Онлайн калькулятор индуктивного сопротивления: Калькулятор индуктивного сопротивления катушки

Содержание

Формула электрического сопротивления от А до Я

В моей практике много случаев, когда электрик тратит лишнее время на правильный подбор деталей при ремонте оборудования. А решить эту проблему довольно просто: достаточно представлять принцип его работы.

Формула электрического сопротивления, выраженная разными способами для цепей постоянного или переменного тока, позволяет правильно выполнить расчет под исходные данные действующей схемы.

При этом соотношение проходящей через нее мощности, создающей нагрев, должно соответствовать условиям теплоотвода. Выполняя эти требования, вы будете работать быстрее, повысите свой авторитет в глазах окружающих.

Для начинающих электриков я подготовил небольшой теоретический материал про физические процессы, происходящие с электричеством.

Вы же можете сразу перейти к вычислениям, щелкнув по второму подзаголовку из содержания по формулам или третьему через онлайн калькулятор удельного сопротивления.

Содержание статьи

Что надо знать про электрические процессы

Если говорить простым языком, то под сопротивлением принято понимать свойство среды, по которой протекает электрический ток, снижающее его величину.

Так работают провода и изоляторы высоковольтной линии электропередач, показанные на верхней картинке, да и любое вещество.

Изоляторы обладают очень высокими диэлектрическими свойствами, изолируют высоковольтное напряжение, присутствующее на токоведущих шинах от контура земли. Это их основное назначение.

Провода же должны максимально эффективно передавать транслируемые по ним мощности. Их создают так, чтобы они обладали минимальным электрическим сопротивлением, работали с наименьшими потерями энергии на нагрев.

В этом случае передача электричества от источника напряжения к потребителю на любое расстояние будет проходить эффективно.

Приведу для примера картинку из предыдущей моей статьи.

Ее, как и верхнюю, можно представить таким обобщенным видом.

На внешнем участке цепи токоведущие жилы отделены друг от друга воздушной средой и слоем изоляции с высокими диэлектрическими свойствами.

Хорошей проводимостью обладают токоведущие жилы. Подключенный к ним электрический прибор функционирует оптимально.

Как работает резистор

Ток в металлах проходит под действием приложенного напряжения за счет направленного движения электронов. При этом они соударяются, встречаются с положительно и отрицательно заряженными ионами.

Такие столкновения повышают температуру среды, уменьшают силу тока.

За направление электрического тока в электротехнике принято движение заряженных частиц от плюса к минусу. Электроны же движутся от катода к аноду.

Электрическое сопротивление металла зависит от его структуры и геометрических размеров.

Аналогичные процессы протекают в любой другой токопроводящей среде, включая газы или жидкости.

Какие существуют виды сопротивлений

В домашних электрических приборах используется большое разнообразие резисторов с постоянной или регулируемой величиной.

Они ограничивают величину тока всех бытовых устройств, а в наиболее сложных модулях их количество может достигать тысячи или более. Резисторы работают практически во всех схемах.

При использовании в цепях переменного тока они обладают активным сопротивлением, а конденсаторы и дроссели — реактивным.

Причем, на конденсаторах создается емкостное сопротивление, а у дросселей — индуктивное.

Реактивная составляющая на конденсаторах и дросселях сильно зависит от частоты электромагнитного колебания.

2 Шутки электриков о токах через конденсатор и дроссель

Их я привожу потому, что они позволяют запомнить характер прохождения тока через реактивные элементы.

Шутка №1 о емкости

В домашней сети и внутри многих приборов работают переменный и постоянный токи. Они по-разному ведут себя, если встречают на своем пути конденсатор.

Поскольку он состоит из двух токопроводящих пластин, разделенных слоем диэлектрика, то его обозначают на схемах двумя жирными черточками, расположенными параллельно. К их серединам подключены провода, нарисованные перпендикулярными линиями.

Переменный ток имеет форму гармоничной синусоиды, состоящей из двух симметричных половинок.

Такая гармоника движется от начала координат, встречает на своем пути обкладки, переваливается через них и, скатившись, начинает обгонять приложенное напряжение.

Постоянный ток таким свойством не обладает. Его тупой конец просто упирается в обкладку и останавливается. Пройти через конденсатор он не может. Это для него непреодолимое препятствие.

Шутка №2 о дросселе

Индуктивность выполнена витками изолированного провода. Любой ток проходит по нему. Но синусоида своими волнами путается в витках катушки, начинает отставать от напряжения.

Постоянка же спокойно перемещается внутри провода дросселя без ощущения какого-либо значительного противодействия. Поэтому постоянное напряжение может своим током спалить дроссель, созданный для работы на переменке.

Что же это за зверь: сверхпроводимость

Сто лет назад выявлена способность определенных металлов полностью терять свое сопротивление электрическому току при сверхнизких температурах. Выглядит этот процесс следующим образом.

Со сверхпроводниками домашний мастер не работает. Но на верхнюю часть приведенного графика рекомендую обратить внимание: нагрев металла повышает его электрическое сопротивление.

При электротехнических расчетах, требующих получения точного результата, необходимо учитывать температурный коэффициент, взятый из справочников.

Как просто вычислить сопротивление по закону Ома из электрических величин

Шутки и их разъяснения закончились, хотя они приведены для объяснения поведения токов внутри индуктивностей и емкостей. Пора переходить к расчетам.

Его позволяет выполнить одна из формул, приведенных в шпаргалке электрика. Для этого достаточно знать два из трех электрических параметров: ток I, мощность P или напряжение U.

Если же вам лениво вычислять цифры, то можете спокойно использовать онлайн калькулятор закона Ома. Он избавит вас от сложных арифметических действий.

Формула электрического сопротивления по свойствам среды: научный подход

Электротехника давно использует термин: удельное сопротивление. Он учитывает свойства материала токопроводящей среды с ее размерами: длиной и поперечным сечением, через которое протекает электрический ток.

Все данные для него получены в результате многочисленных исследований и сведены в таблицы. Для бытовых вычислений достаточно следующих сведений.

Таблица характеристик металлов, используемых в быту

Металл проводаУдельное сопротивление (Ом∙мм.кв/м)
Медь техническая0,017
Алюминий0,028
Стальные сплавы0,11
Свинец0,21
Сплавы нихрома1,11

На основе этих данных удобно подбирать провода, детали, вычислять их сопротивление R либо определять другие параметры.

Например, нас интересует сопротивление проволоки нихрома диаметром 1 мм, при температуре 20 градусов.

Определяем площадь поперечного сечения через площадь круга.

S = 3. 14 x 1 x 1 / 4 = 0,785 мм кв.

Делаем расчет на основе приведенной формулы.

R = 1,1 х 5 / 0,785 = 7 Ом

Простой онлайн калькулятор сопротивления проводов

Его назначение — облегчить работу с формулами и арифметическими действиями. Он позволяет решать одну из двух часто встречающихся задач:

  • Определение сопротивления провода.
  • Расчет его длины.

Достаточно заполнить исходные данные в соответствующей размерности и нажать кнопку “Рассчитать”.

Материал проводника медьсереброалюминийстальнихром

Диаметр проводника (мм)

Длина проводника сантиметрыметры

*для ввода дробной части используйте точку, а не запятую.

Сопротивление проводника R: Ом

Площадь сечения проводника S: мм2

Удельное сопротивление материала p: Ом•мм2

Формулы расчета электрического сопротивления для переменного тока простыми словами

Переменное напряжение наводится вращением рамки (ротора генератора) в магнитном поле (создается обмоткой или магнитами статора).

Ток потребителя, подключенного к выводам генератора, по-разному ведет себя на резисторе, индуктивности и конденсаторе.

Формула активного сопротивления

Резисторы изготавливают из металлов с повышенными удельными характеристиками для ограничения силы тока без изменения его направления.

Синусоиды токов и напряжений на резисторе совпадают по времени. В векторном выражении они обладают одинаковым направлением.

Активное сопротивление переменному току вычисляется по закону Ома так же, как и при постоянной форме напряжения.

Формула индуктивного сопротивления

В обмотках катушек электромагнитов, дросселей, трансформаторов наводится электродвижущая сила индукции. Она взаимодействует с приложенным переменным напряжением. В результате происходит сдвиг фазы тока относительно направления вращения электромагнитного поля (ротора генератора).

Формула индуктивного сопротивления XL сильно зависит от частоты тока f и индуктивности L.

Ток в такой цепи сдвигается от напряжения и отстает от него на 90 угловых градусов.

Число ∏ в формуле отображает отношение длины окружности к ее диаметру (3,14).

Формула емкостного сопротивления ХС

Конденсатор состоит из двух токопроводящих пластин, отделенных слоем диэлектрика. При появлении на них напряжения они накапливают электрический заряд.

Его энергия постоянно взаимодействует с приложенным переменным напряжением. Поэтому в цепи создается ток, зависящий от частоты электромагнитного сигнала и емкости конденсатора.

Он сдвигается вперед от вектора напряжения по направлению вращения поля.

Формула полного сопротивления

Электротехника, как и сама жизнь, описывает явления, переплетенные между собой, а не в чистом виде.

Электрическая энергия, поступающая к нам в квартиру по проводам и кабелям от трансформаторной подстанции, преодолевает:

  1. активное сопротивление токоведущих шин;
  2. емкость кабельных линий;
  3. индуктивное противодействие обмоток трансформаторов.

Поэтому для расчетов применяют метод полного сопротивления, выражаемый законом прямоугольного треугольника.

Каждая его сторона отображает определенную характеристику сопротивления:

  • гипотенуза — суммарную, полную величину Z:
  • прилегающий катет — активную составляющую R;
  • противолежащий — реактивную X, представленную геометрической суммой емкостного XL и индуктивного сопротивления XC.

Точно так же каждая сторона этого треугольника создает определенную величину затраченной мощности электрической энергии.

На активном участке создается мощность, совершающая полезную для нас работу, обеспечивающую вращение роторов электродвигателей, свечение осветительных приборов, нагрев обогревателей и другие нужные действия.

Полная мощность, расходуемая всеми видами потребителей, состоит из полезной активной и потерь, создающих индуктивными и емкостными составляющими. Они снижают эффективность работы электрической системы. Поэтому с ними борются.

Запомнить роль реактивной мощности помогает простая и наглядная картинка, естественно, выраженная в шутливой форме.

Однако стоит понимать, что угол φ, образованный между гипотенузой и прилегающим к нему катетом, характеризует величину реактивной части, создающей бесполезные потери энергии. Ее всегда стремятся снизить.

Что такое вольтамперная характеристика

Металлы в обычном состоянии формируют электрический ток строго по прямолинейной характеристике в зависимости от величины приложенного напряжения.

У других сложных веществ и индуктивностей этот принцип не соблюдается. Зависимость выражается кривыми линиями и называется вольтамперной характеристикой.

ВАХ индуктивностей

Характер протекания тока зависит от величины индуктивности. Если в рабочей обмотке возникает пробой изоляции, приводящий к образованию короткозамкнутого витка, то вольтамперная характеристика резко изменяет свой вид: падает.

За счет уменьшения индуктивного сопротивления при меньшем значении величины приложенного напряжения в обмотке начинают протекать бОльшие токи.

Они свидетельствуют о возникновении неисправности, требующей немедленного устранения. Поэтому снятие ВАХ является обязательным элементом проверки исправности обмоток всех видов трансформаторов или дросселей.

Она выполняется различными методами с определением состояния точки перегиба характеристики.

ВАХ полупроводникового прибора

На правой картинке показан один из примеров работы нелинейного элемента — диода.

В первой четверти квадранта проходит прямой участок характеристики, а у третьей — обратный.

На прямом участке повышение напряжения выше точки перегиба ведет к открытию переходного полупроводникового слоя и пропусканию через него тока практически по прямой линейной характеристике.

Такие же действия на обратном участке ведут к потере диодом своих свойств.

Закон Шварцнегера или как надо обеспечивать надежную работу резистора под нагрузкой

Знаменитый на весь мир атлет Арнольд постоянно тренировался по методике нашего советского силача Юрия Власова. Он брал его опыт за основу и даже приезжал в Россию погостить к своему кумиру.

В основе метода постоянных результативных тренировок положен принцип не столько полноценного питания и отдыха, сколько подбор правильных нагрузок, которые должен преодолевать организм.

Все это полностью соответствует законам электротехники, применяется в работе любого электрического сопротивления. Рассмотрим его на примере резистора: так проще для понимания.

Его металл не только пропускает электрический ток, но и нагревается, выделяя тепло. Нагрев увеличивается с повышением тока. При этом температура может снижаться за счет теплоотвода в окружающую среду или увеличиваться в герметичном, не теплопроводящем объеме.

Так работает электропроводка, выполненная одним и тем же кабелем, проложенным открыто по стенам или спрятанным в штробах.

В первом случае от нагревающегося током кабеля тепло отводится в окружающий воздух за счет его естественной циркуляции, а во втором нагрев идет более интенсивно.

Однако повышать температуру жил можно только до определенной величины. За ее рабочим диапазоном вначале происходит разрушение слоя изоляции, а потом — простое перегорание металла, когда проводка сгорает.

На этом примере я попытался показать, что любой резистор обладает запасом тепловой мощности, за который его нельзя переводить.

Для облегчения работы электриков всем видам резисторов введен термин мощности теплового рассеивания. Она указывается в технической документации или прямо на корпусе, измеряется ваттами. Ее же показывают на электрических схемах.

Как выбрать резистор по тепловой нагрузке за 2 шага

Действуют по следующему алгоритму:

  1. Вначале определяют мощность, которая будет проходить через искомый резистор. Достаточно перемножить величину номинального тока на напряжение, выразить полученное значение в ваттах.
  2. Под эту величину из всего многообразия элементов подбирают тот, который соответствует по значению сопротивления и обладает мощностью теплового рассеивания не меньшего номинала.

Желательно брать его с небольшим резервом. Он не будет лишним для работы в критических ситуациях электрической схемы, но повлияет на габариты устройства.

Полезные примеры из жизни

Как продлить ресурс лампы накаливания

В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.

Такой ресурс обеспечен за счет:

  • правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
  • беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
  • надежной конструкции.

Как регулировать токи от 100 ампер в силовой цепи

Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.

Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.

Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.

Второй контакт составляет металлический нож, подключаемый через изоляторы.

Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.

Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.

Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.

Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.

По этой теме рекомендую посмотреть видеоролик Владимира Романова.

Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.

Онлайн расчет реактивного сопротивления — Сам электрик

Сопротивлением называется свойство материала препятствовать протеканию электрического тока. Оно бывает активным (у резисторов) и реактивным (у конденсаторов и индуктивностей). Они отличаются тем, что первое преобразует энергию в тепло, а принцип действия реактивной энергии заключается в препятствии протеканию тока в результате передачи энергии электрического (в емкостях) или магнитного поля (в индуктивности) и наблюдается только в цепях переменного тока.

В результате этих взаимодействий происходит отклонение фазы тока от фазы напряжения, пропорциональное величине реактивного сопротивления. При этом в емкостных цепях ток опережает напряжение, а в индуктивных наоборот. Данное явление используют при питании трёхфазных двигателей от однофазной сети (в т. ч. конденсаторных), а также при питании газоразрядных ламп (дросселя и ЭмПРА). Эта величина зависит от частоты питающего напряжение, что является следствием законов коммутации и величины ЭДС-самоиндукции на индуктивности.

Поговорим о том, как рассчитать реактивное или емкостное сопротивление конденсатора. Чтобы выполнить расчет вручную воспользуйтесь формулой:

Если её рассмотреть подробнее, то сопротивление обратно пропорционально w и ёмкости C. В свою очередь угловая частота w (измеряется в радианах или градусах в секунду – рад/с) равна произведению 2пf, где f – циклическая частота (раз в секунду или Гц).

Для расчета сопротивления конденсатора с помощью онлайн калькулятора вам нужно:

  1. Выбрать размерности для вводных данных и результатов, это важно, чтобы не допустить ошибки при дальнейшем их использовании.
  2. Ввести известные данные.
  3. Нажать кнопку «вычислить» напротив искомой величины.

При этом наш калькулятор позволяет вычислить онлайн каждую из составляющих формулы в зависимости от того, какие данные введены, а это очень удобно при расчётах электрической схемы или контура.

Единицы измерения при Вычислите ёмкости:

kГц, нФ, Ом
MГц, пФ, Ом

Единицы измерения при Вычислите индуктивности:

kГц, мГн, Ом
MГц, мкГн, Ом

Частота сигнала
Величина (ёмкость или индуктивность)
Реактивное сопротивление

Также следует рассказать о том, как выполняется расчёт реактивного сопротивления дросселя. Для катушек индуктивности всех видов справедлива такая формула:

Тогда итоговое значение возрастает прямо пропорционально скорости изменения тока и величины индуктивности.

Для использования в расчётах онлайн калькулятора по аналогии с предыдущим нужно:

  1. Выбрать размерности.
  2. Ввести известные данные.

После этого будет произведено вычисление нужного параметра электрической цепи. Надеемся, предоставленный нами онлайн-калькулятор для расчета реактивного сопротивления был для вас полезным!

Опубликовано 21.08.2018 Обновлено 21.08.2018 Пользователем Александр (администратор)

Калькулятор индуктивного реактивного сопротивления — ezcalc.me


Этот универсальный онлайн-калькулятор индуктивного реактивного сопротивления выполняет расчеты с использованием формулы, связывающей частоту переменного тока и индуктивность электрической цепи с ее реактивным сопротивлением. Вы можете ввести значения любых двух известных параметров в поля ввода этого калькулятора и найти недостающий параметр.



Индуктивное реактивное сопротивление — это свойство индукционной катушки сопротивляться изменениям переменного тока (AC), протекающего через нее, и в этом смысле аналогично сопротивлению постоянному току (DC) в резисторах.

Когда катушка индуктивности подключена к источнику напряжения, электрический ток начинает течь через катушку и создает вокруг нее магнитное поле. Если сила тока со временем увеличивается, это увеличивает силу магнитного поля.

Это усиление магнитного поля, в свою очередь, индуцирует электрический ток в самой катушке (противоЭДС). Индуцированный ток направлен в направлении, противоположном протекающему току, генерируемому внешним источником напряжения.

Аналогично, когда ток от внешнего источника уменьшается, индуцированный ток генерируется в результате самоиндукции, предотвращая уменьшение тока, протекающего через катушку.

Следовательно, индуктивное сопротивление проявляется как противодействие изменению тока через индуктивный элемент.

Интуитивно понятно, что чем больше индуктивность катушки (а значит, создаваемое ею магнитное поле и индуктируемый ток) и чем выше частота переменного тока, тем больше индуктивное сопротивление.

Хотя индуктивное сопротивление отличается от сопротивления резистора, но измеряется оно все равно в Омах. Индуктивное сопротивление используется вместо обычного сопротивления в расчетах по закону Ома.

Индуктивное сопротивление цепи выражается следующей формулой, которая используется в нашем Калькуляторе индуктивного сопротивления:

$$X_L = 2\pi fL,$$

реактивное сопротивление измеряется в системе СИ в омах (Ом). Размер: M·L 2 ·T -3 ·I -2 ,
\(L\)   — индуктивность, измеряемая в системе СИ в генри (Гн). Размерность: M·L 2 ·T -2 ·I -2 ,
\(f\)   — частота, измеренная в системе СИ в герцах (Гц): 1 Гц = 1 с -1 .

Важно подчеркнуть, что индуктивное сопротивление отличается от обычного сопротивления. Ток и напряжение для индуктора сдвинуты по фазе на 90°, тогда как для резистора они совпадают по фазе. В результате сопротивление резистора \(R\) и индуктивное сопротивление \(X_L\) нельзя сложить напрямую. Вместо этого их следует суммировать «векторно»: 92}.$$

Кроме того, индуктивное сопротивление не рассеивает электрическую энергию в виде тепла. Вместо этого энергия некоторое время запасается в дросселе и возвращается в цепь через четверть цикла, в то время как обычное сопротивление постоянно теряет энергию.

Связанные калькуляторы

Ознакомьтесь с другими нашими физическими калькуляторами, такими как калькулятор закона Ома или калькулятор резонансной частоты.


Калькулятор индуктивного реактивного сопротивления XL, примеры, формула и преобразование

С помощью этого калькулятора вы можете рассчитать индуктивное сопротивление катушки.

Кроме того, мы показываем формулу, которая используется в преобразовании, определения, таблицы и некоторые пояснительные примеры.

Формула для расчета индуктивного сопротивления:

Индуктивное сопротивление катушки индуктивности зависит от ее индуктивности и применяемой частоты. Реактивное сопротивление увеличивается линейно с частотой. Это можно выразить в виде формулы для расчета реактивного сопротивления на определенной частоте.

Где:

  • ƒ = Это частота
  • L = индуктивность катушки
  • 2π фото =
  • x L = индуктивная реактивность

. реактивное сопротивление, видно, что если бы Частота или Индуктивность были увеличены, общее значение индуктивного реактивного сопротивления также увеличилось бы. Когда частота приближается к бесконечности, реактивное сопротивление катушек индуктивности также будет увеличиваться до бесконечности, действуя как разомкнутая цепь.

Однако, когда частота приближается к нулю или к постоянному току, реактивное сопротивление катушек индуктивности уменьшается до нуля, действуя как короткое замыкание. Это означает, что индуктивное сопротивление «пропорционально» частоте.

Другими словами, индуктивное сопротивление увеличивается с частотой, а это означает, что X L мала на низких частотах, а X L высока на высоких частотах.

Тогда мы видим, что при постоянном токе дроссель имеет нулевое реактивное сопротивление (короткое замыкание), а при высоких частотах дроссель имеет бесконечное реактивное сопротивление (разомкнутая цепь).

Определение индуктивного реактивного сопротивления:

Катушка индуктивности сопротивляется потоку переменного тока благодаря своей индуктивности. Любая катушка индуктивности сопротивляется изменению тока в результате действия закона Ленца.

Степень, в которой дроссель препятствует протеканию тока, определяется его индуктивным реактивным сопротивлением.

Индуктивное сопротивление зависит от частоты; увеличивается с частотой, но может быть легко рассчитана с помощью простых формул.

Эффект, благодаря которому протекание переменного или изменяющегося тока в катушке индуктивности уменьшается, называется индуктивным реактивным сопротивлением. Любому току изменения в катушке индуктивности будет препятствовать связанная с ней индуктивность.

Причину этого индуктивного сопротивления можно увидеть, просто изучив автоиндукцию и ее влияние в цепи.

Когда переменный ток подается на индуктор, самоиндукция приводит к наведенному напряжению. Это напряжение пропорционально индуктивности, и в соответствии с законом Ленца индуцируемое напряжение имеет направление, противоположное приложенному напряжению. Таким образом, индуцированное напряжение будет работать против напряжения, которое вызывает протекание тока, и, таким образом, предотвращает протекание тока.

Standard units of inductance:

7 9
Prefix Name Abbreviation Weight Henry Equivalents
Picohenry pH 10  -12 0.000000000001 H
Наногенри нГ 10  -9 0,000000001 H
1 Микрогенри0121 10  -6 0. 000001 F
Milihenry mH 10  -3 0.001 H
Kilohenry kH 10  3 1000 H

These inductor values ​​​​are the most common:

1.0 10 100 1000
1.1 eleven 110 1100
1.2 12 120 1200
1.3 13 130 1300
1.5 fifteen 150 1500
1.6 16 160 1600
1.8 18 180 1800
2.0 twenty 200 2000
2.2 22
220
2200
2. 4 24 240 2400
2.7 27 270 2700
3.0 30 300 3000
3.3 33 330 3300
3.6 36 360 3600
3.9 39 390 3900
4.3 43 430 4300
4.7 47 470 4700
5.1 51 510 5100
5.6 56 560 5600
6.2 62 620 6200
6.8 68 680 6800
7.5 75 750 7500
8.2 82 820 8200
8.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *