Онлайн расчет делителя напряжения на резисторах: Онлайн-калькулятор делителя напряжения на резисторах

Содержание

Делитель напряжения на резисторах: онлайн калькулятор расчета

Схема делителя напряжения является простой, но в тоже время фундаментальной электросхемой, которая очень часто используется в электронике. Принцип работы ее прост: на входе подается более высокое входное напряжение и затем оно преобразуется в более низкое выходное напряжение с помощью пары резисторов. Формула расчета выходного напряжения основана на законе Ома и приведена ниже.

Классическая формула делителя напряжения

где:

  • Uвх. — входное напряжение источника, В;
  • Uвых. — выходное напряжение, В;
  • R1 — сопротивление 1-го резистора, Ом;
  • R2 — сопротивление 2-го резистора, Ом.
Схема классического делителя напряжения на 2 резистора

В калькулятор ниже введите любые три известных значения Uвх., Uвых. и R1  и нажмите «Рассчитать», чтобы найти значение R2.

Упрощения

Существует несколько обобщений, которые следует учитывать при использовании делителей напряжения. Это упрощения, которые упрощают оценку схемы деления напряжения.

Во-первых, если R2 и R1 равны, то выходное напряжение вдвое меньше входного напряжения. Это верно независимо от значений резисторов.

Итак, если R1 = R2, то получаем следующее уравнение:

Формула делителя напряжения, если сопротивления равны

Во-вторых, если R2 на порядок больше чем R1, то выходное напряжение Uвых будет очень близко к Uвх., то есть Uвх. ≈ Uвых. А на R1 будет очень мало напряжения.

Формула делителя напряжения, если R2 на порядок больше R1

Во-третьих, если наоборот R1 на порядок больше чем R2, то Uвых будет очень маленьким по сравнению с Uвх, то есть будет стремиться к нулю. Практически все входное напряжение упадет в таком случае на 

R1.


Вы можете воспользоваться онлайн калькулятором ниже, чтобы проверить как саму классическую формулу делителя напряжения, представленную на рисунке 1, так и вышеприведенные упрощения этой формулы.

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях — Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):


Тогда напряжение на всем участке цепи (4):

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):


Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

выразим отсюда R2:

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Ток, который протекает через делитель, находится по формуле (5):

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:


Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):



По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:



Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.


Сопротивление конденсатора рассчитывается по формуле (10):

где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):


Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

где L – индуктивность, Гн.


Падение напряжения на индуктивностях (14,15):

Недостаточно прав для комментирования

напряжения на резисторе и после

При разработке печатных плат для электронного оборудования специалистам часто приходится выполнять расчет делителя. С виду простая схема помогает уменьшить выходное напряжение, необходимое для питания отдельных элементов цепи. Такая компоновка является базовой для электроники. В основу изучения принципа действия входят два момента: схематическое исполнение и формула для вычисления параметров работы делителя.

Что такое делитель напряжения

Схематическое исполнение понижающего устройства представляет собой последовательную цепь, состоящую из двух резистивных элементов. Суммарные значения сопротивлений позволяют уменьшить входящее напряжение до необходимых параметров на выходе. Между собой они связаны передаточным коэффициентом, находящимся в интервале от 0 до 1, включая границы (0<=aplha<=1).

Общее представление делителя напряжения

Существует несколько вариантов схематического исполнения приборов, но все они обладают одним и тем же функционалом — понижать вольтаж для потребителей, однако ток на всех полюсах остается одинаковым. Два последовательных участка цепи называют плечами. Нижнее плечо находится между центральной точкой и нулевым потенциалом. Именно здесь необходимо снимать показатели работы схемы. Другое плечо является верхним.

 

Простая схема на резисторах

В зависимости от расположения резисторов, различают линейные и нелинейные схемы делителей. Первый вариант используют для создания разности потенциалов и вольтажа в нескольких точках рабочих узлов. Понижение входного напряжения определяется по линейному закону.

Дополнительная информация! Понижающие узлы применяют для постоянного и переменного тока. Структурное исполнение обоих отличается друг от друга, поскольку в некоторых случаях требует включение дополнительных фильтров для подавления помех и шумов.

В нелинейных схемах разница определяется по передаточному коэффициенту. Такие устройства активно применяют в потенциометрах. Здесь учитывают присутствие активного и реактивного сопротивления, включая нелинейные и токовые нагрузки.

Принцип работы делителя напряжения

В состав простейшей понижающей схемы всегда входит не меньше одного резистора. Если элементы обладают одинаковыми коэффициентами сопротивляемости электронов, то на выходе вольтаж понизится в два раза. Для каждого узла понижение рассчитывается по закону Ома.

Внимание! Сумма пониженных величин в каждой точке равна общему вольтажу источника питания.

Схема с несколькими резисторами

Резисторы используют в принципиальных схемах с источником питания постоянного тока. В цепях переменного напряжения присутствует еще и реактивное сопротивление, куда входят конденсаторы, индуктивные катушки и другие элементы с электромагнитными полями.

В цепях с синусоидальным током в качестве резистивного элемента выступает конденсатор или катушка. Их называют емкостными. Расчет ведется уже по другой формуле, так как емкость конденсаторов обратно пропорциональна их реактивному сопротивлению. Для вычисления резистивной составляющей необходимо учитывать постоянное число ПИ, частоту синусоидального тока (Гц) и емкость (Фарад). Таким образом получается, что с увеличением емкости падает сопротивление и наоборот.

Кроме конденсаторов, в качестве реактивных компонентов также могут выступать индуктивные катушки, которые могут присутствовать в платах переменного тока. Коэффициент реактивного сопротивления обмоток также прямо пропорционален их номинальным значениям. Для вычислений также необходимо постоянное число ПИ, частота переменного магнитного поля (Гц) и индуктивность (Генри).

Делитель на индукционных катушках

Внимание! В описании выше токовая нагрузка равна бесконечности, поэтому все значения верны только при полученных показателях делителя на сопротивления нагрузки. Они в несколько раз больше внутреннего.

Формула для расчета делителя напряжения

Начинающие радиолюбители часто задаются главным вопросом, как правильно рассчитать напряжение после резистора. Для этого необходимо знать, какой ток пойдет по цепи. В простейших схемах постоянного тока его вычисляют по линейному закону Ома. Формула расчета выглядит U=I*R, где:

  • U — напряжение, В;
  • I — ток, А;

В цепях с синусоидальным током, где присутствует реактивное сопротивление катушки или конденсатора, формула выглядит как R=1/(2*pi*f*L) и R=1/(2*pi*f*C) соответственно. В формуле использованы показатели:

График зависимости показателей от сопротивления
  • R — реактивное сопротивление;
  • R — сопротивление, Ом.
  • pi — постоянное число Пи, равное 3,14;
  • f — частота, Гц;
  • L — индуктивность катушки, Генри;
  • C — емкость конденсатора, Фарад.

Получив в расчетах внутреннюю резистивность элементов, далее можно воспользоваться линейной формулой для вычисления выходного значения.

На резисторе

В схеме делителя всегда участвует не меньше двух узлов нагрузки. Их коэффициенты могут быть равны другу, но и отличаться. Поэтому порой возникает необходимость получить номинал выходного вольтажа для каждого из них. Для этого используют всем известную формулу закона Ома: U=I*R.

После резистора

Для расчета показателя после резистора необходимо учитывать номиналы обоих элементов, так как они работают совместно друг с другом. Применив закон Ома, получается следующая формула: Uвых=Uпит*R1/(R1+R2), где:

  • Uвых — вольтаж на выходе, В;
  • Uпит — входной вольтаж, В;
  • R1 — первый узел, Ом;
  • R2 — второй узел, Ом.

Падение потенциалов за резистором рассчитывают для каждого узла в отдельности. То есть для второго элемента формула будет выглядеть так: Uвых=Uпит*R2/(R1+R2).

Делитель позволяет разработчикам получить несколько номинальных значений выходного напряжения от одного питающего источника. По этой причине схема получила широкое применение в электронике как в понижающих блоках питания, так и в качестве интегрированного узла электроцепи.

Резисторный делитель напряжения: расчёт-онлайн, формулы и схемы

Резисторный делитель напряжения — одна из основополагающих конструкций в электронике, без которой не обходится ни одно устройство. Подбор сопротивлений задаёт нужные режимы работы. Как правило, эта конструкция содержит два резистора. Один ставится между входом и выходом схемы. Второй резистор одним концом подключается к общему проводу, а вторым — к выходу схемы, тем самым его шунтируя. Он также играет роль нагрузки источника, подключённого ко входу.

Формула делителя напряжения

Расчёт можно осуществить, используя формулы, вытекающие из закона Ома. Можно узнать, каким будет U на выходе устройства, если известно входное, а также сопротивления обоих резисторов. Можно также решить обратную задачу, например, вычислить напряжение, которое получится на выходе при известных сопротивлениях резисторов.

Чтобы выполнить расчет резистивного делителя, необходимо:

  • Обозначить резистор, находящийся ближе ко входу делителя, как R1.
  • Обозначить резистор, находящийся ближе к выходу делителя, как R2.
  • Протекающие через резисторы токи обозначаются, как I1 и I2, а входное и выходное напряжения — UВХ и UВЫХ, соответственно.
  • Промежуточная формула примет следующий вид: UВЫХ=I2*R2.
  • Если предположить, что силы обоих токов равны, то формула для определения протекающего через схему тока станет выглядеть так: I=UВХ/R1+R2.
  • Окончательная формула принимает такой вид: UВЫХ=R2*(UВХ/R1+R2).

Из неё становится ясно, что выходное напряжение всегда будет меньше, чем входное. Оно зависит от самих резисторов. Чем больше сопротивление R1 и сила протекающего тока, тем меньше будет UВЫХ. Напротив, чем больше сопротивление R2, включённое между выходом и общим проводом, тем больше будет UВЫХ. Если упомянутое сопротивление стремится к бесконечности, то UВЫХ будет почти равным входному. Чем больше ток, который проходит по резисторам, тем меньше будет UВЫХ. Таким образом при больших токах делитель на резисторах становится малоэффективным, ввиду сильного падения напряжения.

Онлайн-калькуляторы

С их помощью можно рассчитать делитель напряжения на резисторах онлайн. Входными данными в этом случае могут являться: входное напряжение и оба сопротивления. Калькулятор «Делитель напряжения — онлайн» произведёт все необходимые операции по обозначенной формуле, и выведет значения искомых параметров. Расчет делителя напряжения на резисторах онлайн облегчает процесс разработки многих электронных схем, позволяет добиться достижения требуемых режимов и правильной работы устройств.

Разновидности делителей

Самая распространенная и характерная из них — это потенциометр. Он представляет собой стандартный переменный резистор. Внутри его находится дужка, на которую нанесен токопроводящий слой. По ней скользит контакт, делящий сопротивление на две части. Таким образом, потенциометр имеет три вывода, два из которых подключены к самому резистору, а третий — к перемещаемому движку.

Источник тока подключается к двум крайним выводам потенциометра, а UВЫХ будет сниматься с вывода движка и общего провода. По такой схеме устроены, например, регуляторы громкости и тембра звука в различной аудиоаппаратуре. При перемещении движка в крайнее нижнее положение UВЫХ станет равным нулю, а в противоположной ситуации будет равно входному. Если же перемещать движок, то напряжение будет плавно изменяться от нуля до входного.

Свойства делителей также используются при конструировании резистивных датчиков. Например, одним из их элементов может являться фоторезистор, изменяющий свое сопротивление в зависимости от освещённости. Есть и другие датчики, преобразующие физические воздействия в изменение сопротивления: терморезисторы, датчики давления, ускорения. Созданные на их основе делители используются совместно с аналого-цифровыми преобразователями для измерения и отслеживания самых различных величин в промышленности и быту: температуры, скорости вращения.

В качестве примера можно привести схему для определения уровня освещенности. Последняя деталь включается между выходом и общим проводом (R2 в формуле). Для расширения пределов изменения напряжения схема дополняется постоянным сопротивлением (R1 в формуле). К её выходу присоединяется микроконтроллер аналого-цифрового преобразователя. Чем сильнее освещённость фоторезистора, тем ниже UВЫХ, так как он включён между выходом конструкции и «массой», шунтируя его.

Делитель напряжения | Расчет делителя напряжения

Делитель напряжения – это это цепь, состоящая из двух и более пассивных радиоэлементов, которые соединены последовательно.

Делитель напряжения на резисторах

Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.

Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.

Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.

Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой

То есть в нашем случае мы можем записать, что

Как найти напряжение, которое падает на резисторе R2?

Так как ток для обоих резисторов общий, то согласно закону Ома

Подставляем вместо I формулу

и получаем в итоге

Для другого резистора ситуация аналогичная. На нем падает напряжение

Для него формула запишется

Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.

что и требовалось доказать.

Эта формула также работает и для большого количества резисторов.

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Как работает делитель напряжения на практике


Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

 

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает  напряжение 6,77 Вольт.

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

[quads id=1]

Сила тока в цепи при последовательном соединении резисторов


Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I2R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

 

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.

Похожие статьи по теме “делитель напряжения”

Делитель тока

Что такое резистор

Что такое напряжение

Блок питания

Расчёт делителя напряжения на резисторах онлайн

Р/л технология

Схема такого делителя предназначена для получения заданного выходного напряжения, которое будет ниже, чем входное. Например, источник напряжения 24 Вольта, в нужно получить 6 Вольт. Самым простым способом решить этот вопрос – это применить делитель напряжения, состоящий из двух споротивлний.

Он применяется, как при проектировании схем, так и по прямому назначению. Для его расчета используются формулы, которые основаны на законе Ома. Эти формулы позволяют подобрать нужный номинал сопротивлений. Потребуется лишь знать сопротивление нагрузки, входное и выходное напряжения. От этого сопротивления зависит, насколько точно удастся рассчитать весь делитель и получить точно указанное выходное напряжение. Как правило, сопротивление нагрузки выше, чем сопротивление делителя напряжения.

Если неизвестно выходное напряжение, но известно сопротивление и входное напряжения, то неизвестную величину можно вычислить по указанной формуле.

 

 

 

 

Для того чтобы не считать постоянно по формулам эти величины, были придуманы онлайн-калькуляторы, которые позволяют точно определить значения резисторов или выходного напряжения. Потребуется лишь внести известные величины. Такой расчет можно производить, как на компьютере, с доступом в сеть Интернет, так и при помощи смартфона. Это значительно экономит время и дает стабильную точность расчетов. 

Стоит отметить, что современные калькуляторы-онлайн могут рассчитать и мощность, на которую должен быть установлен резистор. 

В радиоэлектронике делители напряжения представлены и в готовых конструктивных решениях. Ими служат, к примеру, переменные резисторы и фоторезисторы, которые имеют возможность менять значение сопротивления, при повороте ручки потенциометра или попадании света. В переменном резисторе присутствуют три вывода, с которых можно получить два сопротивления. 

Автор: RadioRadar

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Вашему вниманию подборка материалов:

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

Расчет резистивного делителя напряжения

[Напряжение на выходе, В ] = [Напряжение питания, В ] * / ( + [Сопротивление резистора R2, Ом ])

Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано.

= [Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ]

Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом ] = [Сопротивление резистора R1, Ом ] + 1 / (1 / [Сопротивление резистора R2, Ом ] + 1 / [Сопротивление нагрузки, Ом ])

[Эквивалентное выходное сопротивление делителя, Ом ] = 1 / (1 / [Сопротивление резистора R1, Ом ] + 1 / [Сопротивление резистора R2, Ом ])

= [Сопротивление резистора R2, Ом ] / ([Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ])

[Действующее / мгновенное / амплитудное напряжение на выходе делителя, В ] = [Коэффициент ослабления сигнала ] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В ]

Эта формула верна, если ток нагрузки делителя равен нулю.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.


Качество усилителей звуковой частоты. Обзор, схемы….

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…

Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…