Как правильно рассчитать сопротивление резистора для светодиода. Какие параметры нужно учитывать при расчете. Какие формулы использовать для вычислений. Как пользоваться онлайн-калькулятором для подбора резистора.
Зачем нужен резистор для светодиода
Светодиод является полупроводниковым прибором с нелинейной вольт-амперной характеристикой. Для его стабильной и долговечной работы необходимо ограничивать протекающий через него ток. Даже небольшая перегрузка по току может привести к деградации светодиодного чипа и значительному сокращению срока службы.
Простейшим элементом для ограничения тока через светодиод является резистор, включенный последовательно. Правильно подобранный резистор позволяет:
- Ограничить ток через светодиод до безопасного уровня
- Защитить светодиод от перегрузки и выхода из строя
- Обеспечить стабильную яркость свечения
- Продлить срок службы светодиода
Поэтому расчет и подбор подходящего токоограничивающего резистора является важным этапом при проектировании схем со светодиодами.
Параметры для расчета резистора
Для правильного расчета сопротивления резистора необходимо знать следующие параметры:
- Напряжение источника питания (Uпит) — напряжение, от которого будет питаться светодиод
- Прямое напряжение светодиода (Uпр) — падение напряжения на светодиоде в рабочем режиме
- Номинальный ток светодиода (Iном) — рекомендуемый рабочий ток через светодиод
Прямое напряжение и номинальный ток обычно указываются в технической документации на светодиод. Если точные значения неизвестны, можно ориентироваться на типовые значения для светодиодов разных цветов:
- Красный: Uпр = 1.8-2.2 В, Iном = 20 мА
- Желтый: Uпр = 2.0-2.4 В, I ном = 20 мА
- Зеленый: Uпр = 2.0-3.5 В, Iном = 20 мА
- Синий/белый: Uпр = 3.0-3.6 В, Iном = 20 мА
Формула для расчета резистора
Сопротивление токоограничивающего резистора для светодиода рассчитывается по формуле:
R = (Uпит — Uпр) / Iном
где:
- R — сопротивление резистора (Ом)
- Uпит — напряжение источника питания (В)
- Uпр — прямое напряжение светодиода (В)
- Iном — номинальный ток светодиода (А)
Давайте рассмотрим конкретный пример расчета:
Пример расчета резистора для красного светодиода
Дано:
- Uпит = 5 В (питание от USB-порта)
- Uпр = 2 В (типовое значение для красного светодиода)
- Iном = 20 мА = 0.02 А
Подставляем значения в формулу:
R = (5 В — 2 В) / 0.02 А = 3 В / 0.02 А = 150 Ом
Таким образом, для ограничения тока через красный светодиод при питании от 5 В потребуется резистор сопротивлением 150 Ом.
Онлайн-калькулятор для расчета резистора
Для удобства расчетов можно воспользоваться онлайн-калькулятором. Он позволяет быстро подобрать резистор, зная основные параметры схемы.
«` import React, { useState } from ‘react’; import { Card, CardContent, CardHeader } from ‘@/components/ui/card’; import { Input } from ‘@/components/ui/input’; import { Button } from ‘@/components/ui/button’; export default function LEDResistorCalculator() { const [voltage, setVoltage] = useState(»); const [forwardVoltage, setForwardVoltage] = useState(»); const [current, setCurrent] = useState(»); const [result, setResult] = useState(null); const calculateResistance = () => { const v = parseFloat(voltage); const fv = parseFloat(forwardVoltage); const i = parseFloat(current) / 1000; // convert mA to A if (isNaN(v) || isNaN(fv) || isNaN(i)) { setResult(‘Пожалуйста, введите корректные значения’); return; } const resistance = (v — fv) / i; const power = (v — fv) * i; setResult(`Сопротивление: ${resistance.toFixed(2)} Ом\nМощность: ${power.toFixed(2)} Вт`); }; return (Калькулятор резистора для светодиода
{result}
Этот калькулятор позволяет быстро рассчитать необходимое сопротивление резистора и его мощность, зная напряжение питания, прямое напряжение светодиода и требуемый ток.
Выбор резистора по мощности
После расчета сопротивления важно правильно подобрать резистор по мощности. Мощность, рассеиваемая на резисторе, рассчитывается по формуле:
P = (Uпит — Uпр) * Iном
Выбирать следует резистор с запасом по мощности минимум 50%. То есть, если расчетная мощность получилась 0.1 Вт, следует выбрать резистор на 0.25 Вт или более.
