ΠΠ°ΠΊ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ. ΠΠ°ΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΎΠΊΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠ΅ΠΏΡΡ . ΠΠ΄Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² — ΡΡΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΊ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ Π΄Π²ΡΠΌ ΡΠΎΡΠΊΠ°ΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π²ΡΠ΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ:
- ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΠΈ ΡΠ°Π²Π½ΠΎ ΠΎΠ±ΡΠ΅ΠΌΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ
- ΠΠ±ΡΠΈΠΉ ΡΠΎΠΊ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ² Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
- ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³Π΄Π° ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ
ΠΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΏΠΈ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ:
- ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅: 1/R = 1/R1 + 1/R2 + 1/R3 + …
- ΠΠ±ΡΠΈΠΉ ΡΠΎΠΊ: I = I1 + I2 + I3 + …
- ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ : U = U1 = U2 = U3 = …
- Π’ΠΎΠΊ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅: I1 = U / R1
ΠΠ΄Π΅ R — ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅, R1, R2, R3 — ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², I — ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ, I1, I2, I3 — ΡΠΎΠΊΠΈ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ , U — ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅.

ΠΠ°ΠΊ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ
ΠΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π°:
1/R = 1/R1 + 1/R2 + 1/R3 + …
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ R, Π½ΡΠΆΠ½ΠΎ:
- ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ
- Π‘Π»ΠΎΠΆΠΈΡΡ ΠΈΡ
- ΠΠ·ΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠΌΠΌΡ
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ R1 = 6 ΠΠΌ, R2 = 3 ΠΠΌ, ΡΠΎ:
1/R = 1/6 + 1/3 = 1/6 + 2/6 = 3/6 = 1/2
R = 1 / (1/2) = 2 ΠΠΌ
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΊΠΎΠ² Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠΎΠΊ Π² ΡΠ΅ΠΏΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². Π’ΠΎ Π΅ΡΡΡ:
I1/I2 = R2/R1
Π§Π΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠΈΠΉ ΡΠΎΠΊ ΡΠ΅ΡΠ΅Π· Π½Π΅Π³ΠΎ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π΅Ρ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠΎΠΊΠΈ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²ΡΡ , Π·Π½Π°Ρ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ.
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ΄ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ² ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ:
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°:
- ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ² — ΠΏΡΠΈ Π²ΡΡ ΠΎΠ΄Π΅ ΠΈΠ· ΡΡΡΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ, ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ
- ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈΠ±ΠΎΡΡ Ρ ΡΠ°Π·Π½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΡ
- Π£ΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ
ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ:
- Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ
- ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΌΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΠΈΡΠ°Π½ΠΈΡ
- Π‘Π»ΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΡΠΈ Π±ΠΎΠ»ΡΡΠΎΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΈΡΠΎΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΎΠ±Π»Π°ΡΡΡΡ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΠΈ Π² Π±ΡΡΡ:

- Π ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΡΡ Π·Π΄Π°Π½ΠΈΠΉ — Π²ΡΠ΅ ΡΠΎΠ·Π΅ΡΠΊΠΈ ΠΈ ΠΏΡΠΈΠ±ΠΎΡΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ
- Π Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΠΊΠ΅ — ΡΠ°ΡΡ, ΡΡΠ΅ΠΊΠ»ΠΎΠΏΠΎΠ΄ΡΠ΅ΠΌΠ½ΠΈΠΊΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ
- Π ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅ — Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΉ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΊΠΎΠ²
- Π ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ — Π΄Π»Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠΎΠ²
- Π ΠΎΡΠ²Π΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ — Π΄Π»Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π»Π°ΠΌΠΏ
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ Π½Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°:
- ΠΠ°ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΡ Π΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ
- ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΡΠΎ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ
- ΠΡΠ±ΡΠ°ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ
- ΠΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΡΠ°ΡΡΠ΅ΡΡ
- ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ:
ΠΠ²Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ 30 ΠΠΌ ΠΈ 60 ΠΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΡΠ΅ΠΏΠΈ 120 Π. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ ΠΈ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ Π² ΡΠ΅ΠΏΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
- ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅: 1/R = 1/30 + 1/60 = 3/60 = 1/20 R = 20 ΠΠΌ
- ΠΠ±ΡΠΈΠΉ ΡΠΎΠΊ: I = U/R = 120/20 = 6 Π
- Π’ΠΎΠΊ ΡΠ΅ΡΠ΅Π· ΠΏΠ΅ΡΠ²ΡΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡ: I1 = U/R1 = 120/30 = 4 Π
- Π’ΠΎΠΊ ΡΠ΅ΡΠ΅Π· Π²ΡΠΎΡΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡ: I2 = U/R2 = 120/60 = 2 Π
ΠΡΠΎΠ²Π΅ΡΠΊΠ°: I = I1 + I2 = 4 + 2 = 6 Π

ΠΡΠΈΠ±ΠΊΠΈ ΠΏΡΠΈ ΡΠ°ΡΡΠ΅ΡΠ°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠ΅ΠΏΠ΅ΠΉ
ΠΡΠΈ ΡΠ°ΡΡΠ΅ΡΠ°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠ΅ΠΏΠ΅ΠΉ ΡΠ°ΡΡΠΎ Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΡΠΈΠ±ΠΊΠΈ:
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π²ΠΌΠ΅ΡΡΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½
- ΠΠ΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ° Π΄Π»Ρ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ
- ΠΠ°Π±ΡΠ²Π°Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π²ΡΠ΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ
- ΠΠ΅Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΊΠΎΠ² ΠΏΠΎ Π²Π΅ΡΠ²ΡΠΌ
Π§ΡΠΎΠ±Ρ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΡΠΈΡ ΠΎΡΠΈΠ±ΠΎΠΊ, Π²Π°ΠΆΠ½ΠΎ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΡ Π΅ΠΌΡ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ.
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΡΠ΄ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ:
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡ | ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ | ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ |
---|---|---|
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ | ΠΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π° Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ | Π‘ΡΠΌΠΌΠ° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ |
Π’ΠΎΠΊ | Π‘ΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ² ΡΠ΅ΡΠ΅Π· ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ | ΠΠ΄ΠΈΠ½Π°ΠΊΠΎΠ² Π²ΠΎ Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ |
Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ | ΠΠ΅Π½ΡΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ | Π‘ΡΠΌΠΌΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ |
Π€ΠΎΡΠΌΡΠ»Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ | 1/R = 1/R1 + 1/R2 + … | R = R1 + R2 + … |
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² — Π²Π°ΠΆΠ½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ, ΡΠΈΡΠΎΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠΉ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. ΠΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΈ ΡΠΌΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ ΡΠ°ΡΡΠ΅ΡΡ ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠΈ. ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ» ΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π»Π΅Π³ΠΊΠΎ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π΄Π°ΠΆΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡ Π΅ΠΌΡ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².

ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΈΠΉ (ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²)
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². ΠΠ½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ², Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅ΠΏΡ (ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»Π°ΠΌΠΏΡ, ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°Π³ΡΠ΅Π²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ±ΠΎΡΡ ΠΈ Π΄Ρ.), ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅. ΠΡΠΎ ΠΎΠ±ΡΡΠΎΡΡΠ΅Π»ΡΡΡΠ²ΠΎ Π΄Π°Π΅Ρ Π½Π°ΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡ Π΅ΠΌ Π·Π°ΠΌΠ΅Π½ΡΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΈ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°ΠΌΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ. Π Π°Π·Π»ΠΈΡΠ°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² (ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ): ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅.
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² . ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΠΊΠΎΠ½Π΅Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ Π²ΡΠΎΡΠΎΠ³ΠΎ, ΠΊΠΎΠ½Π΅Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ — Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΈ Ρ. Π΄. ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΡΠΎΡ
ΠΎΠ΄ΠΈΡ
ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠΎΠΊ I.

.ΠΠ°ΠΌΠ΅Π½ΡΡ Π»Π°ΠΌΠΏΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°ΠΌΠΈ Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R1, R2 ΠΈ R3, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡ Π΅ΠΌΡ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΡ Π½Π° ΡΠΈΡ. 25, Π±.
ΠΡΠ»ΠΈ ΠΏΡΠΈΠ½ΡΡΡ, ΡΡΠΎ Π² ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ΅ Ro = 0, ΡΠΎ Π΄Π»Ρ ΡΡΠ΅Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΠΈΡΠ°ΡΡ:
E = IR 1 + IR 2 + IR 3 = I(R 1 + R 2 + R 3) = IR ΡΠΊ (19)
Π³Π΄Π΅ R
ΡΠΊ
=
R 1 + R 2 + R 3
.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π²ΡΠ΅Ρ
ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ².Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΡΠ°ΡΡΠΊΠ°Ρ
ΡΠ΅ΠΏΠΈ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°: U 1 =IR 1 ; U 2 = IR 2 , U 3 = IR Π· ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ E = U, ΡΠΎ Π΄Π»ΡΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠ΅ΠΏΠΈ
U = U 1 + U 2 +U 3 (20)
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° Π·Π°ΠΆΠΈΠΌΠ°Ρ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ².
ΠΠ· ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΡΠΎΡΠΌΡΠ» ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°ΠΌΠΈ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ:
U 1: U 2: U 3 = R 1: R 2: R 3 (21)
Ρ. Π΅. ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΊ Π½Π΅ΠΌΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅.
Π ΡΠ»ΡΡΠ°Π΅ Π΅ΡΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΠΏ, ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ R1, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ RΡΠΊ Π±ΡΠ΄Π΅Ρ Π² ΠΏ ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R1, Ρ. Π΅. RΡΠΊ = nR1. ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U1 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π² ΠΏ ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U:
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ
ΡΠΎΡΡΠ°Ρ ΠΆΠ΅ Π²Π»Π΅ΡΠ΅Ρ Π·Π° ΡΠΎΠ±ΠΎΠΉ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° Π΄ΡΡΠ³ΠΈΡ
ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π½ΠΈΠΌ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°Ρ
. ΠΡΠΈ Π²ΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ ΠΎΠ±ΡΡΠ²Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² ΠΈ Π² ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°Ρ
ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠΎΠΊ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ΅Π΄ΠΊΠΎ — ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π±ΠΎΠ»ΡΡΠ΅ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΡΡΡΠΈΡΠ°Π½ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠΈ, ΠΎΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΈΡΠ°ΡΡΡΡ Π²Π°Π³ΠΎΠ½Ρ ΠΌΠ΅ΡΡΠΎΠΏΠΎΠ»ΠΈΡΠ΅Π½Π°, ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 825 Π, Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π»Π°ΠΌΠΏ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ
Π² ΡΡΠΈΡ
Π²Π°Π³ΠΎΠ½Π°Ρ
, 55 Π.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² . ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² ΠΎΠ½ΠΈ Π²ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΎΠ±ΡΠ°Π·ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ Π²Π΅ΡΠ²ΠΈ (ΡΠΈΡ. 26, Π°). ΠΠ°ΠΌΠ΅Π½ΡΡ
Π»Π°ΠΌΠΏΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°ΠΌΠΈ Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R1, R2, R3, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡ
Π΅ΠΌΡ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΡ Π½Π° ΡΠΈΡ. 26, Π±.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΊΠΎ Π²ΡΠ΅ΠΌ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°ΠΌ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U. ΠΠΎΡΡΠΎΠΌΡ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°:
I 1 =U/R 1 ; I 2 =U/R 2 ; I 3 =U/R 3 .
Π’ΠΎΠΊ Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠ΅ΠΏΠΈ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ° I = I 1 +I 2 +I 3 , ΠΈΠ»ΠΈ
I = U / R 1 + U / R 2 + U / R 3 = U (1/R 1 + 1/R 2 + 1/R 3) = U / R ΡΠΊ (23)
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΡΠ΅Ρ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ
1/R ΡΠΊ = 1/R 1 + 1/R 2 + 1/R 3 (24)
ΠΠ²ΠΎΠ΄Ρ Π² ΡΠΎΡΠΌΡΠ»Ρ (24) Π²ΠΌΠ΅ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ 1/R ΡΠΊ, 1/R 1 , 1/R 2 ΠΈ 1/R 3 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ G ΡΠΊ, G 1 , G 2 ΠΈ G 3 , ΠΏΠΎΠ»ΡΡΠΈΠΌ: ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² :
G ΡΠΊ = G 1 + G 2 +G 3 (25)
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ, Π° ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠ· ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠΎΡΠΌΡΠ» ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠΎΠΊΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ Π²Π΅ΡΠ²ΡΠΌΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΈΠ»ΠΈ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ ΡΡΠ΅Ρ
Π²Π΅ΡΠ²ΡΡ
I 1: I 2: I 3 = 1/R 1: 1/R 2: 1/R 3 = G 1 + G 2 + G 3 (26)
Π ΡΡΠΎΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ ΠΏΠΎΠ»Π½Π°Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠΊΠΎΠ² ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ Π²Π΅ΡΠ²ΡΠΌ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΠΎΠΊΠΎΠ² Π²ΠΎΠ΄Ρ ΠΏΠΎ ΡΡΡΠ±Π°ΠΌ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΡΠ»ΡΡΠ°Π΅Π². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ Π΄Π²ΡΡ
ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ
ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ
R ΡΠΊ =R 1 R 2 /(R 1 +R 2)
ΠΏΡΠΈ ΡΡΠ΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ
R ΡΠΊ =R 1 R 2 R 3 /(R 1 R 2 +R 2 R 3 +R 1 R 3)
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ , Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ n, ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ R1 ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ RΡΠΊ Π±ΡΠ΄Π΅Ρ Π² n ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R1, Ρ.Π΅.
R ΡΠΊ = R1 / n (27)
ΠΡΠΎΡ ΠΎΠ΄ΡΡΠΈΠΉ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ ΡΠΎΠΊ I1, Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π±ΡΠ΄Π΅Ρ Π² ΠΏ ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ°:
I1 = I / n (28)
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ², Π²ΡΠ΅ ΠΎΠ½ΠΈ Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ΄ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΈ ΡΠ΅ΠΆΠΈΠΌ ΡΠ°Π±ΠΎΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ
Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
. ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΠΎΠΊ, ΠΏΡΠΎΡ
ΠΎΠ΄ΡΡΠΈΠΉ ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΌΡ-Π»ΠΈΠ±ΠΎ ΠΈΠ· ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ², Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΈ. ΠΡΠΈ Π²ΡΡΠΊΠΎΠΌ Π²ΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ Π²ΡΡ
ΠΎΠ΄Π΅ ΠΈΠ· ΡΡΡΠΎΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΈ ΠΎΡΡΠ°ΡΡΡΡ Π²ΠΊΠ»Ρ-
ΡΠ΅Π½Π½ΡΠΌΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅Π³ΠΎ ΠΎΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»Π°ΠΌΠΏΡ ΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΠ΅ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ (Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΌ) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ, Π²ΡΠ΅Π³Π΄Π° Π²ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ.
ΠΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ²ΠΎΠ·Π°Ρ
ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ·Π°Ρ
ΡΡΠ³ΠΎΠ²ΡΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ΄ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°Π·Π³ΠΎΠ½Π° ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°ΡΡΡΡ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π½Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅.
Π‘ΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² . Π‘ΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ°ΡΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Π²ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π° ΡΠ°ΡΡΡ — ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΡ
Π΅ΠΌΠ΅ ΡΠΈΡ. 27, Π° ΠΈΠΌΠ΅ΡΡΡΡ Π΄Π²Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R1 ΠΈ R2, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ ΡΠ΅Π·ΠΈΡΡΠΎΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ RΠ·, Π° ΡΠ΅Π·ΠΈΡΡΠΎΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ R4 Π²ΠΊΠ»ΡΡΠ΅Π½ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Ρ Π³ΡΡΠΏΠΏΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R1, R2 ΠΈ R3.
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΠΏΡΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΎΠ±ΡΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΠ΅ΠΏΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ°ΠΏΠ°ΠΌΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°ΡΡ Π² ΠΏΡΠΎΡΡΠ΅ΠΉΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡ
Π΅ΠΌΡ ΡΠΈΡ. 27, Π° Π²Π½Π°ΡΠ°Π»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R12 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R1 ΠΈ R2: R12 = R1 + R2. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡ
Π΅ΠΌΠ° ΡΠΈΡ. 27, Π° Π·Π°ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ ΡΡ
Π΅ΠΌΠΎΠΉ ΡΠΈΡ. 27, Π±. ΠΠ°ΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R123 ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ R3 ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
R 123 =R 12 R 3 /(R 12 +R 3)=(R 1 +R 2)R 3 /(R 1 +R 2 +R 3).
ΠΡΠΈ ΡΡΠΎΠΌ ΡΡ Π΅ΠΌΠ° ΡΠΈΡ. 27, Π± Π·Π°ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΠΎΠΉ ΡΠΈΡ. 27, Π². ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠ΄ΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΡΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R123 ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ Π½ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R4:
R ΡΠΊ = R 123 + R 4 = (R 1 + R 2) R 3 / (R 1 + R 2 + R 3) + R 4
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΈΡΠΎΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ
ΡΠ΅ΠΎΡΡΠ°ΡΠΎΠ² ΠΏΡΠΈ ΠΏΡΡΠΊΠ΅ Ρ. ΠΏ. Ρ. ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°.
1. ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
1. Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π° :
I 1 = I 2 = I
2. ΠΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ U 1 ΠΈ U 2 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ :
U = U 1 + U 2
3. ΠΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U 1 ΠΈ U 2 Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½Ρ U 1 = IR 1 , U 2 = IR 2 Π° ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U = IR Π³Π΄Π΅ R β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΠ³Π΄Π° IR = IR 1 + I R 2. ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ
R = R 1 + R 2
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
2. ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
1. ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U 1 ΠΈ U 2 Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ
U 1 = U 2 = U
2. Π‘ΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ² I 1 + I 2 , ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΎΠ±ΠΎΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΡΠ°Π²Π½Π° ΡΠΎΠΊΡ Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ :
I = I 1 + I 2
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² (ΡΠ·Π»Ρ A ΠΈ B ) Π² ΡΠ΅ΠΏΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π·Π°ΡΡΠ΄Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊ ΡΠ·Π»Ρ A Π·Π° Π²ΡΠ΅ΠΌΡ Ξt ΠΏΠΎΠ΄ΡΠ΅ΠΊΠ°Π΅Ρ Π·Π°ΡΡΠ΄ I Ξt , Π° ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡ ΡΠ·Π»Π° Π·Π° ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π·Π°ΡΡΠ΄ I 1 Ξt + I 2 Ξt . Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, I = I 1 + I 2 .
3. ΠΠ°ΠΏΠΈΡΡΠ²Π°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°
Π³Π΄Π΅ R β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠΌ
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΈ ΡΠΊΠ°Π·Π°Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΊΠ°Π·Π°Π½Ρ Π² ΠΎΠΌΠ°Ρ (ΠΠΌ).
ΠΠ° ΠΏΡΠ°ΠΊΡΡΠΈΠΊΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ Π±ΡΠ²Π°Π΅Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΠΈ ΡΠΎΠ³Π΄Π° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ ΡΠΎΠΊΠ° ΡΠΎΠΆΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ Π΄Π»Ρ ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ. Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π² Π±Π°ΡΠ°ΡΠ΅Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π΄Π²Π° ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΡΠ°Π·Π½ΠΎΠΈΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΏΠΎΠ»ΡΡΠ°ΠΌΠΈ.
Π’.Π΅., Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ², ΠΊ β³ΠΏΠ»ΡΡΡβ³ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΠΌΠΌΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°. Π Π΅Π³ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠ»Π΅ΠΌΠΌΠ΅ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΠΌΠΌΡ Π²ΡΠΎΡΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ° ΠΈ Ρ.Π΄. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΠΌΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ° ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡ ΠΊ β³ΠΌΠΈΠ½ΡΡΡβ³ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡ
Π΅ΠΌΡ.
ΠΠΎΠ»ΡΡΠΈΠ²ΡΠ°ΡΡΡ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½Π°Ρ Π±Π°ΡΠ°ΡΠ΅Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΡ ΠΆΠ΅ Π΅ΠΌΠΊΠΎΡΡΡ, ΡΡΠΎ ΠΈ Ρ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°, Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΎΠΉ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π½Π΅Π΅ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ². Π’.Π΅. Π΅ΡΠ»ΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΡ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΌΡ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ² Π² Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅Π΅.
1. ΠΠΠ‘ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΠΠ‘ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Ξ΅= Ξ΅ 1 + Ξ΅ 2 + Ξ΅ 3
2 . ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² r Π±Π°ΡΠ°ΡΠ΅ΠΈ = r 1 + r 2 + r 3
ΠΡΠ»ΠΈ Π² Π±Π°ΡΠ°ΡΠ΅Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ n ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠΎ ΠΠΠ‘ Π±Π°ΡΠ°ΡΠ΅ΠΈ Ξ΅= nΞ΅ 1, Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ r Π±Π°ΡΠ°ΡΠ΅ΠΈ = nr 1
3.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ Π²ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ Π²ΡΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΡΡΡ Π΄Π²ΡΡ ΠΈΠ»ΠΈ n ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ².
Π’.Π΅., ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ, Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠ»Π΅ΠΌΠΌΡ Π²ΡΠ΅Ρ
Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡ
Π΅ΠΌΡ (β³ΠΏΠ»ΡΡΡβ³), Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠ»Π΅ΠΌΠΌΡ Π²ΡΠ΅Ρ
Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ Π΄ΡΡΠ³ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡ
Π΅ΠΌΡ (β³ΠΌΠΈΠ½ΡΡΡβ³).
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΠΠ‘ . ΠΠΎΠ»ΡΡΠΈΠ²ΡΠ°ΡΡΡ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½Π°Ρ Π±Π°ΡΠ°ΡΠ΅Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΡΠΎ ΠΈ Ρ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°, Π° Π΅ΠΌΠΊΠΎΡΡΡ ΡΠ°ΠΊΠΎΠΉ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π΅ΠΌΠΊΠΎΡΡΠ΅ΠΉ Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π½Π΅Π΅ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ². Π’.Π΅. Π΅ΡΠ»ΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΡ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π΅ΠΌΠΊΠΎΡΡΠΈ, ΡΠΎ Π΅ΠΌΠΊΠΎΡΡΡ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½Π° Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ² Π² Π±Π°ΡΠ°ΡΠ΅Π΅.
1. ΠΠΠ‘ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ°Π²Π½Π° ΠΠΠ‘ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°. Ξ΅= Ξ΅ 1 = Ξ΅ 2 = Ξ΅ 3
2. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° r Π±Π°ΡΠ°ΡΠ΅ΠΈ = r 1 /n
3. Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΡΠ°ΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ, Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½Π°Ρ Π² Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅Π΅ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ² (ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ², Π΅ΡΠ»ΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅), Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΡ — ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ.
ΠΠ½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ², ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΡΡ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ Π΅ΠΌΠΊΠΎΡΡΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ°. ΠΠΎΡΡΠΎΠΌΡ Ρ.ΠΊ.ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π΅ΠΌΠΊΠΎΡΡΡ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π΅ΠΌΠΊΠΎΡΡΠ΅ΠΉ Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π½Π΅Π΅ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ², Ρ.Π΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ, ΡΠΎ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΊΠΎΠ³Π΄Π° Π½Π°ΡΠ°Π»Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π² ΠΎΠ΄Π½Ρ ΠΎΠ±ΡΡΡ ΡΠΎΡΠΊΡ, Π° ΠΊΠΎΠ½ΡΡ — Π² Π΄ΡΡΠ³ΡΡ.
ΠΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°:
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° Π·Π°ΠΆΠΈΠΌΠ°Ρ Π²ΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ:
U 1 = U 2 =U 3 =U ;
ΠΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π²ΡΠ΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
1/R = 1/R 1 + 1/R 2 + 1/R 3 = R 1 R 2 + R 1 R 3 + R 2 R 3 /R 1 R 2 R 3 ,
Π³Π΄Π΅ R — ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ (ΡΠ°Π²Π½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ (Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ R 1 , R 2 ΠΈ R 3 ) .
