Обозначения люминесцентных ламп: Люминесцентные лампы — характеристики и маркировка

Содержание

Люминесцентные лампы — характеристики и маркировка

 

        Линейные люминесцентные лампы широкого применения, имеющие колбы в виде трубок, изготавливают диаметрами: 38 мм (обозначение колбы Т12), 26 мм (обозначение колбы Т8) и 16 мм (обозначение колбы Т5). Лампы с колбами Т5 рассчитаны для работы с электронными ПРА. Компактные лампы с цоколями как у бытовых ламп накаливания имеют внутри лампы электронный ПРА, с другими цоколями могут быть рассчитаны для работы с внешними ПРА.

    К единому способу маркировки ламп их производители пока не пришли. Но чаще всего лампы имеют в своем обозначении записанные через дробь мощность лампы и цветовые характеристики. Например, на Рис. 1 показано обозначение лампы Osram.

 

 

Рис. 1. Лампа Osram, 80 Вт, Ra = 80 — 89, цветовая температура 3000 оК

 

    Первая цифра (8) в обозначении 830 указывает индекс цветопередачи Ra, две следующих цифры (30) цветовую температуру. Кроме числовой маркировки нанесена надпись – warm white (тепло – белая). На лампах с цветовой температурой 4000

оК стоит маркировка 840 cool white (холодная белая). Лампы с Ra 80 и более относятся к высококачественным лампам, предназначенным для освещения помещений с длительным пребыванием людей. Лампы с Ra меньше 80 преимущественно предназначены для освещения помещений с умеренными требованиями по цветопередаче и комфорту. Например, лампы с обозначением 765 (Ra = 70 – 79, цветовая температура 6500 оК) или 640 (Ra = 60 – 69, цветовая температура 4000 оК).

    Компактные люминесцентные лампы маркируют либо цифровым кодом, либо указанием оттенка белого цвета. Например, на лампе с цоколем Е27 (Рис. 2) нанесена маркировка Cool light – холодный свет. Эта лампа имеет цветовую температуру 4200оК.

 

 

Рис.2 Компактная люминесцентная лампа с цоколем Е27 и встроенным ЭПРА

 

    В соответствие с ГОСТ 6825-91 люминесцентные лампы отечественного производства обозначаются:

ЛД –лампа дневной цветности (соответствует цветовой температуре 5400 – 6500 оК),

ЛХБ – холодно – белая (цветовая температура лампы 4300 – 5000 оК),

ЛБ – белая (цветовая температура лампы 3300 – 4000 оК),

ЛТБ – тепло – белая (цветовая температура лампы 2700 – 3000 оК).

    Цветовые температуры для этих ламп указаны приблизительно.

 

Обратите внимание:

Широкий выбор различных ламп к светильникам представлен в современных интернет магазинах. Краткое описание наиболее интересных магазинов, а также некоторые замечания по покупке ламп и светильников, можно посмотреть на странице сайта Магазины светильников.

3 мая 2013 г.

К разделу  СВЕТИЛЬНИКИ 

К ОГЛАВЛЕНИЮ (Все статьи сайта)

Маркировка и обозначение люминесцентных ламп . Электропара

При выборе люминесцентной лампы важно внимательно изучить обозначения маркировки, поскольку от типа лампы напрямую зависит область ее использования. 

Все люминесцентные лампы делятся на две основные группы – линейные и компактные люминесцентные лампы (КЛЛ). Некоторые группы U-образных и кольцевых ламп также относятся к линейному типу, поскольку их колба имеет те же размеры и характеристики.

Большая часть люминесцентных ламп, использующихся для создания освещения, изготавливается в колбах диаметром 38, 26 и 16 мм. Существуют некоторые разновидности ламп от иностранных производителей с миниатюрными размерами, однако их область применения ограничена специальной аппаратурой. Выпуск ламп диаметром колбы 38 мм иностранными компаниями заметно сократился за последние годы и в будущем эта тенденция лишь усилится.

Сегодня самыми распространенными являются модели люминесцентных лам мощностью 18,36 и 58 Вт, хотя некоторые российские производители продолжают выпускать лампы с колбой 38 мм мощностью 20, 40, 65 и 80 Вт. В зависимости от мощности длина лампы может составлять от 136 до 1514 мм.

На люминесцентных лампах не указывается рабочее напряжение, как это бывает с лампами накаливания. Дело в том, что одна и та же лампа может работать при разных условиях сети, причем разница касается не только номинальной величины токовой нагрузки, но и вида тока (постоянный, переменный). Диапазон рабочего напряжения может составлять сотни вольт.

Каждая лампа оснащена маркировкой, на которой указаны рабочие параметры, одним из которых является цветность светового потока. По ГОСТ в российских условиях лампы делятся на следующие цвета: тепло-белый (ТБ), белый (Б), естественный (Е), холодной-белый (ХБ) и дневной (Д). Чем ниже значение цветовой температуры, тем желтее будет свет от лампы. Например, к тепло-белому цвету относятся лампы с ЦТ 2700-3000 К, к холодно-белому – с ЦТ около 4200 К, а лампы дневного света имеют цветовую температуру около или выше 6400 К. Помимо обычных ламп освещения существуют цветные разновидности люминесцентных ламп, их колба излучает разные цвета в зависимости от модели.

На маркировке указываются технические обозначения рабочих параметров лампы. По ГОСТ необязательно указывать индекс цветопередачи RA, однако иностранные, да и многие отечественные производители указывают его в маркировке цифрами – если RA больше 90, пишется цифра 9, если между 80 и 90, пишется цифра 8.

Поскольку каждый производитель маркирует лампы по-своему, международная комиссия по освещению разработала универсальную систему обозначений ILCOS. Эта система не является обязательной, но рекомендованной всем производителям люминесцентных ламп. Такое решение пришло из-за постоянной путаницы с маркировкой у разных лампочек – помимо общей информации о товаре многие производители дополняют ее обозначением модельного ряда, коллекции и пр. Новая система обязывает обозначать маркировку по правилам: все линейные лампы обозначаются буквами FD, кольцевые – FC. После обозначения типа лампы указываются основные технические характеристики – мощность, индекс цветопередачи, цветность лампы.

Люминесцентные лампы T5 и диаметром колбы 16 мм делятся на две группы — «лампы с максимальной световой отдачей» (Osram — FH , Philips — HE) и «лампы с максимальным световым потоком» (FQ и HO). Каждая группа представлена четырьмя вариантами мощностей: 

  • Люминесцентные лампы с максимальной световой отдачей: 14, 21, 28 и 35 Вт
  • Люминесцентные лампы с максимальным световым потоком: 24, 39, 54 и 80 Вт

Максимальной световой отдачей характеризуются лампы мощностью 28 и 35 Вт, эти модели имеют световую отдачу 108 лм/вт, что является весьма высокой величиной. Все линейные лампы работают с пускорегулирующей аппаратурой.

Компактные люминесцентные лампы также разбиваются на две группы в зависимости от типа ЭПРА (внешний или встроенный).

КЛЛ с внешней электронной аппаратурой имеют мощность до 55 Вт, имеют двух- или четырехштырьковый цоколь. Лампы с двухштырьковым цоколем уже оснащены встроенным стартовым устройством, для запуска им нужен лишь дроссель. Лампы с четырехштырьковым цоколем включаются как с обычным дросселем, так и через ЭПРА.

Если в маркировке люминесцентной лампы встретилась буква «Ц», значит, данная лампа была выполнена с использованием редкоземельных металлов и обладает высокой степенью цветопередачи. Такая информация особенно важна, если выбирается лампа для подсветки витрин.

Среди прочих обозначений, которые могут быть нанесены на колбу лампы, могут встречаться следующие:

  • Тип цоколя: G5, G13, 2GX13, Fa6, G10q, R17d и пр.
  • Производитель: самые популярные марки PHILIPS, SYLVANIA, OSRAM, FOTON LIGHTING
  • Рабочее напряжение: 220 В
  • Индекс цветопередачи, мощность и пр.

 

Маркировка люминесцентных ламп — Блог о строительстве

Трех цифренный код на упаковке лампы содержит как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифраиндекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)Вторая и третья цифрыуказывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 К (что соответствует цветовой температуре лампы накаливания)

КодОпределениеОсобенностиПрименение530Basic warmweiß / warm whiteСвет тёплых тонов с плохой светопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдачаГаражи, кухни.

В последнее время встречается всё реже.640740Basic neutralweiß / cool white«Прохладный» свет с посредственной цветопередачей и светоотдачейВесьма распространён, должен быть заменён на 840765Basic Tageslicht / daylightГолубоватый «дневной» свет с посредственной цветопередачей и светоотдачейВстречается в офисных помещениях и для подсветки рекламных конструкций ситилайтов827Lumilux internaПохожий на свет лампы накаливания с хорошей цветопередачей и светоотдачейЖильё830Lumilux warmweiß / warm whiteПохожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачейПохожий на 827, с несколько голубоватым оттенком840Lumilux neutralweiß / cool whiteБелый свет для рабочих поверхностей с очень хорошей цветопередачей и светотдачейОбщественные места, офисы. Внешнее освещение865Lumilux Tageslicht / daylight«Дневной» свет с хорошей цветопередачей и посредственной светоотдачейОбщественные места, офисы. Внешнее освещение880Lumilux skywhite«Дневной» свет с хорошей цветопередачей 930Lumilux Deluxe warmweiß / warm white«Тёплый» свет с отличной цветопередачей и плохой светоотдачейЖильё940Lumilux Deluxe neutralweiß / cool white«Холодный» свет с отличной цветопередачей и посредственной светоотдачей.Музеи, выставочные залы954965Lumilux Deluxe Tageslicht / daylight«Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачейВыставочные залы, освещение аквариумов

Сортировать по:умолчанию цене по наличию Сортировать по:умолчанию цене по наличию Люминесцентные лампы- устройства, которые пользуются большой популярностью во всех странах мира.

Множество компаний занимаются их производством и реализацией. Чтобы не потеряться в огромном ассортименте, нужно подробно рассмотреть принципы маркировки этих изделий.То, как человеческий глаз воспринимает цвета, зависит от яркости. Если яркость небольшая, человек хуже видит синий и красный цвет.

Именно поэтому цветовая температура обычного дневного света (она равна 5000-6500 К) может казаться синей в помещениях со слабой освещенностью. Если яркость невысокая, то наиболее оптимальным вариантом будет свет с температурой 3000 К. Интересно, что такой же свет будет казаться желтым в офисе.

Там лучше будет использовать лампы с температурой от 4000 К.Маркировка, указанная на упаковке изделия, сообщает данные о цветопередаче и цветовой температуре. Код, состоящий из трех цифр, говорит о качестве светового потока. Первая цифра – индекс цветопередачи (высокий индекс – хорошее отображение цветов).

Две последующие цифры –величина цветовой температуры лампы. Пример. На упаковке написано число 827.

Оно говорит о том, что коэффициента цветопередачи данной модели лампы равен 80 Ra, а температура – 2700 К.530. Эти лампы излучают теплый свет. Освещаемые предметы могут казаться коричневатыми.

Сейчас редко используют лампы с таким кодом. Раньше их можно было встретить в кухнях и гаражах.640-740. Посредственный прохладный свет.765.

Холодный свет с голубым оттенком. Лампы с таким кодом обычно используют в рабочих кабинетах или в системах световой рекламы.827. Свет такой лампы идентичен свету от обычной лампы.

Применяется для освещения квартир и жилых домов.840. Лампа излучает белый свет. Как и предыдущий вид применяется для освещения жилья.865.

Дневной свет, который имеет хорошую цветопередачу и средний уровень светоотдачи. В основном используется для освещения офисов или наружного освещения.880. Дневной свет, который хорошо передает цвета предметов.

Сфера использования – внешнее освещение.930. Лампы с таким кодом дают теплый свет, который отлично подойдет для жилых помещений.940. Говорит о холодном свете.

Применение – выставочные залы.954, 965. Такие лампы пригодны для музеев или для освещения аквариумов.Такие коды используются в международной маркировке. В России маркировка имеет немного другой вид.ЛБ – лампа излучает белый свет;ЛД – свет лампы сродни дневному;ЛХБ – от лампы исходит холодный белый свет;ЛТБ – лампа дает теплый белый свет.Маркировку люминесцентных ламп можно рассмотреть на примере ламп для гастрономии (T8 d26mm с цоколем G13).

Этот вид ламп применяют в основном для организации освещения торговых витрин, в частности тех, на которых расположены мясные продукты. Этот модельный ряд имеет наиболее подходящую для таких целей цветовую температуру. Излучаемый ими свет помогает наиболее естественно отображать цвета товара на витрине.Расширенный поиск в разделеРасширенный поиск в разделе Нажмите на логотип производителя чтобы посмотреть все его товары в этом разделе.

Свою историю люминесцентные лампы начинают с газоразрядных приборов, изобретенных в XIX веке. По светоотдаче и экономичности они значительно превосходят лампы накаливания. Применяются для освещения жилых помещений, учреждений, больниц, спортивных сооружений, цехов производственных предприятий.

Принцип работы и основные свойства

Чтобы произошел разряд, к колбе с противоположных сторон подсоединены электроды. Напрямую подключать газоразрядные лампы к сети нельзя. Обязательно используется пусковые регулирующие устройства– балласты.

Если число включений не превышает 5 раз в день, то люминесцентный источник гарантированно прослужит 5 лет. Это почти в 20 раз больше, чем для ламп накаливания.

Среди недостатков люминесцентных ламп выделяют:

    нестабильную работу при низкой температуре;необходимость в правильной утилизации из-за паров ртути;присутствие мерцания, для борьбы с которым требуется усложнять схему;сравнительно большие размеры.

Однако люминесцентные лампы чрезвычайно экономичны, поскольку потребляют мало энергии, дают больше света и дольше работают. Не удивительно, что они заменили обычные лампочки почти во всех учреждениях и на предприятиях.

Разновидности люминесцентных ламп

Лампы бывают низкого и высокого давления. Трубки низкого давления устанавливают в помещениях, высокого давления – на улицах и в мощных осветительных приборах.

Ассортимент люминесцентных осветительных приборов довольно широк. Они отличаются размером и формой трубки, типом цоколя, мощностью, цветовой температурой, светоотдачей и другими характеристиками.

В зависимости от формы трубки люминесцентные лампы бывают:

    трубчатыми (прямыми), обозначаются буквой Т или t, имеют прямую форму;U-образными;кольцевыми;компактными, применяются для светильников.

Прямые, U-образные и кольцевые типы объединят в один вид линейных ламп. Наиболее часто встречаются осветительные приборы в форме трубок.После буквы T или t стоит число. Оно указывает на диаметр трубки, выраженный в восьмой части дюйма.

Т8 означает, что диаметр составляет 1 дюйм или 25,4 мм, Т4 – 0,5 дюйма или 12,7 мм, Т12 – 1,5 дюйма или 38,1 мм.Чтобы сделать лампу более компактной, ее колбу изгибают. Для запуска таких ламп используют встроенный электронный дроссель. Цоколь делают либо под стандартные лампы, либо под специальные светильники.

Цоколь люминесцентной лампы может быть типа G (штырьковый с двумя контактами) или типа E (винтовой). Последний тип применяется в компактных моделях. Цифры после буквы G указывают на расстояние между контактами, а после буквы E – диаметр в миллиметрах.

Маркировка

Отечественная и международная маркировка отличается. Российская берет свое начало со времен Советского Союза, в ней используются буквы кириллицы. Значения букв следующие:

    Л лампа;Д дневной свет;Б белый;Т теплый;Е естественный;Х холодный.

Зная обозначение можно без проблем прочитать маркировку. Например, ЛХБ будет означать лампу с холодным белым светом.

Для компактных моделей впереди ставят букву К. Если в конце маркировки стоит Ц, то применяют люминофор с улучшенной цветопередачей. Две буквы Ц означают, что цветопередача самого высокого качества.

Если лампа дает цветной свет узкого спектра, то после Л стоит соответствующая буква. Например, ЛК означает источник красного свечения, ЛЖ – желтого, и так далее.

Согласно международной маркировке на лампе пишут мощность и через косую черту трехзначное число, которое определяет индекс цветопередачи и цветовую температуру.

Первая цифра числа указывает на цветопередачу, умноженную на 10.

Чем больше цифра, тем точнее цветопередача. Последующие две цифры говорят о цветовой температуре, выраженной в кельвинах и деленной на 100. Для дневного света цветовая температура составляет 5-6,5 тысяч K, поэтому лампа с маркировкой 865 будет означать дневной свет с высокой цветопередачей.

Для жилья используют лампы с кодом 827, 830, 930, для внешнего освещения с кодом 880, для музеев с кодом 940. Подробнее о значении маркировки можно узнать в специальных таблицах.

Мощность традиционно обозначается буквой W. В источниках света общего назначения шкала мощности изменяется от 15 до 80 Вт. У ламп специального назначения мощность может быть менее 15 Вт (маломощные) и более 80 Вт (мощные).

Применение

Люминесцентные лампы с всевозможными оттенками белого цвета применяют для освещения помещений и улиц. С их помощью подсвечивают растения в оранжереях и теплицах, аквариумы, музейные экспонаты.

Наиболее распространенные трубки Т8 с цоколем G13 мощностью 18 и 36 Вт. Их применяют в учреждениях и на производстве. Они легко заменяют советские лампы типа ЛБ/ЛД-20 и ЛБ/ЛД-40.

Поскольку люминесцентные источники слабо нагреваются, их можно применять во всех типах светильников. Выбирая соответствующий цоколь, мощность и размер, их устанавливают в бра, подвесные люстры, ночники. Применяют на кухне, ванне, гаражах, рабочих кабинетах.

Выпускают лампы, излучающие ультрафиолетовый свет. Их устанавливают в лабораториях, исследовательских центрах, медицинских учреждениях – везде, где требуется этот тип излучения.

Люминофор может давать цветной свет (желтый, голубой, зеленый, красный и так далее). Такие источники применяют в дизайнерских целях для художественного оформления витрин, подсветки вывесок, фасадов зданий.

Чтобы люминесцентный прибор прослужил максимально долго, надо обеспечить ему стабильное напряжение и редкое включение/выключение.

Поскольку в колбе люминесцентного источника света содержится ртуть, ее нельзя выбрасывать вместе с другим бытовым мусором. Лампы необходимо сдавать в специальные пункты приема. Это могут быть спасательные службы, магазины, продающие электротовары, или компании по утилизации опасного мусора.

Похожие темы:

По своему внешнему виду все люминесцентные лампы различаются как линейные и компактные. Приборы, имеющие кольцевую или U-образную форму, также относятся к линейным, ввиду идентичности их параметров.

В зависимости от индивидуальных особенностей зависит и маркировка люминесцентных ламп.Диаметр отечественных колб находится в пределах 16, 26 и 38 мм. В лампочках иностранного производства размеры обозначаются в дюймах, например, 12х8, 8х8 и 5х8 дюйма. Соответственно, их маркировка выглядит таким образом: Т12, Т8 и Т5.

Стандартные люминесцентные лампы

Все стандартные лампы имеют мощность в пределах от 4-х до 80-ти ватт. Наибольшим спросом пользуются лампочки, мощность которых составляет 18, 36 и 58 ватт. Работа люминесцентных лампочек может осуществляться при самом различном напряжении, поэтому в маркировке его никогда не указывают.

Каждый вид лампочек отечественного производства имеет излучение различной цветности, которое обозначается: ТБ – тепло-белое, Б – белое, Е – естественное, ХБ – холодно-белое и Д – дневное.

Иногда в продаже встречаются осветительные приборы, имеющие красный, желтый, синий, голубой или зеленый цвет излучения, обозначаемый, например, Гцв. Мощность может обозначаться с помощью маркировки 18W 36W 58W. В импортных лампах, через дробь дополнительно проставляется индекс со значением цветопередачи.

Маркировка люминесцентных ламп отличается между собой исходя из производителя продукции.

Например, фирма Филипс обозначается как TL-D, лампы Osram маркируются как Lumilux, продукция Дженерал Электрик имеет обозначение в виде буквы F.Для удобства существует единая мировая система, обозначающая основные виды ламп.Так маркировка FD обозначает линейные лампы, а обозначение FC соответствует кольцевым лампочкам. После этого, в обозначении проставляется мощность, цветовая температура, а также индекс цветопередачи. Наиболее сильным световым потоком обладают люминесцентные лампы с белым цветом, которые используются для обеспечения качественного освещения .

Компактные лампы

В компактных лампочках могут быть внешние или встроенные аппараты включения. Они изогнуты в виде цилиндрической колбы и оборудованы цоколем с несколькими внешними штырями. Мощность светильников, у которых имеется внешний аппарат включения, находится в промежутке от 5-ти до 55-ти ватт.

С помощью тепло-белого цвета наиболее ярко выделяется розовый или красный цвет. С их помощью очень качественно передается естественный цвет лица. Примером расшифровки отечественных ламп, например, ЛБ-65, служат следующие показатели: лампа люминесцентная, белого цвета, мощностью 65 ватт.

Таким образом, маркировку ламп необходимо знать, чтобы использовать ту или иную модель там, где это необходимо. Только в этом случае, при использовании осветительных приборов, будет достигнут максимальный эффект.

Классификация и характеристики люменесцентных ламп

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки.

На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение.

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений.В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов.

Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.Поперечная ширина колбы.

Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38406.Показатель силы излучения или простыми словами мощность устройства.

Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.Потребность в конструкции стартера или электронного балласта и безстартерный прибор.

Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма.

Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.

Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

U – ствольчатое устройство.

Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.C – в форме свечи.Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Период эксплуатации ограничивается износом электродов, так как они при выработке просто исчезают. Струсы и падения устройства негативно сказываются на его жизнеспособности. После падения срок службы и качество света может резко упасть.

Какими плюсами обладают такие устройства:

Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.Срок эксплуатации примерно двадцать тысяч часов.Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз.

Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

    Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.Установка диммера возможна только с использованием дополнительных устройств.Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.

Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

    Особенности помещения, где лампу будут устанавливать.Температура, при которой устройству необходимо будет функционировать.Качество вашей энергосети.Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

В данной области нету явного фаворита среди производителей. Каждый дорогой, например, Philips, и более дешёвый бренд может выпускать продукцию с определённой долей бракованных изделий. У более дорогих марок philips данный процент брака будет несколько ниже.

Поэтому подбирая прибор для себя, следует отталкиваться от ваших финансовых возможностей. В среднем цена на одну лампочку philips составляет три-четыре доллара.

Цветные лампочки philips и специализированные будут стоить несколько дороже. За цвет вы переплатите примерно десять-пятнадцать процентов. Специализированные устройства могу стоить порядка десяти и более долларов, это могут быть бактерицидные и фито лампы.

Типы и маркировка люминесцентных ламп

В этой статье представлено описание и маркировка основных типов люминесцентных сламп присутствующих на рынке.

Приводится детальное описание ламп основных производителей — OSRAM, PHILIPS и GENERAL ELECTRIC. По схеме зажигания лампы бывают нескольких видов — требующие стартера (pre-heat start) и не требующие стартера (rapid start и instant start). Подробнее об этом в описании балластов для ламп.

По диаметру колбы лампы делятся на несколько видов (диаметр измеряется в 8-х дюйма), буква T обозначает tubular форму колбы:

T-5– пока не являются широко используемыми, поэтому дорогие.

У этих ламп светоотдача доходит до 100-110 люмен/ватт. Компактные лампы (power compact) также имеют трубки T5. Сейчас компании, производители ламп, стали выпускать достаточно много ламп этого типа.

T-8– новые лампы.

Они постепенно вытесняют стандартные лампы T-12, имея практически такой же световой поток. Пока данные лампы более дорогие. Помните, что их нельзя ставить в схему питания для лампы T-12 (эти лампы рассчитаны на ток 0.260A, большинство T-12 – 0.430A)

T-10– неудавшаяся попытка замены T-12.

T-12– включает в себя большинство стандартных ламп,

Лампы с колбой в виде буквы U,имеют в своем обозначении букву U

Про обозначение компактных ламп (power compact) – ниже.

Про обозначение ламп российского производства написано в отдельном разделе.

По мощности лампы делятся на несколько видов:

Стандартные (T-12 – ток 430A)

High Output (HO) — с током 0.8A. У них мощность больше, соответственно больше и световой поток. Хотя светоотдача при этом меньше, чем у стандартной лампы

Very High Output (VHO) – с током 1.5A

«Экономичные» лампы с пониженной мощностью (Philips – Econ-o-Watt, Osram/Sylvania – SuperSaver) – например, лампа стандартного размера 48″ и обозначенная F40/SS или F40/EW потребляет 34 ватт вместо 40. Света такая лампа дает около 2800 Лм вместо 3200 Лм.

При этом такие лампы бывают всех диаметров и видов. Надо смотреть, чтобы голова кругом не пошла.

По длине лампы тоже бывают любые. Обозначаются лампы обычно:

15— номинальная мощность в ваттах. Реальная может быть другой (обращайте внимание на экономичные лампы). К тому же световой поток от лампы зависит от используемого балласта.

T12 — диаметер трубки

Color — цвет (например CW, WW, 850 и т.д.). Таблица с цветами приведена ниже

EW (или SS) — для экономичных ламп

HO — для high output ламп

HF — для ламп, которые используются совместно с высокочастотным электронным балластом.

RS добавляется в обозначении для ламп, которые могут быть включены в схему без стартера (rapid start)

Начальный световой поток измеряется через 100 часов, средний — через 2000 часов. Световой поток имеет свойство ослабевать с течением времени, поэтому лампы лучше заменять чаще.

Стандартные люминесцентные лампы (диаметр трубки — 26 мм).

Источники: http://electric-220.ru/news/markirovka_ljuminescentnykh_lamp/2013-07-26-415, http://proosveschenie.ru/dlya-doma-i-kvartir/kharakteristiki-lyumenescentnykh-lamp.html, http://www.dom-spravka.info/_alt_energo/eo_10.html

Источники:

  • electro.narod.ru
  • shop220.ru
  • electrosam.ru
  • electricremont.ru

Характеристики и маркировка люминесцентных ламп, все подробно

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки. На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение. 

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений. В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.

Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.
  • Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.
  • Потребность в конструкции стартера или электронного балласта и безстартерный прибор. Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.
  • Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.
  • Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма. Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.
  • Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

Маркировка люминесцентных ламп

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.

Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

  • U – ствольчатое устройство. Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.
  • M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.
  • S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.
  • P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.
  • C – в форме свечи.
  • Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.
  • R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Период эксплуатации ограничивается износом электродов, так как они при выработке просто исчезают. Струсы и падения устройства негативно сказываются на его жизнеспособности. После падения срок службы и качество света может резко упасть.

Какими плюсами обладают такие устройства:

  1. Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.
  2. Срок эксплуатации примерно двадцать тысяч часов.
  3. Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз. Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.
  4. Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.
  5. Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

  • Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.
  • Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.
  • Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.
  • Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.
  • Установка диммера возможна только с использованием дополнительных устройств.
  • Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.

Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

  • Особенности помещения, где лампу будут устанавливать.
  • Температура, при которой устройству необходимо будет функционировать.
  • Качество вашей энергосети.
  • Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.
  • Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

В данной области нету явного фаворита среди производителей. Каждый дорогой, например, Philips, и более дешёвый бренд может выпускать продукцию с определённой долей бракованных изделий. У более дорогих марок philips данный процент брака будет несколько ниже.

Поэтому подбирая прибор для себя, следует отталкиваться от ваших финансовых возможностей. В среднем цена на одну лампочку philips составляет три-четыре доллара.

Цветные лампочки philips и специализированные будут стоить несколько дороже. За цвет вы переплатите примерно десять-пятнадцать процентов. Специализированные устройства могу стоить порядка десяти и более долларов, это могут быть бактерицидные и фито лампы.

Расшифровка маркировки люминесцентных ламп

06.01.2014

Расшифровка маркировки люминесцентных ламп

Трёхцифровой код на упаковке лампы содержит как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра — индекс цветопередачи в 1х10 Ra(компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)

Вторая и третья цифры — указывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 К (что соответствует цветовой температуре лампы накаливания).

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей— от 4 до 1А.

Международная маркировка по цветопередаче и цветовой температуре

Код

Определение

Особенности

Применение

530

Basic warmweiß / warm white

Свет тёплых тонов с плохой цветопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдача.

Гаражи, кухни. В последнее время встречается всё реже.

640/740

Basic neutralweiß / cool white

«Прохладный» свет с посредственной цветопередачей и светоотдачей

Весьма распространён, должен быть заменён на 840

765

Basic Tageslicht / daylight

Голубоватый «дневной» свет с посредственной цветопередачей и светоотдачей

Встречается в офисных помещениях и для подсветки рекламных конструкций (ситилайтов)

827

Lumilux interna

Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей

Жильё

830

Lumilux warmweiß / warm white

Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей

Жильё

840

Lumilux neutralweiß / cool white

Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей

Общественные места, офисы, ванные комнаты, кухни. Внешнее освещение

865

Lumilux Tageslicht / daylight

«Дневной» свет с хорошей цветопередачей и посредственной светоотдачей

Общественные места, офисы. Внешнее освещение

880

Lumilux skywhite

«Дневной» свет с хорошей цветопередачей

Внешнее освещение

930

Lumilux Deluxe warmweiß / warm white

«Тёплый» свет с отличной цветопередачей и плохой светоотдачей

Жильё

940

Lumilux Deluxe neutralweiß / cool white

«Холодный» свет с отличной цветопередачей и посредственной светоотдачей.

Музеи, выставочные залы

954, 965

Lumilux Deluxe Tageslicht / daylight

«Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачей

Выставочные залы, освещение аквариумов

Маркировка цветопередачи по ГОСТ 6825-91

В соответствии с ГОСТ 6825-91 (МЭК 81-84) «Лампы люминесцентные трубчатые для общего освещения», действующий, лампы люминесцентные линейные общего назначения маркируются, как:

ЛБ (белый свет)

ЛД (дневной свет)

ЛЕ (естественный свет)

ЛХБ (холодно-белый свет)

ЛТБ (тёпло-белый свет)

Добавление буквы Ц в конце означает применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ — люминофора «супер де-люкс» с высококачественной цветопередачей.

Лампы специального назначения маркируются, как:

ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР (лампы цветного свечения)

ЛУФ (лампы ультрафиолетового света)

ДБ (лампа ультрафиолетового света типа С)

ЛСР (синего света рефлекторные)

Параметры отечественных ламп по цветопередаче приведены в таблице:

Аббревиатура

Расшифровка

Цветовая т-ра, К

Цветопередача

Примерный эквивалент по международной маркировке

Лампы дневного света

ЛДЦ, ЛДЦЦ

Лампы дневного света, с улучшенной цветопередачей; ЛДЦ — де-люкс, ЛДЦЦ — супер-де-люкс

6500

Хорошая (ЛДЦ), отличная (ЛДЦЦ)

865 (ЛДЦ),
965 (ЛДЦЦ)

ЛД

Лампы дневного света

6500

Приемлемая

765

Лампы естественного света

ЛЕЦ, ЛЕЦЦ

Лампы естественного света, с улучшенной цветопередачей; ЛЕЦ — де-люкс, ЛЕЦЦ — супер-де-люкс

4 000

Хорошая (ЛЕЦ), отличная (ЛЕЦЦ)

840 (ЛЕЦ),
940 (ЛЕЦЦ)

ЛЕ

Лампы естественного света

4 000

Приемлемая

740

Другие осветительные лампы

ЛБ

Лампы белого света

3 500

Неудовлетворительная

635

ЛХБ

Лампы холодно-белого света

4 000

Неудовлетворительная

640

ЛТБ

Лампы тёпло-белого света

3 000

Относительно приемлемая для тёплых тонов, неудовлетворительная для холодных

530, 630

ЛТБЦЦ

Лампы тёпло-белого света с улучшенной цветопередачей

2 700, 3 000

Приемлемая для тёплых тонов, менее удовлетворительная для холодных

927, 930

Лампы специального назначения

ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР

Лампы с цветным люминофором

ЛГ: 67, 18, BLUE
ЛК: 60, 15, RED
ЛЗ: 66, 17, GREEN
ЛЖ: 62, 16, YELLOW[5]

ЛСР

Лампы синие рефлекторные

ЛУФ

Ультрафиолетовые лампы

08


Классификация и обозначение люминесцентных ламп

СВЕТОТЕХНИКА

Все люминесцентные лампы мож — _ но разделить на две большие группы: ли — ~ г нейные и компактные. Небольшой ассор­тимент кольцевых и U-образных ламп можно отнести к линейным, так как они делаются в колбах таких же диаметров и имеют близкие параметры.

Линейные лампы массового приме­нения выпускаются в колбах диаметром 38, 26 и 16 мм (иностранное обозначение — Т12, Т8 и Т5, то есть 12/8, 8/8 и 5/8 дюйма). Немецкая фирма Osram делает еще лампы Т2 диаметром около 7 мм, но эти лампы применяются пока только в сканерах и другой репрографической аппаратуре, а не для общего освещения. В последние годы за рубежом выпуск ламп в колбах диаметром 38 мм практически прекращен. Стандартный ряд мощностей линейных ламп не велик: 4, 6, 8, 13, 15, 18, 20, 30, 36, 40, 58, 65 и 80 Вт. В абсолют­ном большинстве современных светильников используются лампы только трех номиналов мощности: 18, 36 и 58 Вт. В России еще про­должается выпуск ламп мощностью 20, 40, 65 и 80 Вт в колбах диа­метром 38 мм.

Как уже было сказано, лампы разной мощности различаются длиной колб — от 136до 1514 мм (с цоколями).

В отличие от ламп накаливания, на люминесцентных лампах ни­когда не указывается напряжение, на которое они должны включать­ся, так как в зависимости от применяемой схемы включения одна и та же лампа может работать при самых разных напряжениях — как по величине (от нескольких вольт до сотен вольт), так и по роду тока (переменный или постоянный).

Лампы каждой мощности выпускаются с различной цветностью излучения. В России по ГОСТ 6825 установлено пять цветностей бе­лого света: тепло-белый, белый, естественный, холодно-белый и днев­ной, обозначаемые буквами ТБ, Б, Е, ХБ и Д. Кроме белых ламп раз­ной цветности, производятся цветные люминесцентные лампы — крас­ные, желтые, зеленые, голубые и синие (К, Ж, З,Ги С).

Цветность излучения ламп приблизительно может быть охаракте­ризована цветовой температурой Гцв. Тепло-белой цветности соответ­ствует 7Цв = 2700 — 3000 К; белой — 7Цв = 3500 К; холодно-белой — 7Цв = 4200 К; естественной — 7Цв = 5000 К; дневной — 7Цв = 6000 — 6500 К.

В маркировке ламп зарубежного производства какого-либо един­ства нет, каждая фирма маркирует по-своему. Так, Philips все линей­ные лампы обозначает TL-D, Osram — Lumilux, General Electric — F. После этих букв указывается мощность ламп (18W, 36W, 58W).

По ГОСТ 6825 в маркировке ламп не предусмотрено указание индекса цветопередачи. В отличие от этого, в маркировке всех зару­бежных ламп с хорошей и отличной цветопередачей после мощности (через дробь) ставится цифра, характеризующая общий индекс цве­топередачи Ra. Если Ra = 90, то пишется цифра 9, при 80 < Ra < 90 — цифра 8. У ламп с удовлетворительной цветопередачей (Ra = 50 — 70) в маркировке ставится двузначное число, обозначающее код цветно­сти. На стр. 110 дана таблица 25 с расшифровкой цифровых обозна­чений цветовой температуры и общего индекса цветопередачи лю­минесцентных ламп ведущих зарубежных фирм — Рhilips и Osram.

Ведущие зарубежные фирмы часто используют в названиях ламп слова, носящие явно рекламный характер: De Lux, Super, Super de Lux и т. п.

Учитывая большой разнобой в обозначении ламп, часто вводя­щий потребителей в заблуждение, Международная комиссия по ос­вещению (МКО) разработала и рекомендовала всем странам для ис­пользования единую универсальную систему обозначений источни­ков света ILCOS. В соответствии с этой системой все линейные лю­минесцентные лампы, в том числе и серии Т5, обозначаются буквами FD, кольцевые — FC, далее указывается мощность ламп, общий ин­декс цветопередачи и цветовая температура.

Серия ламп Т5 с диаметром колбы 16 мм выпускается в двух вариантах — «лампы с максимальной световой отдачей» (фирменное обозначение у Osram — FH, у Philips — HE) и «лампы с максимальным световым потоком» (соответственно FQ и HO). Оба варианта содер­жат по четыре номинала мощности: первый — 14, 21, 28 и 35 Вт, второй — 24, 39, 54 и 80 Вт. В лампах мощностью 28 и 35 Вт достиг­нута рекордная для люминесцентных ламп световая отдача — 104 лм/Вт. Все лампы серии Т5 могут работать только с электронны­ми аппаратами. Лампы в колбах диаметром 26 и 38 мм (Т8 и Т12) снабжены цоколями G13, диаметром 16 мм — G5.

Компактные люминесцентные лампы (КЛЛ), в свою очередь, де­лятся также на две группы: с внешним аппаратом включения и со встроенным («интегрированным») аппаратом включения.

Лампы первой группы делаются мощностью от 5 до 55 Вт. Ци­линдрическая колба ламп может быть изогнута один, два, три и даже четыре раза. В литературе такие лампы обычно называются «двух-, четырех-, шести — и восьмиканальными», что в принципе неверно, так как у всех таких ламп разрядный канал только один. Цоколи у всех ламп этой группы — специальные с двумя или четырьмя внешними штырьками. В двухштырьковые цоколи встроены стартеры, и для вклю­чения ламп с такими цоколями нужен только дроссель соответствую­щего типа. С электронными аппаратами такие лампы работать не могут, так как встроенные стартеры и помехоподавляющие конден­саторы мешают работе электронных схем. Лампы с четырехштырько­выми цоколями могут включаться как с обычными дросселями и вне­шними стартерами, так и с электрон­ными аппаратами (некоторые типы ламп большой мощности могут рабо­тать только с электронными аппара­тами). Насчитывается около 20 типов цоколей (рис. 28 а, б).

G24q-1 G24q-2 G24q-3 G24q-4

Рис. 28 а. Цоколи компактных люминесцентных ламп

G24d-1 G24d-2 G24d-3

В России компактные лампы обозначаются буквами КЛ (компакт­ная люминесцентная) или КЛУ (ком­пактная люминесцентная универсаль­
ная, то есть способная работать как с обычными дросселями, так и с электрон­ными аппаратами). Далее в обозначении указывается мощность лампы и цветность излучения.

Рис. 28 б. Цоколи компактных люминесцентных ламп

Все компактные лампы делаются с использованием узкополосных редкозе­мельных люминофоров, обеспечивающих хорошую цветопередачу, поэтому в мар­кировке российских ламп присутствует буква Ц. Например, КЛ11/ТБЦ — компак­тная люминесцентная лампа со встроен­ным стартером, мощностью 11 Вт, тепло­белой цветности, с улучшенной цветопе­редачей, допускающая включение только с внешним дросселем; КЛУ9/БЦ — ком­пактная лампа с четырехштырьковым цоколем мощностью 9 Вт, белой цвет­ности, с улучшенной цветопередачей, допускающая включение как с дросселем и стартером, так и с электронным высокочастотным аппаратом.

В России выпускаются КЛЛ только с «единожды» изогнутой труб­кой (два линейных светящихся участка) мощностью от 5 до 36 Вт с двухштырьковыми цоколями G23 со встроенным стартером или с че­тырехштырьковыми цоколями 2G7 (мощностью 5, 7, 9 и 11 Вт) или 2G11 (18, 24 и 36 Вт). В последние годы Опытный завод ВНИИИС в г. Саранске начал делать лампы со встроенным электронным аппа­ратом включения и цоколем Е27 с четырьмя и шестью линейными участками.

Ассортимент ламп зарубежного производства гораздо шире. Ве­дущие европейские (Osram, Philips), американские (General Electric, Sylvania) и китайские фирмы делают лампы с дважды-, трижды — и четырежды изогнутыми трубками (4, 6 и 8 светящихся участков), плос­кие типа 2D, спиральные и др. Фактически каждый типономинал ламп имеет свой особый цоколь, исключающий возможность включения ламп какой-либо одной мощности в арматуру, предназначенную для ламп другой мощности.

Как и для линейных, для компактных ламп каждая фирма имеет свою систему обозначений, затрудняющую ориентировку в ламповом мире и часто ставящую потребителей в тупик при решении вопроса о взаимозаменяемости ламп разных фирм. Например, лампы с цоко­лем G23 Philips называет PL-S, Osram — Dulux S, Sylvania — Lynx-S, General Electric — F…X. После буквенных обозначений, также как и у
линейных ламп, указываются мощность, общий индекс цветопереда­чи и цветовая температура.

Компактные лампы второй группы (со встроенным аппаратом включения) появились на мировом рынке в 1981 году как прямая аль­тернатива стандартным лампам накаливания. Эти лампы, как сказано выше, были очень тяжелыми — около 400 граммов — и широкого применения не нашли. Положение коренным образом изменилось в 1986 году, когда Philips, Osram, General Electric одновременно начали промышленный выпуск КЛЛ со встроенными электронными аппара­тами включения и цоколями Е14 и Е27. Лампы имеют массу не более 100 граммов; размерами, а часто и формой напоминают привычные лампы накаливания; цветность излучения, как правило, тепло-белая, что также близко к лампам накаливания. Началась широкая реклам­ная кампания, для чего в Германии фирма Osram какое-то время даже раздавала лампы бесплатно.

Рекламные акции сделали свое дело, и спрос на КЛЛ с цоколя­ми Е27 и Е14 повсеместно начал расти, что привело к соответствую­щему росту их производства. Сейчас в мире делается уже более 200 миллионов таких ламп в год, из них около 100 миллионов — в Китае. К сожалению, в нашей стране производится не более 10 тысяч таких ламп в год.

Компактные люминесцентные лампы с цоколями Е27 или Е14 обладают целым рядом преимуществ перед лампами накаливания и «неинтегрированными» КЛЛ: их световая отдача примерно в 5 раз выше, срок службы в 8-10 раз больше, лампы просто вкручиваются в патроны, не гудят, не мигают при включении, горят непульсирующим светом. Недостаток у них фактически один — высокая цена. Ино­странные экономисты подсчитали, что при существующих в Европе и США ценах на электроэнергию срок окупаемости КЛЛ составляет 2 — 3 года при работе ламп около 3-х часов в сутки.

Рис. 29. Спиральные люминесцентные лампы типа

Лампы с интегрированным аппаратом включения классифици­руются по мощности и цветности излучения. Как и у ламп первой группы, какого-либо единства в обозначении интегрированных КЛЛ нет — каждая фирма обозначает по-своему. По международной сис­теме ILCOS все КЛЛ со встроенным аппаратом включения должны называться FSQ.

В России также производятся 3-4 типоно — минала КЛЛ со встроенным электронным аппа­ратом включения и со спиральной разрядной трубкой (рис. 29). Такие лампы типа «Аладин» или СКЛЭН мощностью 11, 13 и 15 Вт в небольших количествах делает Московский электролампо­вый завод.

В таблицах 6, 7, 8 и 9 приводятся параметры некоторых типов люминесцентных ламп отечественного и импортного производства.

Мощность,

Вт

Длина, мм (полная)

Световой поток, лм

Световая отдача, лм/Вт

4

146

120

30

6

222

250

42

8

300

400

50

13

526

780

60

15

450

900

60

18 (20)

604

1060

60

30

910

2100

70

36 (40)

1214

2800

70

58 (65)

1514

4600

70

Усредненные параметры линейных люминесцентных ламп

Параметры люминесцентных ламп серии Т5

Срок службы ламп — от 6000 до 15000 часов.

Вариант

ламп

Мощность,

Вт

Длина,

мм

Номинальный световой поток (при 20 °С)

Максимальный световой поток (при 35 °С)

Номинальная

световая

отдача,

лм/Вт

Максимальная

световая

отдача,

лм/Вт

14

550

1200

1350

87,5

96

FH (НЕ)

21

850

1900

2100

90,5

100

28

1150

2600

2900

93

104

35

1450

3300

3650

94,3

104

24

550

1750

2000

72,9

89

FQ (НО)

39

850

3100

3500

79,5

90

54

1150

4450

5000

82,4

93

80

1450

6150

7000

76,9

88

•Срок службы ламп — 18000 часов при среднем спаде светового потока 10 %.

•Лампы выпускаются с цветовой температурой 2700, 3000, 4000 и 6000 К. •Индекс цветопередачи всех ламп 85.

Таблица 8

Параметры КЛЛ со встроенными аппаратами включения

Тип

Мощность,

Световой

Габариты, мм

Масса,

Тип

лампы

Вт

поток, лм

L

D

г

цоколя

С двумя линейными

5

200

121

30

50

Е14, Е27

участками

9

400

130

45

70

Е14, Е27

С четырьмя линей

11

600

137

45

75

Е14, Е27

ными участками

15

900

180

105

Е27

20

1200

200

130

Е27

15

900

140

52

105

С шестью линейными

20

1200

153

52

105

Е27

участками

23

1500

175

58

150

Средний срок службы ламп — 8000 часов.

Таблица 9

Параметры КЛЛ, включаемых с внешними аппаратами

Кухня – это место, где мы готовим и принимаем пищу. Именно здесь можно увидеть всех членов семьи, спокойно посидеть с друзьями, обсудить общие дела. Поэтому в этом помещении нужно грамотно …

Несмотря на то, что светоизлучающие диодные (LED) лампы существуют уже много лет, только недавно, достижения в области технологий, снизили стоимость светодиодов, и с ростом цен на энергию, светодиодное освещение, например …

Светодиодные панели Потолочные LED-панели – современные популярные системы освещения, которые получили широкое распространение при монтаже в офисах, торговых и производственных помещения. Помимо прочего, их используют при монтаже натяжных потолков, в …

Маркировка люминесцентных ламп

Лампы дневного света отличаются разнообразием модификаций с уникальными параметрами и техническими характеристиками. Для того чтобы потребитель мог сориентироваться во всей этой продукции, была разработана специальная маркировка люминесцентных ламп, позволяющая сделать правильный выбор для конкретных условий эксплуатации.

Несмотря на многообразие моделей, все изделия этого типа представлены двумя большими группами. Это линейные лампы, которым требуются особые светильники, и компактные источники света, используемые вместе со стандартными патронами.

Как работает люминесцентная лампа

Принцип работы люминесцентной лампы необходимо знать хотя бы в общих чертах, поскольку наиболее важные параметры и характеристики отражены в маркировке конкретного изделия.

Стандартная лампа дневного света не может работать сама по себе. Для включения и запуска требуется специальный светильник. В сборе оба элемента представляют собой единое целое. Основной деталью является лампа, выполненная в виде стеклянной цилиндрической трубки. Изначально в ней создается вакуум, после чего внутреннее пространство заполняется смесью ртутных паров и определенного инертного газа. Газообразное состояние ртути поддерживается избыточным давлением внутри колбы.

На торцах лампы установлены электроды, к которым через выводы подается электрический ток. Между ними натянута вольфрамовая спираль, покрытая барием, цезием и другими металлами, способными испускать в большом количестве свободные электроны. Взаимодействуя с парами ртути, они образуют излучение в ультрафиолетовом спектре, невидимое человеческому глазу. Попадая на стеклянные стенки, покрытые люминофором, ультрафиолет преобразуется в видимый свет, который и освещает окружающее пространство.

Внешнее напряжения на начальном этапе не может самостоятельно создать полноценный электронный поток. Поэтому в общую работу включаются электромагнитный дроссель и стартер. В результате, создаются условия, под действием которых сила тока увеличивается и образуется тлеющий газовый разряд.

Основные виды, типы и модификации

По сравнению с другими источниками света, люминесцентные лампы представлены широким ассортиментом моделей, с разнообразными формами, размерами, индивидуальных параметрами и техническими характеристиками.

В первую очередь, классификация люминесцентных ламп производится по высокому и низкому давлению. Первый вариант используется для освещения промышленных объектов и общественных мест, где не требуется высокое качество цветопередачи. Второй тип ламп, с низким давлением, используется преимущественно в быту. Такие изделия известны еще как энергосберегающие.

Форма люминесцентных светильников подразделяется на два основных вида:

  • Линейные. Большинство из них изготавливаются в виде прямых трубок различной длины и диаметра. Наиболее экзотические изделия напоминают букву U или делаются в форме кольца.
  • Компактные. Отличаются изогнутыми колбами, форма которых значительно расширяет сферу использования. Цоколи могут быть штыревыми или резьбовыми под стандартные патроны.

Параметры силы тока в сети не в полной мере подходят лампочкам для их нормального функционирования. Поэтому в конструкцию добавляется балласт. В современных лампах дневного света используется два вида таких приспособлений.

Электромагнитный балласт

До недавних пор в изделиях широко применялась схема электромагнитного балласта. Основной принцип работы основан на индуктивном сопротивлении дросселя, подключаемого последовательно к источнику света. За счет этого поддерживается нормальное рабочее напряжение, необходимое для нормального свечения лампы. Тем не менее, несмотря на дешевизну и простоту конструкции, электромагнитный балласт используется все реже из-за его существенных недостатков:

  • Продолжительное время зажигания, которое даже в начальный период эксплуатации составляет 1-3 секунды.
  • Более высокий расход электроэнергии по сравнению с электронными схемами.
  • Работа балласта сопровождается световым мерцанием, негативно воздействующем на зрение, а также характерным неприятным гудением.

Электронный балласт

Постоянно развивающиеся инновационные технологии позволили заменить электромагнитные схемы более эффективными электронными устройствами. При использовании этих схем питание лампы осуществляется с одновременным преобразованием напряжения. На старте может применяться мгновенный или плавный пуск.

Электронный балласт позволяет сэкономить 20-25% электроэнергии, во время его работы отсутствует мерцание и гудение. Производство и утилизация требует значительно меньшее количество ресурсов и материальных затрат.

Параметры и технические характеристики

Основные параметры и характеристики люминесцентных ламп определяют их работоспособность и возможность применения в тех или иных областях.

Среди параметров наиболее важное значение имеют:

  • Световые показатели. Характеризуются световым потоком и его пульсацией, яркостью, цветом и спектральным составом излучения.
  • Электрические показатели. Прежде всего учитываются параметры мощности и рабочего напряжения, характеристики сетевого тока, тип разряда и область свечения, используемая в лампе.
  • Эксплуатационные показатели. Включают в себя срок службы, световую отдачу, формы и размеры, взаимосвязь параметров света и электричества с питающим напряжением и внешними условиями эксплуатации.

Одним из основных параметров, по которым разделяются лампы дневного света, считается напряжение горения, зависящее от разряда, возникающего внутри колбы.

В связи с этим, все изделия можно разделить на следующие типы:

  • С дуговым разрядом и напряжение горения до 220 вольт. Данный тип более всего распространен не только у нас в стране, но и за рубежом. Зажигание осуществляется с помощью предварительно разогретого оксидного катода, от которого зависит вся конструкция изделия.
  • С дуговым разрядом и напряжение горения до 750 вольт. Лампы этого типа применяются за рубежом. Им не требуется предварительный нагрев катодов, а их мощность составляет 60 ватт.
  • С тлеющим разрядом и холодными катодами. Применяются, в основном, в рекламном и сигнальном освещении. В работе используются малые токи – 20-200 миллиампер. Они устанавливаются в установки, работающие с высоким напряжением и работают как световые датчики, контролирующие те или иные параметры. Небольшой диаметр трубок позволяет придать изделиям практически любую форму.

Изделия первой группы широко используются во всех областях жизни и деятельности людей, благодаря своим оптимальным характеристикам. При мощности ламп от 15 до 80 ватт средний срок их эксплуатации составляет более 12 тысяч часов. Минимальная продолжительность горения составляет 4,8-6,0 тысяч часов. Световой поток в течение среднего периода эксплуатации может снизиться не более чем на 40%.

Таким образом значения световых и электрических параметров ламп дневного света тесно связаны с характеристиками схемы включения и показателями сетевого напряжения.

Изменения одних из них, влечет за собой соответствующие изменения у других. Однако любые схемы, используемые при включении, оказывают на люминесцентные лампы гораздо меньшее влияние, чем это происходит с обычными лампочками накаливания.

Цветность и излучение

Важными показателями, учитываемыми в маркировке изделий, являются их цветность и излучение. Создание излучения в люминесцентных лампах происходит при помощи люминофора, превращающего ультрафиолетовые лучи в видимый свет. Эффективность такого превращения зависит не только от самого люминофора, но и от физических качеств нанесенного слоя этого вещества.

Как правило, покрытие наносится на всю внутреннюю поверхность колбы. Изначально возбуждение свечения происходит также внутри, а образующийся свет выходит наружу. Одновременно со световым потоком ртутный разряд излучает видимые линии, хорошо заметные через слой люминофора. В результате, наблюдается зависимость светового потока не только от коэффициента поглощения люминофора, но и от коэффициента его отражения.

Цветность излучаемого света не всегда точно совпадает с цветностью люминофора, нанесенного на стекло. Поток, излучаемый ртутным разрядом, создает определенный сдвиг цветности лампы в спектральную область синего цвета. Данное смещение совсем незначительное и не оказывает какого-либо заметного влияния на показатель цветности люминесцентных ламп.

Лампы люминесцентные, применяемые в системах освещения общего назначения, несмотря на множество оттенков, можно объединить в следующие группы:

  • Лампы ЛД (дневной свет) с цветовой температурой 6500 К.
  • ЛХБ (холодно-белый свет) – цветовая температура 4800 К.
  • ЛБ (белый свет) – цветовая температура 4200 К.
  •  ЛТБ (тепло-белый свет) – цветовая температура 2800 К.

Классификация и маркировка ламп

Маркировка наносится на саму колбу и металлические детали. Умение расшифровать условные обозначения существенно облегчает выбор нужного источника света.

Буквенные обозначения соответствуют следующим показателям:

  • Л – означает люминесцентную лампу;
  • Б – белый свет;
  • Д – дневной свет;
  • У – универсальный вариант.

К примеру, ЛБ соответствует люминесцентной лампе белого света.

Маркировка диаметра и формы колбы

Обозначение диаметра стеклянной колбы в соответствии с международными стандартами производится частями дюйма. Единицей измерения считается его 1/8 часть. Сам размер обозначается буквой Т, а полностью он выглядит как Т8, что соответствует 26 мм, поскольку 8/8 дюйма составляет единицу или один целый дюйм (25,4 мм), который как раз и будет практически равен 26 мм.

Некоторые производители используют в маркировке обычные показатели, например, 26/604 означает диаметр колбы и ее длину в мм.


Обозначение формы колбы люминесцентных ламп также присутствует, несмотря на то что ее можно разглядеть визуально. Линейная конфигурация никак не отображается, а прочие отмечаются следующим образом:

  • U – дуговая форма;
  • S – в виде спирали;
  • С – в виде свечи;
  • G – в форме шара;
  • R – рефлектор;
  • Т – в форме таблетки.

Точно такие же обозначения наносятся на энергосберегающие лампы. У разных производителей расположение символов может отличаться, но все основные параметры будут присутствовать в маркировке каждой лампы.

Мощность

Большое значение имеет показатель мощности. Именно мощность используется в расчетах освещения того или иного помещения, когда определяется нужное количество ламп. В маркировке этот параметр обозначается буквой W и целиком на данном этапе она будет выглядеть: ЛБ Т8 W8.

Еще один параметр – сетевое напряжение, которое указывается как есть – 127 В или 220 В.

Прочие маркировки

Также отмечается количество цоколей и их характеристики. Для этого существуют обозначения: FS – 1, FD – 2 цоколя, а FB является компактной лампой с ЭПРА, встроенной в цоколь.

При выборе лампы нужно знать, требуется ли ей стартер, или она подключается к балласту без специальных пусковых устройств. В первом случае используется маркировка RS, а во втором – PHs. Лампы с универсальным пуском обозначаются US.

На некоторых изделиях можно найти значения спектра и светимости, обозначаемые цифрами. Чем выше эти показатели, тем выше параметры светимости и яркость самой лампы. Цвет свечения определяется по внешней окраске стеклянной колбы. Цветовая температура отображается в Кельвинах, то есть 2700 К в маркировке будут обозначены как 27.

При покупке люминесцентных ламп рекомендуется помимо маркировки изучить паспортные данные. Скорее всего, там обнаружатся параметры, которые не отмечены в нанесенных характеристиках. Одним из таких показателей является допустимый предел перепадов напряжения, превышение которых выведет лампу из строя. Могут присутствовать и значения температурных диапазонов, оказывающих сильное влияние на чувствительные лампы дневного света.

Световод: идентификация люминесцентной лампы

Световод


Люминесцентные лампы идентифицируются стандартизированным кодом, который раскрывает ценную информацию о рабочих характеристиках и физических размерах. Коды производителей, указанные на лампах и в каталогах, могут незначительно отличаться от общих обозначений. Однако все основные производители ламп основывают свои коды на системе идентификации, описанной ниже.

Лучший способ узнать идентификацию лампы — на примере.Ниже представлен ассортимент люминесцентных ламп, по одной для каждого популярного способа запуска:

Лампы быстрого запуска (40 Вт или менее) и предварительного нагрева

Лампы быстрого пуска — самый популярный тип люминесцентных ламп, используемых в коммерческих целях, например, в офисных зданиях.

Чтобы узнать больше о том, что означает «холодный» и «теплый» с точки зрения качества цвета источников света, см. «Показатели цвета».

Обратите внимание, что некоторые лампы могут иметь обозначение F40T12 / ES, но лампа потребляет 34 вместо 40 Вт; на это указывает модификатор «ES», обозначающий «энергосбережение».ES — общее обозначение; фактические обозначения производителя могут быть «SS» для SuperSaver, «EW» для Econ-o-Watt, «WM» для Watt-Miser и другие.

После режима запуска может быть добавлено другое число для обозначения цветопередачи и цветовой температуры, если цвет лампы (CW, WW, WWX и т. Д.) Не указан. Номер часто состоит из трех цифр, первая обозначает цветопередачу (например, «7» означает «75»), а затем следующие две указывают цветовую температуру («41» означает «4100K», например).

ПРИМЕР: F30T12 / CW / RS

Факс

люминесцентный

30

номинальная номинальная мощность

т

обозначает форму; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

CW

цвет; эта лампа холодная белая лампа

RS

режим запуска; лампа является лампой быстрого запуска. Лампы предварительного нагрева не имеют суффикса «RS»

Высокопроизводительные лампы для быстрого пуска

ПРИМЕР: F48T12 / WW / HO

Факс

люминесцентный

48

номинальная длина лампы в дюймах

т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

WW

цвет; эта лампа тёпло-белая лампа

HO

Лампа повышенной мощности, работающая от тока 800 мА

Лампы для быстрого пуска с очень высокой мощностью

ПРИМЕР: F72T12 / CW / VHO

Факс

люминесцентный

48

номинальная длина лампы в дюймах

т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

CW

цвет; эта лампа холодная белая лампа

VHO

лампа очень высокой мощности, работающая от тока 1500 мА; вместо VHO может быть написано «1500» или «PowerGroove» (фирменные наименования)

Лампы мгновенного пуска

ПРИМЕР: F96T12 / WWX

Факс

люминесцентный

96

номинальная длина в дюймах

т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

WWX

цвет; Эта лампа — роскошная лампа теплого белого цвета

Другие люминесцентные лампы

«FC» вместо «F» означает, что фонарь круглый.

«FB» или «FU» вместо «F» означает, что лампа изогнута или имеет U-образную форму. Суффикс «U» также может использоваться для U-образных ламп, за которым следует «/» и число, указывающее расстояние между ножками лампы в дюймах.«FT» вместо «F» используется для двухтрубных ламп T5.

См. Также: Обозначения NEMA для компактных люминесцентных ламп

См. Также: Рекомендации NEMA по эксплуатации систем люминесцентного освещения

Дополнительные световоды

Как читать номер детали лампочки: линейные люминесцентные лампы

Чтение артикула лампочки вызывает желание перекреститься или потускнеть?

Так же, как и в случае с языками, номера некоторых легких компонентов могут быть чрезвычайно трудными для перевода и понимания.Не помогает то, что каждый производитель говорит на своем диалекте.

Линейные люминесцентные лампы вписываются в эту группу сложных для чтения товаров. Но, как правило, существует структура, которой следуют линейные люминесцентные лампы.

Вот пример общего номера детали:

F32T8 / TL741 / ALTO

На самом деле это означает следующее:

ФОРМА И ВОДА / CRI и KELVIN / ОПИСАНИЕ

Мы объясним, что именно означают все цифры и буквы, но не забывайте номер детали нашего примера по мере продвижения.

Форма и мощность в люминесцентных каталожных номерах

Первая часть номера детали сообщает нам форму и мощность лампы. Важно отметить, что мы говорим в общих чертах, но в этом разделе могут быть нюансы производителя.

Вот часть номера детали, которую мы разбираем: F32T8 . Мы можем разделить его на три части.

F = тип освещения

32 = мощность

T8 = форма

«F» обозначает флуоресцентный тип освещения.Это довольно просто. Далее мощность.

Мощность люминесцентной лампы

В нашем примере мощность составляет 32 .

Ваттность — это мощность, необходимая для работы линейных люминесцентных ламп. В этом случае мощность говорит нам о двух вещах. Количество электроэнергии, потребляемой трубкой, составляет и длины трубки.

Диаметр просто говорит нам о толщине трубки, но нам нужна мощность, чтобы определить ее длину.

Форма люминесцентной лампы

Теперь мы объясняем, что означает T8 .Линейные люминесцентные лампы обычно включают букву «Т» в аббревиатуре формы с номером после нее.

Эта буква «Т» обозначает трубу, а следующее за ней число — диаметр трубы. Это число делится на 8, чтобы перевести его в дюймы. Таким образом, T8 имеет диаметр в один дюйм.

Вот полезная диаграмма, показывающая различные диаметры трех распространенных люминесцентных ламп:

Производители по-разному сокращают линейные флуоресцентные формы.

Вот список общеупотребительных сокращений:

Производитель Т5 Т8 Т12
Philips F (Вт) T5 F (Вт) T8 F (Вт) T12
Сильвания FP (Вт) FO (Ватт) F (Вт) T12
GE F (Вт) T5 F (Вт) T8 F (Вт) T12

Если вы готовы заказать новые линейные люминесцентные лампы, убедитесь, что вы зарегистрируете бизнес-аккаунт, чтобы получать скидки.

CRI и цветовая температура в флуоресцентных каталожных номерах

Вторая часть номера детали сообщает нам серию CRI и температуру трубки по Кельвину. Также в этом разделе могут быть нюансы производителя.

Напоминаем, что вот вторая часть номера детали нашего примера: TL741 . Мы разделим это на две части.

TL7 = CRI (индекс цветопередачи)

41 = Цветовая температура

CRI люминесцентных ламп

Если индекс цветопередачи для вашей линейной люминесцентной лампы отличается от приведенного выше примера, вероятно, это другой производитель.Кажется, что каждый крупный производитель обозначает свою серию CRI по-своему.

Вот разбивка общих серий CRI по продуктам на сегодняшний день:

CRI серии Philips Сильвания GE
T8 800 серии TL8 8 SPX
900 серии TL9 9 НЕТ
T5 800 серии 8 8 8
900 серии 9 9 НЕТ

Выбор правильного коэффициента цветопередачи для линейных люминесцентных ламп очень важен в зависимости от области применения.

CRI — это число от 0 до 100, которое предсказывает, насколько хорошо продукт передает цвет. Чем выше число, тем более естественными должны быть цвета.

Серия CRI следует тем же рекомендациям. Серия 800 означает, что индекс цветопередачи составляет от 80 до 90. Это хороший вариант для областей, где вас не слишком заботит качество цветов, таких как лестничные клетки и гаражи.

Серия 900 означает, что индекс цветопередачи составляет 90 или выше. Это отличный вариант для коммерческих офисов и розничных магазинов.

Если вы снимаете линейный люминесцентный свет с потолка, и он не соответствует ни одному из них, это может быть серия 700. Производство серии 700 практически остановилось после подписания Закона о энергетической независимости и безопасности (EISA).

Это также может быть Т12. Сегодня производители трубок T12 часто исключают серию CRI из артикула.

Цветовая температура люминесцентных ламп

Серия CRI связана с числом, которое представляет температуру Кельвина или цветовую температуру трубки.

В нашем примере цветовая температура представлена ​​как 41 . Это означает, что трубка имеет температуру 4100 Кельвинов или очень холодный (синий) источник света.

В других случаях производители будут использовать буквы типа «CW» (холодный белый) для обозначения цветовой температуры.

Чтобы узнать больше о CRI и о том, как он влияет на ваше освещение, ознакомьтесь с нашим Руководством по CRI и CCT.

Описание номеров деталей люминесцентных ламп

Последний раздел — вот где действительно проявляются различия между производителями.В отрасли мы называем этот последний раздел «описанием». Это дает нам дополнительную информацию о трубе. Например, это энергоэффективный, с низким содержанием ртути и балластный метод запуска. Описаний может быть несколько или ни одного.

В нашем примере последняя часть числа — ALTO . Это то, что Philips использует, чтобы отметить низкий уровень ртути.

Вот список общих описаний, которые вы увидите в конце номеров деталей:

RS — Быстрый старт

HO — высокий выход

VHO — очень высокая производительность

ECO — с низким содержанием ртути (Sylvania и GE)

ALTO — с низким содержанием ртути (Philips)

SS — Super Saver (Сильвания)

EW — Econo Watt (Philips)

WM — Watt Miser (GE)

ADV — Энергетическое преимущество (Philips)

XPS — повышенная производительность (Sylvania)

Если это все еще звучит для вас как тарабарщина, ничего страшного.Мы уделяем время тому, чтобы по-настоящему понять сложность номеров деталей, чтобы упростить вашу работу. Свяжитесь со специалистом по освещению для получения дополнительной информации. Или вы всегда можете поискать артикульный номер лампочки в нашем интернет-магазине.

Как выбрать люминесцентную лампу от экспертов по коммерческому освещению.

КАК ВЫБРАТЬ ЯРКО-ЛАМПОЧКУ

Большинство элементов люминесцентных источников света невозможно заменить без предварительной замены светильника или внутреннего балласта.Мощность, длина, форма и тип основания люминесцентной лампы определяются характеристиками светильника. Вам в значительной степени нужно точно соответствовать тому, что у вас есть, и иметь при заказе номер модели лампы:

Как отключить обычный флуоресцентный код заказа F32T8 / 741 / ECO

(F) Флуоресцентный (32) Ватт (T) Тублар (8) Диаметр в восьмых дюймах 8/8 или 1 дюйм (7) CRI (41) Цветовая температура (ECO) Информация о бренде или другой результат

(F) Флуоресцентная лампа — очевидно, что ваша лампа люминесцентная

(32) Вт — этот использует 32 Вт.Это число может варьироваться от 5 до 120 Вт.

(T) Tublar — ваша лампа представляет собой прямую трубку, а не U-образную или C-образную форму.

(8) Диаметр в восьмерках дюйма 8/8 или 1 дюйм. Эта лампочка — Т8. Другие распространенные диаметры — более толстый T12 и более тонкий T5

.

(7) CRI — Цветопередача лампы — см. Ниже.

(41) Color Temp — Цвет самого света — обычно 27-теплый желтоватый, 41-холодный белый, 51-яркий дневной свет

(ECO) Информация о бренде или другой продукт, например, с низким содержанием ртути или высоким выходом.

Эти факторы следует учитывать при выборе люминесцентной лампы.

  • МОЩНОСТЬ СВЕТА (ЛЮМЕНТА)
  • ИНДЕКС ЦВЕТА ОТДАЧИ (CRI)
  • КОРРЕЛИРОВАННАЯ ЦВЕТОВАЯ ТЕМПЕРАТУРА (CCT)
  • РАЗМЕР
  • ФОРМА
  • БАЗОВЫЙ ТИП

МОЩНОСТЬ СВЕТА (ЛЮМИНЫ)

При рассмотрении светоотдачи следует иметь в виду мощность. Мощность не является показателем яркости лампы. Мощность измеряет энергию, потребляемую лампой, а фактический световой поток измеряется в люменах или единицах светового потока.

ИНДЕКС ЦВЕТОВОЙ ОТДАЧИ (CRI)

CRI — это способность лампы отображать истинный цвет объектов по шкале 100, где 100 соответствует лампе накаливания.

Люминесцентные лампы с индексом цветопередачи 70 и ниже обычно используются в лампах низкого качества. Цвета в комнате будут тусклыми и размытыми.

Флуоресцентные лампы с индексом цветопередачи 70-79 подходят для коммерческого использования.

Флуоресцентные лампы

с индексом цветопередачи 80-89 подходят для коммерческих и жилых помещений.

Флуоресцентные лампы

с индексом цветопередачи 90–99 подходят для предприятий розничной торговли высокого класса или графических предприятий, где важен естественный цвет.

КОРРЕЛИРОВАННАЯ ЦВЕТОВАЯ ТЕМПЕРАТУРА (CCT)

CCT — это числовое измерение внешнего вида цвета источника света, измеряемое в градусах Кельвина в диапазоне от 2700K до 6500K. 2700K — самый теплый цвет, наиболее близкий к желтому, и 6500 — самый холодный и самый близкий к солнечному свету.

РАЗМЕР

  • При выборе люминесцентной лампы вы можете выбрать из множества размеров, обычно это T12, T8 и T5.T обозначает трубку, а число обозначает диаметр в восьмых дюймах.
  • T12 — наименее эффективная трубка. Они имеют высокую стоимость изготовления и используются в схемах быстрого пуска и балластных системах.
  • T8 распространены в коммерческих и жилых помещениях и более эффективны, чем T12. У них долгий срок службы, широкий диапазон цветовых температур, низкая стоимость и доступны версии с высокой производительностью.
  • Существует два типа трубок Т5. Лампы North American T5 являются лампами предварительного нагрева и требуют стартеров и балласта.Европейский T5 на 2 дюйма короче североамериканского и равен светоотдаче T8. Доступны версии с высокой выходной мощностью.

ФОРМА

При покупке люминесцентной лампы необходимо учитывать множество форм. Флуоресцентные лампы часто бывают в виде трубок линейной формы, изогнутых U-образных трубок и круглой формы.

БАЗОВЫЙ ТИП

Самая распространенная флуоресцентная база — это средний двухштырьковый. Другие базы включают мини-двухконтактный, утопленный DC, одинарный двухконтактный, 4-контактный и 2Gx13.

Люминесцентная лампа — Энциклопедия Нового Света

Ассортимент люминесцентных ламп .Сверху две компактные люминесцентные лампы, внизу две штатные лампы. Спичка показана для масштаба.

Люминесцентная лампа — это газоразрядная лампа, которая использует электричество для возбуждения паров ртути в аргоне или неоновом газе, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет. Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу. В обычных трубных приспособлениях — обычно 4 фута (120 сантиметров) или 8 футов (240 сантиметров) — балласт заключен в приспособление.Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в светильнике, или они могут иметь балласты, встроенные в лампы, что позволяет использовать их в патронах, обычно используемых для ламп накаливания.

