Освещенность поверхности: Как измеряют освещенность (естественное и искусственное освещение)

Содержание

Как измеряют освещенность (естественное и искусственное освещение)



Отличие Освещенности и Светового потока

Сегодня на рынке освещения большая путаница с техническими параметрами, такими как световой поток (измеряемый в люменах (Лм) и освещенность (измеряемый в люксах (Лк). Большинство, при подборе светильников обращают внимание на световой поток (Лм – указывается на упаковке каждого светодиодного светильника), а не на требования освещенности.Чаще всего, в расчет берется суммированный световой поток лампы или светодиодов, без световых и тепловых потерь.

Световой поток, можно измерить только в специальной лаборатории,самомуэто сделать с подручными прибораминевозможно! В нормативных документах существует понятие светового потока, но нет определенных требований к нему.

Освещенность любой человек может измерить самостоятельно, без сложного оборудования.Что такое освещённость?

Освещённость– это величина отношения светового потока к площади, на которую он падает.

Причём падать он должен на эту плоскость именно перпендикулярно. Измеряется в люксах, lux (лк).



Зачем измерять освещённость?

Учеными доказано, что плохой (или, наоборот, слишком хороший) свет через сетчатку глаза воздействуют на рабочие процессы нашего мозга.

Как следствие, свет влияет на психологическое состояние человека: если света недостаточно - он чувствует угнетенность, пониженную работоспособность, сонливость; если свет слишком яркий, он способствует возбуждению, подключению дополнительных ресурсов организма, вызывая их повышенный износ. И то и другое – одинаково вредно.

Если же свет подобран правильно, то благодаря улучшению освещенности производительность на рабочем месте может быть повышена на 25—30%.



Нормативы

До недавнего времени в России для измерения освещённости руководствовались межгосударственным стандартом измерения освещённости - ГОСТ 24940-96.

В этом ГОСТе используются такие понятия, как: освещённость, средняя, минимальная и максимальная освещённость, цилиндрическая освещённость, коэффициент естественной освещенности (КЕО), коэффициент запаса, относительная спектральная световая эффективность монохроматического излучения.

В 2012 году Россия ввела собственный, национальный стандарт измерения освещённости, ГОСТ Р 54944-2012 «Здания и сооружения. Методы измерения освещенности».

В этом ГОСТе к тем понятиям, что были раньше, добавлены новые: полуцилиндрическая освещённость, аварийное освещение, резервное освещение, эвакуационное освещение, охранное освещение, рабочее освещение.

В 2016 году был откорректирован Свод правил - СП 52.13330.2016, который после актуализации 2011 года потерпел незначительные изменения, такие как:


  • согласно пункту4.1теперь нормируется именно средняя освещенность, а не наименьшая;

  • в пункте7. 3.1говориться, что в учебных заведениях запрещено применять осветительные приборы на светодиодах;

  • в пункте7.6.9определены новые нормы размещения эвакуационных знаков безопасности;

  • и др.

Параметры для оценки освещенности

Световые волны как один из видов электромагнитных волн различают по длине и частоте колебаний, которые связаны между собой следующей математической зависимостью:

Ь = с/&

где А, — длина волны; м;с —скорость распространения света, 300 000 км/ч; частота колебаний, Гц(1 Гц равен одному колебанию в 1 с). Силу светаизмеряют в канделах (кд). 1 кд соответствует У60силы света, излучаемого в перпендикулярном направлении поверхностью абсолютного черного тела площадью 1 см2при температуре затвердевания платины 1760°С.

Освещенностьизмеряется в люксах. Люкс (лк) есть освещенность поверхности, на каждый квадратный метр которой падает световой поток, равный одному люмену (лм):

1 лк = 1 лм/1 м2.

Люмен —это световой поток, излучаемый в пределах телесного угла в 1 стер источником, сила света которого равна 1 св; находится как отношение площади освещенности к квадрату расстояния до источника света. Если поверхность освещается несколькими источниками, создающими на ней освещенности ?,,Е2и т. д., то полная освещенность поверхности Е будет равна их сумме.

Коэффициент пульсации. Изменение условий освещения помещений вызывает адаптацию органов зрения, в основе которой лежат физиологические и фотохимические процессы, приводящие к изменению чувствительности зрения. Частые и резкие изменения условий освещения отражаются на физическом состоянии человеческого организма.

Скорость различения и устойчивость ясного видения предметов зависят также от уровня освещенности. Скорость различения особенно велика при уровне освещенности 400—500 лк, устойчивость ясного видения соответствует уровню освещенности 130— 150 лк.

Важными факторами, которые необходимо принимать во внимание при определении освещенности помещений, являются цветовые решения интерьеров и различие яркости наблюдаемого предмета и фона, на котором рассматривается предмет. Таким образом,

яркостной контраст зависит от уровня освещенности: чем меньше освещенность, тем должна быть больше контрастность. Яркость фона определяется количеством отраженного света, воспринимаемого человеческим глазом.


Виды освещения

Освещенность обеспечивается путем устройства окон и установки светильников.

В одних случаях требуется равномерная освещенность помещения, в других — нормативной должна быть освещенность рабочих мест, а освещенность всего помещения может быть в два-три раза меньше. Это зависит от назначения помещений и достигается использованием определенных типов светильников и их размещением, что предусматривается проектом. Освещение бывает естественным и искусственным.



Естественное освещение

Источниками естественного освещения являются:

  • солнце,
  • луна (точнее отражённый ею свет),
  • рассеянный свет небосвода (это не просто поэтическое название , термин используемый в протоколах по измерению освещенности).

Естественное освещение помещений зависит:

  • от местности, где расположено здание. В СНИП определено понятие световой климат - так называется характер изменения освещенности на открытом воздухе в течение суток, месяца, года. Световой климат напрямую зависит от географической широты местности и высоты стояния солнца.
  • от ориентации здания,
  • от расстояния здания от затемняющих объектов;
  • от расположения световых проемов и их размеров:

    Расположение: Для лучшего освещения самых удаленных точек помещений необходимо, чтобы верхняя граница светового проема была поднята как можно выше над уровнем пола, а наиболее удаленная от окна точка находилась на расстоянии, не превышающем двойной высоты верхнего края проема над полом.

    Размер: В жилых и служебных помещениях требования к размеру световых проемов разные: в жилых - 1:8 по отношению к площади освещаемого пола, в служебных и административных — не менее 1:10. Размер светового проема равен площади проема за вычетом 15% площади, приходящейся на оконные устройства.

На основании всех этих факторов помещение имеет определенный уровень освещенности, который характеризуется коэффициентом естественной освещенности (КЕО), представляющим собой отношение освещенности внутри помещения (Лк) к одномоментной освещенности снаружи (Лк), измеряется КЕО в процентах ( %)

Коэффициент естественной освещенности для жилых и общественных зданий и производственных помещений с боковым освещением зависит от точности выполняемых работ и колеблется от 1,5 до 2, а для помещений с грубыми работами КЕО =0,5. При верхнем и комбинированном освещении в соответствии со СНиП этот коэффициент колеблется от 2 до 7.



Искусственное освещение

Источниками

искусственного освещения – являются любые осветительные приборы (лампы, светильники, светодиодные ленты)

При определении эксплуатационных характеристик искусственного освещения необходимо обращать внимание на


  • мощность света,
  • равномерность освещения,
  • отсутствие резких теней и блескости.

Нормы освещенности установлены СНиП в зависимости от назначения помещений и проводимых там работ.

Подробную информацию можно изучить в статьях:

"Нормы освещенности по Нормативным документам"

"Нормы пульсации по Нормативным документам"




Коэффициент эксплуатации

(обратно пропорционален коэффициенту запаса , КЗ, использовавшемуся ранее)

При планировании освещенности на этапе проекта важно не забывать, что в процессе эксплуатации любой осветительный прибор может уменьшить создаваемую им освещенность. Для компенсации этого спада при проектировании вводится коэффициент эксплуатации (КЭ).

КЭ для искусственного освещения учитывает:


  • загрязнение
  • не восстанавливаемое изменение отражающих и пропускающий свойств оптических элементов
  • спад светового потока
  • выход из строя источников света
  • загрязнение поверхностей помещений, наружных стен здания или сооружения, проезжей части дороги или улицы.

КЭ для естественного освещения учитывает:


  • загрязнение и старение светопрозрачных заполнений в световых проемах,
  • снижение отражающих свойств поверхностей помещения. Как пример, при запылении ограждающих поверхностей в лабораториях освещенность снижается на 10% за год, в деревообрабатывающих цехах на 30% за полгода.

Измерение освещённости рабочих мест проводят вместе с замерами уровня шума, пыле- и загрязнённости, вибрации - в соответствии с СанПин (санитарные правила и нормы).



Измерение освещённости производят ЛЮКСОМЕТРОМ( от Люкс)

Люксометр - это мобильный, портативный прибор для измерения освещенности, принцип работы которого идентичен фотометру.

Правила использования:


  • прибор всегда находится в горизонтальном положении;
  • его устанавливают в точках, место положение которых рассчитываются согласно методике, указанной в Госстандартах. Количество контрольных точек должно быть не менее 10;
  • все люксометры сертифицируются, и погрешность люксметра, согласно ГОСТ должна быть не больше 10%.

Люксметры бывают субъективные и объективные.

Субъективный люксметр основан на уравнивании яркости двух полей освещения (освещенность одного поля известна). Он состоит из вентильного фотоэлемента и измерительного устройства. Электрический ток, который дает фотоэлемент при освещении его поверхности, пропорционален ее освещенности. Поэтому измерительное устройство, проградуированное в люксах, показывает сразу значение освещенности.

Объективные люксметры являются более точными, в них роль анализатора выполняет селеновый фотоэлемент, а показания регистрирует гальванометр. При попадании световых лучей на приемную часть фотоэлемента в схеме прибора возникает ЭДС, пропорциональная уровню освещенности. Шкала прибора имеет 50 делений с обозначением трех пределов измерений освещенности: 0—25, 0—100, 0—500 лк. Если освещенность превышает 50 лк, то на фотоэлементе устанавливают поглотитель, который расширяет основные пределы измерения в 100 раз, что позволяет измерять освещенность 0—50 000 лк.

Измерения проводятся отдельно по искусственному и естественному освещению. При этом нужно следить, чтобы на прибор не падала какая-либо тень, и поблизости не было источника электромагнитного излучения. Это внесёт помехи в результаты. После того как сделаны все необходимые замеры освещенности, на основе полученных результатов, по специальным формулам, рассчитываются нужные параметры, и делается общая оценка. То есть, полученные параметры сравниваются с нормативом, и делается вывод о том достаточно ли освещённость данного помещения или территории.

На каждый вид измерений в каждом помещении или участке улицы заполняется отдельный протокол. Оценочный протокол выдаётся как по каждому помещению или территории, так и по всему объекту. Этого требует «ГОСТ. Измерение освещённости» должно быть выполнено по правилам.



Рекомендации замеров освещенности для светодиодных светильников


  1. Замеры освещенности светодиодных светильников необходимо проводить после их 2 часовой работы, когда они выйдут на рабочий режим (несколько раз в течение дня). Светодиоды и источники питания выделяют большое количество тепла. Оно отводится за счет теплоотводящих материалов (алюминий, компаунд и т.п) и определенной конструкции (большая радиаторная площадь и т.п.). Тем не менее повышенные температурные режимы оказывают серьезное воздействие на освещенность.

  2. Чтобы не ошибиться с параметрами освещенности, лучше при проектировании сразу закладывать коэффициент падения освещенности, который зависит от типа и характеристики объекта.

  3. Следите за работой светодиодных светильников и параметрами освещенности весь гарантийный срок, т.к. если производитель заявляет гарантийный срок 3 и более года, то светильники при соблюдении условий должны сохранять качественные в течение всего срока.

  4. Если условия эксплуатации светильников происходят при температурных режимах свыше +45 гр, то замеры освещенности надо делать гораздо чаще, чем регламентируют нормы.
  5. На заметку: на некоторых Интернет-ресурсах Вы можете встретить информацию: "В жилых комнатах норма освещения лампами накаливания установлена 25—30 лк, люминесцентными лампами — 75 лк.". Данная информация является устаревшей и указывает минимальную освещенность. Но, как писалось ранее,в последней редакции - СП 52.13330. 2016 теперь нормируется средняя освещенность, а не наименьшая. И с учетом перехода на светодиодные источник света средняя освещенность для жилых помещений составляет 200 Лм.


Как рассчитать освещенность помещения – коэффициент неравномерности освещения

Правильно организованное освещение производственных помещений весьма благотворно отражается на работоспособности персонала и его здоровье. Недостаток света, наоборот, приводит к утомляемости и раздражительности человека. Кроме того, при длительном нахождении в плохого расчёта освещения в помещении от чрезмерного напряжения глаз падает уровень остроты зрения. Слишком яркий свет может привести к фотоожогам глаз, перевозбуждению нервной системы и прочим неприятностям. Поэтому вопрос рационального освещения рабочей зоны настолько важен, что для его нормирования разработаны санитарные и строительные нормативы. Соблюдение их требований обязательны для проектировщиков и руководителей предприятий.

 

Правильное освещение производственного помещения

По видам производственное освещение помещения (как и любого другого) делится на естественное и искусственное. Естественный свет – наиболее ценен: человеческий глаз максимально к нему приспособлен. Он поступает внутрь здания через окна и прочие прозрачные строительные конструкции (например, аэрационные фонари).

Виды искусственного освещения: общим; местным; комбинированным. Местное освещение само по себе не используется, его применяют только в комбинации с общим. Подходящий для этого осветительный прибор может быть переносным или стационарным. Световое пятно от него не освещает даже прилегающие к нему площади.

Комбинированный метод освещенности здания

Комбинированное – требуется при выполнении рабочим высокоточных операций, не допускающих возникновения резких теней от каких-либо предметов.

Общее – организуется в цехах с однотипными работами (например, в литейных). Встречаются случаи, когда комбинированное освещение просто нет возможности организовать. Установленная освещенность для рабочих мест с мелкими работами соответствует 500-м Лк, постепенно снижаясь до 50 Лк в различных хранилищах. Для максимальной экономичности, можно осветить технические или уличные территории приборами с датчиками движения для включения света.

Общая методика расчета

Расчетом параметров осветительной системы занимается инженер-электрик (проектировщик). Он может выполнить эту работу одним из трех способов:

  • через коэффициент использования потока света;
  • установки удельной мощности;
  • точечным.

Первым способом рассчитывается общее (равномерное) освещение рабочих поверхностей, расположенных в горизонтальной плоскости. В процессе работы вычисляется коэффициент для отдельно взятого помещения. В методике учитываются геометрические размеры производственного участка и степень светового отражения поверхностей.

Расчет через удельную мощность. Способ светотехнического расчета через удельную мощность используется только для предварительной прикидки установленной мощности осветительных установок, так как дает весьма приближенный результат. Такие данные часто требуются для заполнения опросных листов, которые используются при получении технических условий или при составлении сметной стоимости монтажа осветительной системы предприятия. Точечный метод. Такой способ пригоден для расчета освещения – локализованного и общего – при наличии осветительных приборах прямого света. На него не влияет пространственная ориентация анализируемой поверхности. Освещенность подсчитывают в каждой точке поверхности для каждого источника света в отдельности.

Реализация точечного метода представляет собой очень трудоемкий процесс, но и точность результата высокая. Правда, она зависит от добросовестности специалиста, выполняющего анализ.

 

Как рассчитать алгоритм

Расчет освещения участков производственных предприятий производится в следующей последовательности:

  • выбирается система освещения;
  • обосновывается нормированная освещенность каждого рабочего места;
  • выбирается наиболее рациональный и экономичный светильник;
  • оцениваются коэффициенты неравномерности освещения, запаса освещенности, отражения поверхностей, находящихся внутри помещения.

После этого рассчитываются: индекс помещения; коэффициент использования светового потока; необходимое количество светильников; На заключительном этапе выполняется чертеж или эскиз, на котором размечается расположение всех светильников. 

Как рассчитывается норма КЕО

Естественный свет – величина непостоянная, потому и нормируется он не по освещенности, а по ее коэффициенту (КЕО). Он рассчитывается по формуле:

Е = (Ев/Ен) х 100, %, где:

Ев – естественная освещенность точки, расположенной внутри помещения;

Ен – наружная освещенность (горизонтальная) при небосводе, открытом полностью.

Очередность шагов

Первым делом выбирается система освещения. Оно может быть боковым, верхним или комбинированным. Выбор зависит от назначения производственного помещения с обязательным учетом особенностей технологического процесса.

Нормированное значение КЕО выбирается по таблице СНиП 23-05-95. Его величина зависит от разряда зрительной работы (а разряд определяется в зависимости от величины самого мелкого элемента, с которым приходится работать рабочему).

Величина Ен корректируется в зависимости от района расположения производственного объекта.

КЕО снижается из-за запыленности поверхностей, пропускающих свет. Для учета степени загрязненности остекления выбирается коэффициент запаса Кз.

Световая характеристика проемов определяется в соответствии с:

  • соотношением длины и глубины помещения, глубины и высоты (от уровня рабочей поверхности до верхней границы окна) – при боковом освещении;
  • соотношением длины и ширины помещения, его высоты и ширины и типа фонаря – при верхнем освещении.

При боковом освещении нормируется КЕО (его минимальное значение) для рабочего места, наиболее удаленного от окна. При верхнем или комбинированном – нормированный показатель является средним для пяти точек, равноудаленных друг от друга и расположенных на рабочей поверхности. Целью расчета естественного освещения является определение площади оконных проемов. Если рабочее место расположено менее чем в двенадцати метрах от окна, достаточно одностороннего освещения. При увеличении расстояния свыше 12 метров необходимо обеспечить рабочую точку двухсторонним боковым освещением.

Естественный свет

Имеется помещение длиной L = 10 м, шириной B – 10 м, высотой H -5 м. оконный проем имеет размеры 4х3,5 м с двойным остеклением.

По условиям задачи помещение расположено в третьем световом поясе. Точность зрительной работы персонала – высокая.

Нормированное значение КПО – 2%.