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, Π½Π°Π΄ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΡ Π΄ΡΠΎΠ±Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ· ΡΡΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²:
R = R 1 R 2 R 3 /R 1 R 2 + R 2 R 3 + R 1 R 3 .
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ (Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ), Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²ΡΠ΅Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ², Ρ.Π΅. Π½Π°ΠΉΡΠΈ ΠΎΠ±ΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΡΠ΅Π³Π΄Π° ΠΌΠ΅Π½ΡΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΈΠ· ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
ΠΠ° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ»ΡΡΠ°ΠΈ, ΠΊΠΎΠ³Π΄Π° ΡΠ΅ΠΏΡ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π±ΠΎΠ»Π΅Π΅, ΡΠ΅ΠΌ ΡΡΡΡ
ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
Π²Π΅ΡΠ²Π΅ΠΉ. ΠΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΡΠ°ΡΡΡΡ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΡΠΌΠΈ ΠΈ Π΄Π»Ρ ΡΠ΅ΠΏΠ΅ΠΉ, ΡΠΎΡΡΠΎΡΡΠΈΡ
ΠΈΠ· Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ².
ΠΠ°ΠΉΠ΄ΡΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ R 1 ΠΈ R 2 (ΡΠΌ. ΡΠΈΡ.). ΠΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ ΡΠ°Π²Π½Π° 1/R 1 , ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π²ΡΠΎΡΠΎΠΉ Π²Π΅ΡΠ²ΠΈ — 1/R 2 . ΠΠ±ΡΠ°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ:
1/R = 1/R 1 + 1/R 2 .
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ:
1/R = R 2 + R 1 /R 1 R 2 ,
ΠΎΡΡΡΠ΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅
R = R 1 R 2 /R 1 + R 2 .
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΈ ΡΠ»ΡΠΆΠΈΡ Π΄Π»Ρ ΡΠ°ΡΡΡΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· Π΄Π²ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ°Π²Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ, Π΄Π΅Π»ΡΠ½Π½ΠΎΠΌΡ Π½Π° ΠΈΡ ΡΡΠΌΠΌΡ.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ n ΡΠ°Π²Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ R 1 ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡ Π±ΡΠ΄Π΅Ρ Π² n ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅, Ρ.Π΅.
R = R 1 /n .
ΠΠ° ΡΡ Π΅ΠΌΠ΅, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π½ΠΎΠΉ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌ ΡΠΈΡΡΠ½ΠΊΠ΅, Π²ΠΊΠ»ΡΡΠ΅Π½ΠΎ ΠΏΡΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ R 1 ΠΏΠΎ 30 ΠΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R Π±ΡΠ΄Π΅Ρ
R = R 1 /5 = 30/5 = 6 ΠΠΌ.
ΠΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ², ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠΈΡ ΠΊ ΡΠ·Π»ΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΊΠ΅ Π (Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠΈΡΡΠ½ΠΊΠ΅), ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ², ΠΎΡ Π½Π΅Ρ ΠΎΡΡ ΠΎΠ΄ΡΡΠΈΡ :
I = I
1
+ I
2
+ I
3
.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΡΡ Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ R 1 ΠΈ R 2 (Π²ΡΠΎΡΠΎΠΉ ΡΠΈΡΡΠ½ΠΎΠΊ). Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π·Π°ΠΆΠΈΠΌΠ°Ρ ΡΡΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, ΡΠΎ
U = I 1 R 1 ΠΈ U = I 2 R 2 .
ΠΠ΅Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΡΡΠΈΡ ΡΠ°Π²Π΅Π½ΡΡΠ² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ°Π²Π½Ρ ΠΈ ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ:
I 1 R 1 = I 2 R 2 ,
ΠΈΠ»ΠΈ
I 1 /I 2 = R 2 /R 1 ,
Π’.Π΅. ΡΠΎΠΊ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ°Π·Π²Π΅ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ Π²Π΅ΡΠ²Π΅ΠΉ (ΠΈΠ»ΠΈ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΠΌ). Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²ΠΈ, ΡΠ΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΎΠΊ Π² Π½Π΅ΠΉ, ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΠ±ΡΠΈΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡ Ρ Π±ΠΠ»ΡΡΠ΅ΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΡΡ ΡΠ°ΡΡΠ΅ΠΈΠ²Π°Π½ΠΈΡ.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΎΠΌΠ½ΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ Π²ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠΌΠ΅ΡΡΡΡ Π΄Π²Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅
R
1
=
25 ΠΠΌ, Π°
R
2
=
50 ΠΠΌ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ
R
ΠΎΠ±Ρ
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. R ΠΎΠ±Ρ = R 1 R 2 /R 1 + R 2 = 25 . 50 / 25 + 50 β 16, 6 ΠΠΌ.
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π»Π°ΠΌΠΏΠΎΠ²ΠΎΠΌ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Π΅ ΠΈΠΌΠ΅ΡΡΡΡ ΡΡΠΈ Π»Π°ΠΌΠΏΡ, Π½ΠΈΡΠΈ Π½Π°ΠΊΠ°Π»Π° ΠΊΠΎΡΠΎΡΡΡ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. Π’ΠΎΠΊ Π½Π°ΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ²ΠΎΠΉ Π»Π°ΠΌΠΏΡ I 1 = 1 Π°ΠΌΠΏΠ΅Ρ, Π²ΡΠΎΡΠΎΠΉ I 2 = 1, 5 Π°ΠΌΠΏΠ΅ΡΠ° ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΉ I 3 = 2, 5 Π°ΠΌΠΏΠ΅ΡΠ°. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ ΡΠ΅ΠΏΠΈ Π½Π°ΠΊΠ°Π»Π° Π»Π°ΠΌΠΏ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ I ΠΎΠ±Ρ .
Π Π΅ΡΠ΅Π½ΠΈΠ΅. I ΠΎΠ±Ρ = I 1 + I 2 + I 3 = 1 + 1, 5 + 2, 5 = 5 Π°ΠΌΠΏΠ΅Ρ.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΠ΅. ΠΠ²Π° ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Π²ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π² ΡΠ΅Ρ ΡΠ»ΡΡΠ°ΡΡ , ΠΊΠΎΠ³Π΄Π° ΡΠΎΠΊ Π² ΡΠ΅ΠΏΠΈ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ·Π²Π°ΡΡ ΡΡΠ΅Π·ΠΌΠ΅ΡΠ½ΡΠΉ Π½Π°Π³ΡΠ΅Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°.
ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π»Π°ΠΌΠΏ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΠΎΡΠ²Π΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. ΠΠΎΡΡΠΎΠΈΠ½ΡΡΠ²ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π²ΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΡΠ°Π±ΠΎΡΡ Π΄ΡΡΠ³ΠΈΡ .
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
Π¦Π΅Π»ΠΈ ΡΡΠΎΠΊΠ°:

ΠΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅: Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠΎΠ»Π΅ Π΄Π²Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΠΏΠΎ 4 ΠΠΌ, ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΏΠΈΡΠ°Π½ΠΈΡ, Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡ, Π²ΠΎΠ»ΡΡΠΌΠ΅ΡΡ, ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π°.
ΠΠ° ΡΡΠΎΠΊΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. Π£ΡΠ°ΡΠΈΠ΅ΡΡ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΎΡΠΎΠ·Π½Π°ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΠΈΠΌ ΡΠ°ΠΊΡΠ°ΠΌΠΈ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°, Π²ΡΠ²ΠΎΠ΄Π°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ½ΠΈ ΡΠ΄Π΅Π»Π°Π»ΠΈ ΠΈΠ· ΡΡΠΈΡ ΡΠ°ΠΊΡΠΎΠ², ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΠΎΠΏΡΡΠ°, ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΈ ΡΠ°Π·ΡΠ΅ΡΠΈΡΡ Π΅Π΅. ΠΠ° ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΡΠΎΠΊΠ°Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π’Π΅ΠΌΠ° ΡΡΠΎΠΊΠ° Π½Π΅ ΠΎΠ±ΡΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΈΡΠ΅Π»Π΅ΠΌ, Π° ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΡΡΠ°ΡΠΈΠΌΠΈΡΡ Π² ΠΊΠΎΠ½ΡΠ΅ ΡΡΠΎΠΊΠ°. ΠΡΠΎΡ ΠΏΡΠΈΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π΄Π΅ΡΠΈ Π΅ΡΠ΅ ΡΠ°Π· ΠΏΠΎΠ²ΡΠΎΡΠΈΠ»ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΡΡΠΎΠΊΠ° ΠΈ ΠΎΡΠΌΡΡΠ»ΠΈΠ»ΠΈ Π΅Π³ΠΎ.
ΠΠ° Π΄ΠΎΡΠΊΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π²Π΅ΡΡ ΠΎΠ±ΡΠ΅ΠΌ ΡΠ°Π±ΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠΎΠΈΡ ΡΠ΄Π΅Π»Π°ΡΡ Π½Π° ΡΡΠΎΠΊΠ΅.
Π₯ΠΎΠ΄ ΡΡΠΎΠΊΠ°
ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ.
ΠΠΈΠ΄ Π΄ΠΎΡΠΊΠΈ Π² Π½Π°ΡΠ°Π»Π΅ ΡΡΠΎΠΊΠ°.
U= R= IP= Io= |
ΠΠ°Π½ΠΎ: U=7,5B R1=5ΠΠΌ R2=15ΠΠΌ I-? |
ΠΠ°Π½ΠΎ: U=2,4B R1=2ΠΠΌ R2=3ΠΠΌ R-? I-? |
ΠΠ°Π½ΠΎ: R1=24ΠΠΌ R2=8ΠΠΌ I2=3A I1-? |
ΠΠ°Π½ΠΎ: I1=2A I2=4A U=12B R1-? R2-? R-? |
ΠΠΈΠΏΠΎΡΠ΅Π·Ρ.![]() 1. 2. 3. 4. |
ΠΠΊΡΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ.
- Π€ΡΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΎΠΏΡΠΎΡ.
- ΠΠ°ΠΉΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ°.
- ΠΠ°ΠΊΠΎΠ²Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ?
- ΠΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π² ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅?
- ΠΠ°ΠΊΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠΊ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅?
- Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ°ΠΊΠΈΡ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΡΠ΅ΠΏΠΈ ΠΈ ΠΊΠ°ΠΊ ΡΡΠΈ ΠΏΡΠΈΠ±ΠΎΡΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡΡΡ?
Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ.
Π£ΡΠΈΡΠ΅Π»Ρ Π·Π°Π΄Π°Π΅Ρ Π²ΠΎΠΏΡΠΎΡ: «Π Π΅Π±ΡΡΠ°, Π²Ρ Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ
ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² Π² ΡΠ΅ΠΏΠΈ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π΅
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠΈΠ»Π° ΡΠΎΠΊΠ° ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ,
ΡΡΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. ΠΡΠ»ΠΈ ΠΌΡ ΡΠΎΠ±Π΅ΡΠ΅ΠΌ
ΡΠ΅ΠΏΡ ΠΈΠ· Π΄Π²ΡΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΠΏΠΎ 4 ΠΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ, ΡΠ΅ΠΌΡ Π±ΡΠ΄Π΅Ρ
ΡΠ°Π²Π½ΠΎ Π΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅?» (ΠΡΠ²Π΅Ρ: 8 ΠΠΌ).
Π£ΡΠΈΡΠ΅Π»Ρ: «ΠΡΠΎΠ²Π΅ΡΠΈΠΌ Π½Π°ΡΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΎΠ±Π΅ΡΠΈΡΠ΅ ΡΠ΅ΠΏΡ, ΡΡ Π΅ΠΌΠ° ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°ΡΠ΅ΡΡΠ΅Π½Π° Π½Π° Π΄ΠΎΡΠΊΠ΅, ΠΈΠ·ΠΌΠ΅ΡΡΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠ°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²Π°ΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΠΌΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π½Π° Π΄ΠΎΡΠΊΠ΅».
Π£ΡΠ°ΡΠΈΠ΅ΡΡ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ:
U=4 B, R=8 OΠΌ, I=0,5 A
Π£ΡΠΈΡΠ΅Π»Ρ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π° ΠΎΠΏΡΡΠ΅. Π£ΡΠ°ΡΠΈΠ΅ΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° Π² ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π°Ρ . I=2 A.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΈ ΠΎΠΏΡΡΠ° Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π»ΠΈ. ΠΠΎΡΠ΅ΠΌΡ?
Π Π°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ.
Π£ΡΠΈΡΠ΅Π»Ρ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ Π²ΡΠ΄Π²ΠΈΠ³Π°ΡΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅Ρ ΠΈΡ Π½Π° Π΄ΠΎΡΠΊΠ΅.
ΠΠΈΠΏΠΎΡΠ΅Π·Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ ΡΠ°ΠΊΠΈΠ΅:
- Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠΎΠ±ΡΠ°Π½Π° ΡΠ΅ΠΏΡ;
- Π΄ΠΎΠΏΡΡΠ΅Π½Π° ΠΎΡΠΈΠ±ΠΊΠ° ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ ;
- ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π½Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΊΠ°ΡΡ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΏΠΈ.
ΠΠΎΡΠ»Π΅ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π· ΠΏΡΠΈΡ
ΠΎΠ΄ΡΡ ΠΊ Π²ΡΠ²ΠΎΠ΄Ρ, ΡΡΠΎ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ Π½Π΅ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
Π΅Π΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΠΈ
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π΅Π³ΠΎ Π½Π°Π΄ΠΎ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ. Π‘Π»Π΅Π΄ΡΠ΅Ρ Π°Π½Π°Π»ΠΈΠ·
ΡΡ
Π΅ΠΌΡ ΡΠ΅ΠΏΠΈ, Π΄Π°Π΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΠΎΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ
ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ°ΡΡΠΊΠ°Ρ
ΡΠ΅ΠΏΠΈ.
Π£ΡΠΈΡΠ΅Π»Ρ: «ΠΠ°ΠΊ ΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ? ΠΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π»ΠΈ Π΄Π°Π½Π½ΡΠ΅ Π½Π°ΡΠ΅Π³ΠΎ ΠΎΠΏΡΡΠ° ΡΠ΄Π΅Π»Π°ΡΡ ΡΡΠΎ?»
Π£ΡΠ°ΡΠΈΠ΅ΡΡ ΠΏΡΠΈΡ ΠΎΠ΄ΡΡ ΠΊ Π²ΡΠ²ΠΎΠ΄Ρ, ΡΡΠΎ Π½Π°Π΄ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΠΠΌΠ°.
I=U/R, R=U/I, R=2 OΠΌ
ΠΠ°Π»Π΅Π΅ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΡΠ°ΡΠΈΡ ΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΠΌΠ΅Π½ΡΡΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π½Π΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΡΡ ΡΡ Π΅ΠΌΡ, ΡΡΠ°ΡΠΈΠ΅ΡΡ ΠΏΡΠΈΡ ΠΎΠ΄ΡΡ ΠΊ Π²ΡΠ²ΠΎΠ΄Ρ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ Π±ΠΎΠ»ΡΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ, Π° ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ ΡΠ΅ΠΏΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ Ρ Π²ΠΎΠ΄ΠΎΠΉ, ΡΠ°Π·Π±Π΅Π³Π°ΡΡΠ΅ΠΉΡΡ ΠΏΠΎ Π΄Π²ΡΠΌ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌ ΡΡΡΠ΅ΠΉΠΊΠ°ΠΌ.
ΠΠ°ΠΊΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ³Π»ΡΠ±Π»Π΅Π½ΠΈΠ΅ Π·Π½Π°Π½ΠΈΠΉ.
ΠΠ°Π΄Π°ΡΠ° β 1. ΠΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 12 Π. Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ ΡΠ°Π²Π½Π° 2 Π, Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ 4 Π. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ. (ΠΡΠ²Π΅Ρ. R1=6 ΠΠΌ, R2=3 ΠΠΌ, R=2 ΠΠΌ).
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π½Π° Π΄ΠΎΡΠΊΠ΅ ΠΈ Π² ΡΠ΅ΡΡΠ°Π΄ΡΡ , ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ Π² Ρ ΠΎΠ΄Π΅ ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π΄ΠΈΠ°Π»ΠΎΠ³Π° Π²ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΌΡΠ»Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° ΠΎΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠΎΠΏΡΠΎΡΡ ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π΄ΠΈΠ°Π»ΠΎΠ³Π° 1.
- ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²? (Π 2 ΡΠ°Π·Π°).
- ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠ΅ΠΊΡΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π· Π½ΠΈΡ ΡΠΎΠΊΠΈ? (Π 2 ΡΠ°Π·Π°).
- ΠΠ°ΠΊΠ°Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ? (ΠΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ)
- ΠΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ? (I1/I2=R2/R1).
- ΠΠ°ΠΊ ΡΡΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ? (U=U1=U2; I1R1=I2R2;
I1/I2=R2/R1).
ΠΠ°Π΄Π°ΡΠ° β 2. (Π£ΡΡΠ½ΠΎ). Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ°Π²Π½Ρ 24 ΠΠΌ ΠΈ 8 ΠΠΌ. Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ 3 Π. ΠΠ°ΠΊΠΎΠ²Π° ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅? (ΠΡΠ²Π΅Ρ. 1 Π).
ΠΠΎΠΏΡΠΎΡ. Π Π½Π°ΡΠ΅ΠΌ ΠΎΠΏΡΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π±ΡΠ»ΠΈ ΡΠ°Π²Π½ΡΠΌΠΈ. Π§ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ ΠΎ ΡΠ΅ΠΊΡΡΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· Π½ΠΈΡ ΡΠΎΠΊΠ°Ρ ? (I1=I2=1A).
ΠΠΎΠΏΡΠΎΡΡ ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π΄ΠΈΠ°Π»ΠΎΠ³Π° 2.
1. ΠΡ Π½Π°ΡΡΠΈΠ»ΠΈΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², Π½ΠΎ Ρ ΠΎΡΠ΅Π»ΠΎΡΡ Π±Ρ Π½Π°ΠΉΡΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΡ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ, Π·Π½Π°Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ Π΅Π΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠ°Π²Π°ΠΉΡΠ΅ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠΊΠ°ΠΌΠΈ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ. (I=I1+I2).
2. Π ΡΠ΅ΠΏΠ΅ΡΡ Π²ΡΡΠ°Π·ΠΈΠΌ ΡΠΈΠ»Ρ ΡΠΎΠΊΠΎΠ² ΡΠ΅ΡΠ΅Π· Π΄ΡΡΠ³ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ Π²Π°ΠΌ Π·Π°ΠΊΠΎΠ½. (ΠΠ°ΠΊΠΎΠ½ ΠΠΌΠ°).
3. ΠΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅?
(Π Π°Π·Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° U).
ΠΠ°Π΄Π°ΡΠ° β 3. ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ 2 ΠΠΌ ΠΈ 3 ΠΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 2,4 Π. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΠΈ ΠΎΠ±ΡΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ°. (R= 1,2 ΠΠΌ; I=2 Π).
ΠΠ°Π½Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅ΡΠ°Π΅ΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ 1/R=1/R1+1/R2
ΠΠ°Π΄Π°ΡΠ° β 4. ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ 5 ΠΠΌ ΠΈ 15 ΠΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 7,5 Π. ΠΠ°ΠΉΡΠΈ ΠΎΠ±ΡΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ°. (I= 2Π)
ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ Π½Π°ΠΉΡΠΈ Π΄Π²Π° ΡΠΏΠΎΡΠΎΠ±Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ.
ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
49, ΡΡΡΠ½ΠΎ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° Π²ΠΎΠΏΡΠΎΡΡ. Π£ΠΏΡ. 23 β1, β3 (ΠΏΠΎ ΠΆΠ΅Π»Π°Π½ΠΈΡ). (Π£ΡΠ΅Π±Π½ΠΈΠΊ: ΠΠ΅ΡΡΡΠΊΠΈΠ½ Π.Π. Π€ΠΈΠ·ΠΈΠΊΠ°-8. Π.:ΠΡΠΎΡΠ°, 2004).
ΠΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΎΠ³ΠΎΠ² ΡΡΠΎΠΊΠ°.
ΠΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡ ΡΡΠΎΠΊΠ°.
Π‘ Π΄ΠΎΡΠΊΠΈ ΡΡΠΈΡΠ°Π΅ΡΡΡ Π²ΡΠ΅, ΠΊΡΠΎΠΌΠ΅ ΡΡ
Π΅ΠΌΡ. Π£ΡΠ°ΡΠΈΠΌΡΡ
ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅Π»Ρ ΡΡΠΎΠΊΠ°,
ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² ΡΠ΅ΡΡΠ°Π΄ΠΈ ΡΠ΅ΠΌΡ ΡΡΠΎΠΊΠ° ΠΈ
ΡΠΎΡΠΌΡΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ°
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΏΠ΅ΠΉ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². Π£ΡΠΈΡΠ΅Π»Ρ Π΄Π΅Π»Π°Π΅Ρ Π·Π°ΠΏΠΈΡΠΈ Π½Π° Π΄ΠΎΡΠΊΠ΅,
ΡΡΠΎΠ±Ρ ΡΡΠ°ΡΠΈΠ΅ΡΡ ΠΌΠΎΠ³Π»ΠΈ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ Π² ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ
ΡΠ²ΠΎΠΈΡ
Π·Π°ΠΏΠΈΡΠ΅ΠΉ.
ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ
ΠΠ°ΠΊ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ? ΠΠΈΠΆΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΠΏΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ ΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ Ρ ΡΠ°Π·Π½ΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ. ΠΠ»Ρ ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΠ°ΡΡΠ΅Ρ Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ. ΠΡΠΎΡ ΡΠ°ΡΡΠ΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΡΡΡΠ°Π½ΠΈΡΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ.
Π Π°ΡΡΠ΅Ρ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ΅Π½, ΡΠ΅ΠΌ ΡΠ°ΡΡΠ΅Ρ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ! Π€ΠΎΡΠΌΡΠ»Π° (ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΡΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ (ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²) Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ):
ΠΡΠ»ΠΈ Π² ΡΠ΅ΠΏΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΡΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ, ΡΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΡ ΠΏΡΠΎΡΡΠΎ Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ ΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ Π½ΠΎΠ²ΠΎΠ΅ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ.
ΠΠ· ΡΠΎΡΠΌΡΠ»Ρ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ (ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ) ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π΅ΡΡΡ ΡΡΠΌΠΌΠ° ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ, Π²Ρ
ΠΎΠ΄ΡΡΠΈΡ
Π² ΡΠΎΡΡΠ°Π² ΡΠ΅ΠΏΠΈ.
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ°, Π²Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ Π·Π½Π°ΡΡ Π²ΡΠ΅ ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ!
ΠΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ
ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠ΅ΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ! ΠΠ½ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΎΠ±ΡΠ΅Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΡΠ΅ΠΏΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ!
ΠΡΠΈΠΌΠ΅Ρ 1: Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ ΠΎΠ±ΡΠ΅Π΅ (ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅) ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅!
ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΡΡΠ΅ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π² ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½Ρ 2,3 ΠΈ 6 ΠΠΌ. ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
Π§ΠΈΡΠ»Π° 2, 3 ΠΈ 6 ΡΠ²Π»ΡΡΡΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ Π²ΡΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ. Π§ΡΠΎΠ±Ρ ΡΠ»ΠΎΠΆΠΈΡΡ ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ, Π½Π°ΠΌ ΡΠ½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΠΠ ΡΠΈΡΠ΅Π» 2,3 ΠΈ 6! ΠΠ½Π°Ρ, ΡΡΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ ΡΠΈΡΠ΅Π» 2,3 ΠΈ 6 ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΠ»ΠΎ 6, ΡΠ°Π·Π»ΠΎΠΆΠΈΠΌ Π²ΡΠ΅ ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ Π΄ΠΎ ΡΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ ΡΠΈΡΠ»ΠΎ 6. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° Π²ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π»Π΅Π³ΠΊΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΈΡ , ΡΡΠΎ Π΄Π°Π΅Ρ Π½Π°ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΡΠ°Π³:
ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Ρ
ΠΎΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ (ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΡΠΌ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ Ρ.