Поскольку люминесцентные лампы потребляют значительно меньше энергии, чем лампы накаливания, правительства и промышленность поощряют замену традиционных ламп накаливания люминесцентными лампами в рамках разумной экологической и энергетической политики.

История

Самым ранним предком люминесцентной лампы, вероятно, является устройство Генриха Гейслера, который в 1856 году получил голубоватое свечение от газа, который был запечатан в трубке и возбужден индукционной катушкой.

На Всемирной выставке 1893 года на Всемирной колумбийской выставке в Чикаго, штат Иллинойс, были представлены люминесцентные лампы Николы Теслы.

В 1894 году Д. Макфарлейн Мур создал лампу Мура, коммерческую газоразрядную лампу, предназначенную для конкуренции с лампой накаливания его бывшего начальника Томаса Эдисона. Используемые газы представляли собой азот и диоксид углерода, излучающие соответственно розовый и белый свет, и имели умеренный успех.

В 1901 году Питер Купер Хьюитт продемонстрировал ртутную лампу, которая излучала свет сине-зеленого цвета и поэтому была непригодна для большинства практических целей.Однако он был очень близок к современному дизайну и имел гораздо более высокий КПД, чем лампы накаливания.

В 1926 году Эдмунд Гермер и его коллеги предложили увеличить рабочее давление внутри трубки и покрыть трубку флуоресцентным порошком, который преобразует ультрафиолетовый свет, излучаемый возбужденной плазмой, в более однородный белый свет. Сегодня Гермер известен как изобретатель люминесцентной лампы.

General Electric позже купила патент Гермера и под руководством Джорджа Э.К 1938 году Инман ввел люминесцентную лампу в широкое коммерческое использование.

Принципы работы

Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов. Падающий электрон (испускаемый катушками проволоки, образующими катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном.Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень. Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем падают с испусканием следующего фотона.Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

Механизм светового производства

Крупный план катодов и анодов бактерицидной лампы (по существу аналогичная конструкция, в которой не используется люминофор, что позволяет видеть электроды) Нефильтрованное ультрафиолетовое свечение бактерицидной лампы создается разрядом паров ртути низкого давления (идентичным таковому в люминесцентной лампе) в оболочке из плавленого кварца без покрытия.

Люминесцентная лампа заполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей солей фосфора металлов и редкоземельных элементов. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной для того, чтобы иметь относительно низкую температуру термоэлектронной эмиссии). Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить, с образованием плазмы в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу внутри трубки (с давлением благородного газа обычно составляет около 0,3 процента от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253.7 нанометров и 185 нанометров. Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65 процентов своего общего света на линии 254 нм (также около 10-20 процентов света, излучаемого в УФ-диапазоне, приходится на линию 185 нм). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длинами волн 440 и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света.Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

Электрические аспекты эксплуатации

Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них проходит больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неограниченного протекания тока.Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

Хотя балласт может быть (и иногда бывает) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть переменного тока на 120 В, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мерцает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах с частотой 50 Гц. Этот же принцип может также вызывать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устранены в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

Хотя большинство людей не могут непосредственно увидеть мерцание 120 Гц, некоторые люди [1] сообщают, что мерцание 120 Гц вызывает напряжение глаз и головную боль.Доктор Дж. Вейч обнаружил, что люди лучше читают, используя высокочастотные (20-60 кГц) электронные балласты, чем магнитные балласты (120 Гц). [2]

В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также производить мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей. Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, к неравномерному световому выходу в положительных и отрицательные рабочие циклы сети.Мерцание частоты сети также иногда может исходить от самых концов трубок, поскольку каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и дает немного отличающуюся диаграмму светового потока в анодном или катодном режиме (это было более серьезная проблема с трубками, возникшая более 40 лет назад, и в результате многие фитинги той эпохи закрывали концы трубок из поля зрения). Мерцание на сетевой частоте более заметно периферическим зрением, чем в центре взгляда.

Способ «запуска» люминесцентной лампы

Схема предварительного нагрева люминесцентной лампы с помощью автоматического пускового выключателя А подогрев люминесцентная лампа «стартер» (автоматический пусковой выключатель)

Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

В некоторых случаях именно так это и делается: мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

  1. Имеют по одному штифту на каждом конце трубки
  2. Патроны, в которые они вставляются, имеют «разъединяющую» розетку на низковольтном конце, чтобы обеспечить автоматическое отключение сетевого тока, чтобы человек, заменяющий лампу, не мог получить удар электрическим током высокого напряжения.

В других случаях, должно быть предусмотрено отдельное средство помощи при запуске.Некоторые люминесцентные конструкции (лампы предварительного нагрева) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), который первоначально соединяет нити накала последовательно с балластом и, таким образом, предварительно нагревает нити перед включением. зажигая дугу.

Эти системы являются стандартным оборудованием в странах с напряжением питания 240 В и обычно используют пускатель накаливания. Раньше также использовались 4-контактные термовыключатели и ручные выключатели. Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска. В этом отношении старые термостартеры показали себя лучше.

После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

Если трубка не ударяется или ударяется, а затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа, таким образом, будет бесконечно работать, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку эмиссии недостаточно для поддержания нагрева катодов, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до тех пор, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

Более новые конструкции балласта с быстрым запуском обеспечивают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным (заземленным) отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, так что она может легко запуститься.

Некоторые электронные балласты используют запрограммированный запуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта, и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается.Если лампа не загорается, электронная схема прекращает работу балласта.

Механизмы выхода из строя лампы по окончании срока службы

Режим отказа по окончании срока службы люминесцентных ламп зависит от того, как вы их используете, и от типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

Кончилась смесь выбросов
Крупный план нити накала ртутной газоразрядной лампы низкого давления показывает белое покрытие из смеси термоэлектронной эмиссии на центральной части катушки.Покрытие, обычно изготовленное из смеси оксидов бария, стронция и кальция, при нормальном использовании разбрызгивается, что часто в конечном итоге приводит к выходу лампы из строя.

«Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки. Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда лампа запускается с холодными катодами (метод запуска лампы и, следовательно, тип механизма управления оказывает значительное влияние на это).Лампы, работающие обычно менее трех часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках. Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую начинку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Отказ электроники встроенного балласта

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Указанный средний срок службы обычно соответствует температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью). Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше.В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Отказ люминофора

Эффективность люминофора падает во время использования. Приблизительно к 25000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше). Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа.Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

В трубке заканчивается ртуть

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути. Тем не менее, экологические проблемы в настоящее время приводят к созданию трубок с низким содержанием ртути, в которые гораздо точнее дозируют ртуть, достаточную для обеспечения ожидаемого срока службы лампы.Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Люминофоры и спектр излучаемого света

Многие люди считают цветовую гамму, создаваемую некоторыми люминесцентными лампами, резкой и неприятной.При флуоресцентном освещении у здорового человека иногда может казаться болезненный размытый оттенок кожи. Это связано с двумя вещами.

Первой причиной является использование трубок плохого качества с низким индексом цветопередачи и высокой цветовой температурой, например «холодный белый». Они имеют плохое качество света, из-за чего доля красного света ниже идеальной, поэтому кожа имеет менее розовую окраску, чем при лучшем освещении.

Вторая причина связана с особенностями типа глаза и трубки.Естественный дневной свет с высокой цветовой температурой выглядит естественным при уровнях дневного освещения, но по мере снижения уровня освещения он становится для глаза все более холодным. При более низких уровнях освещенности человеческий глаз воспринимает более низкие цветовые температуры как нормальные и естественные. Большинство люминесцентных ламп имеют более высокую цветовую температуру, чем лампы накаливания 2700 K, а более холодные лампы не выглядят естественными для глаз при гораздо меньшем дневном освещении. Этот эффект зависит от люминофора лампы и применяется только к лампам с более высокой CCT при значительно меньших уровнях естественного дневного света.

Многие пигменты выглядят немного иначе при просмотре под люминесцентными лампами по сравнению с лампами накаливания. Это связано с различием в двух свойствах: CCT и CRI.

CCT, цветовая температура, для освещения GLS с нитью накала составляет 2700 K, а для галогенного освещения — 3000 K, тогда как люминесцентные лампы широко доступны в диапазоне от 2700 K до 6800 K, что представляет собой значительную вариацию с точки зрения восприятия.

CRI, индекс цветопередачи, является мерой того, насколько хорошо сбалансированы различные цветовые компоненты белого света.Спектр лампы с такими же пропорциями R, G, B, что и у излучателя абсолютно черного тела, имеет индекс цветопередачи 100 процентов, но люминесцентные лампы достигают значений индекса цветопередачи от 50 до 99 процентов. Лампы с более низким индексом цветопередачи имеют несбалансированный цветовой спектр визуально низкого качества, что приводит к некоторым изменениям воспринимаемого цвета. Например, пробирка с галогенфосфатом с низким CRI 6800 K, которая выглядит так же неприятно, как и кажется, сделает красные тускло-красные или коричневые.

Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ), обычно обозначаемый как «холодный белый».«Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На взгляд эта смесь кажется белой, но свет имеет неполный спектр. В люминесцентных лампах лучшего качества используются либо галофосфатное покрытие с более высоким индексом цветопередачи или трифосфорная смесь на основе ионов европия и тербия, у которых полосы излучения более равномерно распределены по спектру видимого света. Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи обеспечивают более естественную цветопередачу. человеческий глаз.

Спектры люминесцентных ламп
Типовая люминесцентная лампа с «редкоземельным» люминофором Типичная «холодная белая» люминесцентная лампа, в которой используются два люминофора с добавками редкоземельных элементов: Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синего излучения и Eu: Y 2 O 3 для красного . Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой.Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
Галофосфатно-люминесцентная лампа старого образца Галофосфатный люминофор в этих лампах обычно состоит из трехвалентной сурьмы и галофосфата кальция, допированного двухвалентным марганцем (Ca 5 (PO 4 ) 3 (Cl, F): Sb 3+ , Mn 2+ ). Цвет выходящего света можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий элемент марганец.Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
Люминесцентный светильник «Естественное солнце» Объяснение происхождения пиков находится на странице изображения.
Желтые люминесцентные лампы Спектр почти идентичен спектру нормальной люминесцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров. Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра.Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве «отпугивающего насекомых» наружного освещения (эффективность которого сомнительна).
Спектр «черной» лампочки Обычно в лампе черного света присутствует только один люминофор, обычно состоящий из фторбората стронция, легированного европием, который содержится в оболочке из стекла Вуда.

Использование

Люминесцентные лампы бывают разных форм и размеров.Все более популярными становятся компактные люминесцентные лампы (CF). Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

В США использование люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия считают, что флуоресцентные лампы позволяют значительно сэкономить, и лишь изредка используют лампы накаливания.

В осветительных приборах часто используются люминесцентные лампы разных оттенков белого.В большинстве случаев это происходит из-за непонимания разницы или важности различных типов трубок. Смешивание типов трубок внутри фитингов также делается для улучшения цветопередачи трубок низкого качества.

В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи.

В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [3] [4] Хотя закон не определяет, какие альтернативы использовать австралийцам, компактные флуоресцентные лампы, вероятно, станут основной заменой.

Отравление ртутью

Поскольку люминесцентные лампы содержат ртуть, токсичный тяжелый металл, правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей.

Свалки часто отказываются от люминесцентных ламп из-за высокого содержания в них ртути.Бытовые и коммерческие источники отходов часто обрабатываются по-разному.

Количество ртути в стандартной лампе может сильно различаться — от 3 до 46 мг. [5] Типичная четырехфутовая (120-сантиметровая) люминесцентная лампа Т-12 (а именно, F32T12) эпохи 2006 года содержит около 12 миллиграммов ртути. [6] Новые лампы содержат меньше ртути, а версии на 3-4 миллиграмма (например, F32T8) продаются как лампы с низким содержанием ртути.

Очистка от разбитых люминесцентных ламп

Сломанная люминесцентная лампа опаснее сломанной обычной лампы накаливания из-за содержания ртути.Из-за этого безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. Девяносто девять процентов ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых близок. [7] Таким образом, типичная безопасная очистка обычно включает в себя тщательную утилизацию любого битого стекла, а также любого рыхлого белого порошка (флуоресцентное покрытие стекла) в соответствии с местными законами об опасных отходах. Влажное полотенце обычно используется вместо пылесоса для очистки стекла и порошка, в основном для уменьшения распространения порошка по воздуху.

Преимущества перед лампами накаливания

Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости. Это связано с тем, что большая часть потребляемой энергии преобразуется в полезный свет и меньше преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Лампа накаливания может преобразовывать только 10 процентов потребляемой мощности в видимый свет. Люминесцентная лампа, производящая столько полезной энергии видимого света, может потребовать от одной трети до одной четвертой количества потребляемой электроэнергии.Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. Если освещение используется в помещениях с кондиционированием воздуха, все потери лампы также должны быть устранены оборудованием для кондиционирования воздуха, что приводит к двойному штрафу за потери из-за освещения.

Более высокая начальная стоимость люминесцентной лампы более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где рабочая сила является дорогостоящей.Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

Ртуть, выбрасываемая в воздух при утилизации от 5 до 45 процентов люминесцентных ламп, [8] компенсируется тем фактом, что многие угольные генераторы выделяют ртуть в воздух. Повышенный КПД люминесцентных ламп помогает снизить выбросы электростанции.

Недостатки

Проблема «эффекта удара», возникающая при съемке фотографий или пленки при стандартном флуоресцентном освещении.

Люминесцентным лампам требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда; это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется для двух или более ламп.Некоторые типы балластов издают слышимое гудение или жужжание.

Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) необходимо регулярно менять.

Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 68 градусов по Фаренгейту или 20 градусов по Цельсию). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы. Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

Поскольку дуга довольно длинная по сравнению с газоразрядными лампами с более высоким давлением, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому лампы большие по сравнению с источниками накаливания.Это сказывается на конструкции светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника. Однако во многих случаях полезна низкая сила света излучающей поверхности, поскольку она уменьшает блики.

Люминесцентные лампы не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) со скоростью, которая зависит от частоты управляющего напряжения. Хотя это не так легко различить человеческим глазом, это может вызвать эффект стробоскопа, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой.Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может быть «эффект биения». Частота наиболее заметна на компьютерных мониторах с ЭЛТ, настроенных на частоту обновления, аналогичную частоте лампочек, которые будут мерцать из-за эффекта биений. Чтобы устранить это мерцание, можно изменить частоту обновления монитора.

Лампы накаливания из-за тепловой инерции их элемента меньше меняют яркость, хотя эффект можно измерить с помощью инструментов.Это также меньшая проблема с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа, используя пускорегулирующие балласты или управляя лампами на разных фазах многофазного источника питания.

Проблемы с точностью цветопередачи обсуждались выше.

Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания.За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

Утилизация люминофора и небольшого количества ртути в трубках также представляет собой экологическую проблему по сравнению с утилизацией ламп накаливания. Для крупных коммерческих или промышленных пользователей люминесцентных ламп начинают становиться доступными услуги по переработке.

Обозначения труб

Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковица трубчатая, а последнее число — диаметр в восьмых дюйма.Типичные диаметры: T12 (1,5 дюйма или 38 миллиметров) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 миллиметров) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 дюймов или 16 миллиметров) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их одножильным цоколям.

Лампы с высоким выходом ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала и до середины 1950-х годов и по сегодняшний день компания General Electric разработала и улучшила лампу Power Groove с маркировкой F ## PG17. Эти лампы можно узнать по трубкам большого диаметра с рифлением.

U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы — это FC ## T #, с диаметром круга (, а не по окружности или ваттам), первое число, а второе число, как правило, 9 (29 мм) для стандартных светильников.

Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенного) и DW для голубоватого дневного белого. BL часто используется для черного света (обычно используется в устройствах защиты от насекомых), а BLB — для обычных темно-голубых лампочек, которые имеют темно-фиолетовый цвет. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания растений.

Philips использует числовые цветовые коды для цветов:

  • Низкая цветопередача
    • 33 вездесущий холодный белый (4000 Кельвинов)
    • 32 теплый белый (3000 К)
    • 27 гостиная теплый белый (2700 K)
  • Высокая цветопередача
    • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
    • 8xy (xy00 K; например, «865» = 6500 K)
    • 840 холодный белый (4000 K)
    • 830 теплый белый (3000 К)
    • 827 теплый белый (2700 K)
  • Другое
    • 09 Лампы для загара
    • 08 Черный свет
    • 05 Жесткое УФ-излучение (люминофоры вообще не используются, используется конверт из плавленого кварца)

Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 сантиметра. Без 33-го можно было бы предположить, что F25T12 является более распространенным 30-дюймовым.

Компактные люминесцентные лампы не имеют такой системы обозначений.

Лампы люминесцентные прочие

Блэклайт
Blacklight — это подмножество люминесцентных ламп, которые используются для получения длинноволнового ультрафиолетового света (с длиной волны около 360 нанометров). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов с использованием краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (тем самым позволяя плакату с черным светом казаться гораздо более драматичным).
Солнечные лампы
Солнечные лампы содержат другой люминофор, который сильнее излучает в средневолновом УФ-диапазоне, вызывая реакцию загара у большинства людей.
Лампы для выращивания растений
Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
Бактерицидные лампы
Бактерицидные лампы вообще не содержат люминофор (технически это газоразрядные лампы, а не люминесцентные), а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
Индукционные безэлектродные лампы
Безэлектродные индукционные лампы — это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
Люминесцентные лампы с холодным катодом (CCFL)
Люминесцентные лампы с холодным катодом используются в качестве подсветки жидкокристаллических дисплеев персональных компьютеров и телевизионных мониторов.

Использование фильмов и видео

Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света.

Противоречие с Агапито Флоресом

Многие считают, что изобретателем люминесцентного света был филиппинец по имени Агапито Флорес.Сообщается, что он получил французский патент на свое изобретение и продал его компании General Electric, которая заработала на его идее миллионы долларов. Однако Флорес представил свой патент General Electric после того, как компания уже представила публике люминесцентный свет, и намного позже того, как он был первоначально изобретен. [9]

См. Также

Банкноты

  1. ↑ Lightsearch.com. Световод: люминесцентные балласты. Взято из Руководства по расширенному освещению , первоначально опубликованного Комиссией по энергетике Калифорнии в 1993 году.Проверено 31 мая 2007 года.
  2. ↑ Национальный исследовательский совет Канады, Мерцание люминесцентных ламп. Проверено 31 мая 2007 года.
  3. ↑ Тодд Вуди, «Австралия запрещает использование традиционных лампочек для борьбы с глобальным потеплением». Зеленый вомбат. 20 февраля 2007 г. Проверено 31 мая 2007 г.
  4. ↑ «Впервые в мире! Австралия сокращает выбросы парниковых газов из-за неэффективного освещения ». Канцелярия министра окружающей среды и водных ресурсов Австралии. Пресс-релиз (20 февраля 2007 г.). Проверено 31 мая 2007 года.
  5. ↑ Программа ООН по окружающей среде, «Набор инструментов для идентификации и количественной оценки выбросов ртути». п. 183. Проверено 31 мая 2007 года.
  6. ↑ Лаборатория светового дизайна, Ртуть в люминесцентных лампах. Проверено 31 мая 2007 года.
  7. ↑ Floyd et al. (2002). Цитируется в Программе Организации Объединенных Наций по окружающей среде, «Инструментарий для идентификации и количественной оценки выбросов ртути», стр. 184. Проверено 10 февраля 2012 г.
  8. ↑ Программа ООН по окружающей среде. «Набор инструментов для идентификации и количественной оценки выбросов ртути.» п. 184. Проверено 31 мая 2007 г.
  9. ↑ Агапито Флорес: изобретатели About.com. Проверено 31 мая 2007 года.

Список литературы

  • Аткинсон, Скотт. Идеи для отличного домашнего освещения . Sunset Publishing, 2003. ISBN 037601315X
  • Дерри Т. К. и Тревор Уильямс. Краткая история технологий . Mineola, NY: Dover Publications, 1993. ISBN 0486274721
  • Хьюз, Томас П. Американский генезис: век изобретений и технологического энтузиазма 1870-1970 гг. 2-е издание.Чикаго, Иллинойс: University of Chicago Press, 2004. ISBN 0226359271

Внешние ссылки

Все ссылки получены 14 апреля 2017 г.

Источники света / освещения:

Естественные / доисторические источники света:

Биолюминесценция | Небесные объекты | Молния

Источники света горения:

Ацетиленовые / карбидные лампы | Свечи | Лампы Дэви | Огонь | Газовое освещение | Керосиновые лампы | Фонари | Limelights | Масляные лампы | Светильники

Ядерные / химические источники света прямого действия:

Betalights / Trasers | Хемолюминесценция (световые палочки)

Источники электрического света:

Дуговые лампы | Лампы накаливания | Люминесцентные лампы

Разрядные источники света высокой интенсивности:

Керамические разрядные металлогалогенные лампы | Лампы HMI | Лампы ртутно-паровые | Металлогалогенные лампы | Натриевые лампы | Ксеноновые дуговые лампы

Другие источники электрического света:

Электролюминесцентные (EL) лампы | Глобар | Индуктивное освещение | Дискретные светодиоды / твердотельное освещение (светодиоды) | Неоновые и аргоновые лампы | Лампа Нернста | Серная лампа | Ксеноновые лампы-вспышки | Свечи Яблочкова

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и дополнили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в энциклопедию Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

люминесцентная лампа

Люминесцентная лампа или Люминесцентная лампа представляет собой газоразрядную лампу, которая использует электричество для возбуждения паров ртути в аргоне или неоновом газе, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет. Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу.В обычных трубчатых светильниках (обычно длиной 4 фута (120 см) или 8 футов (240 см)) балласт заключен в приспособление. Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в светильнике, или они могут иметь балласты, встроенные в лампы, что позволяет использовать их в патронах, обычно используемых для ламп накаливания.

Рекомендуемые дополнительные знания

История

История люминесцентных ламп начинается с ранних исследований электрических явлений.К началу 18 века экспериментаторы наблюдали лучистое свечение, исходящее от частично вакуумированных стеклянных сосудов, через которые проходил электрический ток. Немногое можно было сделать с этим явлением до 1856 года, когда немецкий стеклодув по имени Генрих Гейсслер (1815-1879) создал ртутный вакуумный насос, который откачивает стеклянную трубку в такой степени, которая ранее была невозможна. Когда электрический ток проходил через трубку Гейсслера, можно было наблюдать сильное зеленое свечение на стенках трубки у катодного конца.

Трубка Гейсслера, производившая красивые световые эффекты, была популярным источником развлечений. Однако более важным был его вклад в научные исследования. Одним из первых ученых, который экспериментировал с трубкой Гейсслера, был Юлиус Плюкер (1801-1868), который в 1858 году систематически описал люминесцентные эффекты, происходящие в трубке Гейсслера. Он также сделал важное наблюдение, что свечение в трубке меняет положение, когда она находится вблизи электромагнитного поля.

Запросы, которые начались с трубки Гейсслера, продолжались, так как были созданы еще более совершенные пылесосы. Самой известной была откачиваемая трубка, использовавшаяся для научных исследований Уильямом Круксом (1832-1919), откачиваемая высокоэффективным ртутным вакуумным насосом, созданным Германом Шпренгелем (1834-1906). Исследования, проведенные Круксом и другими, в конечном итоге привели к открытию электрона в 1897 году Дж. Дж. Томсоном (1856-1940). Но трубка Крукса, как ее стали называть, давала мало света, потому что в ней был слишком хороший вакуум и, следовательно, не хватало следовых количеств газа, необходимых для электрически стимулированной люминесценции.Важным этапом на долгом научном пути, который привел к созданию люминесцентной лампы, было наблюдение Александра Эдмона Беккереля (1820–1891) в 1859 году люминесценции некоторых веществ, помещенных в трубку Гейсслера. Он продолжил наносить тонкие покрытия из люминесцентных материалов на поверхности этих трубок. Произошла флуоресценция, но трубки были очень неэффективными и имели короткий срок службы. Несколькими годами ранее другой ученый, Джордж Г. Стоукс (1819–1903), заметил, что ультрафиолетовый свет вызывает флуоресценцию плавикового шпата, свойство, которое станет критически важным для разработки люминесцентных ламп много десятилетий спустя.

В то время как Беккерель был в первую очередь заинтересован в проведении научных исследований флуоресценции, Томас Эдисон (1847–1931) вкратце рассмотрел флуоресцентное освещение из-за его коммерческого потенциала. Он изобрел люминесцентную лампу в 1896 году, в которой в качестве флуоресцентного вещества использовалось покрытие из вольфрамата кальция, но, хотя в 1907 году на нее был получен патент, она не была запущена в производство. Как и в случае с некоторыми другими попытками использовать трубки Гейсслера для освещения, у него был короткий срок службы, и, учитывая успех лампы накаливания, у Эдисона не было особых причин для поиска альтернативных средств электрического освещения.

Хотя Эдисон потерял интерес к люминесцентному освещению, одному из его бывших сотрудников удалось создать газовую лампу, которая добилась определенного коммерческого успеха. В 1895 году Дэниел Макфарлан Мур (1869-1933) продемонстрировал электрически активированные трубки длиной от 7 до 9 футов, в которых для излучения белого или розового света использовался углекислый газ или азот соответственно. Как и в случае с будущими люминесцентными лампами, он был значительно сложнее лампы накаливания.

После многих лет работы Мур смог продлить срок службы ламп, изобретя электромагнитный клапан, который поддерживал постоянное давление газа внутри трубки.Хотя лампа Мура была сложной, дорогой в установке и требовала очень высокого напряжения, она была значительно более эффективной, чем лампы накаливания, и давала более естественный свет, чем лампы накаливания. С 1904 года система освещения Мура была установлена ​​во многих магазинах и офисах. Его успех способствовал мотивации General Electric к совершенствованию лампы накаливания, особенно ее нити. Усилия GE увенчались изобретением нити накала на основе вольфрама.Увеличенный срок службы ламп накаливания свел на нет одно из ключевых преимуществ лампы Мура, но GE приобрела соответствующие патенты в 1912 году. Эти патенты и изобретательские усилия, которые поддерживали их, должны были иметь значительную ценность, когда фирма занялась люминесцентным освещением более чем два раза. десятилетия спустя.

Примерно в то же время, когда Мур разрабатывал свою систему освещения, другой американец создавал средство освещения, которое также можно рассматривать как предшественник современной люминесцентной лампы.Это была ртутная лампа, изобретенная Питером Купером Хьюиттом (1861-1921) и запатентованная в 1901 году (патент США № 889 692). Как следует из названия, лампа Купер-Хьюитта загоралась, когда электрический ток пропускался через пары ртути при низком давлении. В отличие от ламп Мура, лампы Cooper-Hewitt могли изготавливаться стандартных размеров и работать при низких напряжениях. Лампа на парах ртути превосходила лампы накаливания того времени с точки зрения энергоэффективности, но сине-зеленый свет, который она производил, ограничивал ее применение.Однако он использовался для фотографии и некоторых промышленных процессов.

Лампы на ртутных парах продолжали развиваться медленными темпами, особенно в Европе, и к началу 1930-х годов они получили ограниченное применение для крупномасштабного освещения. В некоторых из них использовались флуоресцентные покрытия, но они в основном использовались для цветокоррекции, а не для увеличения светоотдачи. Лампы на парах ртути также предвосхитили люминесцентные лампы с их включением балласта для поддержания постоянного потока тока.

Купер-Хьюитт не был первым, кто использовал пары ртути для освещения, поскольку ранее усилия были предприняты Уэй, Рапифф, Аронс, Бастиан и Солсбери. Особое значение имела ртутная лампа, изобретенная Кюхом в Германии. В этой лампе вместо стекла использовался кварц, чтобы обеспечить более высокие рабочие температуры и, следовательно, большую эффективность. Хотя ее светоотдача по сравнению с потреблением электроэнергии была лучше, чем у других источников света, излучаемый ею свет был подобен свету лампы Купера-Хьюитта в том, что в ней отсутствовала красная часть спектра, что делало ее непригодной для обычного освещения.

Электрический ток, проходящий через трубку, послужил основой для другого вида освещения — неонового света. В то время как Мур использовал углекислый газ, азот или атмосферный воздух для заполнения трубок, а Купер-Хьюитт и другие использовали пары ртути, на следующем этапе газового освещения использовались люминесцентные свойства неона, инертного газа, который был обнаружен в 1898 г. В 1909 г. французский химик Жорж Клод (1870–1960) наблюдал красное свечение, возникающее при пропускании электрического тока через трубку, заполненную неоном.Он также обнаружил, что голубое свечение возникло в результате использования другого инертного газа, аргона. Свет можно было использовать для общего освещения, и фактически он использовался во Франции для этой цели примерно с 1930 года, но неоновое освещение было не более энергоэффективным, чем обычное освещение лампами накаливания, и его начали использовать в основном для привлекательных вывесок и реклама. Однако неоновое освещение не имело отношения к развитию люминесцентного освещения, поскольку усовершенствованный электрод Клода (запатентованный в 1915 году) преодолел «разбрызгивание», основной источник деградации электродов.Распыление происходит, когда ионизированные частицы ударяются об электрод и отрывают кусочки металла. Хотя изобретение Клода требовало электродов с большой площадью поверхности, оно показало, что можно преодолеть серьезное препятствие для газового освещения.

Развитие неонового света также имело значение для последнего ключевого элемента люминесцентной лампы — ее люминесцентного покрытия. В 1926 году Жак Рислер получил французский патент на применение флуоресцентных покрытий на неоновых лампах.Эти лампы, которые можно считать первыми коммерчески успешными люминесцентными лампами, использовались в основном для рекламы, а не для общего освещения. Однако это было не первое использование флуоресцентных покрытий. Как было отмечено выше, Эдисон использовал вольфрамат кальция для своей неудачной лампы. Были предприняты другие попытки, но все они сопровождались низкой эффективностью и различными техническими проблемами. Особое значение для последующей истории имело изобретение Фридрихом Мейером, Хансом-Иоахимом Шпаннером и Эдмундом Гермером, которые в то время были сотрудниками немецкой фирмы, расположенной в г. Берлин.Немецкий патент был выдан, но в серийное производство лампа так и не пошла.

Все основные функции люминесцентного освещения были реализованы в конце 1920-х годов. Десятилетия изобретений и разработок обеспечили ключевые компоненты люминесцентных ламп: экономичные стеклянные трубки, инертные газы для заполнения трубок, электрические балласты, долговечные электроды, пары ртути как источник люминесценции, эффективные средства создания надежного электрического разряда. , и флуоресцентные покрытия, которые могут быть возбуждены ультрафиолетовым светом.На этом этапе интенсивные разработки были важнее фундаментальных исследований.

В 1934 году Артур Комптон, известный физик и консультант GE, отправил отчет W.L. Энфилд, руководитель отдела исследований и разработок в отделе ламп GE, рассказал об успешных экспериментах с флуоресцентным освещением в исследовательской лаборатории General Electric Co., Ltd. в Великобритании (хотя она носила прозвище GE, эта фирма не имела прямого отношения к General Electric. Электрический в США). Вдохновленная этим отчетом и всеми доступными ключевыми элементами, команда под руководством Джорджа Э.Инман построил прототип люминесцентной лампы в 1934 году в инженерной лаборатории General Electric в Нела Парк (Огайо). Это было нетривиальное упражнение; как отметил Артур А. Брайт, «пришлось провести множество экспериментов с размерами и формой ламп, конструкцией катода, давлением газов аргона и паров ртути, цветами флуоресцентных порошков, методами их прикрепления к внутренней части лампы. трубка и другие детали лампы и ее вспомогательного оборудования до того, как новое устройство было готово для публики.”

Помимо талантливых инженеров и техников, а также отличных условий для исследований и разработок флуоресцентных ламп, General Electric контролировала то, что она считала ключевыми патентами, касающимися флуоресцентного освещения, включая патенты, первоначально выданные Cooper-Hewitt, Moore и Küch. Более важным, чем это, был патент на электрод, который не разрушался при давлении газа, которое в конечном итоге использовалось в люминесцентных лампах. Это изобретение было создано Альбертом В.Hull из исследовательской лаборатории GE в Скенектади и была зарегистрирована как патент США № 1,790,153.

Хотя патент Халла дал GE основание для требования юридических прав на люминесцентную лампу, через несколько месяцев после запуска лампы в производство фирма узнала о подаче заявки на патент США в 1927 году на вышеупомянутую изобретенную «лампу на парах металла». в Германии Мейером, Шпаннером и Гермером. В заявке на патент указывалось, что лампа была создана как превосходное средство для получения ультрафиолетового света, но в заявке также содержалось несколько утверждений, относящихся к флуоресцентному освещению.Попытки получить патент в США натолкнулись на многочисленные задержки, но, если бы он был выдан, патент мог бы вызвать серьезные трудности для GE. Сначала GE попыталась заблокировать выдачу патента, заявив, что приоритет должен принадлежать одному из их сотрудников, Лерою Дж. Баттольфу, который, согласно их заявлению, изобрел люминесцентную лампу в 1919 году и чья патентная заявка все еще находилась на рассмотрении. GE также подала заявку на патент в 1936 году на имя Инмана, чтобы охватить «улучшения», внесенные его группой.В 1939 году GE решила, что претензии Мейера, Спаннера и Гермера имеют определенные основания и что в любом случае длительная процедура вмешательства не в их интересах. Поэтому они отказались от иска Buttolph и заплатили 180 000 долларов за приобретение Meyer et al. заявка, которая на тот момент принадлежала фирме, известной как Electrons, Inc. Патент (патент США № 2182732) был должным образом выдан в декабре 1939 года. Этот патент, наряду с патентом Халла, поставил GE на то, что казалось твердое правовое основание, хотя компания Sylvania Electric Products, Inc. в течение многих лет сталкивалась с судебными исками., который заявил о нарушении патентов.

Несмотря на то, что вопрос о патентах не будет полностью решен в течение многих лет, сильные стороны General Electric в области производства и маркетинга позволили компании занять лидирующую позицию на развивающемся рынке люминесцентных ламп. Продажа «люминесцентных люмилиновых ламп» началась в 1938 году, когда на рынок были выпущены лампы четырех разных размеров. В течение следующего года GE и Westinghouse рекламировали новые светильники на выставках на Всемирной выставке в Нью-Йорке и на выставке Golden Gate Exposition в Сан-Франциско.Флуоресцентные системы освещения быстро распространились во время Второй мировой войны, поскольку промышленное производство, стимулированное военными потребностями, привело к усилению спроса на освещение. Использование люминесцентного освещения продолжало распространяться в годы после войны, и к 1951 году в Соединенных Штатах флуоресцентные лампы производили больше света, чем лампы накаливания.

Принципы работы

Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов.Падающий электрон (испускаемый из покрытия на витках проволоки, образующей катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем падают с испусканием следующего фотона.Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

Механизм светового производства

Люминесцентная лампа заполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей солей фосфора металлов и редкоземельных элементов. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной для того, чтобы иметь относительно низкую температуру термоэлектронной эмиссии). Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить, с образованием плазмы в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу внутри трубки (с давлением благородного газа, обычно составляющим около 0,3% от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253,7 нм и 185 нм.Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65% своего общего света на линии 254 нм (также около 10-20% света, излучаемого в УФ-диапазоне, приходится на линию 185 нм). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длиной волны 440 нм и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света. Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

Электрические аспекты эксплуатации

Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них проходит больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неконтролируемого протекания тока. Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

Хотя балласт может быть (и иногда бывает) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть 120 В переменного тока, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

Мерцание

Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мерцает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах с частотой 50 Гц. Этот же принцип может также вызывать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устранены в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также вызывать мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей.Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, к неравномерному световому выходу в положительных и отрицательные рабочие циклы сети. Мерцание частоты сети также может иногда излучаться с самых концов трубок в результате того, что каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и создает немного отличающуюся картину светового потока в анодном или катодном режиме.(Это было более серьезной проблемой с лампами более 40 лет назад, и многие приспособления той эпохи закрывали концы трубок из-за этого.) Мерцание на частоте сети более заметно в периферийном зрении, чем в центре взгляда. .

Эффективность

Эффективность люминесцентных ламп колеблется от примерно 16 люмен / ватт для 4-ваттной лампы с обычным балластом до примерно 95 люмен / ватт для 32-ваттной лампы с современным электронным балластом, обычно в среднем от 50 до 67 лм / Вт. .Большинство компактных люминесцентных ламп мощностью 13 Вт и более со встроенными электронными балластами достигают около 60 люмен / ватт. Из-за деградации люминофора по мере старения средняя яркость за весь срок службы фактически примерно на 10% меньше. [1]

Начиная с

Атомы ртути в люминесцентной лампе должны быть ионизированы до того, как дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

В некоторых случаях именно так это и делается: мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

  1. они имеют по одному штифту на каждом конце трубки и
  2. патроны, в которые они вставляются, имеют разъём для отключения на низковольтном конце, чтобы гарантировать автоматическое отключение сетевого тока, чтобы человек, заменяющий лампу, не мог получить электрический ток высокого напряжения.

В других случаях необходимо предусмотреть отдельное средство помощи при запуске. Некоторые люминесцентные конструкции ( лампы предварительного нагрева ) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), который первоначально соединяет нити накала последовательно с балластом и, таким образом, предварительно нагревает нити перед включением. зажигая дугу.

Эти системы являются стандартным оборудованием в странах с напряжением 240 В и обычно используют пускатель накаливания. До 1960-х годов также использовались четырехконтактные термостартеры и ручные переключатели.Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска.В этом отношении старые термостартеры показали себя лучше.

После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

Если трубка не ударяется или ударяется, а затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа, таким образом, будет бесконечно работать, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку эмиссии недостаточно для поддержания нагрева катодов, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до тех пор, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

Более новые конструкции балласта с быстрым запуском обеспечивают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным (заземленным) отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, чтобы ее можно было легко запустить.

Некоторые электронные балласты используют запрограммированный запуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта; и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается.Если лампа не загорается, электронная схема прекращает работу балласта.

Начиная с 1990-х годов, в массовое производство вошел новый тип балласта с более дорогой, но значительно более эффективной конструкцией: работа на высоких частотах. Эти высокочастотные балласты новой конструкции используются либо с лампами с быстрым запуском, либо с лампами катодно-анодного типа с предварительным нагревом (с закороченными контактами на конце лампы) и используют высокую частоту для возбуждения ртути внутри лампы. Эти новые электронные балласты преобразуют поступающие в балласт 50 или 60 Гц в выходную частоту, превышающую 100 кГц.Это позволяет создать более эффективную систему, которая генерирует меньше отходящего тепла и требует значительно меньше энергии для зажигания лампы и работает с быстрым запуском. Они используются в нескольких приложениях, в том числе в системах ламп для загара нового поколения, при которых лампа мощностью 100 Вт (например, F71T12BP) может быть освещена с использованием фактической мощности от 65 до 70 Вт при достижении тех же люменов, что и традиционные балласты на полной мощности. Они работают с напряжениями, которые могут составлять почти 600 вольт, что требует некоторого рассмотрения при проектировании корпуса, и может вызвать незначительное ограничение длины проводов от балласта к концам лампы.Эти балласты работают всего на несколько градусов выше температуры окружающей среды, отчасти поэтому они более эффективны и позволяют использовать их в приложениях, которые не подходят для более горячей электроники.

Конец срока службы

Режим отказа по окончании срока службы люминесцентных ламп различается в зависимости от того, как они используются, и типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

Смесь выбросов

«Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки.Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда трубка запускается с холодными катодами. (Метод запуска лампы и, следовательно, тип ПРА оказывает на это существенное влияние.) Лампы, работающие обычно менее 3 часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках.Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую начинку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Электроника балласта

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Срок службы встроенных электронных балластов сокращается в условиях высокой влажности. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Приведенный средний срок службы лампы обычно составляет при температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). Средний срок службы электроники при этой температуре обычно больше указанной, поэтому при такой температуре не многие лампы выйдут из строя из-за отказа электроники. В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью).Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше. В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Люминофор

Эффективность люминофора падает во время использования. Приблизительно к 25000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше).Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа. Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

Потеря ртути

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути.Тем не менее, экологические проблемы в настоящее время приводят к созданию трубок с низким содержанием ртути, в которые гораздо точнее дозируют ртуть, достаточную для обеспечения ожидаемого срока службы лампы. Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Люминофоры и спектр излучаемого света

Некоторые люди находят цветовую гамму некоторых люминесцентных ламп резкой и неприятной. Иногда кажется, что здоровый человек имеет нездоровый оттенок кожи при флуоресцентном освещении. Степень, в которой происходит это явление, связана с индексом цветопередачи света (CRI).

CRI — это показатель того, насколько хорошо сбалансированы различные цветовые компоненты белого света. По определению, лампа накаливания имеет индекс цветопередачи 100.Реальные люминесцентные лампы достигают CRI от 50% до 99%. Люминесцентные лампы с низким индексом цветопередачи имеют люминофор, излучающий слишком мало красного света. Кожа выглядит менее розовой и нездоровой по сравнению с освещением лампами накаливания. Цветные объекты выглядят приглушенными. Например, галофосфатная трубка с низким CRI 6800K, которая выглядит так же неприятно, как и они, придает красному оттенку тускло-красный или коричневый цвет.

CCT Цветовая температура — это мера белизны источника света. Типичное освещение лампами накаливания составляет 2700K, то есть желтовато-белый цвет.Галогенное освещение 3000К. Люминесцентные лампы производятся в соответствии с выбранной цветовой температурой путем изменения смеси люминофоров внутри трубки. Тёпло-белые люминесцентные лампы с цветовой температурой 2700K популярны для освещения жилых помещений. Нейтрально-белые флуоресцентные лампы имеют CCT 3000K или 3500K. Холодно-белые флуоресцентные лампы имеют цветовую температуру 4100K и популярны для офисного освещения. Флуоресцентные лампы дневного света имеют CCT от 5000K до 6500K, что означает голубовато-белый цвет.

Для освещения с высокой цветовой температурой обычно требуется более высокий уровень освещенности.При более тусклом освещении человеческий глаз воспринимает более низкие цветовые температуры как более естественные. Таким образом, тусклая лампа накаливания 2700K выглядит естественно, а яркая лампа 5000K также выглядит естественной, но тусклая люминесцентная лампа 5000K выглядит слишком бледной. Люминесцентные лампы дневного света выглядят естественно, только если они очень яркие.

Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ).Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На вид эта смесь кажется белой, но свет имеет неполный спектр. CRI таких ламп всего 60.

С 1990-х годов в люминесцентных лампах более высокого качества используется галофосфатное покрытие с более высоким индексом цветопередачи или смесь трифосфорных люминофора на основе ионов европия и тербия, полосы излучения которых более равномерно распределены по спектру видимого света.Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи придают человеческому глазу более естественную цветопередачу. CRI таких ламп обычно составляет 82–100.

По крайней мере, в некоторых из первых люминесцентных ламп использовались соединения, содержащие бериллий, токсичный элемент. Однако вряд ли можно встретить такие лампы.

Спектры люминесцентных ламп
Типичная люминесцентная лампа с люминофором «редкоземельный» Типичная люминесцентная лампа «холодного белого цвета», в которой используются два люминофора, легированные редкоземельными элементами, Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синее излучение и Eu: Y 2 O 3 для красного.Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой. Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
Галофосфатно-люминесцентная лампа более старого образца Галофосфатные люминофоры в этих лампах обычно состоят из трехвалентной сурьмы и галофосфата кальция, легированного двухвалентным марганцем (Ca 5 (PO 4 ) 3 (Cl, Cl, Cl, : Sb 3+ , Mn 2+ ).Цвет выходящего света можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий элемент марганец. Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
Флуоресцентный свет «Естественное солнце» Объяснение происхождения пиков находится на странице изображения.
Желтые флуоресцентные лампы Спектр почти идентичен спектру нормальной флуоресцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров.Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра. Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве «отпугивающего насекомых» наружного освещения (эффективность которого сомнительна).
Спектр лампы «черного света» В лампе черного света обычно присутствует только один люминофор, обычно состоящий из легированного европием фторбората стронция, который содержится в оболочке из стекла Вуда.
Спектр «ртутной» люминесцентной лампы Снято с «недорогого» спектрометра (стоимость около 100 долларов). Результаты аналогичны, если не лучше, чем у традиционных, но гораздо более дорогих спектрометров.

Использование

Люминесцентные лампы бывают разных форм и размеров. Компактная люминесцентная лампа (CF) становится все более популярной. Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

В США использование люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия считают, что флуоресцентные лампы позволяют сэкономить значительные средства, и редко используют лампы накаливания.

В осветительных приборах используются люминесцентные лампы различных оттенков белого. Иногда это происходит из-за непонимания разницы или важности разных типов трубок. Смешивание типов трубок внутри фитингов улучшает цветопередачу трубок более низкого качества.Налоговые льготы и экологическая осведомленность приводят к более широкому использованию в таких местах, как Калифорния.

В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи. В Восточной и Юго-Восточной Азии очень редко можно увидеть лампы накаливания в зданиях где-либо.

В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [2] Хотя закон не определяет, какую альтернативу использовать австралийцы, компактные флуоресцентные лампы, вероятно, станут их основной заменой. В апреле 2007 года Канада объявила о аналогичном плане по поэтапному отказу от продажи ламп накаливания к 2012 году. Финский парламент обсуждает запрет на продажу ламп накаливания к началу 2011 года. [3]

Преимущества

Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости.Это связано с тем, что большая часть используемой мощности преобразуется в полезный свет, а меньшая часть преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Типичная лампа накаливания с вольфрамовой нитью мощностью 100 Вт может преобразовывать только 2,6% потребляемой мощности в видимый свет, тогда как обычные люминесцентные лампы преобразуют от 6,6% до 15,2% своей потребляемой мощности в видимый свет — см. Таблицу в статье о световой эффективности. Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. [ необходима ссылка ]

Более высокая начальная стоимость люминесцентной лампы обычно более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где труд является дорогостоящим. Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

Недостатки

Проблемы со здоровьем

Люминесцентные лампы могут вызывать проблемы у людей с патологической чувствительностью к ультрафиолетовому свету.Они могут вызывать активность заболевания у светочувствительных людей с системной красной волчанкой; стандартные акриловые диффузоры поглощают УФ-В излучение и, кажется, защищают от этого. [4] В редких случаях люди с солнечной крапивницей (аллергия на солнечный свет) могут получить сыпь от флуоресцентного освещения. [5]

Устранение люминесцентного освещения подходит для нескольких условий. Помимо головной боли и усталости, [6] и проблем со светочувствительностью, [7] они перечислены как проблемные для людей с эпилепсией, [8] волчанкой, [9] синдромом хронической усталости, и головокружение [10] (связано с сердечно-сосудистыми проблемами, рассеянным склерозом и рядом других заболеваний.) Исследования по этому поводу очень ограничены. Кажется, что существует даже меньше доказательств, оспаривающих эффекты, чем подтверждающих их.

Балласты

Люминесцентным лампам требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда. Это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется двумя или более лампами. Электромагнитные балласты при незначительной неисправности могут издавать слышимый гудение или жужжание.

Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) необходимо регулярно менять.

Коэффициент мощности

Балласты люминесцентных ламп имеют коэффициент мощности меньше единицы. Для крупных установок это делает подачу электроэнергии более дорогостоящей, поскольку необходимо принимать специальные меры, чтобы приблизить коэффициент мощности к единице.

Гармоники мощности

Люминесцентные лампы представляют собой нелинейную нагрузку и генерируют гармоники на синусоидальной форме волны 50 Гц или 60 Гц источника питания. В некоторых случаях это может привести к возникновению радиочастотного шума.Подавление генерации гармоник — стандартная, но несовершенная практика. Возможно очень хорошее подавление, но оно увеличивает стоимость люминесцентных светильников.

Оптимальная рабочая температура

Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 20 ° C или 68 ° F). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы.Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

Некомпактный источник света

Поскольку дуга довольно длинная по сравнению с разрядными лампами с более высоким давлением, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому ламповые лампы были большими по сравнению с источниками накаливания. Однако во многих случаях использовалась низкая сила света излучающей поверхности, поскольку она уменьшала блики. Объем, создаваемый этой лампой, повлиял на конструкцию светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника.

Недавно был представлен новый тип люминесцентных ламп, КЛЛ, для решения этой проблемы и позволяющих устанавливать обычные патроны накаливания с этим типом ламп, тем самым устраняя необходимость в установке их на специальные приспособления. Однако некоторые КЛЛ, предназначенные для замены ламп накаливания, не подходят к некоторым настольным лампам, потому что арфа (опорная скоба из тяжелой проволоки) имеет форму узкой шейки лампы накаливания. КЛЛ обычно имеют широкий корпус для электронного балласта рядом с цоколем лампы, слишком широкий, чтобы в него поместиться.

Проблемы с мерцанием

Люминесцентные светильники, использующие балласт с магнитной сетью, не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) на удвоенной частоте питания. Хотя это не так легко различить человеческим глазом, это может вызвать эффект стробоскопа, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой. Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может быть «эффект биения».

Лампы накаливания из-за тепловой инерции их элемента колеблются в меньшей степени. Это также меньшая проблема с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа, используя пускорегулирующие балласты, управляя лампами на разных фазах многофазного источника питания или используя электронные балласты.

Электронные балласты не производят светового мерцания, так как постоянство люминофора превышает полупериод более высокой рабочей частоты.

Невидимое мерцание 100–120 Гц от люминесцентных ламп, питаемых от магнитных балластов, связано с головными болями и утомлением глаз. На людей с высоким порогом слияния мерцания особенно влияют магнитные балласты: их альфа-волны ЭЭГ заметно ослабляются, и они выполняют офисные задачи с большей скоростью и меньшей точностью. С ЭПРА проблем не наблюдается. [11] Обычные люди лучше читают, используя высокочастотные (20–60 кГц) электронные балласты, чем магнитные балласты. [12]

Мерцание люминесцентных ламп, даже с магнитными балластами, настолько быстрое, что вряд ли представляет опасность для людей, страдающих эпилепсией. [13] Ранние исследования предполагали связь между мерцанием люминесцентных ламп с магнитными балластами и повторяющимися движениями у аутичных детей. [14] Однако эти исследования имели проблемы интерпретации [15] и не были воспроизведены.

Цветопередача

Проблемы с точностью цветопередачи некоторых типов трубок обсуждались выше.

Затемнение

Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания. За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

Утилизация и переработка

Утилизация люминофора и особенно ртути в трубках является экологической проблемой. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей. Правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Для крупных коммерческих или промышленных пользователей люминесцентных ламп услуги по переработке доступны во многих странах и могут потребоваться в соответствии с законодательством.В некоторых регионах переработка также доступна для потребителей. Необходимость в инфраструктуре утилизации является проблемой с введением предложенных запретов на лампы накаливания.

Количество ртути в стандартной лампе может сильно различаться — от 3 до 46 мг. [16] Новые лампы содержат меньше ртути, а версии на 3-4 мг продаются как лампы с низким содержанием ртути. Типичная люминесцентная лампа Т-12 (4 фута (122 см) 2006 года) (например, F32T12) содержит около 12 миллиграммов ртути [17] . В начале 2007 года Национальная ассоциация производителей электрооборудования США объявила, что «в соответствии с добровольным обязательством с 15 апреля 2007 года участвующие производители ограничат общее содержание ртути в КЛЛ мощностью менее 25 Вт на уровне 5 миллиграммов (мг) на единицу.КЛЛ, которые потребляют от 25 до 40 Вт электроэнергии, будут иметь максимальное содержание ртути на уровне 6 мг на единицу ». [18]

Сломанная люминесцентная лампа более опасна, чем сломанная обычная лампа накаливания, из-за содержания ртути. этим безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. 99% ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых приближается к концу. [19] Люминесцентные лампы произведенные много десятилетий назад люминофоры содержали ядовитый бериллий.Такие старые лампы вряд ли встретишь.

Обозначение труб

Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковица трубчатая, а последнее число — диаметр в восьмых дюйма.Типичные диаметры: T12 (1½ дюйма или 38 мм) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 мм) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 дюймов или 16 мм) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

Некоторые лампы имеют встроенный отражатель. Для этого сначала наливают непрозрачное покрытие на лампу, вращают лампу для достижения желаемой степени покрытия, а затем дают ей высохнуть перед добавлением традиционных люминофоров.В прямых лампах его обычно заливают таким образом, чтобы покрыть половину лампы, когда она лежит ровно, при этом лампа рассчитывается по величине кривизны, которая покрыта непрозрачным покрытием. Лампа на 180 градусов имеет охват 50%, тогда как лампа на 210 градусов имеет охват на 30 градусов больше. Это наиболее распространенный тип, хотя отражатель может варьироваться от 120 градусов до более 310 градусов. Лампы, которые имеют значительно более 210 градусов освещения, часто называют «термостатами», поскольку количество открытого участка, на которое может выходить свет, значительно меньше площади, которая действует как внутренний отражатель.Часто лампа маркируется как лампа с отражателем, добавляя букву «R» в код модели, поэтому лампа F71T12HO с отражателем будет иметь код «FR71T12HO». Лампы VHO с отражателями могут иметь кодировку VHOR. Количество градусов отражателя лампы не обозначено.

Рефлекторные лампы используются в нескольких приложениях, особенно когда требуется, чтобы свет излучался только в одном направлении, или когда приложение требует максимального количества света. Это может быть так же просто, как в солярии более высокого класса или в какой-либо ситуации с подсветкой для электроники.Внутренний отражатель более эффективен, чем стандартные внешние отражатели, поскольку снижает вероятность потери света из-за подавления волн. Другой пример — подобранный по цвету световой поток (угол открытия 330 градусов, плюс-минус), используемый в пищевой промышленности для контроля качества, чтобы позволить роботам проверять готовые продукты.

Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их одножильным цоколям.

Лампы с высоким выходом ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала и до середины 1950-х годов и по сегодняшний день компания General Electric разработала и усовершенствовала лампу Power Groove (R) с маркировкой F ## PG17. Эти лампы можно отличить по трубкам большого диаметра с рифлением.

U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы — это FC ## T #, с диаметром круга (, а не по окружности или ваттам), первое число, а второе число, как правило, 9 (29 мм) для стандартных светильников.

Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенного) и DW для голубоватого дневного белого. BL используется для ламп черного света, которые обычно используются в устройствах защиты от насекомых. BLB используется для черно-голубых ламп, обычно используемых в ночных клубах. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания растений.

Philips использует числовые цветовые коды для цветов:

  • Низкая цветопередача
    • 33 вездесущий холодный белый (4000 K)
    • 32 теплый белый (3000 К)
    • 27 гостиная теплый белый (2700 К)
  • Высокая цветопередача
    • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
    • 8xy (xy00 K; например, «865» = 6500 K)
    • 840 холодный белый (4000 K)
    • 830 теплый белый (3000 К)
    • 827 теплый белый (2700 К)
  • Другое
    • 09 Лампы для загара
    • 08 Черный свет
    • 05 Жесткое УФ-излучение (люминофор вообще не используется, используется оболочка из плавленого кварца)

Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 см. Без 33-го можно было бы предположить, что F25T12 имеет более распространенную 30-дюймовую длину.

Компактные люминесцентные лампы не имеют такой системы обозначений.

Лампы люминесцентные прочие

Подсветка
Blacklight — это подмножество люминесцентных ламп, которые используются для излучения длинноволнового ультрафиолетового света (с длиной волны около 360 нм). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов с использованием краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (тем самым позволяя плакату с черным светом казаться гораздо более драматичным). Лампы черного света, используемые в противоугонных устройствах, не требуют такой доработки, поэтому ее обычно не используют в целях экономии; они называются просто blacklite (а не blacklite blue).
Лампы для загара
Лампы, используемые в соляриях, содержат различную смесь люминофоров (обычно от 3 до 5 или более люминофоров), которые излучают как УФ-А, так и УФ-В диапазоны, вызывая реакцию загара на большей части кожи человека.Как правило, выходная мощность оценивается от 3% до 10% UVB (наиболее типично 5%), а оставшееся УФ — как UVA. В основном это лампы F71, F72 или F73 HO (100 Вт), хотя несколько распространены VHO мощностью 160 Вт.
лампы для выращивания
Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
Бактерицидные лампы
Бактерицидные лампы вообще не содержат люминофора (технически это газоразрядные лампы, а не люминесцентные), а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
Индукционные безэлектродные лампы
Безэлектродные индукционные лампы — это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
Компактные люминесцентные лампы (КЛЛ)
Компактная люминесцентная лампа — это тип люминесцентной лампы, предназначенный для замены лампы накаливания.Многие КЛЛ подходят для существующих ламп накаливания.
Люминесцентные лампы с холодным катодом (CCFL)
Люминесцентные лампы с холодным катодом используются в качестве подсветки ЖК-дисплеев персональных компьютеров и телевизионных мониторов. В последние годы они также популярны у мододелов.

Научные демонстрации

Люминесцентные лампы можно зажечь другими способами, кроме надлежащего электрического подключения. Однако эти другие методы приводят к очень тусклому или очень непродолжительному освещению, и поэтому они чаще всего используются в научных демонстрациях.За исключением статического электричества, эти методы могут быть очень опасными при неправильном выполнении:

Использование кино и видео

Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света. http://www.richardbox.com/

Что означают F71, F32, T12 и T8?

Коды размеров лампы

Размеры ламп сбивают с толку, но полезно немного познакомиться с терминологией, используемой в лампах. Вы часто видите размеры, обозначенные как «F32T8» или «F71T12», и эти числа что-то значат. Во-первых, номер T. Думайте о T как о «толщине» или диаметре. Это измеренный диаметр лампы с шагом 1/8 дюйма. Таким образом, лампа T8 = 1 дюйм в диаметре.Лампа T12 = 12/8 дюйма (1,5 дюйма) в диаметре. T5 будет 5/8 дюйма в диаметре и так далее. Таким образом, число Т довольно легко понять.

Число F сбивает с толку, поскольку оно не всегда соответствует длине или мощности, а соответствует только серии. Сам F означает «флуоресцентный». Лампа F32, F34 или F40 всегда будет около 48 дюймов в длину, как офисный свет. Для небольших ламп (менее 5 футов) число F часто указывает на рекомендуемую мощность. Старые офисные светильники были лампами F40T12, а использовались 40 ламп. Вт каждый.Новые лампы F32T8 потребляют 32 Вт каждая. Есть несколько F34T12, но они реже, и да, они потребляют 34 Вт каждый.

Вы могли бы подумать, что 40-ваттный T12 будет производить больше света, чем 32-ваттный T8, поскольку у него на 24% больше мощности и на 50% больше диаметр, но вы ошибаетесь. В офисных светильниках F40 обычно имеет яркость около 2700 люмен, а F32 — на 1000 больше. Когда вы говорите об ультрафиолете, все становится еще сложнее.

Для более длинных ламп число F часто соответствует приблизительной длине.Вроде, как бы, что-то вроде. Лампы F71, используемые во многих соляриях, имеют длину около 69 дюймов (почти 71 дюйм …), а F59 — около 58 дюймов. Размер F73 составляет около 71 дюйма, и, чтобы усложнить ситуацию, F72 короче F71 примерно на 1/8 дюйма. Фонари F96 (8-футовые колонтитулы, которые вы видите на складах) имеют длину около 96 дюймов. Но цифры довольно близки к числу F, поэтому, если вы смотрите на лампу F71T12, вы знаете, что она составляет около 6 футов в длину и 1,5 дюйма в диаметре. Вот почему, когда вы строите свою первую установку с лампами длиной более 48 дюймов , вам нужно иметь все детали под рукой и подобрать размер установки в соответствии с имеющимися у вас лампами.

К счастью, в настоящее время мы предлагаем только лампы T12 и T8, и, как вы можете видеть на фотографии, они используют одинаковую двухконтактную конфигурацию, поэтому один и тот же конец лампы будет работать с лампами любого размера.

Вам следует также найти время, чтобы прочитать о питании люминесцентных ламп, так как вы можете запитать уф-лампу для отверждения на 32 Вт с различными диапазонами мощности. Я сказал вам, что иногда это может сбивать с толку …

Вернуться к справке по УФ-отверждению

Как выбрать светодиодную замену для компактной люминесцентной лампы (КЛЛ)

По мере того, как новые и более эффективные технологии способствуют прогрессу во всем мире, старые устаревшие устройства и электроника постепенно выводятся из обращения с некоторым переходным временем для адаптации.

На первом месте были лампы накаливания

. Затем последовали компактные люминесцентные лампы или, для краткости, КЛЛ.

В то время они были лучшей технологической заменой традиционных, но совершенно неэффективных ламп накаливания.

Сегодняшний рынок, однако, в основном ориентирован на светодиоды, поскольку они являются даже лучшей заменой, чем их предшественники, и с большим отрывом.

Вы можете легко выбрать замену светодиодам для существующих ламп и светильников КЛЛ, зная правильный тип контактов и купив легкодоступные варианты plug-and-play с тем же типом контактов, но это светодиоды вместо КЛЛ.Светодиодные лампы потребляют меньше электроэнергии, а также обеспечивают более качественный свет.

Почему светодиоды — лучшая альтернатива КЛЛ?

Есть большая разница в технологии работы обоих типов лампочек.

КЛЛ представляет собой покрытую фосфором трубку с парами ртути внутри, которые электрически заряжаются балластом, вызывая флуоресценцию.

В настоящее время трубку обычно скручивают и изгибают, придавая ей форму, напоминающую лампочку накаливания.

Из-за того, что внутри находятся пары ртути, работа с сломанной или неработающей лампой КЛЛ становится более сложной.

С другой стороны, светодиоды представляют собой полупроводниковые светодиоды, которые позволяют электричеству проходить и преобразовывать в свет.

Когда мы говорим о том, как долго служат лампочки, есть явный победитель. КЛЛ имеют средний срок службы около 10 000 часов.

Срок службы

светодиодов может достигать 50 000 часов. Поэтому, если вам нужны лампы, которые прослужат намного дольше, вам подойдут светодиоды.

Но вот некоторые ключевые преимущества светодиодов по сравнению с КЛЛ.

Светодиоды

обладают мощной функцией, которая действительно отличает их от любых ламп на рынке.Направленность светодиодного источника света.

Вы можете сфокусировать свет от сфокусированной светодиодной лампы так, чтобы он сиял в одной точке, и вы не потеряете большую часть света в нежелательных направлениях.

С другой стороны, КЛЛ и люминесцентные лампы теряют значительную долю интенсивности света, когда луч света должен быть сформирован и направлен от светильника.

Есть еще одна особенность, над которой светодиоды имеют явное преимущество.

Хотя многие люди перешли на КЛЛ, они сталкиваются с наиболее очевидной проблемой с обычными лампами КЛЛ, а именно с низким индексом цветопередачи или индексом цветопередачи.

CRI указывает на то, насколько точно свет отображает цвет. С одной стороны, лампы с высоким индексом цветопередачи будут очень привлекательными и сделают цвета яркими, но лампы с низким индексом цветопередачи будут давать тусклые, размытые цвета.

Как правило, вы должны стремиться к минимальному CRI, равному 80. Хотя чем ближе к 100, тем лучше.

Лампы

CFL обычно имеют низкий индекс цветопередачи (CRI), поэтому они не показывают фактический цвет. Обычно CRI ламп CFL колеблется от 70 до 80, что все еще неплохо, но светодиоды предлагают гораздо лучший опыт.

Представьте, что у вас в ванной или туалетном столике лампы с низким индексом цветопередачи, и вы готовитесь к блеклому макияжу и одежде.

Конечный результат будет совсем не тем, к чему вы стремились.

Преобразование КЛЛ в светодиоды: основные моменты

Прежде чем заказывать большую партию светодиодов для замены своих КЛЛ, необходимо знать несколько вещей.

Если вы любитель строительного магазина, вам, вероятно, нравится физически сходить и проверить варианты ламп перед покупкой, даже если вы в конечном итоге купите ее в Интернете.

В этом случае лучше всего взять старую лампу с собой, чтобы сравнить цоколь, размер и тип лампы, чтобы они соответствовали имеющимся светильникам.

Лампы

CFL немного сложнее заменить на светодиодные, потому что вы должны убедиться, что у вас правильная конфигурация цоколя / контактов.

Тем не менее, существует множество вариантов plug and play, которые в основном представляют собой сменные сменные светодиодные лампы, которые можно быстро вставить в существующее устройство CFL, которое вы используете, без замены балласта.

В качестве альтернативы вы можете использовать переходник-преобразователь (Amazon) для преобразования штыревой базы в классическую базу экипажа.

Всегда будьте осторожны с напряжением, указанным на лампочках. Напряжение на заменяемой КЛЛ и светодиодной лампе, очевидно, должно совпадать.

Подключаемые модули светодиодов

от некоторых производителей имеют универсальное напряжение (120–277 В) для большей гибкости.

Удивительно, но светильники CFL допускают только определенную мощность, указанную на приспособлении. Следовательно, заменяемая лампа должна соответствовать этому.

Причина этого в том, что сама лампа CFL содержит балласт, который обеспечивает быстрый скачок большой мощности для зажигания дуги между двумя электродами лампы, а затем снижает напряжение, чтобы поддерживать постоянный ток.

Обязательно ознакомьтесь с рекомендациями по балласту CFL относительно мощности, необходимой для лампы.

Скрытая проблема с КЛЛ заключается в том, что они излучают много ультрафиолетового (УФ) и инфракрасного (ИК) излучения, что может повредить ткань или хрупкие материалы, используемые в некоторых светильниках.

Так что, если у вас есть необычные светильники или даже произведения искусства, развешанные вокруг области, которая могла испортиться, сейчас самое время получить замену светодиодам, чтобы сохранить этот декор.

Еще одна небольшая вещь, на которую следует обратить внимание, — это ориентация оригинальной лампы в приспособлении, которая называется монтажной, и она может быть вертикальной или горизонтальной.

Первоначальная стоимость покупки светодиодов по сравнению с люминесцентными лампами

Светодиодные лампы

раньше были очень дорогими, но высокий спрос и постоянные инновации сделали цену очень доступной.

Я предполагаю, что вы покупаете для своего дома, поэтому я собираюсь использовать лампы CFL для этого сравнения (если вы ищете люминесцентные лампы, они стоят около 10 долларов каждая).

Светодиодная лампа может стоить около 8 долларов, а лампа CFL — всего 3 доллара.

Но не стоит принимать это за чистую монету, так как есть одна вещь, на которую вы должны обратить внимание.

Помните, что светодиодная лампа может работать до 50 000 часов, а лампа CFL — до 10 000 часов. Это означает, что вам понадобятся две лампы CFL, чтобы прослужить столько же, сколько одна светодиодная лампа.

Очевидно, что первоначальная стоимость светодиодов оправдана как более выгодное вложение.

Совместимость CFL и светодиодных светильников

Базовые типы

CFL могут быть немного сложными для понимания, и нужно немного прочитать заранее, чтобы выяснить, какая лампа будет правильной заменой.

Вообще говоря, в съемных лампах CFL используется цоколь штыревого типа, а не винтовой и резьбовой цоколь, используемый в светодиодах или традиционных лампах.

В зависимости от формы CF-лампы, могут быть двух- или четырехконтактные лампы CFL, поэтому они будут иметь подходящие патроны с таким количеством отверстий.

С другой стороны, также широко доступны лампы КЛЛ с винтовым цоколем.

КЛЛ контактного типа имеют идентификационный код, в котором упоминается форма трубки (T = трубка, Q = Quad, TR = Triple), мощность этой лампы (9 Вт, 26 Вт, 32 Вт), количество контактов (обычно d для 2 контакта и q для 4 контактов), и, наконец, расположение контактов или обозначение основания (G, GX и т. Д.).

Так например, есть лампочка с обозначением T4 G24q-1.

В этом случае T4 представляет форму трубки, а число представляет количество трубок, равное 4.

Вторая часть кода G24q-1 — это тип базы. Как вы можете видеть, в конце есть буква q, которая указывает на то, что база имеет 4 контакта.

Теперь важно помнить о числе в конце -1. У вас может быть тот же префикс, но с другим окончанием 1, 2, 3 или 4.

Главное помнить, что они несовместимы друг с другом, и большее число означает большую мощность лампы.

Тип цоколя или штыря не влияет на мощность и не говорит нам о ней.Только цифра рядом с буквой W определяет мощность лампы.

Однако установленный патрон позволяет вставлять только один вид лампочки. Мощность лампы зависит от розетки.

Светоотдача или яркость, также известная как люмен, либо упоминается отдельно в технических характеристиках, либо вы можете просмотреть таблицу ниже для быстрого ознакомления.

Сколько мощности потребляют светодиоды по сравнению с люминесцентными лампами?

Для определенных люменов мощность, необходимая для КЛЛ и светодиодных ламп, различается.

Очевидно, оба требуют меньше энергии, чем лампа накаливания.

Так что лучше? Мы можем взглянуть на это с двух сторон.

Один из них — посмотреть, сколько люменов будет производить лампа при определенной мощности. Таким образом, если бы мы использовали лампы мощностью 30 Вт, светодиодная лампа обеспечит 2238 люмен, а CFL — 1901 люмен.

LED дает 74,6 люмен на ватт. КЛЛ дает 63,3 люмен на ватт.

Это показывает, что в целом светодиодные лампы более эффективны.

Интересный факт: компании Cree удалось произвести рекордные 303 люмена на ватт. Однако следует отметить, что это было достигнуто в лаборатории. Коммерческий продукт с такой эффективностью, несомненно, будет доступен достаточно скоро.

Эквивалент мощности

Взгляните на эту таблицу, в которой указана мощность, необходимая для эквивалентной светоотдачи или люменов в каждой лампочке. Я включил лампы накаливания, потому что люди до сих пор смотрят на мощность ламп накаливания, чтобы понять, насколько ярким будет этот свет.

Общие эквиваленты:

Световой поток (лм) Лампа накаливания КЛЛ Светодиод
400 люмен 40 Вт 9 Вт 7 Вт
800 люмен 60 Вт 13 Вт 9 Вт
1600 люмен 100 Вт 23 Вт 19 Вт

Варианты замены СИД для светильников КЛЛ

Некоторые подключаемые модули для замены светодиодов (Amazon) могут быть совместимы с балластом.По сути, вы покупаете их, подключаете к существующей розетке CFL, и все готово!

Другой тип замены светодиодов требует изменения проводки прибора для удаления существующей функции балласта, называемой обходными светодиодами. Пока цоколь штыревой не меняется, лампочки теперь светодиодные.

Если вы выбираете байпас, то есть снимаете балласт с вашей проводки и приспособления, у вас есть другой вариант, который может открыть для вас множество ламп винтового типа.

Вы можете подключить к розетке преобразователь штыревого типа (Amazon), чтобы можно было установить любую лампочку винтового типа в гнездо, которое раньше было только штыревым CFL.

Последний вариант — заменить крепление на базу и проводку, если вы не хотите иметь дело с различными типами штырей и базовыми типами. Особенно легко это сделать с консервным или встраиваемым освещением (Amazon).

Заключительные слова

Теперь, когда вы приняли решение о постепенном отказе от ламп CFL для светодиодов, это небольшое руководство должно послужить хорошей отправной точкой для покупки новых устройств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *