Как устроены оптопары и как они работают. Какие бывают виды оптопар. Где применяются оптопары в электронике. Каковы преимущества и недостатки использования оптопар. Как выбрать подходящую оптопару для схемы.
Что такое оптопара и как она устроена
Оптопара (оптрон) — это электронный прибор, состоящий из излучателя света и фотоприемника, объединенных в общем корпусе и имеющих между собой оптическую связь. Основные компоненты оптопары:
- Излучатель света (обычно светодиод)
- Фотоприемник (фотодиод, фототранзистор, фототиристор и др.)
- Оптический канал между излучателем и приемником
- Корпус, объединяющий все элементы
Принцип работы оптопары заключается в преобразовании электрического сигнала в световой поток излучателем, передаче этого светового потока через оптический канал и обратном преобразовании света в электрический сигнал фотоприемником. При этом между входной и выходной цепями оптопары отсутствует электрическая связь.
Основные виды и типы оптопар
Диодные оптопары
В качестве фотоприемника используется фотодиод. Отличаются высоким быстродействием и линейностью характеристик. Применяются в импульсных и аналоговых схемах.
Транзисторные оптопары
Фотоприемником служит фототранзистор. Обладают высоким коэффициентом передачи по току. Используются для коммутации и усиления сигналов.
Тиристорные оптопары
Содержат фототиристор в качестве приемника. Способны коммутировать большие токи и напряжения. Применяются для управления мощными нагрузками.
Симисторные оптопары
Фотоприемник — фотосимистор. Могут работать с переменным током. Используются для регулирования мощности в цепях переменного тока.
Резисторные оптопары
В роли фотоприемника выступает фоторезистор. Применяются для регулирования сопротивления в цепях.
Области применения оптопар в электронике
Благодаря своим уникальным свойствам, оптопары нашли широкое применение в различных областях электроники и электротехники:
Гальваническая развязка цепей
Одно из основных применений оптопар — обеспечение гальванической развязки между цепями с разными уровнями напряжений или потенциалов. Это позволяет защитить чувствительные электронные компоненты от высокого напряжения и помех.
Преобразование уровней сигналов
Оптопары используются для согласования логических уровней между микросхемами с разными стандартами питания (например, между ТТЛ и КМОП логикой).
Управление силовыми ключами
Тиристорные и симисторные оптопары применяются для управления мощными полупроводниковыми ключами в импульсных источниках питания, инверторах, регуляторах мощности.
Передача аналоговых сигналов
Линейные оптопары позволяют передавать аналоговые сигналы с гальванической развязкой, что важно в измерительной технике и системах сбора данных.
Устройства ввода-вывода
Оптопары используются в устройствах ввода-вывода компьютеров и промышленных контроллеров для защиты от помех и перенапряжений.
Преимущества использования оптопар
Применение оптопар в электронных схемах дает ряд существенных преимуществ:
- Полная электрическая изоляция входа от выхода
- Высокая помехозащищенность
- Возможность соединения цепей с сильно различающимися уровнями сигналов и напряжений
- Отсутствие обратной связи между выходом и входом
- Широкий диапазон рабочих частот (от постоянного тока до десятков МГц)
- Малые габариты и вес
- Высокая надежность и большой срок службы
Недостатки и ограничения оптопар
Наряду с достоинствами, оптопары имеют и некоторые недостатки:
- Относительно низкий КПД из-за двойного преобразования энергии
- Зависимость характеристик от температуры
- Ограниченное быстродействие по сравнению с некоторыми другими элементами
- Наличие собственных шумов
- Сравнительно высокая стоимость
Как выбрать оптопару для схемы
При выборе оптопары для конкретного применения следует учитывать следующие параметры:
- Тип оптопары (диодная, транзисторная, тиристорная и т.д.)
- Максимальное напряжение изоляции
- Входной ток и напряжение
- Выходной ток и напряжение
- Быстродействие (время включения и выключения)
- Коэффициент передачи по току
- Диапазон рабочих температур
- Тип корпуса
Правильный выбор оптопары позволит оптимально реализовать ее преимущества в вашей схеме и избежать возможных проблем при эксплуатации.
Перспективы развития оптопар
Несмотря на то, что оптопары известны уже несколько десятилетий, они продолжают совершенствоваться. Основные направления развития:
- Повышение быстродействия
- Улучшение линейности характеристик
- Снижение энергопотребления
- Увеличение напряжения изоляции
- Миниатюризация
- Интеграция с другими компонентами в одном корпусе
Развитие технологий производства полупроводников и оптических материалов открывает новые возможности для создания более совершенных оптопар, что позволит расширить области их применения в будущем.
Оптроны. Виды и устройство. Работа и применение. Особенности
Оптроны (оптопары) — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал.
Устройство оптрона состоит из излучателя света и преобразователя светового луча (фотоприемника). В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания. Две составные части оптопары объединены общим корпусом и оптическим каналом.
Виды и устройство оптронов
Существует несколько признаков, по которым можно классифицировать оптопары по группам. При разделении на классы оптронных изделий необходимо учитывать два фактора: тип фотоприемника и особенности общей конструкции прибора.
Первый признак классификации оптронов обуславливается тем, что у всех оптопар на входе расположен светодиод, поэтому возможности функционирования определяются свойствами устройства фотоприемника. Вторым признаком является исполнение конструкции, определяющее особенности использования оптрона.
Применяя такой смешанный принцип разделения, можно выделить три группы оптронных устройств:
- Элементарные оптопары.
- Оптоэлектронные микросхемы.
- Специальные оптопары.
Группы содержат в себе множество видов приборов. Для популярных оптопар применяются некоторые обозначения:
- Д – диодная.
- Т – транзисторная.
- R – резисторная.
- У – тиристорная.
- Т2– со сложным фототранзистором.
- ДТ – диодно-транзисторная.
- 2Д (2Т) – диодная дифференциальная, либо транзисторная.
Система свойств оптронных устройств основывается на системе свойств оптопар. Эта система создается из четырех групп свойств и режимов:
- Характеризует цепь входа оптопары.
- Характеризует выходные параметры.
- Объединяет степень действия излучателя на приемник света, и особенности прохода сигнала по оптопаре в качестве компонента связи.
- Объединяет свойства гальванической развязки.
Основными оптронными параметрами считаются свойства передачи и гальванической развязки. Важной величиной транзисторных и диодных оптронов считается коэффициент передачи тока.
Показателями гальванической развязки оптронов являются:
- Допустимое пиковое напряжение выхода и входа.
- Допустимое наибольшее напряжение выхода и входа.
- Сопротивление развязки.
- Проходная емкость.
- Допустимая наибольшая скорость изменения напряжения выхода и входа.
Первый параметр является наиболее важным. По нему определяют электрическую прочность оптрона, а также его способности применения в качестве гальванической развязки.
Эти параметры оптронов применимы и для интегральных микросхем на основе оптопар.
Обозначения оптопар на схемах
Диодные оптопары
Оптроны на диодах (рис. а) больше других устройств показывают уровень развития оптронной технологии. По значению коэффициента передачи определяют полезное действие преобразования энергии в оптопаре. Величины временных значений свойств дают возможность определить наибольшие скорости передачи информации. Соединение с диодным оптроном усилителей позволяет создать эффективные устройства передачи информации.
Транзисторные оптроны
Эти приборы (рис. с) отличаются некоторыми свойствами от других видов оптопар. Одним из таких свойств является возможность оптического управления по цепи светодиода, и по основной электрической цепи. Цепь выхода может также действовать в режиме ключа и линейном режиме.
Принцип внутреннего усиления дает возможность получения больших величин коэффициента передачи тока. Поэтому дополнительные усилители не всегда нужны. Важным моментом является небольшая инерционность оптопары, что допускается для многих режимов. Фототранзисторы имеют выходные токи намного больше, чем фотодиоды. Поэтому они применяются для коммутации различных электрических цепей. Все это достигается простой технологией транзисторных оптронов.
Тиристорные оптроны
Такие оптопары (рис. b) имеют большую перспективу для коммутации мощных силовых цепей высокого напряжения: по мощности, нагрузке, скорости они более подходящие, чем Т2 оптопары. Оптроны марки АОУ 103 служат для применения в качестве бесконтактных выключателей в разных электронных схемах: усилителях, управляющих цепях, источниках импульсов и т.д.
Резисторные оптроны
Такие устройства (рис. d) называют фоторезисторами. Они значительно различаются от других типов оптронов своими особенностями конструкции и технологией изготовления. Основным принципом работы фоторезистора является эффект фотопроводности, то есть, изменения величины сопротивления при воздействии светового потока.
Дифференциальные
Рассмотренные выше оптопары способны передавать цифровые данные по гальванической развязке цепи. Важной проблемой является передача аналогового сигнала при помощи оптронов, то есть, создание линейности свойств передачи «вход-выход». Только при наличии таких свойств оптопар можно передавать аналоговые данные по гальванической развязке цепи без цифрового вида и импульсной передачи.
Такая задача решается диодными оптопарами, имеющими качественные шумовые и частотные характеристики. Трудность в решении этой задачи заключается в узком интервале линейности передающей характеристики и линейности диодных оптопар. Такие приборы только начинают прогрессировать в развитии, но за ними большое будущее.
Оптронные микросхемы
Эти микросхемы являются наиболее популярными классами моделей оптронных устройств, благодаря конструктивной и электрической совместимости оптронных микросхем с простыми видами, а также намного большей функциональности. Широкое применение получили коммутационные оптронные микросхемы.
Специальные оптроны
Такие образцы имеют значительные отличия от стандартных моделей приборов. Они выполнены в виде оптопар с оптическим каналом открытого вида. В устройстве таких моделей между фотоприемником и излучателем находится воздушный промежуток. Поэтому, при размещении в нем механических препятствий можно управлять светом и сигналом выхода. Оптроны с открытым каналом оптики используются вместо оптических датчиков, которые фиксируют наличие предметов, их поверхность, поворот, перемещение и т.д.
Применение оптронных устройств
- Подобные устройства используются для передачи данных между устройствами, которые не соединены электрическими проводами.
- Также оптопары используются для отображения и получения информации в технике. Отдельно необходимо отметить оптронные датчики, служащие для контроля объектов и процессов, отличающихся по назначению и природе.
- Заметен прогресс оптронной функциональной микросхемотехники, которая ориентирована на решение различных задач по преобразованию и накоплению данных.
- Полезной эффективностью стала замена больших недолговечных устройств электромеханического типа приборами оптоэлектронного принципа действия.
- Иногда оптронные компоненты применяются в энергетике, хотя это довольно специфические решения.
Контроль электрических процессов
Мощность светового потока от светодиода и величина фототока, который образуется в линейных цепях фотоприемников, напрямую зависит от тока проводимости излучателя. Поэтому по бесконтактным оптическим каналам можно передать информацию о процессах в цепях электрического тока, связанных проводами с излучателем. Наиболее эффективным стало применение излучателей света оптопар в датчиках, электрических изменений в силовых цепях высокого напряжения. Точная информация об аналогичных изменениях имеет важность для своевременной защиты источников и потребителей электроэнергии от чрезмерных нагрузок.
Стабилизатор с контрольным оптроном
Оптроны эффективно работают в стабилизаторах высокого напряжения. В них они образуют оптические каналы обратных связей отрицательной величины. Стабилизатор, изображенный на схеме, является прибором последовательного вида. При этом элемент регулировки выполнен на биполярном транзисторе, а стабилитрон на основе кремния работает в качестве источника эталонного опорного напряжения. Компонентом сравнения является светодиод.
При возрастании выходного напряжения, повышается и проводимость светодиода. На транзистор оптрона оказывает действие фототранзистор, при этом стабилизирует напряжение на выходе.
Достоинства оптронов
- Бесконтактное управление объектами, гибкость и разнообразие видов управления.
- Устойчивость каналов связи к электромагнитным полям, что позволяет создать защиту от помех и взаимных наводок.
- Создание микроэлектронных устройств с приемниками света, свойства которых могут изменяться по определенным сложным законам.
- Увеличение перечня функций управления сигналом выхода оптронов с помощью воздействия на материал канала оптики, создание приборов и датчиков для передачи данных.
Недостатки оптронов
- Малый КПД, вследствие двойного преобразования энергии, большой расход электроэнергии.
- Значительная зависимость работы от температуры.
- Большой собственный шумовой уровень.
- Технология и конструкция недостаточно совершенны, так как применяется гибридная технология.
Такие отрицательные моменты оптронов постепенно устраняются по мере развития технологии схемотехники и создания материалов. Большая популярность оптронов вызвана, прежде всего, уникальными свойствами этих устройств.
Похожие темы:
electrosam.ru
6.2. Применение оптопар
Оптопары позволяют решать те же задачи, что и отдельно взятые пары излучатель – фотоприемник, однако на практике они, как правило, более удобны, поскольку в них уже оптимально подобраны характеристики излучателя и фотоприемника и их взаимное расположение.
Если говорить о наиболее очевидном применении оптопары, не имеющем аналогов среди других приборов, так это элемент гальванической развязки. Оптопары (или, как их иногда называют, оптроны) применяют в качестве устройств связи между блоками аппаратуры, находящимися под различными потенциалами, для сопряжения микросхем, имеющих различные значения логических уровней. В этих случаях оптопара передает информацию между блоками, не имеющими электрической связи, и самостоятельной функциональной нагрузки не несет.
Не менее интересно применение оптопар в качестве элементов оптического бесконтактного управления сильноточными и высоковольтными устройствами.
На оптопарах удобно строить узлы запуска мощных тиратронов, распределительных и релейных устройств, устройств коммутации электропитания и т.п.
Оптопары с открытым оптическим каналом упрощают решение задач контроля параметров различных сред, позволяют создавать различные датчики (влажности, уровня и цвета жидкости, концентрации пыли и т.п.).
Одной из важнейших является линейная схема, предназначенная для неискаженной передачи по гальванически развязанной цепи аналоговых сигналов. Сложность этой проблемы связана с тем, что для линеаризации передаточной характеристики в широком диапазоне токов и температур необходима петля обратной связи, принципиально не реализуемая при наличии гальванической развязки. Поэтому идут по пути использования двух идентичных оптронов (или дифференциального оптрона), один из которых выступает в качестве вспомогательного элемента, обеспечивающего обратную связь (рис. 6.13). В таких схемах удобно использовать дифференциальные оптопары КОД301А, КОД303А.
На рис. 6.14 представлена схема двуступенного транзисторного усилителя с оптоэлектронной связью. Изменение тока коллектора транзистора VT1 вызывает соответствующее изменение тока светодиода оптопары U1 и сопротивления ее фоторезистора, который включен в цепь базы транзистора VT2. На нагрузочном резисторе R2 выделя
ется усиленный выходной сигнал. Применение оптопары практически полностью устраняет передачу сигнала с выхода на вход усилителя.
Оптопары удобны для межблочной гальванической развязки в радиоэлектронной аппаратуре. Например, в схеме гальванической развязки двух блоков (рис. 6.15) сигнал с выхода блока 1 передается на вход блока 2 через диодную оптопару U1. Если в качестве второго блока использована интегральная микросхема с малым входным током, необходимость использования усилителя отпадает, а фотодиод оптопары в этом случае работает в фотогенераторном режиме.
Рис. 6.13. Гальваническая развязка аналогового сигнала: 01, 02 – оптроны, У1, У2 – операционные усилители
Рис. 6.14. Двухкаскадный транзисторный усилитель с оптоэлектронной связью
Оптопары и оптоэлектронные микросхемы применяют в устройствах передачи информации между блоками, не имеющими замкнутых электрических связей. Применение оптопар существенно повышает помехоустойчивость каналов связи, устраняет нежелательные взаимодействия развязываемых устройств по цепям питания и общему проводу. Цепи сопряжения с применением оптопар широко используют в вычислительной и измерительной технике, в устройствах автоматики, особенно когда датчики или другие приемные устройства работают в условиях, опасных или недоступных человеку.
Например, реализация связи гальванически независимых логических элементов может осуществляться с помощью оптоэлектронного переключателя (рис. 6.16). Оптоэлектронным переключателем может служить микросхема К249ЛП1, в состав которой входят бескорпусная оптопара и стандартный вентиль.
Оптопары позволяют упрощать решение задач сопряжения блоков, разнородных по функциональному назначе
нию, характеру питания, например исполнительных механизмов, питаемых от сети переменного тока, и цепей формирования управляющих сигналов, питаемых от низковольтных источников постоянного тока.
Большую группу задач представляет также согласование цифровых микросхем с разными видами логики: транзисторно-транзисторной логикой (ТТЛ), эмиттерносвя
занной логикой (ЭСЛ), комплементарной структурой «металл-окисел-полупроводник» (КМОП) и др. Пример схемы согласования элемента ТТЛ с МДП с помощью транзисторной оптопары показан на рисунке 6.17. Входная и выходная ступени не имеют общих электрических цепей и могут работать в самых различных условиях и режимах.
Идеальная гальваническая развязка нужна во многих практических случаях, например в медицинской диагностической аппаратуре, когда датчик прикреплен к телу человека, а измерительный блок, усиливающий и преобразующий сигналы датчика, подключен к сети. При неисправности измерительного блока может возникнуть опасность поражения человека электрическим током. Собственно датчик питается от отдельного низковольтного источника питания и подключается к измерительному блоку через развязывающую оптопару (рис. 6.18).
Оптопары удобны и в других случаях, когда «незаземленные» входные устройства приходится сопрягать с «заземленными» выходными устройствами. Примерами та
ких задач могут служить соединение линии телетайпной связи с дисплеем, «автоматический секретарь», подключаемый к телефонной линии, и т.п. Например, в схеме сопряжения линии связи с дисплеем (рис. 6.19, а) операционный усилитель обеспечивает требуемый уровень сигналов на входе дисплея. Аналогично можно связать передающий пульт с линией связи (рис. 6.19, б).
Рис. 6.19. Сопряжение «незаземленных» и «заземленных» устройств
Рис. 6.20. Оптоэлектронные полупроводниковые реле:
а – нормальноразомкнутое, б – нормальнозамкнутое
Усиленные сигналы фотоприемника удобно передавать на исполнительные механизмы (например, электродвигатели, реле, источники света и т.п.) через оптоэлектронную гальваническую развязку. Примерами такой развязки могут служить два варианта наиболее распространенных полупроводниковых реле, разомкнутых и замкнутых, (рис.6.20). Реле коммутирует сигналы постоянного тока. Сигнал, воспринимаемый фототранзистором оптопары, открывает транзисторы VT1, VT2 и включает нагрузку
(рис.6.20, а) или отключает ее (6.20, б).
Рис 6.21. Оптоэлектронный импульсный трансформатор
Импульсный трансформатор – весьма распространенный элемент современной радиоэлектронной аппаратуры. Его используют в различных генераторах импульсов, усилителях мощности импульсных сигналов, каналах связи, телеметрических системах, телевизионной технике и т.п. Традиционное конструктивное исполнение импульсного трансформатора с применением магнитопровода и обмоток не совмещается с технологическими решениями, используемыми в микроэлектронике. Частотная характеристика трансформатора во многих случаях не позволяет удовлетворительно воспроизводить как низко -, так и высокочастотные сигналы.
Практически идеальный импульсный трансформатор можно изготовить на базе диодной оптопары. Например, в схеме оптоэлектронного трансформатора с диодной оптопарой изображена (рис. 6.21) транзистор VT1 управляет светодиодом оптопары U1 Сигнал, генерируемый фотодиодом, усиливают транзисторы VT2 и VT3.
Длительность фронта импульсов в значительной степени зависит от быстродействия оптопары. Наиболее высоким быстродействием обладают фотодиоды p—i—n-ст
руктуры. Время нарастания и спада выходного импульса не превышает нескольких десятков наносекунд.
На основе оптопар разработаны и выпускаются оптоэлектронные микросхемы, имеющие в своем составе одну или несколько оптопар, а также согласующие микроэлектронные схемы, усилители и другие функциональные элементы.
Совместимость оптопар и оптоэлектронных микросхем с другими стандартными элементами микроэлектроники по уровням входных и выходных сигналов, напряжению питания и другим параметрам определили необходимость нормирования специальных параметров и характеристик.
electrono.ru
2.3. Применение оптронов. 2. Оптроны и оптоэлектронные микросхемы. Введение в оптоэлектронику
2.3.1. Применение оптронов в цифровых и линейных схемах
2.3.2. Управление процессами в высоковольтных цепях
2.3.3. Использование оптронов для получения информации оптическим методом
2.3.4. Другие применения оптронов
2.3.1. Применение оптронов в цифровых и линейных схемах
Использование оптронов (прежде всего—диодных и транзисторных) в цифровых и импульсных устройствах связано с возможностью их быстрого переключения из состояния с низким уровнем сигнала на выходе в состояние с высоким уровнем, или наоборот. В качестве примера можно привести оптоэлектронные элементы, позволяющие реализовать основные логические функции в устройствах цифровых систем. Так, схема, представленная на рис. 2.8, а, моделирует операцию логического умножения (И), а схема на рис. 2.3,б — операцию логического сложения (ИЛИ). В первом случае выходное напряжение U2 поддерживается на высоком уровне, близком к напряжению U1, только если оба фототранзистора ФТ1 л ФТ2 включены и через них идет ток, близкий к насыщению (см. рис. 1.10,б), а во втором — при выходе на насыщение вольт-амперной характеристики любого из фототранзисторов ФТ1 или ФТ2. Оптроны могут также с успехом применяться для моделирования и других логических операций.
Еще одним примером использования оптронов в цифровых устройствах может служить оптоэлектронная микросхема серии 249ЛП1 (см. рис. 2.7,а). При протекании по цепи арсенид-галлиевого светодиода номинального входного тока в цепи фотоприемника (кремниевого фотодиода) возникает фототок, одновременно являющийся базовым для транзистора Т1; этот ток достаточен для отпирания транзистора. Эмиттерный ток транзистора Т1 поступает в базу транзистора ТЗ и переводит его в режим насыщения. При этом напряжение на выходе микросхемы оказывается равным падению напряжения на насыщенном транзисторе (примерно 0,3 В). Если же входной ток оптрона меньше номинального, то через его фотоприемник течет лишь малый темновой ток и транзистор Т1 остается запертым. В этом случае через резистор R1 течет базовый ток транзистора Т2, причем его значение таково, что Т2 находится в режиме насыщения. В результате напряжение на выходе оптопары является разностью напряжения Е1, базового напряжения транзистора Т2 и напряжения на диоде Д1; для микросхемы такого типа это 2,5—3,5 В.
Одним из важных параметров, по которым оптроны могут уступать однотипным устройствам (диодам, триодам, микросхемам) без оптических связей, является быстродействие, определяемое главным образом барьерными емкостями источника излучения и фотоприемника. Проигрыш в быстродействии может быть еще выше, если не принимать специальных мер по согласованию режимов работы элементов оптопары. Так, для снижения влияния времени перезарядки барьерной емкости светодиода (20—300 пФ) перезарядку приходится форсировать, например, подавая на вход светодиода ток достаточно большой амплитуды. Уменьшения времени перезарядки выходной емкости фотоприемника (5—15 пФ) можно добиться, изолируя или компенсируя емкостную нагрузку, а также уменьшая амплитуду напряжения выходного сигнала. Оптимизируя конструкцию и режим работы оптопар, время переключения удается заметно снизить, доведя его (для некоторых типов оптопар) до нескольких наносекунд.
К областям применения аналоговых оптронов можно отнести использование их в широкополосных трансформаторных устройствах, в усилителях различных сигналов, в других системах аналогового преобразования. Схема простого усилителя на основе оптрона, обеспечивающего электрическую развязку от остальной части схемы, изображена на рис. 2.9. Входной сигнал, подаваемый на вход оптрона, после преобразования в излучение попадает на базу фототранзистора, осуществляя тем самым управление амплитудой тока на выходе оптопары и напряжением на сопротивлении нагрузки R. Коэффициент усиления всего устройства определяется значением kI используемого транзисторного оптрона.
В аналоговых устройствах используют диодные и резисторные, а также (в некоторых случаях) транзисторные оптопары. Требования к аналоговым оптронам определяются конкретными условиями их применения и поэтому общего критерия качества, подобного тому, который имеет место в случае цифровых оптронов (добротности), для них нет. В то же время для сохранения формы передаваемого сигнала желательна линейность передаточной характеристики (постоянство kI в достаточно широком диапазоне токов). Этому требованию в наибольшей мере отвечают диодные оптроны, хотя и у них интервал значений I1, при которых kI постоянен, не слишком велик. Так, например, у оптопары АОД 101 даже при ее термостатировании передача аналогового сигнала с нелинейностью менее 2% осуществляется лишь при двух-трехкратном изменении I1.
Сказанное означает, что при проектировании аналоговых устройств, использующих оптроны, необходимо предусматривать дополнительные меры по линеаризации передаточной характеристики. В этой связи перспективным является применение дифференциальных оптронов (с одним излучателем и двумя фотоприемниками), у которых коэффициенты передачи по току между излучателем и первым фотоприемником, а также между излучателем и вторым фотоприемником одинаковы, причем в равной мере меняются в зависимости от условий работы (Т, I1, U1). Фотоприемники включены таким образом, чтобы при подаче сигнала входной ток одного из них увеличивался, а другого в той же мере уменьшался. Увеличение kI первого канала оптрона примерно компенсируется уменьшением kI второго, а общая передаточная характеристика оптопары выравнивается.
2.3.2. Управление процессами в высоковольтных цепях
Для бесконтактного управления процессами в высоковольтных (до 1300 В) и сильнотоковых (до 320 А) цепях используют мощные ключевые оптроны, типичными представителями которых являются тиристорные и транзисторные оптопары. По своим техническим показателям оптоэлектронные переключатели успешно конкурируют с электромагнитными реле и герконами (герметизированными переключателями), превосходя их по надежности, долговечности и помехоустойчивости.
Пример схемного варианта высоковольтного оптоэлектронного ключа, в котором тиристорный оптрон, переключающий ток в цепи с постоянным напряжением, управляется сразу по двум каналам—оптическому и электрическому, приведен на рис. 2.10. Если входной транзистор Т1 открыт и работает в режиме насыщения, то на выходе усилителя у поддерживается высокий потенциал и ток течет лишь через излучатель тиристорной оптопары — фототиристор включен. Для его выключения транзистор Т1 запирается, в результате чего, во-первых, снижается напряжение на светодиоде тиристорной оптопары, и он перестает излучать свет, и, во-вторых, на шину нулевого потенциала закорачивается управляющий электрод фототиристора. Закорачивание обусловлено тем, что после снижения напряжения на выходе усилителя—инвертора у светодиод транзисторной оптопары открывается и через фотоприемник начинает течь ток, переводящий транзистор Т2 в режим насыщения. Подобная схема может управлять током в цепи постоянного напряжения 50—400 В, причем длительность переключения фототиристора составляет 5—10 мкс.
Обобщенным параметром, характеризующим качество ключевых оптронов, является отношение максимальной мощности коммутируемой цепи к входной мощности, необходимой для управления. Это отношение носит название коммутационной добротности и для современных оптронов составляет примерно 102—106.
Для управления цепями высокого напряжения могут применяться и оптопары других типов. Так, в схемах управления электролюминесцентными индикаторами, возбуждающимися переменным напряжением с амплитудой 115— 300 В, используют резисторные оптроны. В цепь питания индикатора включают фоторезистор оптопары; изменение напряжения на индикаторе (а следовательно, и яркость его свечения) регулируют малым сигналом на входе оптрона.
В высоковольтных цепях находят широкое применение оптоизоляторы — оптопары с высоким допустимым напряжением изоляции (и, в частности, с волоконно-оптическими каналами). Использование оптронов этого типа в системах энергораспределения, высоковольтных СВЧ-устройствах, аппаратуре привода, в линиях электропередачи позволяет не только с успехом заменять традиционно использующиеся элементы, но и стимулирует дальнейшее совершенствование вновь разрабатываемых для этих целей приборов.
2.3.3. Использование оптронов для получения информации оптическим методом
Специальные оптроны с открытым оптическим каналов могут применяться в бесконтактной дистанционной технике в качестве индикаторов положения объектов и состояния их поверхности, датчиков заполнения сосудов жидкостью, устройств считывания информации с перфоносителей на входе ЭВМ и т. д. Существуют два типа подобных оптронов. Приборы первого типа (оптопрерыватели) реагируют на попадание в оптический канал непрозрачного предмета, который прерывает (или изменяет) световой поток, падающий на фотоприемник. Область применения оптопрерывателей — индикация положения и счет объектов, сигнализация об изменении параметров воздушной среды между излучателем и фотоприемником (например, при появлении дыма), считывание информации с перфолент и др. Приборы второго типа (отражательные оптроны) регистрируют световой поток, отраженный от исследуемой поверхности. Эти приборы позволяют, например, осуществлять автоматический контроль шероховатости поверхности, ее дефектности.
Из-за наличия воздушного зазора в оптическом канале коэффициент передачи по току таких оптронов мал, причем у отражательных оптронов он еще зависит и от свойств исследуемой поверхности, а также от расстояния до нее. Реально это расстояние не должно превышать нескольких миллиметров.
Пример схемы, в которой используется отражательный оптрон с открытым оптическим каналом, приведен на рис. 2.11. На этой схеме 1—генератор импульсного сигнала, подаваемого на светодиод 3 оптопары, 6—устройство, регистрирующее сигнал с фототранзистора, 4, 2 и 5—усилители входного и выходного сигналов. При изменении интенсивности отраженного от исследуемой поверхности светового потока меняется ток фотоприемника, что фиксируется регистрирующим устройством.
Среди трудностей схемной реализации подобных устройств следует назвать необходимость устранения влияния посторонней внешней засветки и обеспечения точной пространственной ориентации излучателя и фотоприемника. Положение во многом облегчается, если применить оптроны, у которых в качестве оптического канала используют волоконные световоды. Одним концом световоды пристыкованы к излучателю или фотоприемнику; срезы их других концов ориентированы таким образом, чтобы они могли служить чувствительным элементом схемы. Оптоэлектронные зонды этого типа могут использоваться, например, для исследования профиля поверхности, причем применение световодов малого диаметра позволяет регистрировать довольно «тонкие» изменения ее рельефа.
2.3.4. Другие применения оптронов
Как уже отмечалось в 2.2.2, диодные оптроны способны работать в режиме фотоэлементов, выступая в качестве изолированных источников э. д. с. и тока. Полное отсутствие гальванической связи с внешним источником питания дает возможность создавать устройства, обладающие высокой помехозащищенностью. Значение получаемой на выходе оптрона разности потенциалов составляет 0,3—0,4 В, однако батарейное соединение таких оптронов позволяет создавать маломощные источники питания с напряжением до 5 В и током 0,5—50 мА. К сожалению, к. п. д. оптрона, работающего в режиме фотоэлемента, не превышает 1%, хотя в некоторых случаях он может достигать 10—15%.
Введение положительной обратной связи между элементами оптопары позволяет получить устройства, обладающие S-образной вольт-амперной характеристикой. Подобные устройства называют регенеративными оптронами; вариант одной из возможных схем и ее вольт-амперная характеристика приведены на рис. 2.12. При малом напряжении на входе оптрона (рис. 2.12, а) и транзистор Т1, и сама оптопара заперты. После повышения входного напряжения до уровня, достаточного для открывания Т1, его коллекторный ток резко увеличивается, возбуждается излучатель оптопары. Возникающий при этом фототек приемника, в свою очередь, способствует еще большему отпиранию транзистора Т1; этот процесс приводит к возникновению на вольт-амперной характеристике всего устройства участка с отрицательной крутизной (рис. 2.12,б). Таким образом, регенеративные оптроны являются бистабилъными элементами (данному U1 соответствуют два значения I2) и поэтому пригодны для использования в качестве переключателей, усилителей, генераторов оптических и электрических колебаний.
В заключение следует упомянуть о приборах, в которых преобразование энергии происходит по схеме излучение — электрический сигнал — излучение. Примером подобного устройства может служить прибор, схема которого изображена на рис. 2.13.
Поток излучения Ф1, попадая через стеклянную подложку 1 и прозрачный электрод 2 на слой фотопроводника 3 (например, CdS), вызывает изменение его сопротивления, в результате чего происходит перераспределение напряжения, подаваемого на прозрачные электроды 2 и 6, между освещенным участком фотопроводника и прилегающей к нему областью слоя ZnS — электролюминофора 5. Повышение напряжения на люминофорном слое сопровождается возрастанием яркости его свечения; возникающий при этом поток излучения Ф2 выходит сквозь стеклянную пластину 7. Для предотвращения оптической связи между слоями фотопроводника и электролюминофора в устройстве предусмотрен еще один непрозрачный слой 4. Амплитуда управляющего напряжения, яркость, контраст и цвет получаемого изображения зависят от химического состава люминофора и фотопроводника, от толщины их слоев. Подобные структуры могут быть использованы в качестве усилителей и преобразователей изображения (с их помощью можно, например, реализовать устройство, превращающее негатив в позитив, и наоборот), преобразователей инфракрасного излучения в видимое, когерентного— в некогерентное. Особый интерес вызывает применение для этих целей тонкопленочных устройств, обладающих большой яркостью, повышенной крутизной вольт-яркостной характеристики, хорошей разрешающей способностью.
Приведенные примеры далеко не исчерпывают круг приборов, в которых используют оптроны, оптоэлектронные микросхемы и устройства. По мере совершенствования параметров оптронов этот круг все более расширяется.
siblec.ru
Оптопара — это… Что такое Оптопара?
Различные виды оптронов
Оптрон (оптопара) — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Свойства и характеристики
В оптроне входная и выходная цепи гальванически развязаны между собой; взаимодействие цепей ограничено паразитными ёмкостями между выводами оптрона. Тепловым воздействием излучателя на фотоприёмник на практике можно пренебречь.
Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора; для распространённых отечественных DIP-корпусов предельное напряжение между цепями нормируется на 500 или 1000 В, при этом сопротивление изоляции нормируется на уровне 1011Ом. Реальное напряжение электрического пробоя такого прибора — порядка нескольких киловольт.
Нижняя рабочая частота оптрона не ограничена — оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами низких частот с граничной полосой порядка единиц Гц.
Классификация
По степени интеграции
- оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
- оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).
По типу оптического канала
- с открытым оптическим каналом
- с закрытым оптическим каналом
По типу фотоприёмника
В настоящее время в оптоэлектронике можно выделить два направления.
- Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренным фотоэффектом и электролюминесценцией.
- Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т.д.
Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:
- Оптроны
- Квантооптические элементы.
Они являются представителями соответственно электронно-оптического и оптического направлений.
Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.
Использование
Оптроны имеют несколько областей применения, использующих их различные свойства:
Механическое воздействие
Оптронный координатный счётчик в механической мыши
Оптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца (или начала), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, ареометры).
Гальваническая развязка
Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например,
Неэлектрическая передача
На принципе оптрона построены такие приспособления как:
- беспроводные пульты и оптические устройства ввода
- беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов
Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на него радиации, а фотоприёмник фиксирует падение его свечения и сообщает о тревоге.
Ссылки
Wikimedia Foundation. 2010.
dic.academic.ru
Оптопара Википедия
Различные виды оптроновОптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и, как правило, объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Классификация
По степени интеграции
- оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
- оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).
По типу оптического канала
- с открытым оптическим каналом
- с закрытым оптическим каналом
По типу фотоприёмника
По типу источников света
Оптроны с полевым транзистором или фотосимистором иногда именуют оптореле или твердотельным реле.
В настоящее время в оптоэлектронике можно выделить два направления.
- Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренним фотоэффектом и электролюминесценцией.
- Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т. д.
Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:
- Оптроны
- Квантооптические элементы.
Они являются представителями соответственно электронно-оптического и оптического направлений.
Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.
Использование
Оптроны имеют несколько областей применения, использующих их различные свойства:
Механическое воздействие
Оптронный координатный счётчик в механической мышиОптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца или начала (аналогично механическому концевому выключателю), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, анемометры).
Гальваническая развязка
Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например MIDI, предписывают обязательную оптронную развязку. Различают два основных типа оптронов, предназначенных для использования в цепях гальванической развязки: оптопары и оптореле. Основное отличие между ними в том, что оптопары, как правило, используются для передачи информации, а оптореле используется для коммутации сигнальных или силовых цепей.
Оптопары
Транзисторные или интегральные оптопары, как правило, применяются для гальванической развязки сигнальных цепей или цепей с малым током коммутации. В качестве коммутирующего элемента используются биполярные транзисторы, цепи управления цифровыми входами, специализированные цепи (например, для управления силовым MOSFET или IGBT — оптодрайверы).
Свойства и характеристики оптопар
Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора. Оптопары гальванической развязки выпускаются в корпусах DIP, SOP, SSOP, Mini flat-lead. Для каждого типа корпусов характерны свои напряжения изоляции. Для того, чтобы обеспечить большие пробивные напряжения, необходимо, чтобы конструкция оптопары имела как можно большие расстояния не только между светодиодом и фотоприемником, но так же как можно большие расстояния по внутренней и по внешней стороне корпуса. Иногда производители выпускают специализированные семейства оптопар, соответствующие международным стандартам безопасности. Эти оптопары характеризуются повышенной электрической прочностью.
Одним из основных параметров, характеризующих транзисторную оптопару, является коэффициент передачи тока. Производители оптопар выполняют сортировку, присваивая в зависимости от коэффициента передачи тот или иной ренкинг, который указывается в наименовании.
Нижняя рабочая частота оптрона не ограничена: оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами нижних частот с граничной полосой порядка единиц Гц.
Шумы транзисторной оптопары
Для транзисторных оптопар характерным является появление шума, связанного с одной стороны наличием проходной ёмкости между светодиодом и базой транзистора, с другой стороны наличием паразитной ёмкости между коллектором и базой фототранзистора. Для борьбы с первым типом шумов в конструкцию оптопары вносят специальный экран. Второго типа шумов удается избежать правильно подобрав режимы работы оптопары.
Типы оптопар для гальванической развязки
- Стандартные со входом по постоянному току
- Стандартные со входом по переменному току
- С малыми входными токами
- С высоким напряжением коллектор-эмиттер
- Высокоскоростные оптопары
- Оптопары с изолирующим усилителем
- Драйверы двигателей и IGBT
Примеры применения оптопар
- В телекоммуникационном оборудовании
- В цепях сопряжения с исполнительными устройствами
- В импульсных источниках питания.
- В высоковольтных цепях
- В системах управления двигателями
- В системах вентиляции и кондиционирования
- В системах освещения
- В электросчетчиках
Оптореле
Оптореле (Твердотельные реле), как правило, применяются для коммутации цепей с большим током коммутации. В качестве коммутирующего элемента используется как правило пара встречно включенных MOSFET транзисторов, благодаря чему оптореле способно работать в цепях переменного тока.
Свойства и характеристики оптореле
Оптореле имеют три топологии. Нормально разомкнутые — топология А, нормально замкнутые — топология Б и переключающая — топология С. Нормально разомкнутая топология предполагает замыкание коммутирующей цепи только при подаче управляющего напряжение на светодиод. Нормально замкнутая топология предполагает размыкание коммутирующей цепи при подаче управляющего напряжения на светодиод. Переключающая топология, как следует из названия имеет комбинацию внутри оптореле нормально замкнутых и нормально разомкнутых каналов. Стандартными корпусами для оптореле являются DIP8, DIP6, SOP8, SOP4, Mini flat-lead 4. Аналогично оптопарам, оптореле также характеризуются электрической прочностью.
Типы оптореле
- Стандартные оптореле
- Оптореле с малым сопротивлением
- Оптореле с малым СxR
- Оптореле с малым напряжением смещения
- Оптореле с высоким напряжением изоляции
Примеры применения оптореле
- В модемах
- В измерительных устройствах, IC тестеры
- Для сопряжения с исполнительными устройствами
- В автоматических телефонных станциях
- Счетчики электричества, тепла, газа
- Коммутаторы сигналов
Неэлектрическая передача
На принципе оптрона построены такие приспособления как:
- беспроводные пульты и оптические устройства ввода
- беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов
Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на них радиации, а фотоприёмник фиксирует возникшее свечение и сообщает о тревоге.
Литература
- Гребнев А. К., Гридин В. Н., Дмитриев В. П. Оптоэлектронные элементы и устройства / Под. ред. Ю. В. Гуляева. — М.: Радио и связь, 1998. — 336 с. — ISBN 5-256-01385-8.
- Розеншер, Э., Винтер, Б. Оптоэлектроника = Optoélectronique / Пер. с фр.. — М.: Техносфера, 2004. — 592 с. — ISBN 5-94836-031-8.
Ссылки
wikiredia.ru
Оптопара Википедия
Различные виды оптроновОптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и, как правило, объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Классификация[ | ]
По степени интеграции
- оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
- оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).
По типу оптического канала
- с открытым оптическим каналом
- с закрытым оптическим каналом
По типу фотоприёмника
По типу источников света
Оптроны с полевым транзистором или фотосимистором иногда именуют оптореле или твердотельным реле.
В настоящее время в оптоэлектронике можно выделить два направления.
- Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренним фотоэффектом и электролюминесценцией.
- Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использую
ru-wiki.ru
Оптрон — это… Что такое Оптрон?
Различные виды оптроновОптопара (оптрон) — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Классификация
По степени интеграции
- оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
- оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).
По типу оптического канала
- с открытым оптическим каналом
- с закрытым оптическим каналом
По типу фотоприёмника
Оптроны с полевым транзистором или фотосимистором иногда именуют оптореле или твердотельным реле.
В настоящее время в оптоэлектронике можно выделить два направления.
- Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренним фотоэффектом и электролюминесценцией.
- Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т.д.
Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:
- Оптроны
- Квантооптические элементы.
Они являются представителями соответственно электронно-оптического и оптического направлений.
Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.
Использование
Оптроны имеют несколько областей применения, использующих их различные свойства:
Механическое воздействие
Оптронный координатный счётчик в механической мышиОптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца (или начала), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, анемометры).
Гальваническая развязка
Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например, MIDI, предписывают обязательную оптронную развязку. Различают два основных типа оптронов, предназначенных для использования в цепях гальванической развязки: оптопары и оптореле. Основное отличие между ними в том, что оптопары, как правило, используются для передачи информации, а оптореле используется для коммутации сигнальных или силовых цепей.
Оптопары
Транзисторные или интегральные оптопары, как правило, применяются для гальванической развязки сигнальных цепей или цепей с малым током коммутации. В качестве коммутирующего элемента используются биполярные транзисторы, цепи управления цифровыми входами, специализированные цепи (например, для управления силовым MOSFET или IGBT).
Свойства и характеристики оптопар
Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора. Оптопары гальванической развязки выпускаются в корпусах DIP, SOP, SSOP, Mini flat-lead. Для каждого типа корпусов характерны свои напряжения изоляции. Для того, чтобы обеспечить большие пробивные напряжения, необходимо, чтобы конструкция оптопары имела как можно большие расстояния не только между светодиодом и фотоприемником, но так же как можно большие расстояния по внутренней и по внешней стороне корпуса. Иногда производители выпускают специализированные семейства оптопар, соответствющие международным стандартам безопасности. Эти оптопары характеризуются повышенной электрической прочностью.
Одним из основных параметров, характеризующих транзисторную оптопару, является коэффициент передачи тока. Производители оптопар выполняют сортировку, присваивая в зависимости от коэффициента передачи тот или иной ренкинг, который указывается в наименовании.
Нижняя рабочая частота оптрона не ограничена: оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами нижних частот с граничной полосой порядка единиц Гц.
Шумы транзисторной оптопары
Для транзисторных оптопар характерным является появление шума, связанного с одной стороны наличием проходной емкости между светодиодом и базой транзистора, с другой стороны наличием паразитной емкости между коллектором и базой фототранзистора. Для борьбы с первым типом шумов в конструкцию оптопары вносят специальный экран. Второго типа шумов удается избежать правильно подобрав режимы работы оптопары.
Типы оптопар для гальванической развязки
- Стандартные со входом по постоянному току
- Стандартные со входом по переменному току
- С малыми входными токами
- С высоким напряжением коллектор-эмиттер
- Высокоскоростные оптопары
- Оптопары с изолирующим усилителем
- Драйверы двигателей и IGBT
Примеры применения оптопар
- В телекоммуникационном оборудовании
- В цепях сопряжения с исполнительными устройствами
- В импульсных источниках питания.
- В высоковольтных цепях
- В системах управления двигателями
- В системах вентиляции и кондиционирования
- В системах освещения
- В электросчетчиках
Оптореле
Оптореле (Твердотельные Реле) как правило применяются для коммутации цепей с большим током коммутации. В качестве коммутирующего элемента используется как правило пара встречно включенных MOSFET транзисторов, благодаря чему оптореле способно работать в цепях переменного тока.
Свойства и характеристики оптореле
Оптореле имеют три топологии. Нормально разомкнутые — топология А, нормально замкнутые — топология Б и переключающая — топология С. Нормально разомкнутая топология предполагает замыкание коммутирующей цепи только при подаче управляющего напряжение на светодиод. Нормально замкнутая топология предполагает размыкание коммутирующей цепи при подаче управляющего напряжения на светодиод. Переключающая топология, как следует из названия имеет комбинацию внутри оптореле нормально замкнутых и нормально разомкнутых каналов. Стандартными корпусами для оптореле являются DIP8, DIP6, SOP8, SOP4, Mini flat-lead 4. Аналогично оптопарам оптореле также характеризуются электрической прочностью.
Типы оптореле
- Стандартные оптореле
- Оптореле с малым сопротивлением
- Оптореле с малым СxR
- Оптореле с малым напряжением смещения
- Оптореле с высоким напряжением изоляции
Примеры применения оптореле
- В модемах
- В измерительных устройствах, IC тестеры
- Для сопряжения с исполнительными устройствами
- В автоматических телефонных станциях
- Счетчики электричества, тепла, газа
- Коммутаторы сигналов
Неэлектрическая передача
На принципе оптрона построены такие приспособления как:
- беспроводные пульты и оптические устройства ввода
- беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов
Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на них радиации, а фотоприёмник фиксирует возникшее свечение и сообщает о тревоге.
Литература
- Гребнев, А. К. Гридин В. Н., Дмитриев В. П. Оптоэлектронные элементы и устройства / Под. ред. Ю. В. Гуляева. — М.: Радио и связь, 1998. — 336 с. — ISBN 5-256-01385-8
- Розеншер, Э., Винтер, Б. Оптоэлектроника = Optoélectronique / Пер. с фр.. — М.: Техносфера, 2004. — 592 с. — ISBN 5-94836-031-8
Ссылки
dic.academic.ru