Особенности расчета для разных схем включения
При расчете резистора для нескольких светодиодов нужно учитывать способ их соединения:
Последовательное соединение светодиодов
При последовательном соединении светодиодов их прямые напряжения суммируются. Формула для расчета будет выглядеть так:
R = (Uпит — n * Uпр) / Iном
где n — количество последовательно соединенных светодиодов.
Параллельное соединение светодиодов
При параллельном соединении светодиодов общий ток увеличивается пропорционально их количеству. Формула принимает вид:
R = (Uпит — Uпр) / (n * Iном)
где n — количество параллельно соединенных светодиодов.
Практические рекомендации по подбору резистора
При выборе резистора для светодиода следует придерживаться следующих рекомендаций:
- Всегда округляйте расчетное значение сопротивления в большую сторону до ближайшего стандартного номинала
- Выбирайте резистор с запасом по мощности минимум 50%
- Для повышения надежности можно увеличить сопротивление резистора на 10-20% от расчетного значения
- При использовании нескольких светодиодов предпочтительнее последовательное соединение
- Для мощных светодиодов (более 1 Вт) вместо резистора лучше использовать специализированный драйвер
Альтернативы резистору для ограничения тока
Хотя резистор является простейшим способом ограничения тока через светодиод, в некоторых случаях более эффективными могут быть альтернативные решения:
- Линейный стабилизатор тока — обеспечивает более стабильный ток, чем резистор
- Импульсный стабилизатор тока — имеет высокий КПД, подходит для мощных светодиодов
- ШИМ-регулятор — позволяет управлять яркостью светодиода
Эти решения сложнее в реализации, но обеспечивают лучшую эффективность и функциональность, особенно в профессиональных светодиодных системах.
Часто задаваемые вопросы
Можно ли подключить светодиод без резистора?
Подключать светодиод напрямую к источнику питания без токоограничивающего элемента крайне не рекомендуется. Это может привести к мгновенному выходу светодиода из строя из-за превышения максимально допустимого тока.
Как рассчитать резистор для RGB-светодиода?
RGB-светодиод фактически представляет собой три отдельных светодиода в одном корпусе. Для каждого цвета (красного, зеленого и синего) нужно рассчитывать отдельный резистор, учитывая прямое напряжение соответствующего кристалла.
Влияет ли выбор резистора на яркость светодиода?
Да, увеличение сопротивления резистора приведет к уменьшению тока через светодиод и, как следствие, к снижению яркости. Уменьшение сопротивления, наоборот, увеличит яркость, но может сократить срок службы светодиода.
Можно ли использовать один резистор для нескольких параллельных светодиодов?
Технически это возможно, но не рекомендуется. При параллельном подключении нескольких светодиодов к одному резистору возникает риск неравномерного распределения тока между ними из-за разброса характеристик. Это может привести к перегрузке одних светодиодов и недостаточной яркости других.
Как сделать светодиодную гирлянду самостоятельно
В этой статье я расскажу как сделать светодиодную подсветку в виде гирлянды самостоятельно. Для этого вам потребуется:
- провод диаметром до 1 мм, лучше медный. Я использовал жилы от кабеля витая пара.
- светодиоды;
- блок питания;
- изолятор. Я использовал термоусадочую трубку.
- простейшие знания по электротехнике для расчета схемы;
- умение паять.
Выбор элементной базы
Светодиоды
Начнем с главного — светодиодов. Любой светодиод характеризует в первую очередь рабочее напряжение и ток в прямом направлении. Эти два параметра нам необходимы для расчета цепи.
Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А (20 мА). Ток важен для расчета схемы и потребления светодиодов. Чтобы ограничить потребляемый ток, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.
Чтобы правильно подобрать резистор, можно воспользоваться онлайн калькулятором расчета резистора для светодиода.
Напряжения питания светодиода определяет, какое будет падение напряжения на p-n переходе диода за счет его внутреннего сопротивления. Иными словами, если у нас 12-вольтовый источник питания, то каждый последовательно (по цепочке) включенный 3 В светодиод будет уменьшать напряжение в цепи на 3 вольта, а значит, последовательно можно включить не более 4 таких светодиодов. При включении пятого, он почти не будет светиться.
Светодиоды разных производителей и цветов имеют разное напряжение. Например, для синих, зеленых и белых кристаллов напряжение составляет обычно 3В, для желтых и красных – от 1,8 до 2,4В.
Максимально вы можете установить 6 светодиодов последовательно с напряжением 1,8 Вольт (это будут красные светодиоды) или же 5 светодиодов по 2,1 В (желтые). Увы, другие цвета с таким напряжением не встречаются в продаже.
Схема подключения 22 светодиодов. БП 12 В, светодиоды 2,1 В.
Примеры и технические характеристики разных светодиодов можно посмотреть на сайте магазинов, например, в магазине Микроника.
Потребляемая мощность отдельных светодиодов обычно небольшая, но её важно рассчитать для вычисления энергопотребления всей схемы по формуле (из Закона Ома) P = U*I.
В приведенном выше примере: 0,02 А * 3 В = 0,06 Вт. Последовательно включенные 3 светодиода потребляют 0,06 * 3 = 0,18 Вт. Также 60 мВт будет рассеиваться на ограничивающем резисторе, последовательно включенном со светодиодами. Итого, суммарное потребление схемы = 240 мВт. Ну и соответственно, если у вас несколько групп по 3 светодиода включены параллельно, то надо умножить на количество таких параллельных цепей.
Помимо перечисленных характеристик, светодиоды характеризуются светоотдачей, углом свечения и цветовой температурой. Приборы размером около 5 мм в диаметре дают световой поток от 1 до 5 лм света. Белые и синие светодиоды обычно ярче, чем цветные и встречаются в сверхярком исполнении.
Сверхяркие белые светодиоды можно посмотреть здесь.
Так красный светодиод 1,8 В имеет силу света от 0,2 до 2 кд, а белый 3 В светодиод — от 10 до 20 кд. Но все это на расчет схемы не влияет, а лишь влияет на использование светодиода для ваших задач.
Резисторы
Резисторы, как вы уже поняли выше, подбираются по мощности и сопротивлению. Сопротивление зависит от количества последовательно включенных светодиодов и их напряжения, а мощность рассеивания — от тока. В большинстве случаев резистора мощностью 0,125 Вт вам будет за глаза.
Вот типичные значения сопротивления исходя из количества светодиодов для типовых светодиодов 3 В:
- 1 шт — 470 Ом
- 2 шт — 300 Ом
- 3 шт — 150 Ом
- 4 шт — 1 Ом
Для диодов 2,1 В:
- 1 шт — 510 Ом
- 2 шт — 390 Ом
- 3 шт — 300 Ом
- 4 шт — 180 Ом
- 5 шт — 75 Ом
Блок питания
Ну с блоком питания все достаточно просто. Вы используете или 12 или 24 вольтовый источник питания с выходной мощностью на 25% превышающей суммарную мощность потребления всей схемы. Если у вам требуется более 6 светодиодов в ряд, то используйте 24 В вариант.
Такой блок вам позволит последовательно подключить до 11 светодиодов напряжением 2,1 В или 6 напряжением 3 Вольта.
Блок питания 24 Вольта, светодиоды по 3 В.
В большинстве случаев вам будет достаточно маленького блока на 24 В с током 0,5 А (выходная мощность 12 Вт).
Изучить различные блоки питания вы можете здесь: Источники напряжения — спецификация.
Сборка и монтаж схемы
Для монтажа схемы я использовал кабель витая кара. Я разрезал внешнюю оплетку и разъединил жилы витых пар. На каждый одножильный кабель я напаял резистор и последовательно необходимое число светодиодов. Все минусовые концы я спаял между собой так, чтобы на блок питания заходил всего один провод.
На каждый резистор и одно из ножек каждого светодиода я надел изолятор — термоусадочную трубку. Изначально она надевается на кабель, а потом сдвигается на нужное место. Когда схема распаяна и проверена, необходимо термовоздушным паяльным феном нагреть трубки — они уменьшатся в диаметре примерно на 50%. Рекомендую термоусадку диаметром 2 мм.
Насколько пост был для вас полезен?
Нажмите на звезду, чтобы оценить мои труды!
Средний рейтинг: 0 / 5. Количество голосов: 0
Пока голосов нет. Проголосуй первым!
Мне жаль, что пост вам не помог 🙁
Позвольте мне исправиться.
Поделитесь, что можно улучшить?
Правильный расчет резистора для светодиода (онлайн калькулятор)
Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.
Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.
Важно! Резистор ограничивает, но не стабилизирует ток.
Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.
Теория
Математический расчет
Ниже представлена принципиальная электрическая схема в самом простом варианте.
В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация
В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).
Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.
На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.
Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:
ULED является паспортной величиной для каждого отдельного типа светодиодов.
Графический расчет
Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.
Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.
Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:
Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:
Математический расчет.
Для подбора сопротивления придется вспомнить школьный курс физики.
На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:
- U – входное напряжение блока питания;
- R – резистор с падением напряжения UR;
- LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;
Поскольку элементы соединены последовательно, то сила тока I в них одинакова.
По второму закону Кирхгофа:
U = UR + ULED. (1)
Одновременно используем закон Ома:
U=I*R. (2)
Подставим формулу (2) в формулу (1) и получим:
U = I*R + I*RLED. (3)
Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:
R = (U — ULED) / I. (4)
Для более точного подбора можно рассчитать мощность рассеивания резистора Р.
Р = U*I. (5)
Примем напряжение блока питания U = 10 В.
Характеристики диода: ULED = 2В, I = 40 мА = 0,04A.
Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).
Стоит учесть, что если полученной величины нет в стандартном ряду сопротивлений, то следует выбирать более высокоомный элемент.
Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).
В каких случаях допускается подключение светодиода через резистор?
Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.
Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.
Расчет мощности рассеивания
Условные обозначения резисторов на схемах
В любом из вариантов при выборе электрического сопротивления цепи следует устанавливать несколько меньший ток, чтобы продлить срок службы светодиода. Чтобы предотвратить повреждение нагревом, изделие применяют в рекомендованном температурном диапазоне. Для Epistar 1W HP – от -40°C до +80°C. При необходимости – применяют монтаж на специализированном радиаторе «звезда». Это дополнение увеличивает эффективную площадь рассеивания тепла.
Для точного подбора оценивают рассеиваемую мощность резистора: P = I2 * R = (0,35)2 * 7,57 = 0,1225 * 7,57 ≈0,93 Вт. Запас по этому параметру делают не менее 20-25%. Номинала 1 Вт недостаточно, поэтому выбирают следующий номинал в стандартном ряду – 2Вт.
Экономичность собранной схемы проверяют отношением Uc/Uи = 2,35/5 = 0,47 (47%). Итоговый результат показывает, что более половины электроэнергии в данном случае используется впустую. На самом деле показатель еще хуже, так как не вся мощность потребления расходуется светодиодом на излучение в видимой части спектра. Значительная часть – электромагнитные волны ИК диапазона.
Примеры расчетов сопротивления и мощности резистора
Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.
Cree XM–L T6
В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.
Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.
Мощность, рассеиваемая резистором, составит:
Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.
Вычислим КПД собранного светильника:
Пример с LED SMD 5050
По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.
Ближайшее стандартное значение – 30 Ом.
Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.
У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.
Применение токоограничивающего резистора для светодиода
Резистор применяют для ограничения силы тока
Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.
С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока. Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.
Онлайн-калькулятор
Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.
Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.
Расчет резисторов при параллельно – последовательном соединении светодиодов
Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис. 3.
Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.
Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении
Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.
Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.
Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:
R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.
Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.
Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!
LED Resistor Calculator — The Geek Pub
Чтобы подключить светодиод напрямую в цепь, он должен иметь последовательно с ним токоограничивающий резистор. В противном случае светодиод получит слишком большой ток и выйдет из строя. Используйте этот удобный калькулятор светодиодных резисторов, чтобы выбрать правильное сопротивление для вашей светодиодной схемы!
Калькулятор резисторов для светодиодов
Введите значения напряжения, прямого напряжения и тока для ваших светодиодов ниже:
Напряжение источника (В с ) : | Вольт | |
Светодиод прямого напряжения (V f ) : | 2 (Красный) 2,2 (Зеленый) 3,6 (Белый) 2,1 (Желтый) 2,2 (Оранжевый) 3,6 (Синий) 4,6 (Синий 430 нм) 1,7 (Инфракрасный) 3,3 (УФ) (Другое) | Вольт (типичное значение: 2 В) |
Светодиод прямого тока (I f ) | Миллиампер (типичное значение: 20 мА) | |
Количество светодиодов в серии |
Сопротивление (R) | Ом | |
Мощность резистора (P) | Вт |
Светодиоды предназначены для работы в идеальных условиях. Как правило, они имеют заданное входное напряжение, прямое напряжение и максимальный номинальный ток, которых необходимо придерживаться при проектировании схемы. Для ограничения тока в цепи светодиода требуется резистор, если только светодиод не подключен последовательно с каким-либо другим компонентом, ограничивающим ток. Этот резистор всегда будет ставиться в серии со светодиодом.
Прямое напряжение (или падение напряжения) на светодиоде зависит от светодиода и производителя. Обычно он напрямую связан с цветом светодиода из-за различных материалов, используемых в процессе производства. Наиболее распространенное падение напряжения составляет 2 вольта, но вы всегда должны сверяться с техническими данными производителя, прежде чем создавать свою схему или выбирать размер резистора!
Типичные значения прямого напряжения (Vf):
- Красный : 2
- Зеленый : 2,1
- Синий : 3,6
- Белый : 3,6
- Желтый : 2,1
- Оранжевый : 2,2
- Янтарный : 2. 1
- Инфракрасный : 1,7
Формула для расчета резисторов для светодиодов
Формула для расчета резисторов для светодиодов довольно проста. Для определения правильного сопротивления используется формула: R = (Vs – Vf) * N / If
- Vs = Это ваш источник напряжения.
- Vf = номинальное прямое напряжение светодиода
- Если = максимальный номинальный ток светодиода.
- N = Количество светодиодов (последовательно) в цепи.
Вас также может заинтересовать наш учебник по сопротивлению! У нас также есть калькулятор резисторов, который поможет вам определить цветовые полосы.
Поставщики беспроводных радиочастот и ресурсы
Веб-сайт RF Wireless World является домом для поставщиков и ресурсов RF и Wireless. На сайте представлены статьи, учебные пособия, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тесты и измерения, калькуляторы, новости, книги, загрузки и многое другое.
Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. д. Эти ресурсы основаны на стандартах IEEE и 3GPP. Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и дисциплинам MBA.
Статьи о системах на основе IoT
Система обнаружения падений для пожилых людей на основе IoT : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей.
В нем упоминаются преимущества или преимущества системы обнаружения падения IoT.
Подробнее➤
См. также другие статьи о системах на основе IoT:
• Система очистки туалетов AirCraft.
• Система измерения удара при столкновении
• Система отслеживания скоропортящихся продуктов и овощей
• Система помощи водителю
• Система умной розничной торговли
• Система мониторинга качества воды
• Система интеллектуальной сети
• Умная система освещения на основе Zigbee
• Умная система парковки на базе Zigbee
• Умная система парковки на базе LoRaWAN.
Радиочастотные беспроводные изделия
Этот раздел статей охватывает статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE/3GPP и т. д. , стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, посвященные испытаниям на соответствие, используемым для испытаний устройств на соответствие RF/PHY. СМ. УКАЗАТЕЛЬ СТАТЕЙ >>.
Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH была рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Подробнее➤
Основные сведения о повторителях и типы повторителей : В нем объясняются функции различных типов повторителей, используемых в беспроводных технологиях. Подробнее➤
Основы и типы замираний : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные замирания, быстрые замирания и т. д., используемые в беспроводной связи. Подробнее➤
Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Подробнее➤
Основы помех и типы помех: Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. д. Подробнее➤
5G NR Раздел
В этом разделе рассматриваются функции 5G NR (новое радио), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. д.
5G NR Краткий справочный указатель >>
• Мини-слот 5G NR
• Часть полосы пропускания 5G NR
• БАЗОВЫЙ НАБОР 5G NR
• Форматы 5G NR DCI
• 5G NR UCI
• Форматы слотов 5G NR
• IE 5G NR RRC
• 5G NR SSB, SS, PBCH
• 5G NR PRACH
• 5G NR PDCCH
• 5G NR PUCCH
• Опорные сигналы 5G NR
• 5G NR m-Sequence
• Золотая последовательность 5G NR
• 5G NR Zadoff Chu Sequence
• Физический уровень 5G NR
• MAC-уровень 5G NR
• Уровень 5G NR RLC
• Уровень PDCP 5G NR
Руководства по беспроводным технологиям
В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводным сетям. Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, беспроводная сеть, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. д. См. ИНДЕКС УЧЕБНЫХ ПОСОБИЙ >>
Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы, посвященные технологии 5G:
Учебник по основам 5G
Диапазоны частот
учебник по миллиметровым волнам
Рамка волны 5G мм
Зондирование канала миллиметровых волн 5G
4G против 5G
Испытательное оборудование 5G
Архитектура сети 5G
Сетевые интерфейсы 5G NR
звучание канала
Типы каналов
5G FDD против TDD
Нарезка сети 5G NR
Что такое 5G NR
Режимы развертывания 5G NR
Что такое 5G ТФ
В этом руководстве по GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения,
Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы,
Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM или настройка вызова или процедура включения питания,
Вызов MO, вызов MT, модуляция VAMOS, AMR, MSK, GMSK, физический уровень, стек протоколов, основы мобильного телефона,
Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Читать дальше.
LTE Tutorial , описывающий архитектуру системы LTE, включая основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он предоставляет ссылку на обзор системы LTE, радиоинтерфейс LTE, терминологию LTE, категории LTE UE, структуру кадра LTE, физический уровень LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, Voice Over LTE, расширенный LTE, Поставщики LTE и LTE vs LTE advanced.➤Подробнее.
RF Technology Материалы
На этой странице мира беспроводных радиочастот описывается пошаговое проектирование преобразователя частоты на примере повышающего преобразователя частоты 70 МГц в диапазон C.
для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO,
амортизирующие прокладки. ➤Читать дальше.
➤ Проектирование и разработка радиочастотного приемопередатчика
➤Дизайн радиочастотного фильтра
➤Система VSAT
➤Типы и основы микрополосковых
➤Основы волновода
Секция испытаний и измерений
В этом разделе рассматриваются ресурсы по контролю и измерению, контрольно-измерительное оборудование для тестирования тестируемых устройств на основе
Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE. ИНДЕКС испытаний и измерений >>
➤Система PXI для контрольно-измерительных приборов.
➤ Генерация и анализ сигналов
➤ Измерения физического уровня
➤ Тестирование устройства WiMAX на соответствие
➤ Тест на соответствие Zigbee
➤ Тест на соответствие LTE UE
➤ Тест на соответствие TD-SCDMA
Волоконно-оптические технологии
Волоконно-оптический компонент основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель,
фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д. Эти компоненты используются в оптоволоконной связи.
ИНДЕКС оптических компонентов >>
➤Руководство по оптоволоконной связи
➤APS в SDH
➤Основы SONET
➤ Структура кадра SDH
➤ SONET против SDH
Поставщики беспроводных радиочастот, производители
Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.
Поставщики ВЧ-компонентов, включая ВЧ-изолятор, ВЧ-циркулятор, ВЧ-смеситель, ВЧ-усилитель, ВЧ-адаптер, ВЧ-разъем, ВЧ-модулятор, ВЧ-трансивер, PLL, VCO, синтезатор, антенну, осциллятор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексер, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, ЭМС, программное обеспечение RF Design, диэлектрический материал, диод и т. д.
Поставщики радиочастотных компонентов >>
➤Базовая станция LTE
➤ РЧ-циркулятор
➤РЧ-изолятор
➤Кристаллический осциллятор
MATLAB, Labview, Embedded Исходные коды
Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW.
Эти коды полезны для новичков в этих языках.
СМОТРИТЕ ИНДЕКС ИСТОЧНИКОВ >>
➤ 3–8 код VHDL декодера
➤Скремблер-дескремблер Код MATLAB
➤32-битный код ALU Verilog
➤ T, D, JK, SR триггеры коды labview
*Общая медицинская информация*
Сделайте эти пять простых вещей, чтобы помочь остановить коронавирус (COVID-19).
ВЫПОЛНИТЕ ПЯТЬ
1. РУКИ: Мойте их часто
2. ЛОКТ: кашляйте в него
3. ЛИЦО: Не прикасайтесь к нему
4. НОГИ: Держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВУЙТЕ: Болен? Оставайтесь дома
Используйте технологию отслеживания контактов >> , следуйте рекомендациям по социальному дистанцированию >> и установить систему наблюдения за данными >> спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таких стран, как США и Китай, чтобы остановить распространение COVID-19так как это заразное заболевание.
Радиочастотные калькуляторы и преобразователи
Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения.
Они охватывают беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. д.
СМ. КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR
➤ 5G NR ARFCN и преобразование частоты
➤ Калькулятор скорости передачи данных LoRa
➤ LTE EARFCN для преобразования частоты
➤ Калькулятор антенны Yagi
➤ Калькулятор времени выборки 5G NR
IoT-Интернет вещей Беспроводные технологии
В разделе, посвященном IoT, рассматриваются беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth с низким энергопотреблением (BLE), NFC, RFID, INSTEON, X10, KNX, ANT+, Wavenis, Dash7, HomePlug и другие.