Ом в чем измеряется: Единица измерения сопротивления, теория и онлайн калькуляторы

Содержание

ом [Ом] в микроом [мкОм] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др.

единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления.

Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Ом единица измерения сопротивления. Основные понятия электроники

Если любое устройство внутренним сопротивление 1ohm подключено к источнику питания с напряжением 1 Вольт, ток протекающий через устройство будет равен 1 Ампер. Если сопротивление прибора увеличить вдвое, а напряжение источника питания оставить неизменным (1 Вольт) сила тока уменьшится вдвое и будет равна 0,5 Ампера.

Как вы можете видеть чем больше сопротивление тем меньше ток протекающий через проводник (при условии что напряжение сети не изменяется).

На картинке ниже вы можете увидеть задвижку, которая по сути выполняет роль сопротивления в нашей водопроводной системе. Источником тока на нашей схеме является помпа, которая генерирует постоянное давление до задвижки. Когда задвижка практически закрыта, сопротивление очень большое.

Сопротивление протеканию воды очень велико соответственно на выходе сила потока очень маленькая.

Когда задвижка полностью открыта, поток воды очень большой и сильный, так как практически нет сопротивления давлению воды.
Для того что бы наглядно понять процесс, вы можете нажать на желтые стрелочки вверх и вниз.

- Стрелочка Resistance (R) Вверх (увеличивает сопротивление - закрывает задвижку)

- Стрелочка Resistance (R) Вниз (уменьшает сопротивление - открывает задвижку)

- Помпа нагнетающая постоянное давление (Вольтаж)

На анимированной картинке вы сможете увидеть  как уменьшается и увеличивается давление на выходе системы. Так же вы можете увидеть что происходит внутри задвижки в правом верхнем углу (задвижка изображена схематически и отмечена красным цветом)

 


Теперь давайте предположим что задвижка всегда находится в одном и том же положении (задвижка частично открыта).  Но теперь мы будем изменять давление которое нагнетает наша помпа.  Когда давление (Вольтаж, напряжение) очень большое, поток протекающий через задвижку достаточно велик. Если мы будем уменьшать давление, то и поток воды на выходе системы будет уменьшаться.

Что бы понять наглядно как это происходит, обратимся к анимированным картинкам. Вы можете регулировать давление нагнетаемое помпой с помощью желтых стрелочек вниз и вверх.

На новом рисунке стралки управления обозначены так же как на предыдущем. Обозначены стрелки буквой V (Voltage) и соответственно они увеличивают и уменьшают давление нагнетаемое помпой (или если судить по электрической аналогии, увеличивают и уменьшают напряжение источника питания)

 

Помните !!!! в нашем примере давление = напряжению.

В авто электронике, сопротивление играет жизненно важную роль.  К примеру даже при подключении динамиков к вашей аудио системе, вы должны подобрать необходимое сопротивление динамиков, иначе вы можете попросту спалить усилитель.

Так же вы должны запомнить
- Сопротивление обратно пропорционально силе тока.

Особенности измерения удельного и поверхностного сопротивления четырехзондовым методом

Основные определения

Удельное электрическое сопротивление является фундаментальным параметром, который определяет способность материала препятствовать протеканию через него электрического тока. В отличие от широко известного электрического сопротивления, которое зависит от формы и площади поперечного сечения, удельное сопротивление не зависит от геометрических размеров, а характеризует исключительно электропроводящие свойства материала.

Ниже приведен закон Ома в классическом и дифференциальном видах:

где I — сила тока, U — напряжение, R — электрическое сопротивление, j ⃗ — вектор плотности тока, E ⃗ — вектор напряженности электрического поля, ρ — удельное электрическое сопротивление.

Вторая формула применима для бесконечно малого объема, а потому наиболее удобна, когда мы исследуем новые материалы (в том числе анизотропные), такие как графен, углеродные нанотрубки и т.д. Как видно, единственным параметром, который отвечает за свойства самого материала, здесь является удельное электрическое сопротивление. В случае работы с тонкими слоями в полупроводниковом производстве также вводится понятие поверхностного сопротивления, связь которого с удельным сопротивлением рассмотрена ниже.

Электрическое сопротивление однородного образца, представленного на РИС 1, определяется следующим образом:


где R — электрическое сопротивление [Ом], S — площадь поперечного сечения, d — толщина материала, w — ширина, l — длина.

Если мы возьмем квадрат поверхности материала, то есть l=w, то из выражения (3) получим соотношения для поверхностного сопротивления:


где R — поверхностное сопротивление [Ом/] (Ом на квадрат). Другими словами, поверхностное сопротивление представляет собой сопротивление квадратного участка поверхности материала толщиной d. Причем оно не зависит от величины сторон этого квадрата. Понятие поверхностного сопротивления также применимо и для неоднородно легированных слоев. С помощью данного параметра можно определить исходное качество материала, выявить проблемы технологического процесса при проведении межоперационного контроля отдельных слоев, а также осуществить выходной контроль качества материала.

Методы измерения

На сегодняшний день существуют два основных метода измерения поверхностного сопротивления:

  • четырехзондовый метод Кельвина;
  •  бесконтактный вихретоковый метод.

Вихретоковый метод предполагает взаимодействие образца с электромагнитным полем, которое формируется генератором (как правило, это индуктивная катушка). Возбуждаемые в образце вихревые токи в свою очередь создают электромагнитное поле, которое действует на индуктивную катушку, изменяя ее полное электрическое сопротивление (РИС 2). Таким образом можно определить поверхностное сопротивление образцов. Преимуществами данного метода являются отсутствие контакта с исследуемым образцом, высокая пропускная способность и высокое разрешение. В качестве недостатков можно отметить невысокую точность измерений (погрешность ~10 %) и малый диапазон измерения сопротивления — этот метод преимущественно используется для проводящих образцов.

Поэтому оборудование, построенное на данном принципе, применяется в основном для in-line контроля при больших объемах производства.

Четырехзондовый метод Кельвина предполагает использование специальной измерительной головы с четырьмя иглами (РИС 3). Через крайние иглы (1 и 4) течет измерительный ток, через иглы 2 и 3 выполняется измерение напряжения с образца. Все иглы расположены на одинаковом расстоянии друг от друга. Данный метод позволяет значительно расширить диапазон измерения в область малых значений сопротивления за счет использования четырехпроводной схемы подключения и отсутствия падения напряжения на измерительных кабелях. Кроме того, он также может применяться для диэлектрических материалов с высоким значением сопротивления (~ МОм). Точность измерений данным методом может быть лучше ±1 %, а воспроизводимость ±0,1 %.

К основным недостаткам данного метода относятся:

  • наличие непосредственного контакта с образцом: иглы измерительной головы могут оставлять царапины или проколы измеряемого слоя;
  • нагрев образца вследствие протекания измерительного тока;
  • изменение расстояния между иглами измерительной головы вследствие её износа;
  • термо-ЭДС из-за неидеальности контактов и неоднородности образца.

Эти недостатки могут быть устранены с помощью некоторых методик, которые мы рассмотрим отдельно более подробно:

  • Повреждение образца можно минимизировать путем подбора механических параметров измерительной головы, таких как радиус закругления и усилие прижатия игл. К примеру, при измерении параметров кремниевых пластин оптимальным вариантом будет использование диаметра закругления игл 40 мкм, а усилия прижатия 200 г. Это связано с необходимостью создания надежного электрического контакта при наличии естественного слоя окисла. При проведении тестирования более мягких материалов, например ITO, желательно использовать иглы с большим радиусом закругления (500 мкм) и меньшим усилием прижатия (25 г).
  • Для уменьшения нагрева образца рекомендуется использовать импульсный режим измерения и такой уровень измерительного тока, который не позволит существенно разогреть образец за время измерения. На практике выбор величины тока обусловлен чувствительностью измерителя напряжения либо точностью источника тока. Как правило, большинство измерителей способны точно регистрировать сигналы порядка мВ. Поэтому для материалов, поверхностное сопротивление которых лежит в диапазоне от единиц Ом/ до сотен кОм/, существует эмпирическое правило устанавливать измерительный ток такой величины, которая создаст падение напряжения на внутренних иглах от 7 до 15 мВ. Однако в случае проводящих материалов (мОм/ и менее) достичь указанного падения напряжения можно только при использовании довольно большого тока, что провоцирует нагрев образца. При измерении же высокорезистивных материалов (МОм/ и более) напряжение в несколько мВ требует протекания тока величиной порядка нА, который может быть искажен внешними электромагнитными наводками. Оба пограничных варианта решаются по-разному в зависимости от тестируемого материала. Однако обобщенное правило для любого случая — это выбирать ток, который одновременно обеспечит наибольшее падение напряжения между иглами и не создаст значительного разогрева образца.
  • Для тонкого образца формула для расчета поверхностного сопротивления в общем случае выглядит следующим образом:


где V23 — напряжение между иглами 2 и 3, I14 — измерительный ток.

В данной формуле нет параметра, отвечающего за расстояние между иглами, — он сокращается, если этот параметр одинаков для всех игл. Поэтому если в ходе эксплуатации измерительной головы расстояние между иглами со временем изменяется, то это значительно влияет на результат измерения. Более того, ни один изготовитель измерительных голов не может обеспечить одинаковое расстояние между иглами с учетом того, что они являются подпружиненными, из-за чего фактическое расстояние в момент контактирования может меняться. В этом случае согласно ГОСТу 24392-80 и ASTM F84-99 необходимо провести замер реального расстояния между иглами в момент контакта. Для этого осуществляется серия контактов с образцом и проводятся замеры фактического расстояния между иглами по следам игл на поверхности образца. Полученная информация позволяет рассчитать эффективное значение межзондового расстояния и увеличить точность измерения. Такого рода измерения необходимо проводить время от времени, чтобы понимать текущее состояние измерительной головы. Более того, сама система перемещения головы должна обеспечивать строго перпендикулярное расположение игл на образце, исключая латеральное перемещение по образцу и его царапание, как показано на РИС 4в.

Для получения более достоверных результатов при измерении распределения поверхностного сопротивления по поверхности пластины часто прибегают к использованию одной из разновидностей четырехзондового метода — метода самокомпенсации геометрических эффектов (ASTM F1529). Этот метод имеет следующие преимущества:

  • снижение влияния краевых эффектов до 0,1 % по сравнению с измерениями в центре;
  • не требуется информация о диаметре образца и точных координатах размещения измерительной головы на образце: поправочный коэффициент непосредственно рассчитывается с помощью двух схем измерения, представленных на РИС 5.
  • процедуру измерения расстояния между иглами можно исключить, так как отклонения в расположении игл некритичны, как в традиционном методе измерения.

Таким образом можно нивелировать негативное влияние износа измерительной головы.

Как известно, термо-ЭДС (VTEMF) возникает при контакте двух разнородных материалов, которые имеют разную температуру. Данное явление часто наблюдается при контакте измерительной головы и исследуемого образца. Более того, сам измеритель напряжения может иметь некоторое смещение относительно нуля (Vof). Оба этих эффекта приводят к появлению ошибки при измерениях. Чтобы ее исключить, в каждой точке на образце проводят два измерения с противоположными направлениями тока: сначала измеряют сопротивления при протекании тока от первой иглы к четвертой, а затем от четвертой к первой. Полученные два значения поверхностного сопротивления используются для нахождения среднего значения, которое исключает термо-ЭДС и смещение измерителя напряжения, поскольку обе эти величины не изменяются при смене направления тока. В итоге среднее значение поверхностного сопротивления рассчитывается по формуле:


Более подробно данную методику демонстрирует РИС 6.

Поверхностное сопротивление эпитаксиальных, легированных, диффузионных или осажденных пленок позволяет определить качество технологического процесса. Однородность характеристик слоя на поверхности подложки показывает расхождение параметров конечных кристаллов, взятых в разных местах на пластине. Именно поэтому очень важно иметь возможность строить карты распределения поверхностного сопротивления по всей поверхности образца. Традиционный четырехзондовый метод и метод самокомпенсации геометрических эффектов успешно справляются с этой задачей и являются наиболее распространенными способами, которые реализованы на сегодняшний день во множестве различных установок от разных производителей. Ниже мы рассмотрим основные типы установок и важные особенности, которые позволяют провести корректные и точные измерения электрофизических параметров образцов.

Измерительные комплексы

В советское время наиболее популярным был прибор ИУС-3 (РИС 7а). Данный прибор включает в себя четырехзондовую голову, способную плавно опускаться за счет своей тяжести. Встроенный источник-измеритель проводит измерение поверхностного сопротивления, которое может быть использовано для расчета удельного сопротивления в случае однородного образца. Основным недостатком такой системы является измерительная голова, которая в силу отсутствия на тот момент технологии подпружиненных пробников была реализована на плоских пружинах (РИС 7б). Изза этого головы быстро приходили в негодность, и на данный момент такие системы требуют замены в связи с отсутствием производства расходных элементов.

Однако современные технологии позволили создать более конкурентное решение, способное выполнять порядка миллиона контактирований с воспроизводимостью 20 мкм. На сегодняшний день компания Остек-Электро освоила производство измерительных голов для измерения поверхностного и удельного сопротивления четырехзондовым методом (РИС 8). Благодаря собственному производству такие параметры головы, как усилие прижатия, расстояние между иглами и радиус закругления игл могут быть подобраны под конкретные исследуемые материалы. В качестве игл используются надежные подпружиненные пробники от немецкой компании Ingun. Технология монтажа пробников предусматривает их установку в посадочную гильзу, исключающую люфт и латеральное перемещение иглы во время контакта. Такие измерительные головы также успешно применяются в автоматических установках.

В качестве преемника установки ИУС-3 ООО «Остек-Электро» успешно поставляет собственную разработку ИУС-7 (РИС 9). Установка содержит высокоточный источник-измеритель Keithley серии 2400 с базовой погрешностью 0,012 % (внесен в Госреестр СИ), ручное контактирующее устройство с возможностью плавной регулировки усилия прижатия и быстрой замены измерительной головы, персональный компьютер с программным обеспечением «Кристалл» (РИС 10). Программное обеспечение позволяет учесть конкретные размеры образца и рассчитать необходимые поправочные коэффициенты согласно стандарту ASTM F84-99. Функция автоматического протоколирования сохраняет измеренные данные с привязкой к месту измерения на образце и выводит всю необходимую статистику в отчете. Автоматическая подстройка тока исключает инжекцию неосновных носителей заряда в образец и нагрев образца во время измерения.

При необходимости установка может быть оснащена термостабилизированным столом. Данный программно-аппаратный комплекс полностью закрывает вопрос проведения измерений в ручном режиме.

Как уже было сказано ранее, для оценки качества технологического процесса необходимо получить распределение удельного и поверхностного сопротивления на всей поверхности образца. В этом случае требуются автоматические установки, способные перемещать измерительную голову либо стол и проводить измерения по заранее созданному рецепту без участия оператора. Установка SF-P1500 (РИС 11), разработанная ООО «Остек-Электро» совместно с тайваньской компанией Pomme Technologies, способна проводить измерения распределения поверхностного и удельного сопротивления в том числе методом самокомпенсации геометрических эффектов.

Образец располагается на столе c вакуумным прижимом. Перемещение измерительной головы по поверхности образца осуществляется с помощью прецизионных приводов. Важным здесь является надежный и воспроизводимый контакт с образцом, так как это напрямую связано с точностью измерений: прохождение игл сквозь исследуемый слой вследствие чрезмерного прижатия может привести к получению ошибочных измерений и повреждению самого образца. Кроме высокоточного перемещения требуется также изолировать образец от внешних вибраций. Для этих целей используется специальное виброизоляционное основание на воздушных подушках.

Фотопроводимость и фотоэффект могут значительно влиять на результаты измерений при работе с высокорезистивными полупроводниковыми слоями. Чтобы исключить влияние этих эффектов, образец располагается внутри камеры, которая ослабляет воздействие света и внешних электромагнитных полей. Кроме того, все измерительные кабели экранированы и расположены отдельно от кабелей питания.

В программном обеспечении с русскоязычным интерфейсом оператор создает тестовый рецепт, в котором указывает необходимое количество точек на образце, величину измерительного тока, температуру стола и т. д. Затем установка в автоматическом режиме производит измерения согласно рецепту и рассчитывает удельное и поверхностное сопротивление в соответствии со стандартами ASTM и SEMI. Полученные данные подвергаются статистической обработке. Результат измерений представляется в виде таблицы или как 3D/2D-диаграмма (РИС 12).

Помимо измерения удельного и поверхностного сопротивления установка SF-P1500 имеет опцию встроенного термостатирующего стола. Температурный диапазон может быть подобран в зависимости от решаемой задачи. С помощью этой опции удается замерить не только удельное и поверхностное сопротивление, но и температурный коэффициент сопротивления (ТКС), который позволяет получить дополнительную информацию об образце при различных температурах.

С точки зрения метрологии как ручные, так и полуавтоматические установки являются комплексным средством измерения, которое состоит из источника-измерителя, соединительных кабелей и измерительной головы. Поэтому даже если источник-измеритель внесен в Госреестр СИ, необходимо непосредственно убедиться, что результаты измерений не искажаются наводками в кабелях или неправильным расположением игл на образце. Это возможно с помощью использования стандартных образцов. Желательно, чтобы стандартный образец как можно больше соответствовал по характеристикам реальным образцам, на которых проводятся измерения. По результатам аттестации на каждый образец выдается сертификат, который подтверждает его электрофизические параметры в течении определенного срока. После этого срока образец должен пройти периодическую аттестацию. ООО «Остек-Электро» совместно с российскими предприятиями изготавливает и проводит аттестацию стандартных образцов для установок по измерению удельного и поверхностного сопротивления. При наличии такого образца можно соотнести результаты измерения на установке с аттестационными данными и сделать выводы относительно правильности измерений. Более того, при использовании термостабилизирующего стола возникает дополнительный источник погрешности, связанный с температурой самого образца: так как образец обладает толщиной, то верхний его слой всегда будет иметь отличную от стола температуру. В этом случае используется специальный резистор, изготовленный на теплопроводящей подложке, имитирующей подложку исследуемого образца (РИС 13). Его аттестация проходит в камере тепла-холода, где исключается наличие неравномерного нагрева. После этого терморезистор располагается непосредственно на столе и производятся измерения ТКС с помощью установки. Сопоставив полученные результаты измерения ТКС в камере тепла-холода и на термостатирующем столе, можно оценить влияние градиента температуры по толщине образца и точность установки температуры стола на результаты измерения.

Выводы

Несмотря на кажущуюся простоту четырехзондового метода измерения удельного и поверхностного сопротивлений возникает множество трудностей при его реализации на практике. Мы рассмотрели основные моменты, на которые стоит обратить внимание при выборе оборудования, а также способы оценки погрешности результатов измерения. Однако при работе с определенными материалами могут возникать дополнительные нежелательные затруднения. В этом случае перед выбором конкретной установки рекомендуется провести реальные измерения, на основании которых подобрать обеспечивающую достоверные измерения конфигурацию. Такой подход позволит сэкономить и деньги, и время.

ООО «Остек-Электро» обладает многолетним опытом в поставке программно-аппаратных комплексов для измерения удельного и поверхностного сопротивлений: начиная от собственной разработки и сборки измерительных голов и заканчивая написанием программного обеспечения для автоматических установок. Компания имеет необходимое оборудование в своем демонстрационном зале, что позволяет увидеть и провести замеры на реальных образцах. Высококвалифицированные инженеры помогут подобрать необходимые опции или разработать необходимые узлы непосредственно под конкретные требования. Именно такой подход позволит безошибочно найти лучшее решение, особенно для нестандартных задач.


Закон ома - формулировка простыми словами, определение,

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

  • Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

Сопротивление

R = ρ l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм^2]

ρ — удельное сопротивление [Ом*мм^2/м]

Единица измерения сопротивления — Ом.2.

Знайте!

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

  • Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Таблица удельных сопротивлений различных материалов

Удельное сопротивление

ρ, Ом*мм2/м

Удельное сопротивление

ρ, Ом*мм2/м

Алюминий

0,028

Бронза

0,095 - 0,1

Висмут

1,2

Вольфрам

0,05

Железо

0,1

Золото

0,023

Иридий

0,0474

Константан ( сплав Ni-Cu + Mn)

0,5

Латунь

0,025 - 0,108

Магний

0,045

Манганин (сплав меди марганца и никеля - приборный)

0,43 - 0,51

Медь

0,0175

Молибден

0,059

Нейзильбер (сплав меди цинка и никеля)

0,2

Натрий

0,047

Никелин ( сплав меди и никеля)

0,42

Никель

0,087

Нихром ( сплав никеля хрома железы и марганца)

1,05 - 1,4

Олово

0,12

Платина

0.107

Ртуть

0,94

Свинец

0,22

Серебро

0,015

Сталь

0,103 - 0,137

Титан

0,6

Хромаль

1,3 - 1,5

Цинк

0,054

Чугун

0,5-1,0

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:


В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:


Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:


Источник: сайт компании Ekits

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Не сопротивляйтесь зову сердца и запишите ребенка в современную школу Skysmart. Здесь школьники решают захватывающие задачки по физике и понимают, как это пригодится в жизни.

А еще следят за прогрессом в личном кабинете, задают учителям любые — даже самые неловкие — вопросы и чувствуют себя увереннее на школьных экзаменах и контрольных.2/м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».


У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в Амперах, а подробнее о ней вы можете прочитать в нашей статье 😇

Давайте решим несколько задач на Закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.2/м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Таблица удельных сопротивлений различных материалов

Удельное сопротивление

ρ, Ом*мм2/м

Удельное сопротивление

ρ, Ом*мм2/м

Алюминий

0,028

Бронза

0,095 - 0,1

Висмут

1,2

Вольфрам

0,05

Железо

0,1

Золото

0,023

Иридий

0,0474

Константан ( сплав Ni-Cu + Mn)

0,5

Латунь

0,025 - 0,108

Магний

0,045

Манганин (сплав меди марганца и никеля - приборный)

0,43 - 0,51

Медь

0,0175

Молибден

0,059

Нейзильбер (сплав меди цинка и никеля)

0,2

Натрий

0,047

Никелин ( сплав меди и никеля)

0,42

Никель

0,087

Нихром ( сплав никеля хрома железы и марганца)

1,05 - 1,4

Олово

0,12

Платина

0.107

Ртуть

0,94

Свинец

0,22

Серебро

0,015

Сталь

0,103 - 0,137

Титан

0,6

Хромаль

1,3 - 1,5

Цинк

0,054

Чугун

0,5-1,0

Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится Закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по-порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

  • ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

Закон Ома для полной цепи

I = ε/(R + r)

I — сила тока [A]

ε — ЭДС [В]

R — сопротивление [Ом]

r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

Решим задачу на полную цепь.

Задачка

Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

Решение:

Возьмем закон Ома для полной цепи:

I = ε/(R + r)

Подставим значения:

I = 4/(3+1) = 1 A

Ответ: сила тока в цепи равна 1 А.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.


Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.


Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.


Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом


Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом


Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2.2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Чтобы ребенок научился решать самые сложные задачи и чувствовал себя уверенно на олимпиадах и экзаменах, запишите его на бесплатный вводный урок в Skysmart.

Профессиональные учителя физики не только научат решать задачи и подготовят к экзамену, но и объяснят, как это все устроено: легко, интерактивно и с примерами из реальной жизни современных подростков.

Сопротивление

Подобно тому, как труба тормозит и ограничивает протекающий через нее поток воды, так электрическое сопротивление ограничивает протекающий через него электрический ток. Сопротивление R измеряется в омах (условное обозначение Ом).

 

Единицы

Основными единицами для измерения тока, напряжения и сопротивления являются ампер, вольт и ом. Существуют также производные от этих единиц, большие или меньшие основных во много десятков раз. Соотношения этих единиц приведены в табл. 1.1.

Таблица 1.1

Величина

Обозна­чение

Единицы

Ток

I

ампер, А

Напряжение

V

вольт, В

Сопротивление

R

ом, Ом

миллиампер

мА

= 1/1000 А = 10-3 А

микроампер

мкА

= 1/1000 мА = 10-3 мА, или 1/1000000 А = 10-6 А

милливольт

мВ

= 1/1000 В = 10-3 В

микровольт

мкВ

= 1/1000 мВ = 10-3 мВ, или 1/1000000 В = 10-6 В

киловольт

кВ

= 1000 В = 103 В

килоом

кОм

= 1000 Ом = 103 Ом

мегаом

МОм

= 1000 кОм = 103 кОм, или 1000000 Ом = 106 Ом

 

Закон Ома

Итак, по определению сопротивление ограничивает плектр и чески и ток. Значение тока, протекающего через резистор, зависит как от его сопроти­вления, так и от разности потенциалов, или напряжения, приложенного к резистору (рис. 1.3). Чем больше сопротивление, тем меньше протекаю­щий ток. С другой стороны, чем выше напряжение, тем больше ток. Эта зависимость известна как закон Ома:

 

Ток (амперы) = Напряжение (вольты) / Сопротивление (омы),

или I = V/R

Отсюда

R = V/I и V = IR

 

 

 Полное напряжение
(а)

 

 

Полное напряжение
(б)

 

Рис. 1.4. Два последовательно соединенных резистора (а)
и их эквивалентное сопротивление (б)

 

 

Рис. 1.3. Резистор в схеме

 

 

 

Последовательное соединение резисторов

R1 и R2 – два резистора, соединенных последовательно (рис. 1.4(а)). Весь ток, который протекает через R1, протекает и через R2, т. е. последовательно включенные резисторы имеют общий ток. А вот напряжения на них различны.


Пример 1

Если R1 = 2 Ом, R2 = 6 Ом и I = 3 А, то
Напряжение на R1: V = 6 В и
Напряжение на R2: V = 18 В.

Полное напряжение между точками А и В равно сумме напряжений на резисто¬рах R1 и R2
V = V1 + V2 = 6 B + 18 B = 24 B

 

Общее сопротивление

R1 и R2 можно заменить одним сопротивлением. при котором между точ¬ками А и В будет протекать тот же ток при условии, что напряжение между точками А и В будет прежнее (рис. 1.4(б)). Такое эквивалентное сопротивление называется общим сопротивлением RТ.
Полное сопротивление RТ = R1 + R2.
Определим общее сопротивление для схемы в примере 1:
RТ = R1 + R2 = 2 + 6 = 8 Ом.
При токе I = 3 А определим напряжение
V = IR = 3 * 8 = 24.
Как видим, это то же значение напряжения, которое мы получили сло¬жением V1 и V2.

 

Последовательное соединение трех резисторов

Пример 2

На рисунке 1.5 R1 = 1 кОм, R2 = 4 кОм, R3 = 10 кОм и напряжение батареи
Общее сопротивление RТ = R1 + R2 + R3 = 15 кОм;
Ток I = V / RТ = 1 мА;
Напряжение на R1: V1 = I R1 = 1 В;
Напряжение на R2: V2 = I R2 = 4 В;
Напряжение на R3: V3 = I R3 = 10 В.

 

Делитель напряжения

Как видно из вышеприведенного примера, если два или более резистора соединены последовательно и на них подано напряжение постоянного тока, то на всех резисторах появляются разные напряжения.

 

Рис. 1.5. Последовательное соеди­нение трех резисторов

 

 

Рис. 1.6. Делитель напряжения

 

Такая схема называется делителем напряжения и применяется для получения раз­ных напряжений от одного источника питания. В простейшем делителе напряжения, изображенном на рис. 1.6, R1 = 2 кОм, R2 = 1 кОм и на­пряжение источника питания V = 30 В. Напряжение в точке А равно полному напряжению источника, т. е. 30 В. Напряжение VB в точке В равно напряжению на R2.

Ток в цепи I = 10 мА

Напряжение на R2: V2 = IR2= 10В.

Напряжение в точке В можно вычислить другим способом:

Напряжение на R2: V2 = VR2 / (R1 + R2) = 10 B.

Второй способ применим для любого делителя напряжения, состоящего из двух и более резисторов, включенных последовательно. Напряжение в любой точке схемы можно вычислить с помощью калькулятора за один прием, минуя вычисление тока.

 

Последовательное включение двух резисторов с равными сопротивлениями

Если делитель напряжения состоит из двух одинаковых резисторов, то приложенное напряжение делится на них пополам.

 

Последовательное включение трех резисторов с равными сопротивлениями

Пример 3

На рис. 1.7 изображен делитель напряжения, состоящий из трех одинаковых резисторов сопротивлением в 1 кОм каждый. Вычислить напряжение в точках А и В относительно точки Е.

Общее сопротивление RТ = R1 + R2 + R3 = 3 кОм;

VAE = 10 B;

VBE = 20 B.

Рис. 1.7. Делитель напряжения из трех одинаковых резисторов

 

Рис. 1.8.

 

Видеоурок о понятии сопротивления проводников

 

Добавить комментарий

Измерение удельного сопротивления диэлектриков | Серния Инжиниринг

Удельное сопротивление - свойство диэлектриков

Фундаментальное свойство диэлектриков – это удельное сопротивление. Удельное сопротивление может быть использовано для определения пробоя диэлектрика, тангенса угла потерь, содержание влаги, механической целостности и других важных свойств материала. Для измерения таких больших величин сопротивления диэлектриков существуют специальные измерительные приборы – электрометры и используются они благодаря их способности измерять малые токи.

От чего зависит удельное сопротивление?

Удельное сопротивление диэлектрика - это измерение источника известного напряжения, приложенного к образцу, измерение полученного тока и расчета сопротивления с помощью закона Ома. После измерения сопротивления, удельное сопротивление определяется на основе физических параметров испытуемого образца.

Удельное сопротивление зависит от нескольких факторов. Во-первых, оно зависит от приложенного напряжения. Иногда напряжение может изменяться умышленно, чтобы определить зависимость напряжения диэлектрика. Удельное сопротивление также варьируется в зависимости от продолжительности времени, электрификации. Чем больше напряжение, тем выше сопротивление, потому что материал продолжает заряжаться в геометрической прогрессии. Экологические факторы также влияют на удельное сопротивление диэлектрика. В общем, чем выше влажность, тем ниже сопротивление.

Для получения точных сведений теста нужно, чтобы приложенное напряжение, время электрификации и условия окружающей среды должны быть постоянными.

Поверхностное сопротивление

Поверхностное сопротивление (Ом/квадрат) - способность пропускать электрический ток по поверхности диэлектрика - определяется как электрическое сопротивление поверхности диэлектрического материала. Измерение происходит от электрода к электроду вдоль поверхности образца диэлектрика. Так как длина поверхности фиксированная, то измерение не зависит от физических размеров (т.е. толщины и диаметра) образца диэлектрика. 

Объемное удельное сопротивление

Объемное удельное сопротивление (Ом*см) - способность пропускать электрический ток через его объем - измеряется путем приложения потенциала напряжения на противоположных сторонах образца диэлектрика и измерения результирующего тока через образец.

Объемное удельное сопротивление определяется как электрическое сопротивление с помощью куба из диэлектрического материала.

Если значение выражено в Ом*см, то это измерение электрического сопротивления через 1 сантиметр куба диэлектрического материала. Если выражено в Ом*Дюйм, то это электрическое сопротивление через 1 дюйм куба изоляционного материала.

Приборы для измерения удельного сопротивления диэлектриков

Измерения поверхностного и объемного удельного сопротивления производятся с помощью электрометра Keithley 6517B совместно с испытательной камерой удельного сопротивления Keithley 8009.

Ниже указана ссылка, где Вы можете прочитать подробнее об измерениях удельного сопротивления при помощи электрометра Keithley 6517B >>

и тестовой оснастки (испытательной камеры удельного сопротивления) Keithley 8009 >>>

Консультация специалиста по оборудованию и проведению измерений 

Если Вам необходима консультация специалиста по проведению измерений, свяжитесь с нашими специалистами. 
На все вопросы по приобретению оборудования для измерения удельного сопротивления Вам ответит наш инженер - Баширов Руслан. 
Тел. +7 (495) 204-13-17, e-mail: [email protected]
Руслан Баширов - Технический специалист по электронно-измерительному оборудованию.

Заявка на электрометр

Электрический проводник. Сопротивление, сечение, длина

Электрический проводник. Сопротивление, сечение, длина

Программа КИП и А

Windows ⁄ Android ⁄ macOS ⁄ iOS

В электротехнике иногда приходится рассчитывать параметры проводника в зависимости от вещества, из которого он сделан, сопротивления, сечения, длины и температуры. В программу КИП и А встроен модуль, позволяющий рассчитать:

  • Сопротивление электрического проводника, по его длине, сечению, температуре и вещества, из которого он изготовлен.
  • Длину электрического проводника, по его сечению, температуре и вещества, из которого он изготовлен.
  • Сечение электрического проводника, по заданному току ⁄ мощности.

Электрические свойства проводника в большой степени зависят от вещества из которого он сделан. Важнейшими являются:

  • Удельное сопротивление вещества проводника [ρ], измеряется в Ом·м в международной системе единиц (СИ). Это означает, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом.
    Также довольно часто применяется внесистемная единица Ом·мм²/м.
    1 Ом·мм²/м = 10−6 Ом·м
  • Температурный коэффициент электрического сопротивления [α], характеризует зависимость электрического сопротивления от температуры и измеряется в Кельвин в минус первой степени K−1. Это величина, равная относительному изменению удельного ⁄ электрического сопротивления вещества при изменении температуры на единицу. Расчет удельного сопротивления ρt при произвольной температуре t производится по классической формуле (1):

    ρt = ρ20[1 + α(t - 20)]

    ρt - удельное сопротивление при температуре t
    t - температура
    ρ20 - удельное сопротивление при температуре 20°C
    α - температурный коэффициент сопротивления
    Формула применима в небольшом диапазоне температур: от 0 до 100 °C. Вне этого диапазона или для точных результатов применяют более сложные вычисления.

Ниже приведена таблица наиболее популярных металлов для изготовления проводников, с их удельными сопротивлениями и температурными коэффициентами электрического сопротивления. Данные таблицы взяты из различных источников. Следует обратить внимание на то, что и удельное сопротивление проводника, и его температурный коэффициент электрического сопротивления зависят от чистоты металла, а в случае сплавов (сталь) могут существенно отличаться от марки к марке.

Таблица 1
МеталлУдельное сопротивление [ρ]
при t = 20 °C, Ом·мм²/м
Температурный коэффициент
электрического сопротивления
[α], K−1
Медь0.01750.0043
Алюминий0.02710.0039
Сталь0.1250.006
Серебро0.0160.0041
Золото0.0230.004
Платина0.1070.0039
Магний0.0440.0039
Цинк0.0590.0042
Олово0.120.0044
Вольфрам0.0550.005
Никель0.0870.0065
Никелин0.420.0001
Нихром1.10.0001
Фехраль1.250.0002
Хромаль1.40.0001

Программа КИП и А при вычислении свойств электрического проводника оперирует со следующими входными ⁄ выходными параметрами и их единицами измерения:

  • Вещество, из которого изготовлен проводник (Смотрите таблицу 1)
  • Длина проводника. мм, см, м, км, дюймы, футы, ярды
  • Температура проводника. °C, °F
  • Диаметр проводника. мм
  • Сечение проводника. мм², kcmil
    kcmil - тысяча круговых мил = 0.5067 мм²
  • Сопротивление проводника. Ом, кОм, МОм

Ниже, на рисунках представлены скриншоты модулей программы КИП и А по расчету параметров проводника.


Рисунок 1
Рисунок 2
Рисунок 3

Расчет сопротивления электрического проводника

Сопротивление электрического проводника рассчитываем по формуле:

R = ρ * L / S

  • R - сопротивление электрического проводника
  • ρ - удельное сопротивление проводника
    вычисляется по формуле (1): ρ = ρ20[1 + α(t - 20)]
    • ρ20 - удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
    • t - температура проводника
    • α - температурный коэффициент электрического сопротивления (Таблица 1)
  • L - длина электрического проводника
  • S - сечение электрического проводника

Расчет длины электрического проводника

Длину электрического проводника рассчитываем по формуле:

L = R * S / ρ

  • L - длина электрического проводника
  • R - сопротивление электрического проводника
  • S - сечение электрического проводника
  • ρ - удельное сопротивление проводника
    вычисляется по формуле (1): ρ = ρ20[1 + α(t - 20)]
    • ρ20 - удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
    • t - температура проводника
    • α - температурный коэффициент электрического сопротивления (Таблица 1)

Расчет сечения электрического проводника

Минимальное сечение электрического проводника при допустимых потерях напряжения рассчитываем по формуле:

S = I * ρ * L / ΔU

  • S - сечение электрического проводника
  • I - сила тока в электрической цепи
  • L - длина электрического проводника
    при двухпроводной линии, длина проводника (значение L) удваивается
  • ΔU - допустимые потери напряжения
  • ρ - удельное сопротивление проводника
    вычисляется по формуле (1): ρ = ρ20[1 + α(t - 20)]
    • ρ20 - удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
    • t - температура проводника
    • α - температурный коэффициент электрического сопротивления (Таблица 1)

 

Ом | Единицы измерения Wiki

Ом (символ: Ω) - это единица измерения электрического импеданса в системе СИ или, в вырожденном случае, электрического сопротивления.

Ом - это сопротивление, которое создает разность потенциалов в один вольт, когда через него протекает ток в один ампер. задница

1 Ом = 1 В / А = 1 м 2 • кг • с –3 • A –2

Ом назван в честь Георга Ома, немецкого физика, который обнаружил связь между напряжением и током, выраженную в законе Ома.

R составляет 1 Ом, если В = один вольт и I = 1 ампер

По определению закона Ома, устройство имеет сопротивление 1 Ом, если напряжение в один вольт вызывает ток в один ампер. расход ( R = V / I ). Альтернативно и эквивалентно устройство, которое рассеивает один ватт мощности при протекании через него тока в один ампер, имеет сопротивление в один Ом ( R = P / I 2 ).

С 1990 года для поддержания сопротивления на международном уровне используется квантовый эффект Холла, где для «постоянной Клауса фон Клитцинга» используется обычное значение, установленное 18-й Генеральной конференцией по мерам и весам как R {K-90} = 25812.807 Ом.

Импеданс в виде комплексного числа является обобщением сопротивления. Его действительная часть - сопротивление, а мнимая часть - реактивное сопротивление. Импеданс, сопротивление и реактивное сопротивление измеряются в омах.

Символ ом - заглавная буква греческого алфавита омега (буква) (Ω). Если греческую букву использовать нельзя, вместо нее используется слово Ом . Различные руководства по использованию Международной системы единиц не запрещают в явной форме исключение окончательного «о» некоторых префиксов СИ, хотя в них также нет ничего, что указывало бы на то, что это допустимо.В результате почти с такой же вероятностью можно увидеть «килоом», «килоом» и даже «кило-ом», и то же самое верно для гекто-, микро-, нано-, пико-, фемто-, атто- , зепто- и йокто-. Единственная другая единица СИ, которая страдает от такой орфографической неточности, - это ампер. В конкретном случае ома можно даже увидеть, что приставка «а» теряет эту гласную: отсюда мегом и гигом . Высшие префиксы редко используются с ом. В другом направлении миллиом (или миллом) виден там, где сопротивление кабелей и т. Д., измеряются.

В электронной конструкторской документации используются единицы ом, килоом (10 3 Ом) и мегом (10 6 Ом). На принципиальных схемах килоомы обозначаются сокращенно "К", а мегаомы - "М". Таким образом, 33 кОм будет отображаться как 33 кОм, а 5,1 МОм - как 5,1 МОм. Значения меньше 1 кОм отображаются без какого-либо символа после числа, поэтому 680 Ом будет просто отображаться как 680. Это не вызывает путаницы, потому что числовое значение помещается рядом со схематическим обозначением резистора, и резистор обычно идентифицируется. ссылочным обозначением , R, плюс числовую часть, e.г., R12.

Измерение в омах является обратной величиной в сименсах, единицах измерения электрической проводимости в системе СИ. Обратите внимание, что «siemens» употребляется как в единственном, так и во множественном числе. Величина, обратная ому, также называется mho, от ом до , записанная в обратном направлении.

Что такое закон Ома? | Fluke

Закон Ома - это формула, используемая для расчета взаимосвязи между напряжением, током и сопротивлением в электрической цепи.

Для изучающих электронику закон Ома (E = IR) так же фундаментально важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.

E = I x R

В тексте это означает, что напряжение = ток x сопротивление , или вольт = ампер x ом , или В = A x Ω .

Названный в честь немецкого физика Георга Ома (1789-1854), Закон Ома касается ключевых величин, действующих в цепях:

Количество Закон Ома
символ
Единица измерения
(аббревиатура)
Роль в схемы На случай, если вам интересно:
Напряжение E Вольт (В) Давление, которое запускает поток электронов E = электродвижущая сила (старый термин)
Ток I Ампер, ампер (A) Скорость потока электронов I = интенсивность
Сопротивление R Ом (Ом) Ингибитор потока Ом = греческая буква omega

Если известны два из этих значений, технические специалисты могут перенастроить закон Ома, чтобы вычислить третье.Просто измените пирамиду следующим образом:

Если вы знаете напряжение (E) и ток (I) и хотите узнать сопротивление (R), вытяните X-образную скобку из R в пирамиде и вычислите оставшееся уравнение (см. Первое или дальнее слева, пирамида вверху).

Примечание: Сопротивление не может быть измерено в рабочей цепи, поэтому закон Ома особенно полезен, когда его необходимо вычислить. Вместо того, чтобы отключать цепь для измерения сопротивления, технический специалист может определить R, используя вышеуказанный вариант закона Ома.

Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите знать ток , (I), вытяните I и вычислите оставшиеся два символа (см. Среднюю пирамиду выше).

И если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. Третью или крайнюю правую пирамиду выше).

Попробуйте несколько примеров расчетов на основе простой последовательной схемы, которая включает только один источник напряжения (аккумулятор) и сопротивление (свет).В каждом примере известны два значения. Используйте закон Ома для вычисления третьего.

Пример 1: Напряжение (E) и сопротивление (R) известны.

Какой ток в цепи?

I = E / R = 12 В / 6 Ом = 2 А

Пример 2: Напряжение (E) и ток (I) известны.

Какое сопротивление создает лампа?

R = E / I = 24 В / 6 A = 4 Ом

Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?

Какое напряжение в цепи?

E = I x R = (5A) (8Ω) = 40 В

Когда Ом опубликовал свою формулу в 1827 году, его ключевым выводом было то, что величина электрического тока, протекающего через проводник, прямо пропорциональна приложенному напряжению. в теме.Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через один ом сопротивления.

Что проверять с помощью закона Ома

Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падений напряжения. Если, например, измерительный прибор обнаруживает значение тока, превышающее нормальный, это может означать, что сопротивление уменьшилось или что напряжение увеличилось, вызывая ситуацию высокого напряжения. Это может указывать на проблему с питанием или цепью.

В цепях постоянного тока (dc) измерение тока ниже нормального может означать, что напряжение снизилось или сопротивление цепи увеличилось. Возможные причины повышенного сопротивления - плохие или неплотные соединения, коррозия и / или поврежденные компоненты.

Нагрузки в цепи потребляют электрический ток. Нагрузки могут быть любыми компонентами: небольшими электрическими устройствами, компьютерами, бытовой техникой или большим двигателем. На большинстве этих компонентов (нагрузок) есть паспортная табличка или информационная наклейка.На этих паспортных табличках указаны сертификаты безопасности и несколько номеров.

Технические специалисты обращаются к заводским табличкам на компонентах, чтобы узнать стандартные значения напряжения и тока. Во время тестирования, если технические специалисты обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и, исходя из этого, определить, в чем может заключаться проблема.

Основы науки о схемах

Цепи, как и вся материя, состоят из атомов.Атомы состоят из субатомных частиц:

  • Протоны (с положительным электрическим зарядом)
  • Нейтроны (без заряда)
  • Электроны (с отрицательным зарядом)

Атомы остаются связанными силами притяжения между ядром атома и электронами в его внешняя оболочка. Под воздействием напряжения атомы в цепи начинают преобразовываться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно привлеченные свободные электроны движутся к протонам, создавая поток электронов (ток).Любой материал в цепи, ограничивающий этот поток, считается сопротивлением.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Статьи по теме

Ом (Ом) Преобразование единиц электрического сопротивления

Ом - это единица измерения электрического сопротивления. Используйте один из приведенных ниже калькуляторов преобразования, чтобы преобразовать в другую единицу измерения, или прочтите, чтобы узнать больше об омах.

Калькулятор преобразования Ом

Выберите единицу электрического сопротивления, в которую нужно преобразовать.

Единицы СИ

Единицы измерения сантиметр – грамм – секунда

Ом, определение и использование

Ом - это сопротивление между двумя точками электрического проводника, пропускающего ток в один ампер, когда разность потенциалов составляет один вольт. [1]

Ом - это производная единица измерения электрического сопротивления в системе СИ в метрической системе. Ом можно обозначить как Ом ; например, 1 Ом можно записать как 1 Ом.

Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить сопротивление в омах как выражение, используя ток и напряжение.

R Ом = В В I A

Сопротивление в омах равно разности потенциалов в вольтах, деленной на ток в амперах.

Предпосылки и происхождение

Ом назван в честь немецкого физика Георга Симона Ома, открывшего закон Ома. Ом используется с конца 1800-х годов, хотя его определение несколько раз менялось.

Измерение сопротивления

Ом

Таблица преобразований.
Общие значения сопротивления и эквивалентные измерения электрического сопротивления в британской и метрической системе
Ом наноом микроом миллиом килоом мегаом гигаомс statohms abohms
1 Ом 1000000000 нОм 1000000 мкОм 1000 мОм 0.001 кОм 0,000001 МОм 0,000000001 ГОм 0,0000000000011127 статОм 1,000,000,000 abΩ
2 Ом 2 000 000 000 нОм 2 000 000 мкОм 2000 мОм 0.002 кОм 0,000002 МОм 0,000000002 ГОм 0,0000000000022253 статОм 2,000,000,000 abΩ
3 Ом 3 000 000 000 нОм 3 000 000 мкОм 3000 мОм 0.003 кОм 0,000003 МОм 0,000000003 ГОм 0,00000000000 3338 стат.Ом 3,000,000,000 abΩ
4 Ом 4 000 000 000 нОм 4 000 000 мкОм 4000 мОм 0.004 кОм 0,000004 МОм 0,000000004 ГОм 0,0000000000044506 стат. 4,000,000,000 abΩ
5 Ом 5 000 000 000 нОм 5 000 000 мкОм 5000 мОм 0.005 кОм 0,000005 МОм 0,000000005 ГОм 0,0000000000055633 статОм 5,000,000,000 abΩ
6 Ом 6 000 000 000 нОм 6 000 000 мкОм 6000 мОм 0.006 кОм 0,000006 МОм 0,000000006 ГОм 0,0000000000066759 статОм 6,000,000,000 abΩ
7 Ом 7 000 000 000 нОм 7 000 000 мкОм 7000 мОм 0.007 кОм 0,000007 МОм 0,000000007 ГОм 0,0000000000077886 стат. 7,000,000,000 abΩ
8 Ом 8 000 000 000 нОм 8 000 000 мкОм 8000 мОм 0.008 кОм 0,000008 МОм 0,000000008 ГОм 0,0000000000089012 стат.Ом 8,000,000,000 abΩ
9 Ом 9 000 000 000 нОм 9 000 000 мкОм 9000 мОм 0.009 кОм 0,000009 МОм 0,000000009 ГОм 0,000000000010014 статОм 9,000,000,000 abΩ
10 Ом 10 000 000 000 нОм 10 000 000 мкОм 10000 мОм 0.01 кОм 0,00001 МОм 0,00000001 ГОм 0,000000000011127 статОм 10,000,000,000 abΩ
11 Ом 11000000000 нОм 11 000 000 мкОм 11000 мОм 0.011 кОм 0,000011 МОм 0,000000011 ГОм 0,000000000012239 статОм 11000000000 абОм
12 Ом 12 000 000 000 нОм 12 000 000 мкОм 12000 мОм 0.012 кОм 0,000012 МОм 0,000000012 ГОм 0,000000000013352 стат. 12 000 000 000 abΩ
13 Ом 13000000000 нОм 13 000 000 мкОм 13000 мОм 0.013 кОм 0,000013 МОм 0,000000013 ГОм 0,000000000014464 статОм 13000000000 абОм
14 Ом 14 000 000 000 нОм 14 000 000 мкОм 14000 мОм 0.014 кОм 0,000014 МОм 0,000000014 ГОм 0,000000000015577 статОм 14000000000 абОм
15 Ом 15 000 000 000 нОм 15 000 000 мкОм 15000 мОм 0.015 кОм 0,000015 МОм 0,000000015 ГОм 0,00000000001669 статОм 15 000 000 000 abΩ
16 Ом 16 000 000 000 нОм 16 000 000 мкОм 16000 мОм 0.016 кОм 0,000016 МОм 0,000000016 ГОм 0,000000000017802 стат. 16 000 000 000 abΩ
17 Ом 17000000000 нОм 17 000 000 мкОм 17000 мОм 0.017 кОм 0,000017 МОм 0,000000017 ГОм 0,000000000018915 стат. 17000000000 абОм
18 Ом 18 000 000 000 нОм 18 000 000 мкОм 18000 мОм 0.018 кОм 0,000018 МОм 0,000000018 ГОм 0,000000000020028 стат. 18000000000 abΩ
19 Ом 19 000 000 000 нОм 19 000 000 мкОм 19000 мОм 0.019 кОм 0,000019 МОм 0,000000019 ГОм 0,00000000002114 статОм 19 000 000 000 abΩ
20 Ом 20,000,000,000 нОм 20 000 000 мкОм 20000 мОм 0.02 кОм 0,00002 МОм 0,00000002 ГОм 0,000000000022253 статОм 20,000,000,000 abΩ

Возможно, вам пригодятся и другие наши электрические калькуляторы.

Ссылки

  1. Международное бюро мер и весов, Международная система единиц, 9-е издание, 2019 г., https: // www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf

Часто задаваемые вопросы: Руководство по измерению сопротивления

При измерении сопротивления точность - это все. Это руководство - это то, что мы знаем о достижении максимально возможного качества измерений.


Индекс

  1. Введение в измерение сопротивления
  2. Приложения
  3. Сопротивление
  4. Принципы измерения сопротивления
  5. Методы 4-х контактных соединений
  6. Возможные ошибки измерения
  7. Выбор подходящего инструмента
  8. Примеры применения
  9. Полезные формулы и диаграммы
  10. Узнать больше

1.Введение

Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. При значениях выше 1 ГОм и ниже 1 Ом возникают проблемы с измерением.

Cropico - мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы с характеристиками проводов и кабелей, температурными коэффициентами и различными формулами, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.


2. Приложения

Производители компонентов
Резисторы, катушки индуктивности и дроссели - все должны убедиться, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и контролю качества.

Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.

Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижена; слишком низкое сопротивление означает, что производитель слишком великодушен к диаметру кабеля, используя больше меди, чем ему нужно, что может быть очень дорогостоящим.

Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Они требуют, чтобы кабельные соединения и контакты переключателя имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого соединения кабеля или контакта переключателя вскоре выйдут из строя из-за этого нагревающего эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.

Производители электродвигателей и генераторов
Существует требование определить максимальную температуру, достигаемую при полной нагрузке.Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем устройство работает с полной нагрузкой в ​​течение определенного периода времени, а сопротивление измеряется повторно. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться, что нет коротких или разомкнутых витков цепи и что каждая катушка сбалансирована.

Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей для роботов, чтобы гарантировать, что качество сварки не ухудшается, т. Е. Обжимные соединители выводов аккумулятора, сопротивление детонатора подушки безопасности, сопротивление жгута проводов и качество обжимных соединителей на компонентах.

Производители предохранителей
Для контроля качества и измерения сопротивления соединений на самолетах и ​​военных транспортных средствах необходимо обеспечить, чтобы все оборудование, установленное на самолетах, было электрически подключено к раме, включая оборудование камбуза.Те же требования предъявляются к танкам и другой военной технике. Производители и пользователи больших электрических токов - все должны измерять распределение сопротивления соединений, шин и соединителей с электродами для гальваники.

Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) - для измерения соединений силовых кабелей, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.


3.Сопротивление

Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) - это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его выводах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших основных законов электричества. Он определяет соотношение между тремя фундаментальными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.


4. Принципы измерения сопротивления

Амперметр Метод вольтметра
Этот метод восходит к основам. Если мы используем аккумулятор в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с разумной точностью. Хотя этот метод может обеспечить хорошие результаты измерения, он не является практическим решением повседневных задач измерения.

Двойной мост Кельвина
Мост Кельвина является разновидностью моста Уитстона, который позволяет измерять низкие сопротивления.Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: -

  1. требует ручной балансировки
  2. требуется чувствительный нуль-детектор или гальванометр для определения состояния баланса
  3. Для достижения достаточной чувствительности измерительный ток
  4. должен быть достаточно высоким.

Двойной мост Кельвина обычно заменяется цифровыми омметрами.

Цифровой мультиметр - двухпроводное соединение
Простой цифровой мультиметр можно использовать для более высоких значений сопротивления.Они используют двухпроводной метод измерения и подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.

При измерении сопротивления компонента (Rx) через компонент проходит испытательный ток, и измерительный прибор измеряет напряжение на его выводах. Затем измеритель рассчитывает и отображает результирующее сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих выводах, а не на компоненте.В результате падение напряжения на соединительных выводах также включается в расчет сопротивления. Измерительные провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет учитываться при измерении, и оно может быть таким же высоким или даже выше, чем сопротивление самих выводов.

При измерении больших значений сопротивления эту дополнительную ошибку сопротивления проводов можно игнорировать, но, как вы можете видеть из приведенной ниже таблицы, ошибка становится значительно выше по мере уменьшения измеренного значения и совершенно неприемлемой ниже 10 Ом.

ТАБЛИЦА 1

Примеры возможных ошибок измерения

RX Сопротивление измерительного провода R1 + R2 Сопротивление подключения R3 + R4 Rx, измеренный на клеммах DMM = Rx + R1 + R2 + R3 + R4 Ошибка Ошибка%
1000 Ом 0,04 Ом 0.04 Ом 1000,08 Ом 0,08 Ом 0,008
100 Ом 0,04 Ом 0,04 Ом 100,08 Ом 0,08 Ом 0,08
10 Ом 0,04 Ом 0,04 Ом 10,08 Ом 0,08 Ом 0,8
1 Ом 0,04 Ом 0.04 Ом 1,08 Ом 0,08 Ом 8
100 мОм 0,04 Ом 0,04 Ом 180 мОм 0,08 Ом 80
10 мОм 0,04 Ом 0,04 Ом 90 мОм 0,08 Ом 800
1 мОм 0,04 Ом 0,04 Ом 81 мОм 0.08 Ом 8000
100 мкОм 0,04 Ом 0,04 Ом 80,1 мкОм 0,08 Ом 8000

Для измерения истинного постоянного тока резистивные омметры обычно используют 4-проводное измерение. Постоянный ток проходит через приемник и внутренний эталон омметра. Затем измеряется напряжение на Rx и внутреннем стандарте, и отношение двух показаний используется для расчета сопротивления.При использовании этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две измерительные цепи. Измеряемое напряжение очень мало, и обычно требуется чувствительность измерения мкВ.

В качестве альтернативы используется источник постоянного тока для пропускания тока через Rx. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь, но генератор тока должен быть стабильным при всех условиях измерения.

Четырехпроводное соединение
Четырехпроводный метод измерения (Кельвина) предпочтителен для значений сопротивления ниже 100 Ом, и все миллиомметры и микрометры Seaward используют этот метод. Эти измерения производятся с использованием 4 отдельных проводов. 2 провода несут ток, известный как источник или токоподводы, и пропускают ток через Rx. Два других провода, известные как измерительные или потенциальные выводы, используются для измерения падения напряжения на Rx. Хотя в сенсорных выводах будет течь небольшой ток, им можно пренебречь.Таким образом, падение напряжения на измерительных клеммах омметра практически такое же, как падение напряжения на Rx. Этот метод измерения даст точные и последовательные результаты при измерении сопротивлений ниже 100 Ом.

С точки зрения измерения это лучший тип подключения с 4 отдельными проводами; 2 тока (C и C1) и 2 потенциала (P и P1). Токовые провода всегда должны быть размещены за пределами потенциала, хотя точное размещение не критично.Потенциальные провода должны быть подключены точно в тех точках, между которыми вы хотите измерить. Измеренное значение будет между потенциальными точками. Хотя это дает лучшие результаты измерений, это часто нецелесообразно. Мы живем в несовершенном мире, и иногда приходится идти на небольшие компромиссы. Cropico может предложить ряд практических измерительных решений.


5. Способы 4-х концевого подключения

Зажимы Кельвина
Зажимы Кельвина аналогичны зажимам типа «крокодил» («Аллигатор»), но каждая челюсть изолирована от другой.Токоподвод подключается к одной челюсти, а потенциальный - к другой. Зажимы Кельвина предлагают очень практичное решение для подключения четырех клемм к проводам, шинам, пластинам и т. Д.

Дуплексные шипы
Ручные штыри предлагают еще одно очень практичное решение для соединения, особенно для листового материала, сборных шин и там, где доступ может быть проблемой. Шип состоит из двух подпружиненных шипов, заключенных в рукоятку. Один всплеск - это текущая связь, а другой - потенциальная или чувственная связь.

Составное соединение выводов
Иногда единственное практическое решение для подключения к приемнику - это использование соединительных выводов. Токоподвод вставляется сзади потенциального вывода. Этот метод дает небольшие ошибки, потому что точка измерения будет там, где потенциальный вывод соединяется с токоподводом. Для измерения труднодоступных образцов это может быть лучшим компромиссным решением.

Кабельные зажимы

При измерении кабелей в процессе производства и в целях контроля качества необходимо поддерживать постоянные условия измерения.Длина образца кабеля обычно составляет 1 метр, и для обеспечения точного измерения длины в 1 метр следует использовать кабельный зажим. Cropico предлагает широкий выбор кабельных зажимов, которые подходят для большинства размеров кабелей. Измеряемый кабель помещается в зажим, а концы кабеля зажимаются в токовых клеммах. Точки потенциального соединения обычно имеют форму ножевых контактов, которые находятся на расстоянии ровно 1 метр друг от друга.

Приспособления и приспособления
При измерении других компонентов, таких как резисторы, предохранители, контакты переключателей, заклепки и т. Д.Невозможно переоценить важность использования испытательного приспособления для фиксации компонента. Это гарантирует, что условия измерения, то есть положение измерительных проводов, одинаковы для каждого компонента, что приведет к последовательным, надежным и значимым измерениям. Приспособления часто должны быть специально разработаны, чтобы соответствовать области применения.


6. ​​Возможные ошибки измерения

Существует несколько возможных источников погрешности измерения, связанной с измерениями низкого сопротивления.Наиболее распространенные из них описаны ниже.

Грязные соединения
Как и при любых измерениях, важно убедиться, что подключаемое устройство чистое и не содержит окислов и грязи. Соединения с высоким сопротивлением вызовут ошибки при считывании и могут помешать измерениям. Также следует отметить, что некоторые покрытия и оксиды на материалах являются хорошими изоляторами. Анодирование имеет очень высокое сопротивление и является классическим примером. Обязательно счистите покрытие в точках подключения.Кропикоомметры включают предупреждение об ошибке провода, которое укажет, слишком ли высокое сопротивление соединений.

Слишком высокое сопротивление проводов
Хотя теоретически четырехконтактный метод измерения не зависит от длины проводов, необходимо следить за тем, чтобы сопротивление проводов не было слишком высоким. Потенциальные выводы не являются критическими и обычно могут составлять до 1 кОм, не влияя на точность измерения, но выводы тока имеют решающее значение. Если токоподводы имеют слишком высокое сопротивление, падение напряжения на них приведет к недостаточному напряжению на тестируемом устройстве (тестируемое устройство) для получения разумных показаний.Кропикоомметры проверяют это согласованное напряжение на ИУ и предотвращают выполнение измерения, если оно падает слишком низко. Также имеется предупреждающий дисплей; предотвращение считывания, гарантируя, что не будут выполнены ложные измерения. Если вам нужно использовать длинные измерительные провода, увеличьте диаметр кабелей, чтобы уменьшить их сопротивление.

Шум измерения
Как и при любом типе измерения низкого напряжения, шум может быть проблемой. Шум создается внутри измерительных проводов, когда они находятся под воздействием изменяющегося магнитного поля или когда провода движутся в этом поле.Чтобы свести к минимуму этот эффект, провода следует делать максимально короткими, неподвижными и идеально защищенными. Компания Cropico осознает, что существует множество практических ограничений для достижения этого идеала, и поэтому разработала схемы в своих омметрах, чтобы минимизировать и устранить эти эффекты. Термическая ЭДС Термоэдс в ИУ, вероятно, является самой большой причиной ошибок при измерениях низкого сопротивления. Сначала мы должны понять, что мы подразумеваем под термоэдс и как она генерируется. Термоэдс - это небольшие напряжения, которые генерируются, когда два разнородных металла соединяются вместе, образуя так называемый спай термопары.Термопара будет генерировать ЭДС в зависимости от материалов, используемых в соединении, и разницы температур между горячим и эталонным или холодным спаем.

Этот эффект термопары приведет к ошибкам в измерениях, если не будут приняты меры для компенсации и устранения этих термоэдс. Микрометры и миллиомметры Cropico устраняют этот эффект, предлагая автоматический режим усреднения для измерения, который иногда называют методом переключения постоянного тока или методом усреднения.Измерение выполняется с током, протекающим в прямом направлении, затем второе измерение выполняется с током в обратном направлении. Отображаемое значение является средним из этих двух измерений. Любая термоэдс в измерительной системе будет добавлена ​​к первому измерению и вычтена из второго; отображаемое результирующее среднее значение исключает или отменяет термоэдс из измерения. Этот метод дает наилучшие результаты для резистивных нагрузок, но не подходит для индуктивных образцов, таких как обмотки двигателя или трансформатора.В этих случаях омметр, вероятно, переключит направление тока до того, как индуктивность будет полностью насыщена, и правильное измеренное значение не будет достигнуто.

Измерение сопротивления соединения 2 сборных шин

Неправильный тестовый ток
Всегда следует учитывать влияние измерительного тока на ИУ. Устройства с небольшой массой или изготовленные из материалов с высоким температурным коэффициентом, таких как тонкие жилы медной проволоки, необходимо измерять при минимальном доступном токе, чтобы избежать нагрева.В этих случаях может потребоваться одиночный импульс тока, чтобы вызвать минимальный нагрев. Если ИУ подвергается влиянию термоэдс, тогда подходит метод коммутации тока, описанный ранее. Омметры серии Cropico DO5000 имеют выбираемые токи от 10% до 100% с шагом 1%, а также режим одиночного импульса и, следовательно, могут быть настроены для большинства приложений.

Влияние температуры
Важно знать, что сопротивление большинства материалов зависит от их температуры.В зависимости от требуемой точности измерения может оказаться необходимым контролировать среду, в которой проводятся измерения, таким образом поддерживая постоянную температуру окружающей среды. Это будет иметь место при измерении эталонов сопротивления, которые измеряются в контролируемой лаборатории при 20 ° C или 23 ° C. Для измерений, когда невозможно контролировать температуру окружающей среды, можно использовать функцию ATC (автоматическая температурная компенсация). Датчик температуры, подключенный к омметру, измеряет температуру окружающей среды, и показание сопротивления корректируется до эталонной температуры 20 ° C.Два наиболее распространенных измеряемых материала - это медь и алюминий, и их температурные коэффициенты показаны напротив.

Температурный коэффициент меди (близкая к комнатной температуре) составляет +0,393% на ° C. Это означает, что при повышении температуры на 1 ° C сопротивление увеличится на 0,393%. Алюминий +0,4100% на ° C.


7. Выбор подходящего инструмента

ТАБЛИЦА 2

Типовая таблица технических характеристик прибора

Диапазон Разрешение Измерение тока Точность при 20 ° C ± 5 ° C, 1 год Температурный коэффициент / o C
60 Ом 10 мОм 1 мА ± (0.15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
6 Ом 1 мОм 10 мА ± (0,15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
600 мОм 100 мкОм 100 мА ± (0,15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
60 мОм 10 мкОм 1A ± (0.15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
6 мОм 1 мкОм 10A ± (0,2% показания + 0,01% полной шкалы) 40 ppm Rdg + 30 ppm FS
600 мкОм 0,1 мкОм 10A ± (0,2% показания + 0,01% полной шкалы) 40 ppm Rdg + 250 ppm FS

Диапазон:
Максимально возможное значение при этой настройке

Разрешение:
Наименьшее число (цифра), отображаемое для этого диапазона

Измеряемый ток:
Номинальный ток, используемый этим диапазоном

Точность:
Погрешность измерения в диапазоне температур окружающей среды от 15 до 25 ° C

Температурный коэффициент:
Дополнительная возможная погрешность при температуре ниже 15 ° C и выше 25 ° C

При выборе лучшего инструмента для вашего применения следует учитывать следующее: -

Точность лучше описать как неопределенность измерения, которая представляет собой близость согласия между результатом измеренного значения и истинным значением.Обычно он выражается в двух частях, то есть в процентах от показаний плюс процент от полной шкалы. Заявление о точности должно включать применимый температурный диапазон, а также время, в течение которого точность будет оставаться в указанных пределах. Предупреждение: некоторые производители дают очень высокую точность, но это действительно только в течение короткого периода 30 или 90 дней. Все омметры Cropico указывают точность на полный год.

Разрешение - это наименьшее приращение, которое будет отображать измерительный прибор.Следует отметить, что для достижения высокой точности измерения необходимо достаточно высокое разрешение, но высокое разрешение само по себе не означает, что измерение имеет высокую точность.

Пример: Для измерения 1 Ом с точностью 0,01% (± 0,0001) требуется, чтобы измерение отображалось с минимальным разрешением 100 мкОм (1.0001 Ом).

Измеренное значение также может отображаться с очень высоким разрешением, но низкой точностью, т.е. 1 Ом измеряется с точностью до 1%, но разрешение 100 мкОм будет отображаться как 1.0001 Ом. Единственными значимыми цифрами будут 1.0100, последние две цифры показывают только колебания измеренных значений. Эти колебания могут вводить в заблуждение и указывать на любую нестабильность тестируемого устройства. Следует выбрать подходящее разрешение, чтобы обеспечить комфортное чтение с дисплея.

Измерение Длина шкалы
Цифровые измерительные приборы отображают измеренное значение с помощью дисплеев с максимальным счетом, часто 1999 (иногда обозначается цифрой 3 Ом). Это означает, что максимальное отображаемое значение - 1999 год, а наименьшее разрешение - 1 цифра в 1999 году.При измерении 1 Ом на дисплее отобразится 1.000, разрешение 0,001 мОм. Если мы хотим измерить 2 Ом, нам нужно будет выбрать более высокий диапазон 19,99 Ом полной шкалы, и значение будет отображаться как 2,00 Ом, разрешение 0,01 Ом. Таким образом, вы можете видеть, что желательно иметь большую длину шкалы, чем традиционная шкала 1999 года. Кропикоомметры предлагают длину шкалы до 6000 отсчетов, что дает отображаемое значение 2,000 с разрешением 0,001 Ом.

Выбор диапазона
Выбор диапазона может быть ручным или автоматическим.Хотя автоматический выбор диапазона может быть очень полезным, когда значение Rx неизвестно, измерение занимает больше времени, поскольку прибору необходимо найти правильный диапазон. Для измерений на нескольких одинаковых образцах лучше выбирать диапазон вручную. В дополнение к этому, различные диапазоны инструментов будут измерять с разными токами, которые могут не подходить для тестируемого устройства. При измерении индуктивных образцов, таких как двигатели или трансформаторы, измеренное значение увеличивается по мере насыщения индуктивности до достижения конечного значения.В этих приложениях не следует использовать автоматический выбор диапазона, поскольку при изменении диапазонов измерительный ток прерывается, и его величина также может быть изменена, а окончательное устойчивое показание вряд ли будет достигнуто.

Длина шкалы 1,999 19,99 2.000 20,00 3.000 30,00 4.000 40,000
Показание дисплея
Измеренные значения 1.000 1.000 1.000 1.000 1.000
2.000 Диапазон 2,00 2.000 2.000 2.000
3.000 Диапазон 3.00 Диапазон 3,00 3.000 3.000
4.000 Диапазон 4,00 Диапазон 4,00 Диапазон 4,00 4.000

Температурный коэффициент
Температурный коэффициент измерительного прибора важен, поскольку он может существенно повлиять на точность измерения.Измерительные приборы обычно калибруются при температуре окружающей среды 20 или 23 °. Температурный коэффициент показывает, как на точность измерения влияют колебания температуры окружающей среды.

Величина и режим тока
Выбор прибора с соответствующим измерительным током для конкретного применения очень важен. Например, если нужно измерить тонкую проволоку, сильный измерительный ток нагреет проволоку и изменит ее значение сопротивления. Медный провод имеет температурный коэффициент 4% на ° C при температуре окружающей среды, поэтому для провода с сопротивлением 1 Ом повышение температуры на 10 ° C увеличит его значение до 10 x 0.004 = 0,04 Ом. Однако в некоторых приложениях используются более высокие токи.

Режим измерения тока также может иметь значение. Опять же, при измерении тонких проводов короткий измерительный импульс тока, а не постоянный ток, минимизирует эффект нагрева. Переключаемый режим измерения постоянного тока также может быть подходящим для устранения ошибок термоэдс, но для измерения обмоток двигателя или трансформаторов импульс тока или коммутируемый постоянный ток не подходят. Постоянный ток необходим для насыщения индуктивности и получения правильного измеренного значения.Автоматическая температурная компенсация При измерении материалов с высоким температурным коэффициентом, таких как медь, значение сопротивления будет увеличиваться с температурой. Измерения, проведенные при температуре окружающей среды 20 ° C, будут на 0,4% ниже, чем измерения при 30 ° C. Это может ввести в заблуждение при попытке сравнить значения в целях контроля качества. Чтобы избежать этого, некоторые омметры снабжены автоматической температурной компенсацией (ATC). Температура окружающей среды измеряется датчиком температуры, а отображаемое значение сопротивления корректируется с учетом изменений температуры, принимая показания до 20 ° C.

Скорость измерения
Скорость измерения обычно не слишком важна, и большинство омметров будут выполнять измерения примерно со скоростью 1 показание в секунду, но в автоматизированных процессах, таких как выбор компонентов и тестирование производственной линии, высокая скорость измерения, до 50 измерений в секунду , может быть желательно. Конечно, при измерении на этих скоростях омметром необходимо дистанционно управлять с помощью компьютера или интерфейсов ПЛК.

Удаленные подключения
Для удаленного подключения может потребоваться интерфейс IEEE-488, RS232 или PLC.Интерфейс IEEE-488 - это параллельный порт для передачи 8 бит (1 байт) информации за один раз по 8 проводам. Его скорость передачи выше, чем у RS232, но длина соединительного кабеля ограничена до 20 метров.

Интерфейс RS232 - это последовательный порт для передачи данных в последовательном битовом формате. RS232 имеет более низкую скорость передачи, чем IEEE-488, и требует всего 3 линий для передачи данных, приема данных и заземления сигнала.

Интерфейс ПЛК позволяет осуществлять базовое дистанционное управление микрометром с помощью программируемого логического контроллера или аналогичного устройства.

Окружающая среда

Следует учитывать тип окружающей среды, в которой будет использоваться омметр. Нужен ли портативный блок? Должна ли конструкция быть достаточно прочной, чтобы выдерживать условия строительной площадки? В каком диапазоне температуры и влажности он должен работать?

Ознакомьтесь с ассортиментом Милломметров и Микрометров для получения дополнительной информации о нашей продукции.

Загрузите полное руководство в формате PDF, которое содержит все главы:

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ СКАЧАТЬ ПОЛНОЕ РУКОВОДСТВО

Основные методы точного измерения сопротивления

Уменьшите ошибки измерения в вашем приложении

В CAS DataLoggers мы часто получаем звонки от пользователей, работающих в приложениях для измерения сопротивления, например, использующих струны для измерения смещения, измерения термисторов или RTD для измерения температуры, измерения сопротивления на тестовых образцах и многих других приложений.Некоторые из наших абонентов с удивлением узнают, что существует множество различных методов, которые можно использовать для получения точных измерений сопротивления, и что выбор метода зависит от ожидаемого значения. Мы также разговариваем с абонентами, которые сообщают о странных показаниях, например: «С помощью регистратора, который я использую, я вижу числа, которые не имеют смысла». Обычно это решается осознанием того, что измерения сопротивления охватывают множество различных диапазонов, что требует использования различных методов измерения.

В этом техническом документе мы рассмотрим несколько простых способов уменьшить погрешность и повысить точность в диапазонах низкого, среднего и высокого сопротивления.

Используйте правильную технику измерения для вашего диапазона

Измерения сопротивления представлены в единицах Ом и (Ом). 1 Ом представляет собой сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, при условии, что проводник не создает электродвижущей силы (напряжения) на своем проводе. собственный.

Сопротивление - одно из немногих значений в электронике, которое в обычных приложениях может варьироваться в таком большом диапазоне (более 12 порядков величины), и многие пользователи не принимают это во внимание при сборе данных. Для большинства приложений значения менее 100 Ом можно рассматривать как измерение сопротивления в низком диапазоне, а от 100 Ом до миллиона Ом (мегом) - как промежуточный диапазон. Диапазоны высокого сопротивления выходят за пределы мегомного диапазона, и у нас было несколько звонков от пользователей, измеряющих больше в гигаомном диапазоне (1 миллиард Ом).Когда звонящие спрашивают нас: «Мне нужно измерить сопротивление - какой регистратор вы порекомендуете?» наши специалисты по приложениям помогают им сузить круг вопросов, задавая вопрос: «Какое значение ожидаемого сопротивления вы пытаетесь измерить?»

Перед тем, как приступить к работе с приложением, важно учесть, что каждый из этих диапазонов требует использования различных методов измерения. На самом деле не существует единой техники для измерения всех значений сопротивления, и вы можете легко получить неточные результаты, используя неправильную технику для вашего диапазона.Например, без согласования вашей техники с вашим диапазоном ваши данные могут быть только в пределах 5% от фактического значения.

В некоторых приложениях это не является серьезной проблемой, но в других случаях, например при измерении температуры с помощью термистора, ваши измерения должны быть более точными. Например, при измерении на уровне миллиомов или при измерении значений в гига-омах качество соединений и кабелей может иметь большое значение для того, насколько точными будут ваши показания. Из этих трех измерений измерение среднего диапазона является наиболее простым, в то время как измерения очень низкого и высокого диапазона создают проблемы, которые вы увидите в виде ошибок измерения и снижения точности.

Закон Ома

Основа измерения сопротивления, Закон Ома гласит, что отношение разности потенциалов (V) на концах проводника сопротивления (R) к току (I), протекающему в этом проводнике, будет постоянным при условии, что температура также останется постоянный. Для большинства приложений вы можете использовать основное уравнение закона Ома: I = V / R, где I - ток через проводник (выраженный в амперах), V - разность потенциалов, измеренная на проводнике (выраженная в вольтах), а R - сопротивление проводника (здесь R - постоянная величина, выраженная в омах).

По закону Ома легко найти любое из этих значений. Например, также верно, что сопротивление равно напряжению, разделенному на ток (R = V / I), и что напряжение = ток, умноженный на сопротивление (V = I * R). Таким образом, вы можете получить любую отсутствующую переменную, если вам известны две другие.

Измерение низкого сопротивления

Во-первых, давайте рассмотрим кабели, которые соединяют измеряемое устройство с прибором: если вы измеряете сопротивление рядом с источником, вы получите другие показания, чем при измерении с датчика, расположенного на расстоянии 200 футов. .В качестве примера предположим, что у нас есть медный RTD на 10 Ом, который мы хотим измерить; мы должны как-то подключиться к нему, поэтому мы подключаем пару проводов к RTD. Но и этот провод не идеальный - в нем тоже есть сопротивление, как и в любом другом куске провода. Если это сопротивление составляет 1 Ом на 100 футов (типично для провода калибра 20), и у нас есть 200 футов кабеля, идущего к устройству и возвращающегося (всего 400 футов), мы можем ожидать увидеть значение сопротивления 10. Ом, но мы увидим значение 14 Ом.

При измерении малых сопротивлений распространенным методом является создание известного тока с последующим измерением напряжения на тестируемом устройстве (DUT– см. Рисунок 1 ниже ). Это соответствует закону Ома, поскольку вы используете ток и напряжение для определения сопротивления. Предположим, у вас есть прецизионный источник тока (например, 2 миллиампер или 200 микроампер), и у вас есть высокоточный вольтметр.

Рис. 1. Форсирование значащего тока

Вы проводите 2 провода по одному с каждой стороны резистора, а затем пропускаете ток через оба набора проводов.Однако это создает ошибку в ваших измерениях, потому что напряжение, измеренное на концах проводов, не совпадает с напряжением на резисторе, так как оно также включает падение напряжения на проводах между измерителем и тестируемым устройством, вызванное током. протекает по этим проводам. Следовательно, в этом случае вы можете уменьшить ошибку, выполнив 4-проводное измерение, при котором вы используете один набор проводов для передачи тока, а второй набор проводов для измерения напряжения, которое вы видите на резисторе.Этот метод обеспечивает гораздо более точный результат за счет устранения дополнительного падения напряжения, вызванного током, протекающим по проводам, при измерении напряжения на ИУ. В этом случае предполагается, что вольтметр потребляет незначительный ток, что обычно имеет место в большинстве регистраторов данных.

Для измерения низкого сопротивления можно использовать альтернативу 4-проводному измерению, исключив один из проводников и выполнив 3-проводное измерение. В этом методе вы измеряете два напряжения: напряжение на резисторе, а также напряжение на проводнике, по которому проходит испытательный ток.После этих измерений вы можете определить ошибку из-за падения напряжения в одном из проводов. Когда вы определили ошибку, просто удвойте ее и вычтите из результатов измерений, чтобы получить более точные показания. Многие регистраторы данных могут выполнять трехпроводные измерения, включая регистраторы данных DataTaker и серию Grant Squirrel, упомянутую ранее. При трехпроводном измерении вы экономите кусок провода, но эта настройка предполагает, что падение напряжения на двух выводах одинаково - если это не всегда так и падение напряжения неравномерно, вы столкнетесь с ошибками при использовании 3-х проводная техника.

Измерение высокого сопротивления

В то время как наиболее распространенные измерения сопротивления находятся в диапазоне от 0 до 100 000 Ом, специализированные устройства, такие как датчики проводимости или падающие образцы материалов, могут иметь очень высокое сопротивление, поэтому вам, возможно, придется использовать другой метод при высоких сопротивлениях. Для этих измерений вы можете использовать надежный метод, противоположный приведенному выше для измерения при низких сопротивлениях - здесь мы выставляем напряжение и измеряем ток для расчета сопротивления (опять же в соответствии с законом Ома).Есть несколько способов сделать это.

Первый метод требует высокоточного прибора, предназначенного для измерения очень малых токов. Если у вас есть источник напряжения и измеритель тока с незначительным сопротивлением, вы можете просто пропустить 5 вольт через измеритель, подключенный последовательно с тестируемым устройством, и измерить ток. Например, если значение сопротивления составляет миллион Ом (1 МОм), ток здесь достаточно мал и составляет 5 мкА. Альтернативный метод измерения больших сопротивлений заключается в использовании источника напряжения, подключенного последовательно с известным испытательным сопротивлением, для возбуждения неизвестного сопротивления, а затем для измерения напряжения на испытательном сопротивлении (см. Рисунок 2 ниже ).Зная значение источника испытательного напряжения, известное сопротивление и напряжение на этом сопротивлении - плюс закон Ома и небольшая алгебра - позволяет вычислить значение неизвестного сопротивления:

Рисунок 2. Источник напряжения через известный резистор

Для того, чтобы этот метод работал хорошо, значение испытательного сопротивления должно быть аналогично значению неизвестного сопротивления (в пределах от 1 до 2 порядков). Здесь опять же, ваш вольтметр должен иметь хорошую точность, иначе он внесет ошибку в ваши измерения.Кроме того, вольтметр, используемый для измерения Vtest, не должен нагружать цепь, то есть его входное сопротивление должно быть в 100-1000 раз больше, чем Rtest.

Одна проблема при измерении диапазонов высокого сопротивления заключается в том, что даже с изолированными кабелями нет идеальной изоляции - всегда есть ток утечки. Например, между центром провода и всем, к чему он прикасается, включая другой кабель, на самом деле может быть сопротивление 10 мегаом (10 миллионов Ом), поэтому утечка из кабелей может отрицательно повлиять на ваши измерения, добавляя пути паразитного тока.

Чтобы облегчить это, вы можете использовать технику, называемую защитой, с использованием экранированного кабеля вместе с отдельным источником напряжения, идущим к экранам и вокруг кабелей. Вы будете использовать отдельный источник напряжения, чтобы подать такое же напряжение на экран. Таким образом, даже несмотря на то, что между центральным проводником и экраном существует сопротивление, потому что они поддерживаются при одинаковом напряжении, нет тока утечки, потребляемого из измерительной цепи, потому что вы использовали отдельный источник напряжения для его «защиты».Этот метод работает хорошо, но для его работы требуется измеритель, обеспечивающий защитное напряжение или второй источник напряжения.

Также имейте в виду, что измерения высокого сопротивления могут потребовать добавления задержек установления, чтобы получить точные и воспроизводимые результаты. Это связано с тем, что задействованные токи могут быть небольшими, и любая емкость, связанная с кабелями или тестируемым устройством, может вызвать динамическое поведение постоянной времени RC. По сути, напряжение на тестируемом устройстве не может измениться мгновенно, а будет изменяться в зависимости от произведения сопротивления устройства и емкости кабеля и устройства.Для 100-мегомного устройства с 1 нанофарадой связанной емкости постоянная времени будет 108 x 10-9 = 10-1 или 0,1 секунды. Чтобы результат измерения достиг 99,5% от его окончательного значения, требуются 5-кратные постоянные времени или 0,5 секунды!

Опять же, защита может помочь, поскольку устраняет влияние емкости в кабеле, но все же необходимо учитывать стабилизацию, связанную с емкостью устройства. Обычно появляются ошибки настройки и значения сопротивления меньше ожидаемых или меняются во время повторных измерений.Для устранения этих проблем мы обычно вводим задержки между приложением напряжения источника и измерением, а затем увеличиваем задержки до тех пор, пока показания не останутся неизменными, поскольку добавляется дополнительная задержка.

Измерения промежуточного сопротивления

Измерение промежуточного сопротивления обычно составляет от нескольких сотен Ом, когда сопротивление соединений и кабелей больше не является проблемой, до 100000 Ом. В пределах этих диапазонов методика, которую вы будете использовать, во многом зависит от того, какое измерительное устройство вы используете - нет одного метода, который обязательно лучше, чем другой.К счастью, в этом диапазоне ошибки встречаются реже, и измерения более прямые. В более дешевых регистраторах может использоваться источник напряжения с последовательным резистором, поскольку оборудование проще, в то время как более дорогие устройства могут использовать источник тока и вольтметр.

Сводка

При сопротивлении менее 10 000 Ом вы можете использовать описанные выше методы для диапазонов низкого сопротивления - когда вы доберетесь до 100 Ом и ниже, оно вам обязательно понадобится для получения точных показаний. Аналогичным образом, выше 100000 Ом лучше использовать метод силового напряжения, описанный выше для диапазонов высокого сопротивления.По сути, при измерении сопротивления вам нужно будет распознавать, когда вы попадаете в высокие и низкие диапазоны, и применять соответствующие методы, и это устранит существенные ошибки и даст вам гораздо более высокую точность измеренных значений.

Для получения дополнительной информации об измерениях сопротивления или регистраторах данных сопротивления или для поиска идеального решения для конкретных задач, свяжитесь со специалистом CAS Data Logger Applications Specialist по телефону (800) 956-4437 или запросите дополнительную информацию.

Единица сопротивления Ом - PTB.de

Единицей измерения электрического сопротивления при постоянном токе является ом (сокращенно Ω), названный в честь немецкого физика и математика Георга Симона Ома (1789-1854). Согласно закону Ома сопротивление R представляет собой отношение напряжения U на проводнике и тока I , протекающего по нему:

Отсюда следует: 1 Ом = 1 В / А. Это определение СИ-ома действительно не может быть реализовано.


Благодаря исключительной воспроизводимости квантового сопротивления Холла, его безупречной долговременной стабильности и всемирной однородности, сопротивление может быть определено как некоторая часть постоянной фон-Клитцинга. Уже с 1990 года, на основании рекомендации CIPM ( Comité International des Poids et Mesures ), сравнения сопротивления и калибровки во всем мире должны были относиться к фиксированному числовому значению постоянной фон-Клитцинга, R К-90 = 25812.807 Ом 90 . Введение этого условного эталонного значения для постоянной фон Клитцинга имело значительные практические преимущества с точки зрения сохранения и распространения единицы Ом. В то же время, однако, это также означало, что условная единица Ω 90 не соответствовала действующей в то время Международной системе единиц (СИ). SI-реализация ома была возможна, например, с конденсатором Томпсона-Лэмпарда (расчетная емкость; из-за сложности соответствующей измерительной установки достижимая точность была ниже воспроизводимости квантовых резисторов Холла.


20 мая 2019 года вступила в силу редакция SI, согласно которой значение SI для постоянной фон Клитцинга R K = h / e 2 может быть получено с использованием точно определенные значения для элементарного заряда e и постоянной Планка h . Это позволило реализовать сопротивление за счет использования квантовых резисторов Холла в СИ.


В PTB единица сопротивления реализована из квантового холловского сопротивления.Для этого в нашей рабочей группе используется криостат со сверхпроводящим соленоидом. Чтобы гарантировать, что сопротивление Холла принимает точно рассчитанное значение, должны быть выполнены некоторые международно признанные критерии [Delahaye, Jeckelmann, Metrologia 40, 217-223 (2003)]. Во-первых, продольное сопротивление должно быть нулевым, потому что исчезающее продольное сопротивление является мерой для полного квантования (в противном случае необходимо применить поправку). Кроме того, все контактные сопротивления квантового устройства Холла должны быть достаточно малыми.Перед каждой калибровкой эти критерии необходимо проверять экспериментально. Кроме того, значения сопротивления, откалиброванные в PTB и других национальных метрологических институтах, необходимо время от времени сравнивать, чтобы гарантировать всемирную однородность единицы сопротивления в омах.


Для распространения блока оказалось целесообразным калибровать обычный резистор 100 Ом с известным поведением дрейфа примерно два раза в год, используя криогенный компаратор тока. С этим рабочим резистором 100 Ом калибровка для клиентов PTB выполняется Рабочей группой 2.11. Только в случае специальных калибровок, требующих относительной погрешности 10 -9 (или меньше), резистор, который нужно калибровать, напрямую измеряется относительно квантового сопротивления Холла (то есть без промежуточной ступени с резистором 100 Ом). Примером может служить прецизионное измерение графена в рамках исследовательского проекта.

Комплект резисторов 1 Ом от "Leeds & Northrup Co." как раньше использовалось для сохранения ома.

Back to Home AG 2.61

Основные операции, уход и обслуживание, а также расширенное устранение неисправностей для квалифицированных специалистов

Вы изучили измерения напряжения и тока, но вы обнаружите, что измерения сопротивления разными способами. Сопротивление измеряется при выключенном питании цепи. Омметр посылает собственный ток через неизвестное сопротивление, а затем измеряет этот ток, чтобы обеспечить считывание значения сопротивления.

Роль батареи

Омметр, несмотря на то, что он считывает сопротивление, по сути остается устройством для измерения тока.Омметр создается из измерителя постоянного тока путем добавления группы резисторов (называемых резисторами умножения , ) и внутренней батареи. Батарея обеспечивает ток, который в конечном итоге измеряется измерителем. По этой причине в омметр используется только в обесточенных цепях .

В процессе измерения сопротивления щупы вставляются в гнезда измерителя. Затем провода присоединяются к концам любого сопротивления, которое необходимо измерить. Поскольку ток может протекать в любом направлении через чистое сопротивление, полярность подключения выводов измерителя не требуется.Батарея измерителя пропускает ток через неизвестное сопротивление, внутренние резисторы измерителя и измеритель тока.

Омметр спроектирован так, что он показывает 0 Ом, когда измерительные провода соединены вместе (нулевое внешнее сопротивление). Измеритель показывает бесконечное (I) сопротивление или превышение предельного (OL) сопротивления, когда провода остаются открытыми. Когда между выводами помещается сопротивление, показания увеличиваются в зависимости от того, сколько тока это сопротивление позволяет протекать.

Для экономии заряда батареи никогда не следует оставлять омметр включенным для измерения сопротивления, когда он не используется.Поскольку ток, доступный от измерителя, зависит от состояния заряда батареи, для запуска цифровой мультиметр должен быть установлен на ноль. Для этого может потребоваться не более, чем проверка соприкосновения двух щупов друг с другом.

На рис. 8 показано, как измеряются сопротивления.

Примечание:
1000 Ом = 1 кОм
1000000 Ом = 1 МОм

Рисунок 8: Использование цифрового мультиметра для измерения сопротивления

  1. Отключить питание цепи.
  2. Подключите черный измерительный провод к общему входному разъему.Подключите красный или желтый провод к входному гнезду сопротивления.
  3. Выберите настройку сопротивления.
  4. Коснитесь наконечниками щупов компонента или участка цепи.
  5. Просмотрите показания и запишите единицы измерения, ом, кило или мегом.

Процедуры измерения сопротивления

Для измерения сопротивления выполните следующие действия:

  1. Перед началом испытаний технический специалист всегда должен знать, каких результатов следует ожидать, исходя из технических характеристик производителя, номинальных значений паспортной таблички, закона Ома и закона Кирхгофа.Слепое тестирование опасно и контрпродуктивно.
  2. Выключите питание и убедитесь, что измеряемая цепь «обесточена», используя метод тестирования T3 и процедуры измерения напряжения. Обязательно используйте СИЗ, поскольку мы всегда предполагаем, что цепь находится под напряжением, пока не будет доказано обратное
  3. Удалите или изолируйте проверяемый компонент.
  4. Вставьте измерительные щупы в соответствующие гнезда для пробников, Общий и Ω. Обратите внимание, что используемые гнезда могут быть теми же, что и для измерения вольт.
  5. Выберите функцию измерения сопротивления, повернув функциональный переключатель в положение измерения сопротивления.Начните с самого низкого значения.
  6. Соедините щупы вместе, чтобы проверить провода, соединения и срок службы батареи. Измеритель должен показывать нулевое или очень маленькое сопротивление тестовых проводов. Когда провода разнесены, на измерителе должен отображаться OL или I, в зависимости от производителя.
  7. Подключите концы щупов к разрыву в компоненте или участке цепи, для которого вы хотите определить сопротивление. Если вы получили OL (превышение предела), переключитесь на следующую максимальную настройку.
  8. Просмотрите показания на дисплее. Обязательно укажите единицу измерения.
  9. Выключите глюкометр после завершения тестирования, чтобы продлить срок службы батареи.

Видео: Измерение сопротивления

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *