0402» имеет размеры около 0,4 мм x 0,2 мм.
- Высокая мощность и высокое напряжение — керамические конденсаторы изготовлены таким образом, чтобы выдерживать более высокие напряжения, и такие конденсаторы являются силовыми керамическими конденсаторами. Эти конденсаторы намного больше, чем те, что используются на печатных платах.У них также есть специализированные клеммы, используемые для более безопасного подключения источника высокого напряжения. Керамические конденсаторы Power выдерживают напряжение от 2 кВ до 100 кВ.
Керамические конденсаторы класса 1 обеспечивают высокую стабильность и низкие потери для приложений с резонансными цепями. Они очень точны, а значение емкости стабильно в отношении приложенного напряжения, температуры и частота.
Конденсаторы серии NP0 обладают емкостной термической стабильностью ± 0.54% в общем диапазоне температур от -55 до +125 ° C.
Допуски номинальной емкости могут составлять всего 1%.
Обычно в качестве диэлектриков используются титанат магния для положительного температурного коэффициента или титанат кальция для конденсаторов с отрицательным температурным коэффициентом. Используя комбинации этих и других соединений, можно получить диэлектрическую проницаемость от 5 до 150.
Также можно получить температурные коэффициенты от +40 до -5000 ppm / C.
Конденсаторы класса 1 также обладают лучшими характеристиками в отношении коэффициента рассеяния. Это может быть важно во многих приложениях. Типичный показатель может составлять 0,15%. Также возможно получить конденсаторы класса 1 с очень высокой точностью (~ 1%), а не более обычные версии с допуском 5% или 10%. Конденсаторы высшего класса точности 1 имеют обозначение C0G или NP0.
Конденсаторы класса 2 имеют высокую емкость на единицу объема и используются для менее чувствительных приложений.
- Диапазон температур: от -50 ° C до + 85 ° C
- Коэффициент рассеяния: 2.5%.
- Точность: от средней до плохой
Конденсаторы класса 2 обеспечивают лучшую производительность в отношении объемного КПД. Обычно они используются для развязки, соединения и байпаса, где точность не имеет первостепенного значения.
Керамические конденсаторы класса 3 обеспечивают по-прежнему высокий объемный КПД за счет низкой точности и стабильности, а также низкого коэффициента рассеяния.
Они также обычно не выдерживают высокого напряжения.
В качестве диэлектрика часто используется титанат бария.
- Изменит свою емкость на -22% до + 50%
- Диапазон температур от + 10 ° C до + 55 ° C.
- Коэффициент рассеяния: от 3 до 5%.
- У него будет довольно низкая точность (обычно 20% или -20 / + 80%).
В результате керамические конденсаторы класса 3 обычно используются в качестве развязки или в других источниках питания, где точность не является проблемой.
Керамические конденсаторы доступны в настоящее время трех основных типов, хотя доступны и другие стили:- Керамические конденсаторы с выводами для монтажа в сквозные отверстия, покрытые смолой
- Многослойные керамические конденсаторы для поверхностного монтажа конденсаторы, которые предназначены для установки в разъем на печатной плате и припаяны на месте.
Подавляющее большинство керамических конденсаторов, которые используются сегодня, представляют собой устройства для поверхностного монтажа — SMT.
Керамические конденсаторы SMD / SMT имеют форму прямоугольного блока или куба. Сам конденсатор состоит из керамического диэлектрика, в котором содержится несколько чередующихся электродов из драгоценных металлов. Эта структура обеспечивает высокую емкость на единицу объема.
Обозначение упаковки керамического конденсатораОбозначение упаковки | Размер (мм) | Размер (дюймы) |
1812 | 4.6 x 3,0 | 0,18 x 0,12 |
1206 | 3,0 x 1,5 | 0,12 x 0,06 |
0805 | 2,0 x 1,3 | 0,08 x 0,05 |
0402 | 1,0 x 0,5 | 0,04 x 0,02 |
0201 | 0,6 x 0,3 | 0,02 x 0,01 |