Окна ориентированы на север, они обеспечивают КЕО не менее 1,5%.

Для обеспечения КПО 2% необходимо наличие в помещении трех окон общей площадью 42 кв.м.

Искусственный свет

Дано помещение с геометрическими размерами 8х6х3,5 м.

Нормируемая освещенность для данного производства – 300 лк.

Напряжение в сети предприятия – 220 В, предполагается использовать светильники люминесцентные ЛПО (коэффициент использования светового потока – 49%).

Отражательная способность:

  • потолка -0,7;
  • стен – 0,5;
  • рабочей поверхности – 0,3.

Коэффициенты:

  • запаса Кз = 1,75;
  • неравномерности освещения – 1,1.

Разряд зрительных работ, выполняемых персоналом в данном помещении – III.

Рабочая поверхность КРЛ размещена на высоте 0,8 м, высота свеса – 0,1 м.

Площадь участка составляет 48 кв. м. Индекс помещения (S/(h2 – h3) (L+B) = 48/(3,5 – 0,8) (8 + 6) = 1,26

Коэффициент использования (в соответствии с коэф. отражения поверхностями и индексом помещения) составляет 51. Количество светильников N = (500 х 48 х 100х1,75)/(51 х 4 х 1150) = 17,9 Округлив результат, получим необходимое количество светильников, равное 18 шт.

Расположение осветительных приборов и их количество

Светильники могут размещаться с учетом, либо без учета размещения рабочих мест.

Если выбирается за основу система равномерного освещения цеха, они располагаются высоко от рабочих поверхностей, могут оснащаться дополнительными отражателями.

Поток света иногда направляется не только вниз, но и вверх или в стороны.

При организации комбинированного освещения местные светильники устанавливаются на каждом рабочем месте. Световой поток от местного осветительного прибора не должен попадать в поле зрения работающего. В качестве источника света в производственных помещениях могут использоваться лампы различных типов: люминесцентные (наиболее часто применяемые), газоразрядные, накаливания.

Светотехнические параметры

Свет, улавливаемый человеческим глазом – это не что иное, как электромагнитное излучение, длина волны которого колеблется в пределах от 400 до 780 нм. Импульсы с параметрами, не входящими в эти границы, нашим зрением уже не воспринимается – это ультрафиолетовое (ниже 400 нм) и инфракрасное (выше 780 нм) излучение. Отрасль светотехники изучает количественные и качественные параметры, характеризующие специфические признаки всех излучающих свет приборов.

Основные количественные показатели осветительных устройств – это освещенность, яркость, сила света и световой поток. Для любых расчетов в светотехнике необходимо владеть некой базовой информацией, которая включает:

  • Габариты помещения – ширину, длину, высоту;
  • Коэффициенты отражения пола, стен и потолка;
  • Расстояние между осветительным прибором и рабочей поверхностью;
  • Коэффициент использования светильников;
  • Тип и мощность применяемых ламп;
  • Показатель требуемого уровня освещенности.

Оперируя исходными данными и дополнительной информацией, можно рассчитать цифровые значения каждого из четырех светотехнических параметров.

Освещенность

Эта физическая величина характеризует освещение поверхности, которое создается падающим на нее световым потоком. Освещенность рассчитывается в люксах (1 люкс – это 1 люмен на кв. метр поверхности) и находится в прямо пропорциональной зависимости от силы света осветительного прибора. Удаление светильника от освещаемой поверхности уменьшает освещенность в обратной пропорции к квадрату расстояния. А при наклонном падении лучей на поверхность уменьшение освещенности находится в зависимости от косинуса угла падения лучей.

Освещенность в светотехнике обозначается Е и рассчитывается по формуле:

В случаях, когда для проекта требуется составить точный план построения света, рассчитать освещенность помещений и найти необходимое количество светильников можно, воспользовавшись формулой:

Яркость

Этот параметр, который обозначается знаком L, характеризует яркость ламп и вычисляется в канделах на кв. метр. Это один из главных факторов, участвующих в световом восприятии человеческого глаза. L – это яркость поверхности, излучающей силу света в 1 канделу с поверхности в 1 кв. метр в перпендикулярном направлении.

Именно яркость определяет интенсивность ощущения от того или иного источника света. Грамотное распределение яркости зависит от расположения светильников и отражающих свойств различных поверхностей в помещении. И хоть наши глаза способны адаптироваться к перепадам яркости, резкие скачки вызывают ощутимое утомление.

Световой поток

Этот параметр, обозначаемый символом F (или Ф) и измеряемый в люменах, характеризует мощность излучения осветительного прибора и представляет собой количественный показатель той энергии, которую излучают источники освещения в телесном углу и которая протекает за принятую единицу времени по принятой единице площади.

В отличие от мощности излучения, измеряемой в ваттах, световой поток оценивается исключительно человеческим зрением и зависит от графика чувствительности глаза к различным длинам волн различимого света. Поскольку человеческий глаз обладает неодинаковой чувствительностью к различным длинам волн, имеющим разный цвет, то излучение равной мощности воспринимается им по-разному, в зависимости от цвета длины волны.

Сила света

Силой света называют пространственную плотность светового потока и рассчитывают как отношение исходящего от источника света потока к величине телесного угла, внутри которого он распространяется. Этот параметр обозначается символом I и измеряется в канделах.

Как следует из формулы, сила света неразрывно связана со световым потоком и выражает его отношение к величине телесного угла. Количественные показатели силы света позволяют судить о преимуществах и недостатках тех или иных осветительных приборов и потому имеют большую ценность. Для измерения этой величины используют специальные приборы – фотометры, показания которых, к сожалению, не отличаются высокой точностью. И дело не столько в устройстве, сколько в индивидуальных особенностях человеческого глаза, который и является главным инструментом фотометрии – науки, изучающей силу света.

Величины и единицы освещения

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
0,000
0,0175
0,035
0,052
0,070
0,087
0,104
0,122
0,139
0,156
0,174
0,191
0,208
0,225
0,242
0,259
0,276
0,292
0,309
0,326
0,342
0,358
0,375
0,391
0,407
0,423
0,438
0,454
0,469
0,485
0,500
0,515
0,530
0,545
0,559
0,574
0,588
0,602
0,616
0,629
0,643
0,656
0,669
0,682
0,695
0,000
0,0175
0,035
0,052
0,070
0,088
0,105
0,123
0,140
0,158
0,176
0,194
0,213
0,213
0,249
0,268
0,287
0,306
0,325
0,344
0,364
0,384
0,404
0,424
0,445
0,466
0,488
0,510
0,532
0,554
0,577
0,601
0,625
0,649
0,674
0,700
0,726
0,754
0,781
0,810
0,839
0,869
0,900
0,932
0,966
1,000
0,999
0,998
0,996
0,993
0,989
0,984
0,978
0,971
0,964
0,955
0,946
0,936
0,925
0,913
0,901
0,882
0,874
0,860
0,845
0,830
0,814
0,797
0,780
0,762
0,744
0,726
0,707
0,688
0,669
0,649
0,630
0,610
0,590
0,570
0,550
0,530
0,509
0,489
0,469
0,449
0,430
0,410
0,391
0,372
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
0,707
0,719
0,731
0,743
0,755
0,766
0,777
0,788
0,799
0,809
0,819
0,829
0,839
0,848
0,857
0,866
0,875
0,883
0,891
0,899
0,906
0,914
0,920
0,927
0,934
0,940
0,946
0,951
0,956
0,961
0,966
0,970
0,974
0,978
0,982
0,985
0,988
0,990
0,992
0,994
0,996
0,998
0,999
0,999
1,000
1,000
1,036
1,072
1,111
1,157
1,199
1,235
1,280
1,327
1,376
1,428
1,483
1,540
1,600
1,664
1,732
1,804
1,881
1,963
2,050
2,145
2,246
2,356
2,475
2,605
2,747
2,904
3,078
3,271
3,487
3,732
4,011
4,331
4,705
5,14
5,67
6,31
7,12
8,14
9,51
11,43
14,3
19,1
28,6
57,3
0,353
0,335
0,317
0,299
0,282
0,266
0,249
0,233
0,218
0,203
0,189
0,175
0,161
0,149
0,136
0,125
0,114
0,103
0,094
0,084
0,075
0,067
0,0596
0,0525
0,0460
0,0399
0,0345
0,0294
0,0249
0,0209
0,0173
0,0141
0,0113
0,0090
0,0069
0,0052
0,0038
0,0027
0,0018
0,0011
0,00066
0,00034
0,00014
0,000042
-

Искусственное освещение помещений, требования к освещению и к светильникам

Показатели дискомфорта

 

     Если в поле зрения одновременно попадают поверхности, имеющие чрезмерно различную яркость, то возникают неприятные зрительные ощущения, которые называют дискомфортной блескостью. Особенно часто подобная ситуация возникает на улице, когда взгляд направлен на какой то удаленный объект, а в поле зрения попадает яркое солнце. Яркие солнечные лучи сужают наши зрачки и не позволяют рассмотреть желаемый объект, имеющий существенно меньшую яркость, чем поверхность солнца. Хотя иногда удается ладонью руки защитить глаза от солнца и все-таки рассмотреть объект нашего интереса. 

     А теперь представим себе, что в поле зрения попадает ярко светящаяся поверхность светильника (или яркое отражение света на столе или мониторе компьютера), в результате чего зрачки стремятся сузиться. Но поверхность рассматриваемого предмета освещена существенно слабее. И для оптимального ее изучения по условиям освещенности зрачкам необходимо расширяться. Вот мы и получили неприятный зрительный эффект – дискомфортную блескость, вызывающий чрезмерное напряжение глаз. Длительное ежедневное напряжение глаз может даже вызвать их заболевания.

     Дискомфортная блескость  – самый неприятный недостаток многих осветительных установок. Можно обеспечить хорошую освещенность, в том числе цилиндрическую, индекс цветопередачи источников света Ra=90 и более. Но находясь в помещении, мы будет испытывать дискомфорт.

     Для количественной оценки дискомфортной блескости и слепящего воздействия осветительной установки в нормативных документах по проектированию освещения используются: показатель ослепленности Р, показатель дискомфорта М и объединенный показатель дискомфорта UGR.

     Показатель дискомфорта М - критерий оценки дискомфортной блескости, используемый в России.

     Объединенный показатель дискомфорта UGR является международным критерием оценки дискомфортной блескости. Используется в большинстве стран (кроме США и Канады). В настоящее время показатель введен и в национальные нормативные документы.

     Показатель ослепленности Р - критерий оценки слепящего действия осветительной установки. Используется в основном для оценки качества осветительных установок помещений промышленного назначения и различных мастерских по ремонту бытовой техники, обуви и одежды, расположенных в жилых и общественных зданиях.

     Основные формулы для расчета данных показателей приведены в третьем издании Справочной книги по светотехнике под редакцией Ю.Б. Айзенберга (издание 2006 года). Требования к методу определения показателя дискомфорта UGR приведены в ГОСТ Р 54943-2012.

     Сейчас использование показателя ослепленности Р постепенно снижается, так как оценивать показатели дискомфорта удобнее в величинах UGR или М, расчет которых выполняется на основе одних и тех же данных и соответственно они легко пересчитываются один из другого. Связь между UGR и М приведена в Таблице 1.

 

                                                                                                                                     Таблица 1

UGR

10

11

12

13

14

15

16

17

18

19

20

М

8,4

9,7

11,2

13

15

17

20

23

26,6

31

35,5

 

UGR

21

22

23

24

25

26

27

28

29

30

М

41

47

55

63

73

84

98

112

129

150

 

     В настоящее время для расчета объединенного показателя дискомфорта UGR используют программные средства, например программу DIALux. Она вычисляет UGR в пределах от 10 до 30. Этого диапазона вычислений более чем достаточно.

     Для вычислений параметров осветительной установки для каждого используемого светильника с официального сайта производителя данного типа осветительного оборудования скачивают специальный IES файл с фотометрическими данными. Сейчас практически все изготовители светильников выкладывают на своих сайтах в свободный доступ соответствующие IES файлы для программы DIALux. Данная программа не является единственной, и некоторые светотехники пользуются другими программными средствами.

     Обычно осветительные установки проектируют исходя из параметра UGR от 15 до 25. При величине UGR менее 15 можно говорить о весьма качественной осветительной установке. В помещениях, в которых не предусматривается постоянное присутствие людей, UGR может быть более 25, если это не противоречит нормам для данного типа помещения.

     Оценивают величины дискомфортной блескости около торцевых стен помещения на высоте 1,2 метра при направлении взгляда на противоположную стену.

Требования к светильникам

     Значение дискомфортной блескости зависит от типа используемых светильников (их мощности, кривой силы света (КСС), защитного угла, площади излучающей свет поверхности), и способа их расстановки в помещении.

    Самый простой способ добиться хороших показателей дискомфортной блескости – использовать светильники, излучающие часть светового потока (более 10%) в верхнюю полусферу, то есть на потолок. За счет этого уменьшается разница яркостей светящихся поверхностей осветительных приборов и потолка. Дальнейшего уменьшения яркости излучающей поверхности светильника (при фиксированном световом потоке) можно добиться выбором светильников с большой излучающей поверхностью. То есть уменьшить светимость поверхностей светильника (отношение светового потока к площади излучающей этот поток поверхности).

     Защитить глаза от ярких светящихся поверхностей светильника помогают защитные экраны, рассеиватели и плафоны. Защитные экраны действуют подобно ладони руки, когда мы ей защищаем глаза от слепящих солнечных лучей. Привычные нам офисные светильники размером 60х60 см с четырьмя люминесцентными лампами по 18 Вт снабжают сложными призматическими рассеивателями, которые закрывают от глаз источники света – лампы, но позволяют световому потоку практически беспрепятственно проходить через них.

     Для дома желательно выбирать светильники, имеющие небольшие значения светимости. С этой точки зрения лучшими являются светильники с лампами накаливания. Значительно сложнее обстоит дело со светодиодными светильниками – в них весьма маленькая поверхность светодиода излучает большой световой поток. Поэтому светодиодный светильник должен содержать экраны, рассеиватели и плафоны, исключающие всякую возможность попадания в поле зрения прямого излучения поверхности светодиода. Светодиодные светильники по сравнению с лампой накаливания потребляют значительно меньшую мощность при одинаковом световом потоке (примерно в 5-8 раз), поэтому если в рассеивателях и плафонах будет потеряно 10-20 % светового потока, то это не стоит рассматривать как недопустимый фактор.

Магазины светильников

Официальные сайты популярных интернет магазинов, в которых можно выбрать и купить светильники для дома или офиса, вы можете посмотреть на странице сайта Магазины светильников.

Также на этой странице рассмотрены некоторые особенности приобретения осветительных приборов в интернет магазинах.

                                                                                                                                   Виктор Чернов

К ОГЛАВЛЕНИЮ (Все статьи сайта)                                                                             04.01.2016

Расчет освещенности

     Рассмотрим три наиболее часто используемые осветительные системы с люминесцентными лампами.

1). Светильники с отражателями и экранирующей решеткой из анодированного алюминия. Оптическая схема светильника показана на Рис. 1. Световой поток нижней полусферы ламп непосредственно направлен на освещаемую поверхность, а для направления светового потока верхней полусферы ламп используется отражатель. Это наиболее распространенная конструкция светильников для офисных помещений, встраиваемых в подвесные потолки.

 Оптическая схема светильника с отражателем

Рис.1 Оптическая схема светильника с отражателем

    Графики зависимостей коэффициентов использования светового потока светильника от индекса помещения при разных коэффициентах отражения показаны на Рис.2.

 Коэффициенты использования светильника с отражателем

Рис. 2 Коэффициенты использования светильника с отражателем

2). Светильники отраженного света, в которых световой поток как нижней, так и верхней полусфер ламп попадает на освещаемую поверхность после отражения от отражателей светильника. Оптическая схема светильника показана на Рис. 3. Данный светильник так же предназначен для подвесных потолков. Они имеют низкие значения коэффициентов использования за счет потерь светового потока в конструктивных элементах светильника, но по показателям ослепленности они значительно превосходят другие типы осветительных приборов.

 Оптическая схема светильника отраженного света

Рис. 3 Оптическая схема светильника отраженного света

    Графики коэффициентов использования для таких светильников показаны на Рис. 4

 Коэффициенты использования светильника отраженного света

Рис. 4 Коэффициенты использования светильника отраженного света

3). Светильники прямого и отраженного света, в которых световой поток нижней полусферы ламп направлен на освещаемую поверхность, а верхней полусферы – на потолок. В таких светильниках можно добиться коэффициентов использования светового потока, близких к 1, при большой отражающей способности потолка. Оптическая схема светильника показана на Рис. 5. Данный осветительный прибор относится к классу подвесных светильников.

 Оптическая схема светильника прямого и отраженного света

Рис. 5 Оптическая схема светильника прямого и отраженного света

Графики коэффициентов использования представлены на Рис. 6.

Коэффициенты использования светильника прямого и отраженного света

Рис. 6 Коэффициенты использования светильника прямого и отраженного света

   

    Чаще задача заключается в нахождении количества светильников N, обеспечивающих требуемую освещенность. Для этого выражение (1) представим в виде:

N= Eср S k/U n Фл    (3),

    В выражении (3) использована средняя освещенность, но нормируется минимальная освещенность Eн в помещении, поэтому в выражение (3) добавим коэффициент z=Eср/Emin, который можно принять равным 1,1 при количестве светильников более 4 в помещениях с отношением длины к ширине менее 3; 1,2 при количестве светильников 2 – 4 и 1,4 при использовании одного светильника в помещении, либо в помещениях с большим отношением длины к ширине (в длинных коридорах).

N= Eн S k z/U n Фл       (4),

При проектировании освещения всегда необходимо контролировать суммарную мощность использованных источников света и удельную мощность, измеряемую как отношение суммы мощностей всех ламп к площади освещаемого помещения:

Рудсумм/S, Вт/м2        (5),

    Для однотипных помещений иногда расчет освещенности выполняют по величине удельной мощности, хотя точность такого расчета, как правило, не высока.

    При использовании светильников с пускорегулирующей аппаратурой (ПРА), мощность, потребляемая светильниками от электрической сети, всегда будет больше, чем суммарная мощность ламп вследствие потерь в ПРА.

    При проведении вычислений удобно пользоваться электронными таблицами Excel. Для расчетов необходимо использовать формулы 2, 4 и 5. Применение электронных таблиц позволяет оперативно выполнить расчеты при использовании различных светильников.

    В приложенном к статье файле «Примеры расчета освещенности» представлены результаты вычислений освещенности при использовании светильников, содержащих четыре люминесцентных лампы с улучшенной цветопередачей мощностью 18 Вт, которые имеют длину 600 мм, диаметр 26 мм, цоколь G13 и световой поток 1350 лм. Расчеты выполнены для помещений площадью 24 м2, 40 м2, 80 м2, 150 м2 и 300 м2. Рассмотрен вариант помещений со светлыми поверхностями (коэффициенты отражения потолка, стен и пола 80, 50 и 30 %) и темными (коэффициенты отражения потолка, стен и пола 30, 30 и 10 %). Результаты вычислений показаны на рисунках 7, 8 и 9. Данный файл можно скачать и пользоваться им для своих расчетов, вводя в его поля свои данные. Что бы файл случайно не «испортить», его желательно хранить в отдельной папке, а для выполнения расчетов копировать в другую папку.

 Результаты вычисления освещенности – светильники с отражателем

Рис. 7 Результаты вычисления освещенности – светильники с отражателем

 

 

Рис. 8 Результаты вычисления освещенности – светильники отраженного света

 

 

Рис. 9 Результаты вычисления освещенности – светильники прямого и отраженного света

 

    Как видно из представленных результатов вычислений, по энергоэффективности светильники прямого и отраженного света превосходят светильники с отражателями только в помещениях со светлыми поверхностями, имеющих площадь не менее 50 – 80 м2. Хотя их часто используют для освещения небольших кабинетов ввиду их оригинального дизайна.

    Светильники отраженного света чаще используют для освещения помещений с нормированной освещенностью не более 300 лк.

    При проектировании освещения иногда необходимо учитывать устанавливаемую в помещениях мебель, так как она коренным образом может повлиять на отражающую способность стен, и, как правило, снизить освещенность в помещении.

    В больших помещениях светильники необходимо располагать максимально равномерно по потолку, если нет необходимости осуществлять их привязку к проходам и оборудованию. В каждом конкретном случае индивидуально выбирают места установки осветительных приборов.

17 июля  2013 г.

    К ОГЛАВЛЕНИЮ (Все статьи сайта)

    К разделу  СВЕТИЛЬНИКИ 

Нормы освещенности спортивных залов и площадок по СНиП и СанПиН

Освещаемые объекты

Наименьшая освещенность, лк

Плоскость и зона в которых нормируется освещенность

1

Бадминтон, баскетбол, волейбол, ручной мяч 7:7

50

Горизонтальная на поверхности площадки

30

Вертикальная на высоте от 1 до 5 м от поверхности площадки

2

Теннис

100

Горизонтальная на поверхности площадки

50

Вертикальная на высоте от поверхности площадки до 7 м

3

Настольный теннис

150

Горизонтальная на поверхности стола и на расстоянии 2 м за его пределами

4

Городки

50

Горизонтальная на поверхности "городов"

10

Горизонтальная на поверхности остальной части площадки

5

Акробатика, бокс, борьба, гимнастика спортивная и художественная, тяжелая атлетика, фехтование

30

Горизонтальная на поверхности площадки

6

Лапта, регби, футбол, хоккей на траве

50

Горизонтальная на поверхности поля

30

Вертикальная на высоте от поверхности поля до 15 м на отдельных полях для хоккея на траве и для лапты на высоте до 8 м

7

Легкая атлетика:

А)

Прыжки в длину и тройной прыжок

50

Горизонтальная на поверхности ямы для приземления и на расстоянии не менее чем за 20 м до ямы на дорожке для разбега

30

Горизонтальная на поверхности остальной части дорожки для разбега

Б)

Прыжки в высоту и с шестом

50

Горизонтальная в зоне отталкивания и приземления: в расширенной части дорожки для разбега у ящика для упора - в прыжках с шестом, в секторе для разбега за 3 м до места приземления - в прыжках в высоту

30

Вертикальная на высоте 3 м при прыжках в высоту и до 6 м при прыжках в зоне отталкивания и приземления со стороны разбега

20

Горизонтальная на поверхности остальной части дорожки (сектора) для разбега

В)

Толкание ядра

30

Горизонтальная на поверхности внутри кольца и сектора для приземления снарядов

Г)

Метание диска и молота

50

Горизонтальная на поверхности кольца (в пределах ограждения)

30

Горизонтальная на поверхности сектора для приземления снарядов

Д)

Метание копья, гранаты, мяча

50

Горизонтальная на поверхности дорожки для разбега на протяжении не менее 10м перед планкой

30

Горизонтальная на поверхности остальной части дорожки для разбега и сектора (коридора) для приземления снарядов

10

Вертикальная на высоте до 15м от поверхности поля сектора (коридора) для приземления снарядов

Е)

Беговые дорожки

50

Горизонтальная на поверхности дорожки

8

Скоростной бег и фигурное катание на коньках, хоккей с мячом

50

Горизонтальная на поверхности льда

9

Хоккей с шайбой

100

Горизонтальная на поверхности льда

10

Плавание

100

Горизонтальная на поверхности воды

11

Водное поло

100

Горизонтальная на поверхности воды

50

Вертикальная на высоте от поверхности воды до 2 м

12

Прыжки в воду

100

Горизонтальная на поверхности воды

50

Вертикальная на высоте от поверхности воды в зоне прыжка

13

Велогонки на треке

50

Горизонтальная на поверхности трека

14

Конный спорт

30

Горизонтальная на поверхности дорожки ипподрома

15

Стрелково-охотничий спорт на траншейных и круглых стендах

50

Вертикальная в зоне полета мишеней

16

Прыжки на лыжах с трамплина

30

На поверхности стартовой площадки, горы разгона и горы приземления в совпадающих с ними плоскостях

75

На поверхности стола отрыва в совпадающей с ним плоскости

50

Вертикальная в зоне траектории прыжка

17

Горнолыжный спорт

30

На поверхности трассы в совпадающей с ней плоскости

18

Скоростной бег на лыжах

20

Горизонтальная на поверхности снега в зоне старта и финиша

20

Горизонтальная на поверхности трассы на участках спусков с круитизной более 15°

19

Массовое катание на лыжах

А)

На равнинной местности

2

Горизонтальная на поверхности снега в зоне трассы

Б)

Горы с уклоном более 15°

20

На поверхности трассы в совпадающей с ней плоскости

20)

Спортивные арены для футбола и легкой атлетики

А)

С трибунами вместимостью от 1500 до 10000 зрителей

100

Горизонтальная на поверхности футбольного поля в его пределах

50

Вертикальная на высоте от поверхности футбольного поля до 15 м

50

Горизонтальная на поверхности легкоатлетических секторов и беговой дорожки

Б)

С трибунами вместимостью 10000 до 25000 зрителей

200

Горизонтальная на поверхности футбольного поля в его пределах

75

Вертикальная на высоте от поверхности футбольного поля до 15 м

50

Горизонтальная на поверхности легкоатлетических секторов и беговой дорожки

В)

С трибунами вместимостью свыше 25000 зрителей

400

Горизонтальная на поверхности футбольного поля в его пределах

100

Вертикальная на высоте от поверхности футбольного поля до 15 м

100

Горизонтальная на поверхности легкоатлетических секторов и беговой дорожки

21

Спортивные арены для хоккея, ручного мяча 7:7, тенниса, баскетбола, волейбола с трибунами вместимостью от 1500 до 5000 зрителей

400

Горизонтальная на поверхности игровой площадки

150

Вертикальная на высоте от поверхности игровой площадки до 7 м

Общие типы освещения | Эдмунд Оптикс

Это Раздел 11. 1 Руководства по работе с изображениями

Часто заказчик борется с проблемами контрастности и разрешения в системе визуализации, недооценивая силу надлежащего освещения. Фактически, желаемое качество изображения обычно может быть достигнуто за счет улучшения освещения системы, а не инвестиций в детекторы с более высоким разрешением, линзы для визуализации и программное обеспечение. Системным интеграторам следует помнить, что правильная интенсивность света на конечном изображении напрямую зависит от выбора компонентов.

Правильное освещение имеет решающее значение для системы изображения, а неправильное освещение может вызвать множество проблем с изображением. Например, цветущие или горячие точки могут скрыть важную информацию об изображении, как и затенение. Кроме того, затенение также может привести к вычислению ложных краев при измерении, что приведет к неточным измерениям. Плохое освещение также может привести к низкому отношению сигнал / шум. Неравномерное освещение, в частности, может ухудшить отношение сигнал / шум и усложнить такие задачи, как определение пороговых значений. Это лишь некоторые из причин, почему правильное освещение для вашего приложения так важно.

Недостатки неправильного освещения очевидны, но как их избежать? Чтобы обеспечить оптимальное освещение при интеграции системы, важно осознавать роль, которую играет выбор правильных компонентов. Каждый компонент влияет на количество света, падающего на датчик, и, следовательно, на качество изображения системы. Апертура объектива (f / #) влияет на количество света, падающего на камеру.Освещение следует увеличивать при закрытии диафрагмы объектива (т. Е. Выше f / #). Линзы с высокой светосилой обычно требуют большего освещения, поскольку меньшие просматриваемые области отражают меньше света обратно в линзу. Минимальная чувствительность камеры также важна для определения минимального количества света, необходимого для системы. Кроме того, на чувствительность сенсора влияют такие настройки камеры, как усиление, выдержка и т. Д. Волоконно-оптическое освещение обычно включает в себя осветитель и световод, каждый из которых должен быть интегрирован для оптимизации освещения объекта.

Таблица 1: Основные фотометрические единицы
1 фут-кандела = 1 люмен / фут 2
1 фут-кандела = 10,764 метра свечи
1 фут-кандела = 10,764 люкс
1 свеча = 1 люмен / стерадиан
1 свеча = 3,142 x 10 -4 Ламберт
1 Ламберт = 2.054 свеча / дюйм 2
1 люкс = метровая свеча
1 люкс = 0,0929 фут-кандела
Свеча 1 метр = 1 люмен / м 2

Сила света для наших осветительных приборов обычно указывается в фут-канделах (английская единица измерения). Люкс, эквивалент единицы СИ, может быть соотнесен с фут-канделей следующим образом: 1 люкс = 0,0929 фут-кандела.

Таблица 2: Сравнение освещенности
Требования к применению Проверяемый объект Предлагаемый тип освещения
Снижение зеркальности Блестящий предмет Диффузный передний, диффузный осевой, поляризационный
Равномерное освещение объекта Любой тип объекта Диффузный передний, диффузный осевой, кольцевой свет
Выделить дефекты поверхности или топологию Почти плоский (2-D) объект Однонаправленный структурированный светильник
Выделить текстуру объекта тенями Любой тип объекта Направленный структурированный свет
Уменьшить тени Объект с выступами, трехмерный объект Диффузный передний, диффузный осевой, кольцевой свет
Выделить дефекты в объекте Прозрачный объект Даркфилд
Силуэт объекта Любой тип объекта Подсветка
Трехмерное профилирование объекта Объект с выступами, трехмерный объект Структурированный светильник

Типы освещения

Поскольку правильное освещение часто является определяющим фактором между успехом и отказом системы, было разработано множество специальных продуктов и методов для преодоления наиболее распространенных препятствий, связанных с освещением.Мишень, используемая в этом разделе, была разработана для демонстрации сильных и слабых сторон этих различных схем освещения для различных характеристик объекта. Канавки, цвета, деформации поверхности и зеркальные области на мишени представляют собой некоторые из общих проблемных областей, которые могут потребовать особого внимания в реальных приложениях.

Направленное освещение - Точечное освещение от одного или нескольких источников. Линзы можно использовать для фокусировки или рассеивания света.
Плюсы Яркий, гибкий, может использоваться в различных приложениях. Легко помещается в разную упаковку.
Минусы Затенение и блики.
Полезные товары Волоконно-оптические световоды, узлы фокусировки, светодиодные прожекторы и лампы накаливания.
Заявка Обследование и измерение матовых и плоских предметов.

Скользящее освещение - Освещение точечным источником аналогично направленному освещению, за исключением острого угла падения.
Плюсы Показывает структуру поверхности и улучшает топографию объекта.
Минусы Горячие точки и сильное затенение.
Полезные товары Волоконно-оптические световоды, узлы фокусировки, светодиодные прожекторы, лампы накаливания и линейные световоды.
Заявка Выявление дефектов в объекте по глубине и проверка отделки непрозрачных объектов.

Рассеянное освещение - Рассеянный равномерный свет от протяженного источника.
Плюсы Уменьшает блики и обеспечивает равномерное освещение.
Минусы Большой и сложный для использования в ограниченном пространстве.
Полезные товары Люминесцентные линейные лампы.
Заявка Лучше всего для получения изображений больших блестящих объектов с большого рабочего расстояния.

Ring Light - Коаксиальная подсветка, устанавливаемая непосредственно на объектив.
Плюсы Устанавливается непосредственно на объектив и уменьшает затемнение.Равномерное освещение при использовании на подходящем расстоянии.
Минусы Круглый узор бликов от отражающих поверхностей. Работает только на относительно небольших рабочих расстояниях.
Полезные товары Волоконно-оптические кольцевые световоды и кольцевые люминесцентные лампы; Светодиодная кольцевая подсветка.
Заявка Широкий выбор систем контроля и измерения с матовыми объектами.

Рассеянное осевое освещение - Рассеянный свет на одной линии с оптикой.Линза смотрит через светоделитель, отражающий свет на объект. Освещение коаксиально доступу для визуализации.
Плюсы Очень ровный и рассеянный; значительно уменьшает затенение; очень мало бликов.
Минусы Большой и сложный в установке; ограниченное рабочее расстояние; низкая пропускная способность, поэтому для обеспечения достаточного освещения может потребоваться несколько волоконно-оптических источников.
Полезные товары Оптоволоконная диффузная осевая насадка.Один или несколько волоконно-оптических осветителей. Одно-, двух- или четырехъядерные пучки волокон в зависимости от размера насадки и количества используемых осветителей. Осветитель осевой диффузный светодиодный.
Заявка Измерения и осмотр блестящих предметов.

Структурированный свет (генераторы линий) - Узоры, проецируемые на объект. Обычно лазерные проецируют линии, пятна, сетки или круги.
Плюсы Улучшает элементы поверхности, обеспечивая интенсивное освещение небольшой площади. Может использоваться для получения информации о глубине объекта.
Минусы Может вызывать поседение, некоторые цвета впитываются.
Полезные товары Лазеры с оптикой, генерирующей линии или дифракционный узор.
Заявка Проверка трехмерных объектов на отсутствие признаков.Измерения топографии.

Поляризованный свет - Тип направленного освещения, который использует поляризованный свет для удаления бликов и горячих точек.
Плюсы Обеспечивает равномерное освещение по всей поверхности поляризованного объекта. Уменьшает блики, делая детали поверхности различимыми.
Минусы Общая интенсивность света уменьшается после установки поляризационного фильтра перед источником света и / или линзой формирования изображения.
Полезные товары Поляризационные фильтры и адаптеры поляризатора / анализатора.
Заявка Измерения и осмотр блестящих предметов.

Darkfield - Свет проникает в прозрачный или полупрозрачный объект через края, перпендикулярные линзе.
Плюсы Высокая контрастность внутренних и поверхностных деталей.Подчеркивает царапины, трещины и пузыри на прозрачных предметах.
Минусы Плохая контрастность краев. Не подходит для непрозрачных объектов.
Полезные товары Волоконно-оптическая приставка для темного поля, линейные световоды и генераторы лазерных линий.
Заявка Контроль стекла и пластика.

Яркое поле / Подсветка - Объект освещен сзади.Используется для создания силуэтов непрозрачных объектов или для визуализации сквозь прозрачные объекты.
Плюсы Высокая контрастность для распознавания краев.
Минусы Устраняет детализацию поверхности.
Полезные товары Волоконно-оптическая подсветка и светодиодная подсветка.
Заявка Мишени и тестовые шаблоны, обнаружение краев, измерение непрозрачных объектов и сортировка полупрозрачных цветных объектов.

Фильтрация обеспечивает различные уровни контрастности

Примеры иллюстрируют темное поле и подсветку с помощью различных цветовых фильтров. Примечание: изображений, сделанных с 10-кратным зум-объективом с близким фокусом # 54-363: поле обзора = 30 мм, рабочее расстояние = 200 мм.

Только Darkfield Дефекты выглядят белыми
Темное поле с синим фильтром Дефекты выглядят синими
Darkfield и Backlight Фильтр не используется, но контрастность краев улучшается
Темное поле без фильтра и подсветка с желтым фильтром Повышает общий контраст, дефекты выглядят белыми по сравнению с остальной частью поля

Улучшение изображения с помощью поляризаторов

Поляризатор полезен для устранения зеркальных отражений (бликов) и выявления поверхностных дефектов изображения.Поляризатор может быть установлен либо на источнике света, либо на видеообъективе, либо на обоих, в зависимости от проверяемого объекта. Когда используются два поляризатора, один на источнике освещения, а другой на видеообъективе, их оси поляризации должны быть ориентированы перпендикулярно друг другу. Ниже приведены поляризационные решения для устранения бликов для различных типов материалов и обстоятельств.


Задача 1

Объект неметаллический, и свет падает на него под острым углом.

Решение 1

Поляризатора на объективе обычно достаточно для блокировки бликов. (Поворачивайте поляризатор до минимума бликов.) Добавьте поляризатор перед источником света, если блики все еще присутствуют.

Без поляризаторов
Использование поляризаторов

Задача 2

Предмет имеет металлическую или блестящую поверхность.

Решение 2

Рекомендуется установка поляризатора на источник света, а также на линзу для увеличения контраста и выделения деталей поверхности.Поляризованный свет, падающий на блестящую поверхность, останется поляризованным при отражении. Поверхностные дефекты в металле изменяют поляризацию отраженного света. Поверните поляризатор на линзе так, чтобы его ось поляризации была перпендикулярна оси источника освещения, чтобы уменьшить блики и сделать видимыми царапины и углубления на поверхности.

Без поляризаторов
Использование поляризаторов

Задача 3

Объект имеет как сильно отражающие, так и рассеянные области.

Решение 3

Использование двух поляризаторов с перпендикулярной ориентацией устранит на изображении горячие точки, вызванные металлическими частями. Остальная часть поля будет равномерно освещена из-за рассеянных областей, отражающих случайно поляризованный свет к линзе.

Без поляризаторов
Использование поляризаторов

Геометрия поверхности

Геометрия поверхности в сочетании с источником света серьезно влияет на получаемое видеоизображение.В частности, при использовании выровненных точечных источников света простой девиз «угол падения = угол отражения» применяется к отраженному свету. Это особенно относится к коллимированному падающему свету (принцип конденсатора / телецентрии), поскольку излучаемый свет чрезвычайно параллелен и рассеянный свет не испускается. Но также методы диффузного освещения могут генерировать направленный свет: рассеянный коаксиальный падающий свет излучает большую часть в одном направлении.

При освещении тестового объекта сверху наблюдается сильное отражение в сторону камеры, ровная поверхность части ярко светится.Свет преломляется в сторону на наклонных краях, изгибах и фазах, они кажутся темными на изображении камеры, поскольку этот свет не падает на датчик камеры.

В случае бокового падения света, свет отражается в сторону от ровной поверхности тестового объекта и не попадает на сенсор камеры. Поверхность кажется темной. В нашем примере кольцевой свет устроен таким образом, что наклонная фаза находится прямо под «углом взгляда».Свет отражается на камеру, она кажется яркой.

Идеальным объектом для проверки влияния геометрии поверхности на направление света является полированный стальной шар (упрощенно - гладкий металлический цилиндр). Таким образом легко увидеть, какие области свет может освещать равномерно.

Прямое прямое освещение

Этот метод освещения создает сильное отражение на гладкой поверхности. Свет в основном отражается.Для точечного освещения угол падения равен углу отражения. В случае прямого, ориентированного падающего света, например светодиодный кольцевой светильник, телесный угол, который свет может освещать, чрезвычайно мал. Угол излучения светодиодов обычно составляет 15 градусов, при этом распределение яркости не является постоянным по этому углу, так что излучаемый свет кажется намного лучше выровненным.

Рассеянное падающее освещение

Ситуация становится лучше, чем больше рассеивается освещение и чем больше освещаемая зона.Если рассеянный падающий свет беспрепятственно освещает телесный угол в 90 градусов, следует ожидать однородно освещенной детали изображения в общей сложности 45 градусов. Внимание: широко излучаемый свет не обязательно имеет большой угол освещения, если только простые панели рассеивателя отражают свет точечных источников света.

Подсветка куполообразная

По-настоящему цельный однородный свет может быть испущен только сферическим куполом.Освещенный телесный угол шара без погружения тестового объекта в купол в идеале составляет 90 градусов при освещении 180 градусов. Даже здесь при освещении шара могут наблюдаться значительные потери света по направлению к краю и четкое затемнение, поскольку падение света без погружения в осветительный купол может составлять максимум 180 градусов.

Понимание освещения и измерения освещенности

Фундаментальные знания об освещении и измерении освещенности являются ключевыми при выборе светодиодного освещения для промышленной автоматизации

При выборе светодиодного освещения разработчики систем машинного зрения должны полностью понимать природу части, которая должна быть быть освещенным.Чтобы камера системы могла захватывать изображение с максимальной контрастностью, разработчики могут выбирать из множества различных осветительных приборов. Они варьируются от линейных огней, кольцевых огней, прожекторов и подсветки - все они могут использоваться в конфигурациях на оси или вне оси и / или с несколькими длинами волн в диапазоне от УФ, видимого до ИК / длин волн.

Однако одним из наиболее важных факторов при выборе любого типа освещения является количество света, необходимое для любого конкретного применения.Для подсветки детали, например, для измерения размеров, может не потребоваться очень яркая подсветка. В качестве альтернативы, для приложений высокоскоростного линейного сканирования, где детали движутся с высокой скоростью и время экспозиции камеры велико, может потребоваться очень яркий свет.

Измерительный свет

Для системных интеграторов, которым поручено сравнивать светильники от разных производителей, определение количества света, излучаемого светодиодными светильниками, которое на первый взгляд может показаться сопоставимым, может быть сложной задачей, поскольку световой поток может быть указан в нескольких различных способами.

Когда деталь освещается светом СИД, яркость обеспечивает меру количества света , отраженного от поверхности, и указывает яркость света, излучаемого или отраженного от поверхности. Это может быть измерено в канделах на квадратный метр (кд / м 2 ) или в фут-ламбертах (fLs).

Освещенность, с другой стороны, описывает измерение количества света , освещающего площадь поверхности, и измеряется в люксах или фут-канделах и коррелирует с тем, как люди воспринимают яркость освещенных участков.

В то время как фотометрические измерения, такие как яркость и освещенность, обеспечивают измерение света с точки зрения его яркости, воспринимаемой человеческим глазом, радиометрические измерения предоставляют информацию о количестве световой мощности (или энергии) на всех длинах волн. Фотометрические измерения часто используются для определения мощности ультрафиолетового или инфракрасного света и обычно не используются в приложениях машинного зрения. Такие фотометрические измерения включают освещенность и яркость.

В то время как энергетическая освещенность обеспечивает меру мощности излучения , получаемой поверхностью на единицу площади, и измеряется в ваттах на квадратный метр (Вт / м 2 ), энергетическая яркость - это мощность излучения , излучаемая поверхностью, на единицу телесного угла на единицу площади проекции, которая измеряется в Вт / стерадиан / м 2 .

Для разработчиков систем машинного зрения, работающих в видимом спектре, наиболее полезным из этих измерений является освещенность. Измерители освещенности можно использовать для выполнения этого измерения с источниками света, которые постоянно работают, и с лампами, которые стробируются.

Измерить освещенность источника света при постоянной работе относительно просто. Тем не менее, стробированную освещенность также можно рассчитать с помощью экспонометра. Если, например, свет мигает в течение 10 мс, а светодиод выключается на 100 мс до активации следующего строба, то фактическая интенсивность составляет примерно 1/10 от того, что было бы, если бы свет был постоянно включен.

Закон обратных квадратов

Часто системный интегратор выбирает источник света - например, прожектор - и помещает его на определенном расстоянии от освещаемой детали. Если требуется больше света, одним из наиболее полезных практических правил определения того, как этого добиться, является закон обратных квадратов. Поскольку интенсивность света уменьшается пропорционально квадрату расстояния, количество света уменьшается как 1 / (расстояние от детали) 2 . Таким образом, свет, расположенный на расстоянии 2 фута от детали, будет иметь ¼ видимого света, расположенного на расстоянии 1 фута.Очевидно, что размещение источника света ближе к освещаемому объекту значительно увеличивает количество света.

Размещение источника света ближе к детали может увеличить уровень освещенности, но в тех случаях, когда это не может быть достигнуто, разработчики должны также подумать о том, как можно максимизировать количество света, используемого для освещения объекта. В случае прожектора, используемого для освещения объекта, например, правильная фокусировка света в заданном поле обзора и на заданном расстоянии может увеличить количество освещения.Например, прожектор диаметром 100 мм на расстоянии 1 M требует линзы 5,8 o на светодиодах, чтобы максимизировать уровень освещенности на таком расстоянии.

На сегодняшний день сложно сравнивать светотехническую продукцию. По этой причине AIA (www.a3automate.org), EMVA (www.emva.org) и JIIA (www.jiia.org) разрабатывают стандарт, позволяющий разработчикам систем машинного зрения сравнивать различные источники света от разных производителей из разных стран. практическая, а не теоретическая точка зрения.Есть надежда, что этот стандартный подход позволит эффективно сравнивать характеристики освещения между производителями и в пределах производственной линейки производителей, основываясь в первую очередь на таких факторах, как интенсивность света на заданном рабочем расстоянии, однородность светового рисунка, размер / форма (FOV) и проецируемый световой луч. распространение.

Искусственно освещенная поверхность Земли в ночное время с увеличивающейся яркостью и протяженностью

Дополнительный материал к этой статье доступен по адресу http: //advances.sciencemag.org / cgi / content / full / 3/11 / e1701528 / DC1

рис. S1. Нормализованное кумулятивное распределение яркости для Афганистана через Гану.

рис. S2. Нормализованное кумулятивное распределение сияния для Греции через Парагвай.

рис. S3. Нормализованное кумулятивное распределение яркости для Перу через Зимбабве.

рис. S4. Освещенная территория (2014 г.) и изменение яркости (2012–2016 гг.) В Афганистане, Албании, Алжире, Андорре, Антигуа и Барбуде, Аргентине и Армении.

рис. S5.Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Австралии, Австрии, Азербайджане, Бахрейне, Бангладеш, Барбадосе, Беларуси и Бельгии.

рис. S6. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Белизе, Бенине, Бутане, Боливии, Боснии и Герцеговине, Ботсване, Бразилии и Брунее.

рис. S7. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Болгарии, Буркина-Фасо, Бурунди, Камбодже, Камеруне, Канаде, Кабо-Верде и Чаде.

рис. S8. Освещенная территория (2014 г.) и изменение сияния (2012–2016 гг.) В Чили, Китае, Колумбии, Коморских Островах, Республике Конго, Демократической Республике Конго, Коста-Рике и Кот-д’Ивуаре.

рис. S9. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Хорватии, Кубе, Кипре, Чехии, Дании, Джибути, Доминике и Доминиканской Республике.

рис. S10. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Восточном Тиморе, Эквадоре, Египте, Сальвадоре, Экваториальной Гвинее, Эритрее, Эстонии и Эфиопии.

рис. S11. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Фиджи, Финляндии, Франции, Габоне, секторе Газа, Грузии, Германии и Гане.

рис. S12. Освещенная площадь (2014 г.) и изменение сияния (2012–2016 гг.) В Греции, Гренаде, Гватемале, Гвинее, Гвинее-Бисау, Гайане, Гаити и Гондурасе.

рис. S13. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Венгрии, Индии, Индонезии, Иране, Ираке, Ирландии, Израиле и Италии.

рис. S14. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) На Ямайке, Японии, Иордании, Казахстане, Кении, Косово, Кувейте и Кыргызстане.

рис. S15. Освещенная территория (2014 г.) и изменение сияния (2012–2016 гг.) В Лаосе, Латвии, Ливане, Лесото, Либерии, Ливии, Лихтенштейне и Литве.

рис. S16. Освещенная площадь (2014 г.) и изменение сияния (2012–2016 гг.) В Люксембурге, Македонии, Мадагаскаре, Малави, Малайзии, Мальдивах, Мали и Мальте.

рис. S17. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) На Маршалловых островах, Мавритании, Маврикии, Мексике, Молдове, Монако, Монголии и Черногории.

рис. S18. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Марокко, Мозамбике, Мьянме, Намибии, Науру, Непале, Нидерландах и Новой Зеландии.

рис. S19. Освещенная территория (2014 г.) и изменение яркости (2012–2016 гг.) В Никарагуа, Нигере, Нигерии, Северной Корее, Норвегии, Омане, Пакистане и Панаме.

рис. S20. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Папуа-Новой Гвинее, Парагвае, Перу, Филиппинах, Польше, Португалии, Катаре и Румынии.

рис. S21. Освещенная площадь (2014 г.) и изменение сияния (2012–2016 гг.) В России, Руанде, Самоа, Сан-Марино, Сан-Томе и Принсипи, Саудовской Аравии, Сенегале, Сербии и Черногории.

рис. S22. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) На Сейшельских островах, Сьерра-Леоне, Сингапуре, Словакии, Словении, Соломоновых островах, Сомали и Южной Африке.

рис. S23. Освещенная площадь (2014 г.) и изменение сияния (2012–2016 гг.) В Южной Корее, Южном Судане, Испании, Шри-Ланке, Сент-Китсе и Невисе, Сент-Люсии, Сент-Луисе.Винсент и Гренадины, и Судан.

рис. S24. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Суринаме, Свазиленде, Швеции, Швейцарии, Сирии, Тайване, Таджикистане и Танзании.

рис. S25. Освещенная территория (2014 г.) и изменение яркости (2012–2016 гг.) В Таиланде, Багамах, Гамбии, Того, Тринидаде и Тобаго, Тунисе, Турции и Туркменистане.

рис. S26. Освещенная площадь (2014 г.) и изменение яркости (2012–2016 гг.) В Уганде, Украине, Объединенных Арабских Эмиратах, Великобритании, США, Уругвае, Узбекистане и Вануату.

рис. S27. Освещенная территория (2014 г.) и изменение сияния (2012–2016 гг.) В Ватикане, Венесуэле, Вьетнаме, Западном берегу, Западной Сахаре, Йемене, Замбии и Зимбабве.

рис. S28. Ежегодные изменения освещенности и общей яркости.

Как рассчитать освещенность | Sciencing

Обновлено 28 декабря 2020 г.

Автор: S. Hussain Ather

При установке лампочек или регулировке яркости экрана компьютера понимание яркости света может помочь вам определить, насколько они эффективны.

Освещенность поверхности, характеристика, отличная от яркости , измеряет, сколько света падает на нее, тогда как яркость - это количество света, отраженного или испускаемого от нее. Четкое понимание терминологии, касающейся яркости и электричества, может помочь вам принять более правильные решения.

Расчет освещенности

Освещенность измеряется как количество света, падающего на поверхность в единицах фут-кандел или люкс .1 люкс (единица СИ) равен примерно 0,00 фут-канделе. 1 люкс также равен 1 люмен / м 2 , в котором люмен представляет собой меру светового потока , количество видимого света, излучаемого источником за единицу времени, а 1 люкс также равен 0,0001 фот (ph ). Эти устройства позволяют использовать широкий диапазон шкал для определения освещенности для различных целей.

Вы можете рассчитать освещенность E относительно светового потока «phi» Φ , используя

E = \ frac {\ Phi} {A}

над заданной площадью A .Это уравнение обозначает световой поток Φ , тот же символ для магнитного потока, и показывает сходство с уравнением для магнитного потока

\ Phi = BA

для площади поверхности, параллельной магниту A и напряженность магнитного поля B . Это означает, что освещенность параллельна магнитному полю в том смысле, в каком ее рассчитывают ученые и инженеры, и вы можете преобразовать единицы освещенности (поток / м 2 ) напрямую в ватты, используя интенсивность (в канделах).

\ Phi = I \ times \ Omega

для потока Φ , интенсивности I и углового диапазона «Ом» Ом для углового диапазона в стерадиан (ср) , или квадратный радиан, а полная сфера имеет угловой размах . Свет, рассчитанный по освещенности, падает на поверхность и распространяется, заставляя объект становиться ярким, поэтому освещенность можно использовать в качестве меры яркости.

Например: Освещенность поверхности составляет 6 люкс, а поверхность находится в 4 метрах от источника света.Какова интенсивность источника?

Поскольку свет распространяется по излучающей схеме, вы можете представить, что источник света - это центр сферы с радиусом, равным расстоянию между источником света и объектом. Это означает, что соответствующая площадь поверхности для использования - это площадь поверхности сферы, которая соответствует этому расположению.

Умножение площади поверхности сферы на радиус 4 как 4π4 2 м 2 на освещенность 6 люмен / м 2 дает 1206.37 люмен потока Φ . Свет распространяется прямо на поверхность, поэтому угловой размах Ом составляет кандел, а, используя Φ = I x Ом, интенсивность I составляет 15159,69 люмен / м . 2 .

Расчет других значений

Кандела, используемая в угловом диапазоне, используется для измерения количества света, излучаемого источником света в диапазоне в трехмерном диапазоне. Как показано в примере, угловой диапазон измеряется через стерадиан по площади поверхности, на которую распространяется свет.Стерадиан полной сферы составляет кандел. Не перепутайте люкс и канделу.

В то время как кандела - это измерение углового диапазона, люкс - это освещенность самой поверхности. В точках, более удаленных от источника света, яркость в люксах ниже, поскольку в эту точку попадает меньше света. Это важно в реальных приложениях и точных расчетах, которые должны учитывать точный источник света, который может быть, например, в вольфрамовой проволоке лампочки, а не в самой лампочке.Для небольших лампочек, таких как определенные светодиодные источники света, расстояние может быть более незначительным в зависимости от масштаба ваших расчетов.

Один стерадиан сферы радиусом в один метр охватывал бы поверхность размером 1 м 2 . Вы можете получить это, зная, что полная сфера покрывает кандел, поэтому для площади поверхности (из 4πr 2 с радиусом 1) стерадиан поверхность сфера покрывает 1 м 2 .Вы можете использовать эти преобразования, вычислив реальные примеры лампочек и свечей, излучающих свет, используя площадь поверхности сферы для учета геометрии света. Затем их можно связать с яркостью.

В то время как освещенность измеряет свет, падающий на поверхность, яркость - это свет, излучаемый или отраженный этой поверхностью в канделах / м. 2 или «нитах». Значения яркости L и люкс E связаны через идеальную поверхность, излучающую весь свет, уравнением E = L x π .

Использование таблицы измерений в люксах

Если вам может показаться сложным иметь столько разных способов измерения одних и тех же величин, онлайн-калькуляторы и диаграммы выполняют вычисления для преобразования между разными единицами, чтобы упростить задачу. RapidTables предлагает калькулятор люмен в ватт, который рассчитывает мощность для различных стандартов освещения. В таблице на веб-сайте показаны эти значения, поэтому вы можете увидеть, как они соотносятся друг с другом. Обратите внимание на единицы люмен и ватт при выполнении этих преобразований, которые также используют световую отдачу по «eta» η.

EngineeringToolBox также предлагает методы расчета освещенности и освещенности для эталонов лампочек и ламп наряду с таблицей измерения люкс. Освещение - это еще один метод расчета освещенности, в котором используются электрические эталоны лампы или источника света вместо экспериментальных измерений испускаемого света. Он задается уравнением для освещенности I как

I = \ frac {L_I \ timesC_u \ timesL_ {LF}} {A_I}

для яркости лампы L l (в люменах), коэффициент коэффициент использования C u , коэффициент световых потерь L LF и площадь лампы A l (в м 2 ).

Эффективность освещения

Согласно расчетам веб-сайта RapidTables, световая эффективность излучения является распространенным способом описания того, как лампочка или другой источник света хорошо использует свои энергетические ресурсы, но это официальный метод определения эффективности света. Источники - это световая эффективность источника, а не радиация.

Ученые и инженеры обычно выражают эффективность освещения в процентах от максимального теоретического значения эффективности освещения 683.002 лм / Вт, который излучает свет с длиной волны 555 нм. В качестве одного примера, типичный современный белый ватт, «освещенный», может достигать эффективности более 100 лм / Вт с эффективностью 15%, что на самом деле больше, чем у многих других типов источников света.

При измерении яркости и освещенности в науке и технике учитываются способы, которыми сами глаза воспринимают яркость света, чтобы получить более точные и объективные измерения. Изучая распределение яркости света с помощью экспериментов, попытайтесь понять, вызвана ли реакция на яркость сигналами конических или стержневых фоторецепторов в человеческом глазу.

Другие исследования, такие как фотометрические, направлены на обнаружение определенных форм излучения на основе линейности их отклика. Если два световых потока Θ 1 и Θ 2 должны были давать два разных сигнала, фотометрические детекторы измеряют сигнал, генерируемый в результате линейного сложения обоих потоков. Линейность отклика является мерой этой зависимости.

Расчет освещенности

Расчет освещенности ПРИМЕЧАНИЕ: это вырезано из заметок проф.Класс CS184 Fall04 Sequin. Для полный документ см. http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as8/SLIDEHOME/docs/slide/spec/spec_frame_nongeonode.shtml#lighting

Расчет освещенности

В этом разделе объясняется, каким образом различное освещение параметры используются для характеристики освещенности сцены.

Модель освещения используется для расчета цвета каждого точка на освещенной поверхности. Он определяется как сумма освещение от каждого отдельного источника света.

Следующие символы используются во всех расчетах освещения. ниже:

  • d : расстояние от источника света до точки на рассмотрении.
  • C : тройной цвет. Каждое из приведенных ниже уравнений с C или любым индексом C , может быть разлагается на три эквивалентных уравнения для красного, зеленого и компоненты синего цвета. Каждое из значений цвета должно лежать от 0 до 1.Если в любом из вычислений значение цвета выходит за пределы этого диапазона, его необходимо нормализовать.
  • C diff : Рассеянный цвет поверхности - задается параметром цвета на поверхности утверждение.
  • C spec : Зеркальный цвет поверхности - рассчитано из C diff и C light .
  • C свет : цвет светящейся лампы - задается параметром цвет в любом свете утверждение.
  • I : тройка цветов, представляющая освещение или воспринимаемый цвет. Каждое из приведенных ниже уравнений с участием I или любого другого с индексом I , можно разложить на компоненты красного, зеленого и синего цветов и должны быть нормализованы в так же, как тройка цветов, C .
  • D : вектор направления для направленного света или пятна. свет.
  • P : положение точечного света или прожектора.
  • L : световой вектор - имеет направление, противоположное направлению направление падающего света.
  • V : вектор от рассматриваемой точки к глаз.
  • N : нормаль к поверхности на той же стороне поверхности как V . Обратите внимание, что это не обязательно нормаль к внешней поверхности.
  • R : вектор отражения, определяющий отражение. направление светового луча в идеальном случае плоской зеркало.Он рассчитывается как R = 2 ( N . L ) N - L .

Примечание: L , V , N и R - все единичных вектора

Освещение в точке на поверхности зависит как от свойства поверхности и свойства освещающих источников света. Параметры поверхность заявление определить различные свойства поверхности.

поверхность id
цвет ( C r C g C b )
отражательная способность (K amb diff K 9099 K 9099 )
показатель степени N фонг
металлик м
Торцевая поверхность

( C r C g C b ) triple определяет диффузный цвет поверхности - i.е. в цвет поверхности при рассеянном освещении или нормальный цвет поверхности. Это C разница .

K amb , K diff , и K spec - окружающий, диффузный и коэффициенты зеркального отражения соответственно. Все должно быть от 0 до 1. Каждый умножается на три значения цвета поверхности, чтобы обеспечить отражательные свойства поверхности для каждого из три цвета.Коэффициент K amb управляет долей окружающий свет, который отражается от поверхности. Этот коэффициент можно поднимать или опускать, чтобы соответствовать общей отражательной способности поверхность (например, K amb = K diff ) или чтобы представить количество окружающего света, которое влияет на объект (т.е. коэффициент внешней освещенности может быть уменьшен, если Предполагается, что объект находится в темном углу сцены.) Коэффициент K diff определяет долю свет, диффузно отраженный от поверхности.Это диффузное отражение рассчитывается по закону Ламберта. Коэффициент K spec управляет долей свет, который зеркально отражается от поверхности. Это зеркальное отражение рассчитывается согласно Модель подсветки Фонга.

N phong - показатель степени Фонга зеркальный термин.

Расчеты освещения должны выполняться в Система координат света . Светящаяся точка и ее вектор нормали должны быть преобразован в систему координат источника света с помощью Q свет <-объект и Q объект <-light T соответственно.Это позволит правильно рассчитать спад в случай светильника, который был отмасштабирован и позволит прожекторы или точечные светильники должны быть неравномерно масштабированы в Мир.


Металлические поверхности

м - коэффициент металла поверхности и используется для расчета C spec , зеркальный цвет поверхность. Значение м должно быть от 0 до 1. Чем более металлической является поверхность, тем более естественный ее цвет. отражено в зеркальных отражениях, отражения.Если поверхность чисто металлическая ( м = 1), то зеркальные отражения от поверхности будет иметь тот же цвет, что и диффузные отражения; если поверхность чисто пластиковая ( м = 0), то зеркальные отражения будет в точности соответствовать цвету падающего света. Если C light - цвет светящейся лампы, тогда

C spec = м C diff C свет + (1- м ) C свет

Окружающий свет


  свет   id 
    тип  SLF_AMBIENT
    цвет  ( C  r  C  g  C  b  )

  торцевой свет 
 

Окружающий свет определяет ненаправленное фоновое освещение.Цвет поверхности, освещенной окружающим светом, равен

I amb = K amb C diff C light

Например:

свет bg
  тип SLF_AMBIENT
  цвет (0,86 0,2 0)
конец света
 
определяет красноватое фоновое освещение.

Направленный свет


  свет   id 

    тип  SLF_DIRECTIONAL
    цвет  ( C  r  C  g  C  b  )
  торцевой свет 

 

Направленный свет - это источник света, находящийся в бесконечности, при этом свет излучается в одном главном направлении, D = ( x d y d z d ).По умолчанию это направление (0 0-1) , по оси - z , но это может быть изменено преобразованиями, которые помещают свет в сцена. Если Q мир <-light - преобразование света тогда

D = ( x d y d z d 0) = Q мир <-light [0 0 -1 0] T
L = - D / | D |

Точно так же поверхность и нормаль к ней можно преобразовать в система координат света с использованием Q свет <-world и Q world <-light T соответственно.Тогда вектор света по умолчанию (0 0-1) равен использовал. Этот метод даст правильные результаты в случае масштабированного света. источник.

Для направленного света нормализованный вектор света, L , равен постоянная для всех рассматриваемых точек.

Цвет точки на поверхности, освещенной направленным светом. источник

I дирек = K дифф ( N . L ) C дифф C свет + K спецификации ( Р . V ) Nphong C spec

Точечный свет


  свет   id 
    тип  SLF_POINT
    цвет  ( C  r  C  g  C  b  )
    deaddistance  ( d  0  )
    спад  ( n  1  )

  торцевой свет 
 

Точечный источник света расположен в точке P = ( x p y p z p ), и излучает свет одинаково во всех направлениях.По умолчанию эта позиция находится в начале координат, (0 0 0) , но это может быть изменено преобразованиями, которые помещают свет в сцена. Если Q мир <-light - преобразование света тогда

P = ( x p y p z p 1) = Q мир <-свет [0 0 0 1] T

- положение источника света в мировых координатах.

Точно так же поверхность и нормаль к ней можно преобразовать в система координат света с использованием Q свет <-world и Q world <-light T соответственно.Тогда положение источника света по умолчанию, (0 0 0) , будет использовал. Этот метод даст правильные результаты в случае масштабированного света. источник.

Вектор света, L , различен для каждой точки на поверхности. - вектор от рассматриваемой точки до источника света. d 0 - мертвая дистанция и n 1 - показатель степени спада.

Цвет точки на поверхности, освещенной точечным источником света. то же, что и для направленного источника света, за исключением того, что ослабляется с расстоянием в раз 1 / ( d 0 + d ) n 1 .Если d - это расстояние от источника света до точки рассматриваемый цвет точки на поверхности, освещенной точечный источник света:

I балл = [ K дифф ( N . L ) C дифф C свет + K спецификации ( R . V ) Nphong C spec ] / ( d 0 + d ) n 1

Точечный светильник


  свет   id 
    тип  SLF_SPOT
    цвет  ( C  r  C  g  C  b  )
    deaddistance  ( d  0  )
    спад  ( n  1  )
    angularfalloff  ( n  2  )

  торцевой свет 
 
Точечный источник света расположен в точке P = ( x p y p z p ), но, как источник направленного света, он излучает свет одним главное направление. D = ( x d y d z d ) - вектор в главном направлении излучаемого света. По умолчанию точечный источник света расположен в начале координат, (0 0 0) , если смотреть вниз по оси - z , (0 0 -1) . Их можно изменить с помощью трансформации, которые помещают свет в сцену так же, как и в точечный свет и направленный свет соответственно.

Световой вектор, L , различен для каждой точки на поверхности и является единичным вектором из рассматриваемый пункт к Р . d - это расстояние от источника света до точки. д 0 а также n 1 такие же, как для точечного света и n 2 - показатель углового спада между D а также - л . Цвет точки на поверхности, освещенной точечным источником света. то же, что и для точечного источника света, за исключением того, что ослабляется с углом выхода из луча в раз [ Д . (- L )] n 2 .Цвет точки на поверхности, освещенной прожектором, равен

I место = [ K дифф ( N . L ) C дифф C свет + K спецификации ( R . V ) Nphong C spec ] [ Д . (- L )] n 2 / ( d 0 + d ) n 1

ОСНОВЫ ОСВЕЩЕНИЯ

ОСНОВЫ ОСВЕЩЕНИЯ

ОСВЕЩЕНИЕ РУКОВОДСТВО ПО ОБНОВЛЕНИЮ ОСВЕЩЕНИЯ
Управление по воздуху и радиации Агентства по охране окружающей среды США 6202J
EPA 430-B-95-003, январь 1995 г.

U.Программа "Зеленые огни" S. EPA


СОДЕРЖАНИЕ

Базовое понимание основ освещения необходимо разработчикам и лицам, принимающим решения. кто оценивает обновления освещения. В этом документе представлен краткий обзор конструкции. параметры, технологии и терминология, используемые в светотехнике. Для более подробной информации информацию о конкретных энергосберегающих технологиях освещения см. в разделе «Обновление освещения». Документ о технологиях.


ОСВЕЩЕНИЕ

Количество освещенности

Световой поток

Наиболее распространенной мерой светоотдачи (или светового потока) является люмен. Источники света обозначен мощностью в люменах. Например, люминесцентная лампа T12 мощностью 40 Вт может иметь рейтинг 3050 люмен. Точно так же мощность светильника может быть выражена в люменах. Как лампы и светильники стареют и загрязняются, их световой поток уменьшается (т.е. происходит уменьшение просвета). Большинство номинальных значений лампы основано на первоначальной яркости (т. Е. Когда лампа новая).

Уровень освещенности

Интенсивность света, измеренная на плоскости в определенном месте, называется освещенностью . Освещенность измеряется в фут-канделах, , которые являются люменами рабочей плоскости на квадратный фут. Вы можете измерить освещенность с помощью люксметра, расположенного на рабочей поверхности, где выполняются задания.С использованием простая арифметика и фотометрические данные производителя, вы можете предсказать освещенность для определенного космос. (Люкс - это метрическая единица измерения освещенности, измеряемая в люменах на квадратный метр. Чтобы преобразовать фут-кандел в люкс, фут-кандел умножьте на 10,76.)

Яркость

Другое измерение света - яркость , иногда называемая яркостью. Это измеряет свет "покидая" поверхность в определенном направлении, и учитывает освещенность на поверхности и отражательная способность поверхности.

Человеческий глаз не видит света; он видит яркость. Следовательно, количество света доставляется в пространство, а отражательная способность поверхностей в пространстве влияет на вашу способность видеть.

Обратитесь к ГЛОССАРИЮ в конце этого документа для получения более подробных определений.

Количественные единицы

  • Световой поток обычно называют световым потоком и измеряется в люменах (лм).
  • Освещенность называется уровнем освещенности и измеряется в фут-канделах (fc).
  • Яркость - это яркость, которая измеряется в фут-ламбертах (fL) или кандел / м2 (кд / м2).

Определение целевого уровня освещенности

Общество инженеров освещения Северной Америки разработало процедуру для определение соответствующего среднего уровня освещенности для конкретного помещения. Эта процедура (используется разработчики и инженеры (рекомендует целевой уровень освещенности, учитывая следующие:

  • выполняемые задачи (контраст, размер и т. д.))
  • возраст оккупантов
  • важность скорости и точности

Затем можно выбрать подходящий тип и количество ламп и осветительных приборов на основе следующие:

  • эффективность приспособления
  • Световой поток лампы
  • отражательная способность окружающих поверхностей
  • эффекты световых потерь из-за уменьшения светового потока лампы и накопления грязи
  • размер и форма комнаты
  • наличие естественного света (дневного света)

При проектировании новой или модернизированной системы освещения необходимо соблюдать осторожность, чтобы избежать чрезмерного освещения. космос.В прошлом помещения были рассчитаны на 200 фут-свечей в местах, где 50 футсвечи могут быть не только адекватными, но и превосходными. Отчасти это было из-за заблуждения что чем больше света в помещении, тем выше качество. Мало того, что игнорирование ненужной энергии, но это также может снизить качество освещения. См. Приложение 2 для получения информации об уровнях освещенности, рекомендованных Общество инженеров освещения Северной Америки. В указанном диапазоне освещенности три Факторы диктуют надлежащий уровень: возраст пассажира (ов), требования к скорости и точности, а также фоновый контраст.

Например, для освещения помещения, в котором используются компьютеры, потолочные светильники должны обеспечивать до 30 fc окружающего освещения. Рабочие фонари должны обеспечивать дополнительные свечи, необходимые для достичь общей освещенности до 50 фк при чтении и письме. Для освещения Рекомендации для конкретных визуальных задач см. в Справочнике по освещению IES, 1993 г., или в Рекомендуемая практика IES № 24 (для освещения VDT).

Показатели качества

  • Вероятность визуального комфорта (VCP) указывает процент людей, которым комфортно с бликами от светильника.
  • Критерии расстояния (SC) относятся к максимальному рекомендуемому расстоянию между креплениями до обеспечить единообразие.
  • Индекс цветопередачи (CRI) указывает внешний вид цвета объекта под источником как по сравнению с справочным источником.

Качество освещения

Улучшение качества освещения может принести большие дивиденды американским предприятиям. Прибыль в рабочем производительность может быть достигнута за счет обеспечения скорректированного уровня освещенности с уменьшением бликов.Хотя стоимость энергии для освещения значительна, она мала по сравнению с затратами на рабочую силу. Следовательно, эти повышение производительности может быть даже более ценным, чем экономия энергии, связанная с новыми светотехника. В торговых помещениях привлекательный и удобный дизайн освещения может привлечь клиентура и увеличение продаж.

В этом разделе рассматриваются три проблемы качества.

  • блики
  • Равномерность освещенности
  • цветопередача

Блики Пожалуй, самый важный фактор, влияющий на качество освещения, - это блики.Блики - это сенсация вызвано слишком ярким светом в поле зрения. Дискомфорт, раздражение или уменьшение может произойти продуктивность.

Яркий объект сам по себе не обязательно вызывает блики, но яркий объект на фоне темного фон, однако, обычно вызывает блики. Контрастность - соотношение между яркость объекта и его фона. Хотя визуальная задача в целом становится проще при повышенном контрасте слишком большой контраст вызывает блики и усложняет визуальную задачу трудный.

Вы можете уменьшить яркость или блики, не превышая рекомендуемых уровней освещенности и используя осветительное оборудование, предназначенное для уменьшения бликов. Жалюзи или линзы обычно используются для блокировки прямого просмотр источника света. Непрямое освещение или верхнее освещение может создать среду с низким уровнем бликов за счет равномерное освещение потолка. Кроме того, правильное размещение светильника может уменьшить отраженные блики на рабочие поверхности или экраны компьютеров. Стандартные данные теперь предоставляются вместе со спецификациями светильников включают таблицы с оценками вероятности визуального комфорта (VCP ) для комнат различной геометрии.Индекс VCP показывает процент людей в данном пространстве, которые считают, что блики от приспособления приемлемы. Рекомендуется минимум 70 VCP для коммерческие интерьеры, в то время как светильники с VCP более 80 рекомендуются в компьютерных области.


Равномерность освещенности по задачам

Равномерность освещенности - это проблема качества, которая касается того, насколько равномерно свет распространяется по область задач. Хотя средняя освещенность комнаты может быть подходящей, два фактора могут компромисс единообразия.
  • неправильное размещение светильников на основании критериев расстояния между светильниками (отношение максимума рекомендуемое расстояние между приспособлениями и установочной высотой над рабочей высотой)
  • светильники, оснащенные отражателями, сужающими светораспределение

Неравномерная освещенность вызывает несколько проблем:

  • недостаточный уровень освещенности в некоторых областях
  • зрительный дискомфорт, когда задачи требуют частого смещения поля зрения с недостаточно освещенных участков на затемненные
  • яркие пятна и блики на полу и стенах, отвлекающие внимание и создающие некачественный внешний вид
Цветопередача

Способность правильно видеть цвета - еще один аспект качества освещения.Источники света различаются по своему способность точно отражать истинный цвет людей и предметов. Индекс цветопередачи Шкала (CRI) используется для сравнения влияния источника света на внешний вид его цвета. окружение.

Шкала от 0 до 100 определяет CRI. Более высокий индекс цветопередачи означает лучшую цветопередачу или меньший цвет сдвиг. CRI в диапазоне 75–100 считаются отличными, а 65–75 - хорошими. Диапазон 55-65 - удовлетворительно, а 0-55 - плохо.При более высоком индексе цветопередачи цвета поверхности кажутся ярче, улучшение эстетики пространства. Иногда источники с более высоким индексом цветопередачи создают иллюзию более высокие уровни освещенности.

Значения CRI для выбранных источников света сведены в таблицу с другими данными о лампах в Приложении 3.

Вернуться к содержанию



ИСТОЧНИКИ СВЕТА

В коммерческих, промышленных и торговых объектах используется несколько различных источников света.Каждый тип лампы имеет особые преимущества; выбор подходящего источника зависит от требований к установке, стоимость жизненного цикла, качество цвета, возможность регулирования яркости и желаемый эффект. Три типа ламп обычно используются:

  • лампа накаливания
  • флуоресцентный
  • разряд высокой интенсивности
  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления
Перед описанием каждого из этих типов ламп в следующих разделах описаны характеристики, которые общие для всех.

Характеристики источников света

Электрические источники света имеют три характеристики: эффективность, цветовую температуру и цвет. индекс рендеринга (CRI). Таблица 4 суммирует эти характеристики.

КПД
Некоторые типы ламп более эффективны в преобразовании энергии в видимый свет, чем другие. В Эффективность лампы относится к количеству люменов, выходящих из лампы, по сравнению с количеством ватт, необходимый для лампы (и балласта).Выражается в люменах на ватт. Источники с более высоким Эффективность требует меньше электроэнергии для освещения помещения.
Цветовая температура Еще одна характеристика источника света - цветовая температура. Это измерение "тепло" или "прохлада" лампы. Люди обычно предпочитают более теплый источник в более низких области освещения, такие как обеденные зоны и гостиные, а также более прохладный источник в более высоких освещенные зоны, такие как продуктовые магазины.

Цветовая температура относится к цвету излучателя черного тела при заданной абсолютной температуре, выражается в Кельвинах. Радиатор черного тела меняет цвет при повышении температуры (сначала до красный, затем оранжевый, желтый и, наконец, голубовато-белый при самой высокой температуре. А «теплый» цвет Источник света на самом деле имеет более низкую цветовую температуру . Например, холодно-белый люминесцентный лампа имеет голубоватый цвет с цветовой температурой около 4100 К.Более теплый флуоресцентный лампа выглядит более желтоватой с цветовой температурой около 3000 К. См. Приложение 5 для цветовые температуры различных источников света.


Индекс цветопередачи

CRI - это относительная шкала (от 0 до 100). указывает, насколько воспринимаемые цвета соответствуют фактическим цвета. Он измеряет степень восприятия цветов объектов, освещенных данным светом. источник, соответствовать цветам тех же объектов, когда они освещены эталонным стандартом источник света.Чем выше индекс цветопередачи, тем меньше цветовой сдвиг или искажение.

Число CRI не указывает, какие цвета и на сколько сместятся; это скорее индикация среднего сдвига восьми стандартных цветов. Два разных источника света могут иметь одинаковые значения CRI, но цвета в этих двух источниках могут сильно отличаться.


Лампы накаливания

Стандартная лампа накаливания

Лампы накаливания - одна из старейших доступных технологий электрического освещения.С эффективностью от 6 до 24 люмен на ватт, лампы накаливания являются наименее энергоэффективными электрическими источник света и имеют относительно небольшой срок службы (750-2500 часов).

Свет образуется при прохождении тока через вольфрамовую нить, в результате чего она нагревается и нагревается. светиться. При использовании вольфрам медленно испаряется, что в конечном итоге приводит к разрыву нити.

Эти лампы доступны во многих формах и отделках. Два самых распространенных типа фигур это обычные лампы "A-типа " и лампы в форме рефлектора .


Вольфрамово-галогенные лампы

Галогенная лампа накаливания - еще один тип лампы накаливания. В галогенной лампе небольшой кварцевая капсула содержит нить накала и газообразный галоген. Небольшой размер капсулы позволяет нить накала для работы при более высокой температуре, что дает свет с большей эффективностью, чем стандартные лампы накаливания. Газообразный галоген соединяется с испарившимся вольфрамом, переосаждая его. на нити. Этот процесс продлевает срок службы нити накала и предохраняет стенку лампы от почернение и уменьшение светоотдачи.

Поскольку нить накала относительно небольшая, этот источник часто используется там, где направлен сильно сфокусированный луч. желанный. Компактные галогенные лампы популярны в розничной торговле для демонстрации и акцента. освещение. Кроме того, вольфрамово-галогенные лампы обычно производят более белый свет, чем другие лампы. лампы накаливания более эффективны, служат дольше и имеют улучшенный износ светового потока.


Лампа накаливания Доступны более эффективные галогенные лампы.В этих источниках используется инфракрасное покрытие кварцевого стекла. лампа или усовершенствованная конструкция отражателя для перенаправления инфракрасного света обратно на нить накала. Нить затем светится сильнее, и эффективность источника увеличивается.
Люминесцентные лампы

Люминесцентные лампы - наиболее часто используемые коммерческие источники света в Северной Америке. В Фактически, люминесцентные лампы освещают 71% коммерческих помещений в Соединенных Штатах. Их популярность можно объяснить их относительно высокой эффективностью, рассеянным светораспределением характеристики и долгий срок службы.

  • Конструкция люминесцентной лампы состоит из стеклянной трубки со следующими характеристиками:
  • , наполненный аргоном или аргон-криптоном и небольшим количеством ртути
  • покрытый изнутри люминофором
  • с электродом на обоих концах

Люминесцентные лампы излучают свет следующим образом:

  • Электрический разряд (ток) поддерживается между электродами через пары ртути и инертный газ.
  • Этот ток возбуждает атомы ртути, заставляя их излучать невидимое излучение ультрафиолет (УФ) радиация.
  • Это УФ-излучение преобразуется в видимый свет люминофором, покрывающим трубку.

Для разрядных ламп (например, люминесцентных) требуется балласт для обеспечения правильного пускового напряжения и отрегулируйте рабочий ток после запуска лампы.


Полноразмерные люминесцентные лампы

Полноразмерные люминесцентные лампы доступны в нескольких формах, включая прямые, U-образные и круговые конфигурации. Диаметр лампы составляет от 1 дюйма до 2,5 дюйма. Самый распространенный тип лампы - четырехфутовая (F40) прямая люминесцентная лампа диаметром 1,5 дюйма (T12). Более эффективная люминесцентная лампа. Теперь доступны лампы меньшего диаметра, включая T10 (1,25 дюйма) и T8 (1 дюйм).

Люминесцентные лампы доступны в диапазоне цветовых температур от теплого (2700 (K) цвета от «ламп накаливания» до очень холодных (6500 (K) «дневных» цветов).«Холодный белый» (4100 (K) - наиболее распространенный цвет люминесцентных ламп. Нейтральный белый цвет (3500 (K) становится популярным для офиса. и розничное использование.

Улучшения люминесцентного покрытия люминесцентных ламп улучшили цветопередачу и сделали некоторые люминесцентные лампы приемлемыми для многих приложений, в которых ранее преобладали лампы накаливания.


Рекомендации по производительности

Производительность любой осветительной системы зависит от того, насколько хорошо ее компоненты работают вместе.В системах с люминесцентными лампами и балластом светоотдача, потребляемая мощность и эффективность зависят от изменения температуры окружающей среды. Когда температура окружающей среды вокруг лампы ниже значительно выше или ниже 25 ° C (77F) производительность системы может измениться. Приложение 6 показывает эту взаимосвязь для двух распространенных систем балласта лампы: лампы F40T12 с магнитным балласт и лампа F32T8 с электронным балластом.

Как видите, оптимальная рабочая температура для системы ПРА F32T8 выше. чем для системы F40T12.Таким образом, когда температура окружающей среды выше 25 ° C (77 ° F), производительность системы F32T8 может быть выше, чем производительность в соответствии с ANSI условия. Лампы с меньшим диаметром (например, двухтрубные лампы Т-5) достигают максимума при еще большем температура окружающей среды.


Компактные люминесцентные лампы

Достижения в области люминофорных покрытий и уменьшение диаметра трубок облегчили разработка компактных люминесцентных ламп.

Производимые с начала 1980-х годов, они являются долговечной и энергоэффективной заменой лампа накаливания.

Доступны различные мощности, цветовые температуры и размеры. Мощность компактного люминесцентные лампы мощностью от 5 до 40 (замена ламп накаливания мощностью от 25 до 150 Вт ( и обеспечить экономию энергии от 60 до 75 процентов. Производя свет, похожий по цвету на лампы накаливания, продолжительность жизни компактных люминесцентных ламп примерно в 10 раз больше, чем у ламп накаливания. стандартная лампа накаливания. Однако учтите, что использование компактных люминесцентных ламп весьма затруднительно. ограничено в приложениях затемнения.

Компактная люминесцентная лампа с цоколем Эдисона позволяет легко модернизировать лампа накаливания. Ввинчиваемые компактные люминесцентные лампы доступны двух типов:

  • Интегральные блоки. Они состоят из компактной люминесцентной лампы и пускорегулирующего устройства в автономном корпусе. единицы измерения. Некоторые встроенные блоки также включают в себя рефлектор и / или стеклянный кожух.
  • Модульные блоки. Модернизированная компактная люминесцентная лампа модульного типа аналогична модернизированной. интегральные блоки, за исключением того, что лампа сменная.
Отчет спецификаций , в котором сравниваются характеристики компактных люминесцентных ламп различных известных торговых марок. лампы теперь доступны в Национальной информационной программе по осветительной продукции ("Винт-цоколь Компактные люминесцентные лампы », Specifier Reports, Volume 1, Issue 6, April 1993).

Газоразрядные лампы высокой интенсивности

Лампы с разрядом высокой интенсивности (HID) похожи на люминесцентные в том, что генерируется дуга. между двумя электродами. Дуга в источнике HID короче, но излучает гораздо больше света, тепло и давление внутри дуговой трубки.

Изначально разработанные для наружного и промышленного применения, HID-лампы также используются в офисах, розничная торговля и другие внутренние помещения. Улучшены их характеристики цветопередачи. и более низкие мощности недавно стали доступны (всего 18 Вт.

Источники HID обладают рядом преимуществ:

  • относительно долгий срок службы (от 5000 до 24000+ часов)
  • относительно высокий световой поток на ватт
  • относительно небольшой по физическому размеру

Однако следует также учитывать следующие эксплуатационные ограничения.Во-первых, лампы HID требуют пора разогреться. Он варьируется от лампы к лампе, но среднее время прогрева составляет от 2 до 6 минут. Во-вторых, лампы HID имеют время "повторного зажигания", что означает кратковременное прерывание тока или падение напряжения слишком низкое для поддержания дуги погаснет лампу. В этот момент газы внутри лампа слишком горячая для ионизации, и нужно время, чтобы газы остыли и давление упало прежде, чем дуга снова загорится. Этот процесс перезапуска занимает от 5 до 15 минут, в зависимости от того, какой источник HID используется.Следовательно, хорошее применение HID-ламп - это места, где лампы не включаются и не выключаются периодически.

Следующие источники HID перечислены в порядке возрастания эффективности:

  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления

Пары ртути

Прозрачные лампы на парах ртути, излучающие сине-зеленый свет, состоят из дуги на парах ртути. трубка с вольфрамовыми электродами на обоих концах.Эти лампы имеют самую низкую эффективность среди HID. семья, быстрое обесценивание просвета и низкий индекс цветопередачи. Из-за этих характеристики, другие источники HID заменили ртутные лампы во многих приложениях. Тем не менее, ртутные лампы по-прежнему остаются популярными источниками освещения ландшафта из-за их срок службы лампы 24 000 часов и яркое изображение зеленых ландшафтов.

Дуга содержится во внутренней колбе, называемой дуговой трубкой. Дуговая трубка заполнена высокой чистотой. ртуть и газ аргон.Дуговая трубка заключена во внешнюю колбу, которая заполнена азот.

Ртутные лампы с улучшенным цветом используют люминофорное покрытие на внутренней стенке колбы для улучшения индекс цветопередачи, что приводит к небольшому снижению эффективности.


Металлогалогенид

Эти лампы похожи на ртутные лампы, но в дуговой трубке используются металлогалогенные добавки. вместе с ртутью и аргоном. Эти добавки позволяют лампе производить больше видимого света. на ватт с улучшенной цветопередачей.

Диапазон мощности от 32 до 2000, что позволяет использовать их в самых разных помещениях и на улице. В эффективность металлогалогенных ламп колеблется от 50 до 115 люмен на ватт (обычно примерно в два раза больше). пара ртути. Одним словом, металлогалогенные лампы обладают рядом преимуществ.

  • высокая эффективность
  • хорошая цветопередача
  • широкий диапазон мощностей

Однако у них также есть некоторые эксплуатационные ограничения:

  • Расчетный срок службы металлогалогенных ламп меньше, чем у других источников HID; более низкая мощность лампы служат менее 7500 часов, в то время как лампы высокой мощности служат в среднем от 15000 до 20000 часов.
  • Цвет может отличаться от лампы к лампе и может меняться в течение срока службы лампы и во время затемнение.

Благодаря хорошей цветопередаче и большому световому потоку эти лампы подходят для занятий спортом. арены и стадионы. Внутреннее использование включает большие аудитории и конференц-залы. Эти лампы иногда используются для общего наружного освещения, например, парковок, но при высоком давлении натриевая система обычно является лучшим выбором.


Натрий высокого давления

Натриевая лампа высокого давления широко используется для наружного и промышленного применения. Его более высокая эффективность делает его лучшим выбором, чем галогенид металла для этих применений, особенно когда хорошая цветопередача не является приоритетом. Лампы HPS отличаются от ртутных и металлогалогенных. лампы тем, что они не содержат пусковых электродов; в цепь балласта включен высоковольтный электронный стартер. Дуговая трубка изготовлена ​​из керамического материала, выдерживающего высокие температуры. до 2372F.Он заполнен ксеноном для зажигания дуги, а также натриево-ртутным газом. смесь.

Эффективность лампы очень высока (целых 140 люмен на ватт. Например, 400-ваттный Натриевая лампа высокого давления дает начальную светосилу 50 000 люмен. Металлогалогенная лампа такой же мощности дает 40000 начальных люменов, а ртутная лампа мощностью 400 Вт дает только 21000 люмен. первоначально.

Натрий, основной используемый элемент, дает «золотой» цвет, характерный для ламп HPS.Хотя лампы HPS, как правило, не рекомендуются для приложений, где требуется цветопередача. критично, улучшаются свойства цветопередачи HPS. Некоторые лампы HPS уже доступны в цветах «люкс» и «белый», обеспечивающих более высокую цветовую температуру и улучшенный цвет исполнение. Эффективность маломощных «белых» ламп HPS ниже, чем у металлогалогенных. лампы (люмен на ватт маломощного металлогалогенида составляет 75-85, а белого HPS - 50-60 LPW).


Натрий низкого давления

Хотя натриевые лампы низкого давления (LPS) похожи на люминесцентные системы (потому что они системы низкого давления), они обычно входят в семейство HID.Лампы LPS - самые эффективные источники света, но они производят свет худшего качества из всех типов ламп. Быть монохроматический источник света, все цвета кажутся черными, белыми или оттенками серого под LPS источник. Лампы LPS доступны в диапазоне мощности от 18 до 180.

Лампы LPS обычно используются на открытом воздухе, например, в безопасности или на улице. освещение и внутри помещений с низким энергопотреблением, где качество цвета не имеет значения (например,грамм. лестничные клетки). Однако из-за плохой цветопередачи многие муниципалитеты не разрешают их для освещения проезжей части.

Поскольку лампы LPS являются «удлиненными» (например, люминесцентными), они менее эффективны в управлении и управление световым лучом по сравнению с "точечными источниками", такими как натрий и металл высокого давления галогенид. Следовательно, меньшая высота установки обеспечит лучшие результаты с лампами LPS. К сравните установку LPS с другими альтернативами, рассчитайте эффективность установки как среднее количество обслуживаемых фут-кандел, деленное на потребляемую мощность в ваттах на квадратный фут освещенной площади.Входная мощность системы LPS увеличивается с течением времени, чтобы поддерживать постоянный световой поток в течение срок службы лампы.

Натриевая лампа низкого давления может взорваться при контакте натрия с водой. Утилизировать этих ламп в соответствии с инструкциями производителя.

Вернуться к содержанию



БАЛЛАСТЫ

Все газоразрядные лампы (люминесцентные и HID) требуют вспомогательного оборудования, называемого балласт.ПРА выполняет три основные функции:
  • обеспечивает правильное пусковое напряжение , потому что лампам для запуска требуется более высокое напряжение, чем для работать
  • соответствие сетевого напряжения рабочему напряжению лампы
  • ограничить ток лампы , чтобы предотвратить немедленное разрушение, потому что после зажигания дуги уменьшается сопротивление лампы

Поскольку балласты являются неотъемлемым компонентом системы освещения, они оказывают прямое влияние на светоотдача.Балластный коэффициент - это соотношение светоотдачи лампы с использованием стандартного эталона. балласта по сравнению с номинальной светоотдачей лампы на стандартном лабораторном балласте. Общий балласты целевого назначения имеют балластный коэффициент меньше единицы; специальные балласты могут иметь балласт множитель больше единицы.


Люминесцентные балласты

Двумя основными типами люминесцентных балластов являются магнитные и электронные балласты:

Магнитные балласты Магнитные балласты (также называемые электромагнитными балластами) относятся к одному из следующих категории:
  • стандартный сердечник-катушка (больше не продается в США для большинства приложений)
  • высокоэффективный сердечник-катушка
  • катодный вырез или гибридный

Стандартные магнитные балласты сердечник-катушка - это, по сути, трансформаторы сердечник-катушка, которые относительно неэффективны в эксплуатации люминесцентных ламп.Высокоэффективный балласт заменяет алюминиевый электропроводка и сталь более низкого сорта стандартного балласта с медной проводкой и усиленной ферромагнитные материалы. Результатом этих обновлений материалов является 10-процентная эффективность системы. улучшение. Однако обратите внимание, что эти «высокоэффективные» балласты являются наименее эффективными магнитными. балласты, доступные для работы с полноразмерными люминесцентными лампами. Более эффективные балласты описано ниже.

"Катодный вырез" (или "гибридный ") балласты - это высокоэффективные балласты с сердечником и катушкой, которые включают электронные компоненты, отключающие питание катодов (нитей) ламп после зажигания ламп, что дает дополнительную экономию 2 Вт на стандартную лампу.Кроме того, многие T12 с частичным выходом гибридные балласты обеспечивают на 10% меньше светового потока и потребляют на 17% меньше энергии, чем энергоэффективные магнитные балласты. Гибридные балласты T8 с полной выходной мощностью почти так же эффективны, как быстрозажимные двухламповые ЭПРА Т8.

Электронные балласты Практически в каждом полноразмерном люминесцентном освещении можно использовать электронные балласты. обычных магнитных балластов типа "сердечник-катушка". Электронные балласты улучшают люминесцентный эффективность системы за счет преобразования стандартной входной частоты 60 Гц в более высокую частоту, обычно От 25000 до 40000 Гц.Лампы, работающие на этих более высоких частотах, производят примерно такой же количество света, в то время как потребляет на 12-25 процентов меньше энергии . Другие преимущества электронного балласты имеют меньший слышимый шум, меньший вес, практически полное отсутствие мерцания лампы и затемнение возможности (с конкретными моделями балласта).

Доступны три исполнения ЭПРА:

. Стандартные электронные балласты T12 (430 мА)

Эти балласты предназначены для использования с обычными (T12 или T10) системами люминесцентного освещения.Некоторые электронные балласты, предназначенные для использования с 4-дюймовыми лампами, могут работать с четырьмя лампами одновременно. время. Параллельная проводка - еще одна доступная функция, которая позволяет всем сопутствующим лампам в цепь балласта для продолжения работы в случае отказа лампы. Электронные балласты также доступны для 8-дюймовых стандартных и мощных ламп T12.

T8 Электронные балласты (265 мА)

Электронный балласт T8, специально разработанный для использования с лампами T8 (диаметром 1 дюйм), обеспечивает самый высокий КПД среди люминесцентных систем освещения.Некоторые электронные балласты T8 предназначены для запуска ламп в обычном режиме быстрого запуска, а другие работают в режим мгновенного запуска. Использование электронных пускорегулирующих аппаратов T8 с мгновенным запуском может дать до 25 процентов сокращение срока службы лампы (на 3 часа за запуск), но дает небольшое повышение эффективности и света выход. (Примечание. Срок службы лампы для мгновенного запуска и быстрого запуска одинаков для 12 или более часов за пуск.)

Диммируемые электронные балласты

Эти балласты позволяют регулировать световой поток ламп на основе данных, введенных вручную. регуляторы яркости или от устройств, которые определяют дневной свет или присутствие людей.


Типы люминесцентных схем

Существует три основных типа люминесцентных схем:
  • быстрый старт
  • мгновенный старт
  • предварительный нагрев

Конкретный используемый флуоресцентный контур можно определить по этикетке на балласте.

Схема быстрого старта является наиболее часто используемой системой на сегодняшний день. Балласты быстрого пуска обеспечивают непрерывное нагрев нити накала лампы во время работы лампы (кроме случаев, когда используется балласт с катодным вырезом или фонарь).Пользователи замечают очень короткую задержку после «щелчка переключателя» перед включением лампы.

Система мгновенного пуска мгновенно зажигает дугу в лампе. Этот балласт обеспечивает более высокую пусковое напряжение, что исключает необходимость в отдельной пусковой цепи. Это более высокое начало напряжение вызывает больший износ нити, что приводит к сокращению срока службы лампы по сравнению с быстрым начиная.

Схема предварительного нагрева использовалась, когда впервые стали доступны люминесцентные лампы.Эта технология используется очень мало сегодня, за исключением приложений с магнитным балластом малой мощности, таких как компактные флуоресцентные. Отдельный пусковой выключатель, называемый стартером, помогает в образовании дуги. В нити накала требуется некоторое время для достижения нужной температуры, поэтому лампа не зажигается в течение нескольких секунд.


HID балласты

Как и люминесцентные лампы, HID-лампы требуют для запуска и работы пускорегулирующего устройства. Цели балласт аналогичен: для обеспечения пускового напряжения, для ограничения тока и для согласования с линейным напряжением напряжению дуги.

При использовании балластов HID основное внимание уделяется регулированию мощности лампы, когда линия напряжение меняется. В лампах HPS балласт должен компенсировать изменения напряжения лампы, как а также при изменении линейных напряжений.

Установка неправильного балласта HID может вызвать множество проблем:

  • потеря энергии и увеличение эксплуатационных расходов
  • значительно сократить срок службы лампы
  • значительно увеличивает затраты на обслуживание системы
  • обеспечивает уровень освещенности ниже желаемого
  • увеличение затрат на электромонтаж и установку выключателя
  • приводит к циклическому включению лампы при падении напряжения

Емкостное переключение доступно в новых светильниках HID со специальными балластами HID.Большинство обычное применение HID-емкостной коммутации - это двухуровневое освещение с контролем присутствия. контроль. При обнаружении движения датчик присутствия отправит сигнал на двухуровневый HID. система, которая быстро доводит уровень освещенности от пониженного уровня ожидания примерно до 80% полной мощности, с последующим нормальным временем прогрева от 80% до 100% полной световой отдачи. В зависимости от типа лампы и мощности световой поток в режиме ожидания составляет примерно 15-40% от полной мощности. а потребляемая мощность составляет 30-60% от полной мощности.Следовательно, в периоды, когда пространство незанятых людей и система затемнена, достигается экономия 40-70%.

Электронные пускорегулирующие аппараты для некоторых типов ламп HID начинают поступать в продажу. Эти балласты обладают такими преимуществами, как уменьшенный размер и вес, а также лучший контроль цвета; однако электронные балласты HID предлагают минимальный выигрыш в эффективности по сравнению с балластами магнитных HID.

Вернуться к содержанию



СВЕТИЛЬНИКИ

Светильник, или осветительная арматура, представляет собой блок, состоящий из следующих компонентов:
  • лампы
  • патроны
  • балласты
  • светоотражающий материал
  • линзы, рефракторы или жалюзи
  • корпус

Светильник

Основная функция светильника - направлять свет с помощью отражающих и экранирующих материалов.Многие проекты модернизации освещения состоят из замены одного или нескольких из этих компонентов для улучшения эффективность приспособления. В качестве альтернативы пользователи могут подумать о замене всего светильника на тот, который Я спроектировал так, чтобы эффективно обеспечить необходимое количество и качество освещения.

Есть несколько разных типов светильников. Ниже приводится список некоторых наиболее распространенных типы светильников:

  • светильники общего освещения, такие как люминесцентные лампы 2х4, 2х2 и 1х4
  • точечный светильник
  • непрямое освещение (свет отражается от потолка / стен)
  • точечное или акцентное освещение
  • рабочее освещение
  • наружное и дневное освещение

КПД светильника

КПД светильника - это процент светового потока лампы, который фактически выходит из приспособление.Использование жалюзи может улучшить визуальный комфорт, но поскольку они уменьшают просвет выход приспособления, КПД снижается. Как правило, самые эффективные светильники имеют худший визуальный комфорт (например, промышленные светильники без покрытия). И наоборот, приспособление, обеспечивающее самый высокий уровень визуального комфорта наименее эффективен. Таким образом, дизайнер по свету должен определить лучший компромисс между эффективностью и VCP при выборе светильников. В последнее время некоторые производители начали предлагать светильники с отличным VCP и эффективностью.Эти так называемые "Супер-светильники " сочетают в себе ультрасовременные линзы или жалюзи, чтобы обеспечить лучшее из обоих миры.

Ухудшение поверхности и скопившаяся грязь в старых, плохо обслуживаемых приборах также могут вызвать снижение эффективности светильников. Обратитесь к Техническому обслуживанию освещения для получения дополнительной информации.


Направляющий свет Каждый из вышеперечисленных типов светильников состоит из ряда компонентов, которые предназначены для работы. вместе производить и направлять свет.Поскольку тема производства света была освещена В предыдущем разделе текст ниже посвящен компонентам, используемым для направления производимого света. лампами.
Отражатели Отражатели предназначены для перенаправления света, излучаемого лампой, для достижения желаемого распределение силы света вне светильника.

В большинстве точечных и прожекторных ламп накаливания обычно используются зеркальные (зеркальные) отражатели. встроены в светильники.

Одним из энергоэффективных вариантов модернизации является установка специально разработанного отражателя для усиления света. контроль и эффективность приспособления, которое может позволить частичное снятие демпфирования. Отражатели дооснащения полезен для повышения эффективности старых, изношенных поверхностей светильников. Разнообразие доступны светоотражающие материалы: белая краска с высокой отражающей способностью, ламинат с серебряной пленкой и два марки анодированного алюминиевого листа (стандартная или повышенная отражательная способность).Серебряный пленочный ламинат Обычно считается, что он имеет самый высокий коэффициент отражения, но считается менее прочным.

Правильная конструкция и установка отражателей могут иметь большее влияние на производительность, чем отражающие материалы. Однако в сочетании с демпфированием использование отражателей может привести к снижение светоотдачи и может перераспределить свет, что может быть приемлемым или неприемлемым для конкретное пространство или приложение. Чтобы обеспечить приемлемые характеристики отражателей, позаботьтесь о пробная установка и измерение уровней освещенности «до» и «после», используя процедуры, изложенные в Оценка освещения.Для получения конкретных данных об эффективности названия бренда см. Отчеты спецификатора, «Зеркальные отражатели», том 1, выпуск 3, Национальная информационная программа по осветительной продукции.


Линзы и жалюзи В большинстве коммерческих люминесцентных светильников для помещений используются линзы или жалюзи для предотвращения прямого попадания света. просмотр ламп. Свет, излучаемый в так называемой «зоне ослепления» (углы более 45 градусов от вертикальной оси приспособления) может вызвать зрительный дискомфорт и отражения, которые уменьшают контраст на рабочих поверхностях или экранах компьютеров.Линзы и жалюзи пытаются контролировать эти проблемы.

Линзы. Линзы из прозрачного акрилового пластика, устойчивого к ультрафиолетовому излучению, обеспечивают максимальное освещение производительность и однородность всех средств защиты. Однако они обеспечивают меньший контроль бликов, чем решетчатые светильники. Типы прозрачных линз включают призматические, крылья летучей мыши, линейные крылья летучей мыши и поляризованные. линзы. Линзы обычно намного дешевле, чем жалюзи. Белые полупрозрачные диффузоры намного менее эффективны, чем прозрачные линзы, и они приводят к относительно низкой вероятности визуального комфорта.Новые материалы линз с низким уровнем бликов доступны для модернизации и обеспечивают высокий визуальный комфорт (VCP> 80) и высокая эффективность.

Жалюзи. Жалюзи обеспечивают превосходный контроль бликов и высокий визуальный комфорт по сравнению с линзово-диффузорные системы. Чаще всего жалюзи используются для устранения бликов на арматуре. отражается на экранах компьютеров. Так называемые параболические жалюзи с "глубокими ячейками" (с отверстиями для ячеек 5-7 дюймов) и глубиной 2–4 дюйма (обеспечивают хороший баланс между визуальным комфортом и эффективностью светильника.Хотя параболические жалюзи с мелкими ячейками обеспечивают высочайший уровень визуального комфорта, они уменьшают КПД светильника около 35-45 процентов. Для модернизированных приложений, как с глубокими ячейками, так и с жалюзи с мелкими ячейками доступны для использования с существующими приспособлениями. Обратите внимание, что жалюзи с глубокими ячейками дооснащение увеличивает общую глубину трансмиссии на 2–4 дюйма; убедитесь, что имеется достаточная глубина камеры статического давления. перед указанием модернизации с глубокими ячейками.


Распределение

Одна из основных функций светильника - направлять свет туда, где он нужен.Свет Распространение светильников охарактеризовано Обществом инженеров освещения как следующим образом:

  • Прямой (от 90 до 100 процентов света направляется вниз для максимального использования.
  • Непрямое (от 90 до 100 процентов света направляется на потолки и верхние стены и отражается во всех частях комнаты.
  • Semi-Direct (от 60 до 90 процентов света направлено вниз, а остальная часть света направлена ​​вниз). направлен вверх.
  • General Diffuse или Direct-Indirect (равные части света направлены вверх и вниз.
  • Highlighting (дальность проецирования луча и фокусирующая способность характеризуют это светильник.

Распределение освещения, характерное для данного светильника, описывается с помощью канделы. Распространение предоставляется производителем светильника (см. диаграмму на следующей странице). Кандела распределение представлено кривой на полярном графике, показывающей относительную силу света 360 вокруг приспособления (если смотреть на поперечное сечение приспособления.Эта информация полезна потому что он показывает, сколько света излучается в каждом направлении и относительные пропорции вниз и вверх. Угол среза - это угол, измеренный прямо вниз, где приспособление начинает экранировать источник света, и прямой свет от источника не виден. Угол экранирования - это угол, отсчитываемый от горизонтали, через который приспособление обеспечивает экранирование для предотвращения прямого просмотра источника света.Углы экранирования и отсечения складываются. до 90 градусов.

Продукты для модернизации освещения, упомянутые в этом документе, более подробно описаны в Технологии модернизации освещения.

Вернуться к содержанию



Индивидуальные объявления

Advanced Lighting Guidelines: 1993, Исследовательский институт электроэнергии (EPRI) / Калифорния Энергетическая комиссия (CEC) / Министерство энергетики США (DOE), май 1993 г.

EPRI, CEC и DOE совместно разработали обновленную версию Advanced 1993 года. Руководство по освещению (первоначально опубликовано ЦИК в 1990 году). Рекомендации включают четыре новые главы, посвященные управлению освещением. Эта серия руководств содержит исчерпывающие и объективную информацию о текущем осветительном оборудовании и средствах управления.

Рекомендации касаются следующих областей:

  • Практика проектирования освещения
  • компьютерное проектирование освещения
  • светильники и системы освещения
  • энергоэффективные люминесцентные балласты
  • полноразмерные люминесцентные лампы
  • компактные люминесцентные лампы
  • Лампы вольфрам-галогенные
  • металлогалогенные лампы и лампы HPS
  • дневное освещение и поддержание светового потока
  • датчики присутствия
  • системы расписания
  • модернизация технологий управления

Помимо обзоров технологий и приложений, каждая глава завершается рекомендациями. спецификации для точного определения компонентов модернизации освещения.Руководство также свести в таблицу репрезентативные данные о производительности, которые может быть очень сложно найти в продукте литература.

Чтобы получить копию Advanced Lighting Guidelines (1993), обратитесь в местную коммунальную службу (если у вас Утилита является членом EPRI). В противном случае позвоните в ЦИК по телефону (916) 654-5200.

Ассоциация инженеров-энергетиков использует этот текст для подготовки кандидатов к сдаче Сертифицированных Экзамен по эффективности освещения (CLEP).Эта 480-страничная книга особенно полезна для изучения расчетов освещенности, основных соображений по проектированию и эксплуатации характеристики каждого семейства источников света. Он также содержит рекомендации по применению для промышленных, офисное, торговое и внешнее освещение.

Учебник можно заказать в Ассоциации инженеров-энергетиков по телефону (404). 925-9558.

Стандарт ASHRAE / IES 90.1-1989, Американское общество отопления, охлаждения и Инженеры по кондиционированию воздуха (ASHRAE) и Общество инженеров освещения (IES), 1989.

ASHRAE / IES 90.1-1989, широко известный как «Стандарт 90.1», является стандартом эффективности, который Участники Green Lights соглашаются следовать им при проектировании новых систем освещения. Стандарт 90.1 - это в настоящее время является национальным стандартом добровольного консенсуса. Однако этот стандарт становится законом в многие государства. Закон об энергетической политике 1992 г. требует, чтобы все штаты подтвердили к октябрю 1994 г., что их положения коммерческого энергетического кодекса соответствуют или превышают требования Стандарта 90.1.

Участникам Green Lights нужно только соответствовать части стандарта, касающейся системы освещения. Стандарт 90.1 устанавливает максимальную плотность мощности (W / SF) для систем освещения в зависимости от типа здание или ожидаемое использование в каждом пространстве. Осветительная часть стандарта 90.1 не применяются к следующему: наружные производственные или технологические объекты, театральное освещение, специальное освещение, аварийное освещение, вывески, торговые витрины и жилые помещения освещение.Дневное освещение и управление освещением получают внимание и кредиты, а также минимум стандарты эффективности указаны для балластов люминесцентных ламп на базе балласта Federal Стандарты.

Вы можете приобрести Standard 90.1, связавшись с ASHRAE по телефону (404) 636-8400 или IES по телефону (212) 248-5000.

Справочник по управлению освещением, Крейг Дилуи, 1993.

Этот 300-страничный нетехнический справочник дает четкий обзор управления освещением. принципы.Особое внимание уделяется важности эффективного обслуживания и преимущества хорошо спланированной и выполненной программы управления освещением. Содержание организована следующим образом:

  • Основы и технологии
  • Обследование зданий
  • Эффективное освещение (для людей)
  • Экономика модернизации
  • Техническое обслуживание
  • Финансирование модернизации
  • Green Engineering (Воздействие на окружающую среду)
  • Получение помощи
  • Истории успеха

Кроме того, приложения к книге включают общую техническую информацию, рабочие листы и информацию о продукте. гиды.Чтобы приобрести эту ссылку, позвоните в Ассоциацию инженеров-энергетиков по телефону (404) 925-9558.

Освещение: Учебное пособие для старших специалистов по свету, международный Ассоциация компаний по управлению освещением (NALMCO), первое издание, 1993 г.

Освещение - это 74-страничное учебное пособие для учеников-светотехников. (Обозначение NALMCO) для повышения статуса до старшего светотехника. В Рабочая тетрадь состоит из семи глав, каждая из которых содержит тест для самопроверки.Ответы даны в оборотная сторона книги.

  • Основы обслуживания (например, электричество, приборы, вопросы утилизации и т. Д.)
  • Работа лампы (например, конструкция и работа лампы (все типы, цветовые эффекты)
  • Работа с балластом (например, люминесцентные и HID компоненты балласта, типы, мощность, балласт коэффициент, гармоники, начальная температура, КПД, замена)
  • Поиск и устранение неисправностей (например,g., визуальные симптомы, возможные причины, объяснения и / или способы устранения)
  • Элементы управления (например, фотоэлементы, часы, датчики присутствия, диммеры, EMS)
  • Устройства и технологии для модернизации освещения (например, отражатели, компактные люминесцентные лампы, модернизация балласта, исправление чрезмерно освещенных ситуаций, линзы и жалюзи, преобразования HID, измерение энергоэффективности)
  • Аварийное освещение (например, знаки выхода, типы приспособлений, приложения, батареи, техническое обслуживание)

Подсветка четкая и понятная.Самая сильная сторона публикации - обширная иллюстрации и фотографии, которые помогают прояснить обсуждаемые идеи. Учебник для подмастерьев Также доступны специалисты по освещению (под названием «Осветите» (рекомендуется для новички в области освещения.

Для заказа позвоните в НАЛМКО по телефону (609) 799-5501.


Научно-исследовательский институт электроэнергетики (EPRI)

Справочник по эффективности коммерческого освещения, EPRI, CU-7427, сентябрь 1991 г.

Справочник по эффективности коммерческого освещения содержит обзор эффективных коммерческие осветительные технологии и программы, доступные конечному пользователю. Помимо предоставления обзор возможностей сохранения освещения, этот 144-страничный документ предоставляет ценные информация об образовании в области освещения и информация в следующих областях:

  • справочник по энергетическим и экологическим группам обширный аннотированный справочник по освещению библиографии
  • справочник светотехнических демонстрационных центров
  • свод правил и кодексов, относящихся к освещению
  • справочник светотехнических учебных заведений, курсов и семинаров
  • списки светотехнических журналов и журналов
  • справочник и описания светотехнических научно-исследовательских организаций
  • справочник профессиональных групп освещения и торговых ассоциаций

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510) 934-4212.

Следующие публикации по освещению доступны в EPRI. Каждая публикация содержит подробное описание технологий, их преимуществ, областей применения и тематических исследований.

  • Разрядное освещение высокой интенсивности (10 страниц), BR-101739
  • Электронные балласты (6 страниц), BR-101886
  • Датчики присутствия (6 страниц), BR-100323
  • Компактные люминесцентные лампы (6 страниц), CU.2042R.4.93
  • Зеркальные модифицированные отражатели (6 страниц), CU.2046Р.6.92
  • Retrofit Lighting Technologies (10 страниц), CU.3040R.7.91

Кроме того, EPRI предлагает серию 2-страничных информационных бюллетеней, охватывающих такие темы, как обслуживание освещения, качество освещения, освещение VDT и срок службы лампы.

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI). В противном случае обратитесь в Центр распространения публикаций EPRI по телефону (510). 934-4212.

Справочник по основам освещения, Научно-исследовательский институт электроэнергетики, TR-101710, март 1993.

В этом справочнике представлена ​​основная информация о принципах освещения, осветительном оборудовании и др. соображения, связанные с дизайном освещения. Он не предназначен для использования в качестве актуальной ссылки на актуальные светотехнические изделия и оборудование. Справочник состоит из трех основных разделов:

  • Физика света (например, свет, зрение, оптика, фотометрия)
  • Осветительное оборудование и технологии (e.г., лампы, светильники, регуляторы освещения)

  • Решения по дизайну освещения (например, цели освещения, качество, экономика, коды, мощность качество, фотобиология и утилизация отходов)

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510) 934-4212.


Общество светотехники (IES)

ED-100 Начальное освещение Эта образовательная программа, состоящая примерно из 300 страниц в папке, представляет собой обновленную версию. учебных материалов по основам 1985 года.Этот набор из 10 уроков предназначен для тех, кто хотите тщательный обзор поля освещения.
  • Свет и цвет
  • Свет, зрение и восприятие
  • Источники света
  • Светильники и их фотометрические данные
  • Расчет освещенности
  • Световые приложения для визуального представления
  • Освещение для визуального воздействия
  • Наружное освещение
  • Энергоменеджмент / Экономика освещения
  • Дневной свет
ЭД-150 Промежуточное освещение Этот курс - «следующий шаг» для тех, кто уже прошел ED-100. фундаментальной программы или желающих расширить свои знания, полученные с помощью практических опыт.Экзамен технических знаний IES основан на уровне ED-150. знание. Папка длиной 2 дюйма содержит тринадцать уроков.
  • Видение
  • Цвет
  • Источники света и балласты
  • Оптическое управление
  • Расчет освещенности
  • Психологические аспекты освещения
  • Концепции дизайна
  • Компьютеры в дизайне и анализе освещения
  • Экономика освещения
  • Расчет дневного света
  • Электрические параметры / распределение
  • Электроуправление
  • Математика освещения
Справочник по освещению IES, 8-е издание, IES of North America, 1993. Этот 1000-страничный технический справочник представляет собой комбинацию двух более ранних томов, которые по отдельности адресная справочная информация и приложения. Считается «библией» озарения. Инженерное дело, Справочник обеспечивает широкий охват всех этапов светотехнических дисциплин. 34 главы разделены на пять общих частей.
  • Наука об освещении (например, оптика, измерения, зрение, цвет, фотобиология)
  • Светотехника (например, источники, светильники, дневное освещение, расчеты)
  • Элементы дизайна (e.g., процесс, выбор освещения, экономика, нормы и стандарты)
  • Lighting Applications, в которой обсуждаются 15 уникальных тематических исследований.
  • Специальные темы (например, энергоменеджмент, контроль, техническое обслуживание, экологические вопросы)

Кроме того, Справочник содержит обширный ГЛОССАРИЙ и указатель, а также множество иллюстрации, графики, диаграммы, уравнения, фотографии и ссылки.

Справочник является важным справочником для практикующего светотехника.Вы можете приобрести руководство из отдела публикаций IES по телефону (212) 248-5000. Члены IES получают цену скидка на Справочник.

IES Lighting Ready Reference, IES, 1989. . Эта книга представляет собой сборник информации об освещении, включая следующие: терминология, коэффициенты преобразования, таблицы источников света, рекомендации по освещенности, расчетные данные, энергия соображения управления, методы анализа затрат и процедуры обследования освещения.Готов Справочник включает наиболее часто используемые материалы из Справочника по освещению IES.

Вы можете приобрести 168-страничный справочник в отделе публикаций IES по телефону (212). 248-5000. членов IES получают Ready Reference при вступлении в общество.

Освещение VDT: Рекомендуемая практика IES для офисов освещения Содержит компьютерные терминалы визуального отображения. ОЭС Севера Америка, 1990. IES RP-24-1989. Это руководство по освещению содержит рекомендации по освещению офисов, где компьютер Используются ВДТ.Он также предлагает рекомендации относительно требований к освещению для визуального комфорта и хорошая видимость, с анализом влияния общего освещения на визуальные задачи VDT.

Чтобы приобрести копию RP-24, обратитесь в IES по телефону (212) 248-5000.

Национальное бюро освещения (NLB) NLB - это информационная служба, созданная Национальными производителями электрооборудования. Ассоциация (NEMA). Его цель - повысить осведомленность и оценить преимущества хорошее освещение.NLB продвигает все аспекты управления энергопотреблением освещения, начиная от производительность к световому потоку. Ежегодно НББ публикует статьи в различных периодических изданиях и путеводители, написанные для непрофессионала. В этих статьях обсуждаются конкретные конструкции систем освещения, методы эксплуатации, технического обслуживания и системные компоненты.

Следующие публикации являются основными ссылками, дающими обзор предмета и включают приложения для освещения.

  • Офисное освещение и производительность
  • Прибыль от модернизации освещения
  • Получение максимальной отдачи от освещения
  • долларов
  • Решение загадки проблем просмотра VDT
  • Руководство NLB по промышленному освещению
  • Руководство NLB по управлению освещением в розничной торговле
  • Руководство NLB по энергоэффективным системам освещения
  • Освещение для безопасности
  • Проведение аудита системы освещения
  • Освещение и возможности человека

Чтобы запросить каталог или заказать публикации, позвоните в NLB по телефону (202) 457-8437.

Руководство NEMA по средствам управления освещением, Национальные производители электрооборудования Ассоциация, 1992.

В этом руководстве представлен обзор следующих стратегий управления освещением: включение / выключение, занятость. распознавание, планирование, настройка, сбор дневного света, компенсация износа просвета и контроль спроса. Кроме того, в нем обсуждаются варианты оборудования и приложения для каждого элемента управления. стратегия.

Для заказа звоните в NLB по телефону (202) 457-8437.


Национальная информационная программа по осветительной продукции (NLPIP)

Эта программа публикует объективную информацию о продуктах для модернизации освещения и является спонсируется четырьмя организациями: Green Lights EPA, Исследовательским центром освещения, New Управление энергетических исследований и разработок штата Йорк и Энергетическая компания северных штатов. Доступны два типа публикаций (Specifier Reports и Lighting Answers.

). Чтобы приобрести эти публикации, отправьте запрос по факсу в Исследовательский центр освещения, Политехнический институт Ренсселера: (518) 276-2999 (факс).

Отчеты спецификатора В каждом отчете спецификатора рассматривается конкретная технология обновления освещения. Отчеты спецификатора предоставить справочную информацию о технологии и результаты независимых тестов производительности брендовых продуктов для модернизации освещения. Отчеты NineSpecifier опубликованы по состоянию на июль. 1994.
  • Электронные балласты, декабрь 1991 г.
  • Редукторы мощности, март 1992 г.
  • Зеркальные отражатели, июль 1992 г.
  • Датчики присутствия, октябрь 1992 г.
  • Светильники для парковок, январь 1993 г.
  • Компактные люминесцентные лампы с винтовыми цоколями, апрель 1993 г.
  • Катодно-разъединяющие балласты, июнь 1993 г.
  • Exit Sign Technologies, январь 1994 г.
  • Электронные балласты, май 1994 г.

В отчетах-спецификаторах, которые будут опубликованы в 1994 г., будут рассмотрены пять тем: знаки выхода, электронные балласты, элементы управления дневным светом, компактные люминесцентные лампы и заменители для лампы накаливания с отражателем.HID-системы для освещения торговых дисплеев также будут исследованы в 1994.

Световые ответы

Ответы на освещение содержат информативный текст об эксплуатационных характеристиках конкретных технологии освещения, но не включают результаты сравнительных испытаний производительности. Освещение Ответы, опубликованные в 1993 году, касались флуоресцентных систем T8 и поляризационных панелей для люминесцентные светильники. Дополнительные ответы на вопросы освещения, запланированные к публикации в 1994 году, будут охватывать рабочее освещение и HID затемнение.Другие обсуждаемые темы - электронный балласт. электромагнитные помехи (EMI) и системы освещения 2'x4 '.

Периодические издания Energy User News, Chilton Publications, публикуется ежемесячно.

В этом ежемесячном издании рассматриваются многие аспекты энергетической отрасли. Каждое издание содержит раздел, посвященный освещению, обычно содержащий тематическое исследование и как минимум одну статью, посвященную осветительный продукт или проблема. Некоторые выпуски Energy User News содержат руководства по продуктам, которые Таблицы по конкретным технологиям, в которых перечислены участвующие производители (с номерами телефонов) и атрибуты своей продукции.В сентябрьском выпуске 1993 года главным элементом было освещение, а содержала следующую информацию.

  • несколько статей по освещению и анонсы продуктов
  • специальный отчет о планировании модернизации освещения и качестве электроэнергии
  • Технологический отчет по вольфрамово-галогенным лампам
  • Комментарий к успешной модернизации датчика присутствия людей
  • руководства по КЛЛ, галогенам, HID, отражателям, электронным балластам

Чтобы заказать старые выпуски, звоните (215) 964-4028.

Управление освещением и техническое обслуживание, НАЛМКО, публикуется ежемесячно .

В этой ежемесячной публикации рассматриваются проблемы и технологии, непосредственно связанные с обновлением и обслуживание систем коммерческого и промышленного освещения. Ниже приведены некоторые темы рассматриваются в Управление освещением и техническое обслуживание: светотехническая промышленность, законодательство, новые продуктов и приложений, утилизации отходов, геодезии и управления освещением.

Чтобы заказать подписку, позвоните в NALMCO по телефону (609) 799-5501.

Другие публикации EPA Green Lights

Помимо Руководства по обновлению освещения, EPA публикует другие документы, которые доступны бесплатно. оплаты в Центре обслуживания клиентов Green Lights. Кроме того, новая факсимильная линия EPA система позволяет пользователям запрашивать и получать маркетинговую и техническую информацию Green Lights в течение нескольких минут по телефону (202) 233-9659.

Обновление зеленого света Этот ежемесячный информационный бюллетень является основным средством информирования участников Green Lights (и другие заинтересованные стороны) о последних обновлениях программы. Информационный бюллетень за каждый месяц обращается к осветительным технологиям, приложениям, тематическим исследованиям и специальным мероприятиям. Каждый выпуск содержит последний график семинаров по модернизации освещения и копию формы отчетности используется участниками для отчета о завершенных проектах для EPA.

Чтобы получить бесплатную подписку на обновление, обратитесь в службу поддержки клиентов Green Lights по адресу (202) 775-6650 или факс (202) 775-6680.

Страницы питания

Power Pages - это короткие публикации, посвященные технологиям освещения, их применению и конкретным вопросы или проблемы по программе Green Lights. Анонсы Power Pages ищите в информационный бюллетень обновления.

Эти документы доступны через факсимильную линию Green Lights. По вопросам доставки факса звоните по факсу (202) 233-9659. Периодически звоните по факсу, чтобы получить последнюю информация от Green Lights. Если у вас нет факсимильного аппарата, обратитесь в Green Lights. Служба поддержки клиентов по телефону (202) 775-6650.

Легкие трусы

EPA публикует 2-страничные краткие обзоры по различным вопросам реализации. Эти публикации предназначен для ознакомления с техническими и финансовыми проблемами, влияющими на решения по обновлению.Четыре Light Briefs фокусируются на технологиях: датчики присутствия, электронные балласты, зеркальное отражение. отражатели и эффективные люминесцентные лампы. Другие выпуски охватывают скользящие стратегии финансирования, варианты финансирования, измерение рентабельности модернизации освещения и удаление отходов. Текущие копии были разосланы всем участникам Green Lights.

За дополнительной информацией обращайтесь в службу поддержки Green Lights по телефону (202). 775-6650 или по факсу (202) 775-6680.

Брошюра Green Lights

EPA выпустило четырехцветную брошюру для продвижения программы Green Lights. В нем излагаются цели и обязательства программы, описывая при этом то, что делают некоторые из участников. Этот документ является важным инструментом для любой маркетинговой презентации Green Lights.

Чтобы заказать копии брошюры, обратитесь в службу поддержки клиентов Green Lights по телефону (202). 775-6650 или факс (202) 775-6680

Вернуться к содержанию




A, B, C, D, E, F, G, H, I, L, M, N, O, P, Q, R, S, T, U, V, W, Z
AMPERE : стандартная единица измерения электрического тока, равная одному кулону в секунду.Он определяет количество электронов, проходящих мимо заданной точки в цепи во время конкретный период. Amp - это аббревиатура.

ANSI : Аббревиатура американского национального института стандартов.

ARC TUBE : Трубка, заключенная во внешнюю стеклянную оболочку HID лампы и сделанная из прозрачного кварцевый или керамический, содержащий дуговую струю.

ASHRAE : Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха

ПЕРЕГОРОДКА : одиночный непрозрачный или полупрозрачный элемент, используемый для управления распределением света в определенных углы.

БАЛЛАСТ: Устройство для управления люминесцентными и HID лампами. Балласт обеспечивает необходимое пусковое напряжение, при этом ограничивая и регулируя ток лампы во время работы.

БАЛЛАСТНЫЙ ВЕЛОСИПЕД : Нежелательное состояние, при котором балласт включает и выключает лампы. (циклы) из-за перегрева термовыключателя внутри балласта. Это может быть связано с неправильные лампы, неподходящее напряжение, высокая температура окружающей среды вокруг светильника, или ранняя стадия выхода балласта из строя.

КОЭФФИЦИЕНТ БАЛЛАСТНОЙ ЭФФЕКТИВНОСТИ : Коэффициент балластной эффективности (BEF) - это коэффициент балластной эффективности. (см. ниже) деленное на входную мощность балласта. Чем выше BEF (в пределах того же лампово-балластного типа (тем эффективнее балласт.

БАЛЛАСТНЫЙ КОЭФФИЦИЕНТ : Балластный коэффициент (BF) для конкретной комбинации лампа-ПРА. представляет собой процент от номинального люменов лампы, который будет произведен комбинацией.

CANDELA: Единица силы света, описывающая интенсивность источника света в определенном направление.

CANDELA DISTRIBUTION : Кривая, часто в полярных координатах, иллюстрирующая изменение сила света лампы или светильника в плоскости, проходящей через световой центр.

CANDLEPOWER: Мера силы света источника света в определенном направлении, измеряется в канделах (см. выше).

CBM : Сокращенное обозначение ассоциации сертифицированных производителей балласта.

CEC : Аббревиатура от California Energy Commission.

КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ : Отношение люменов от светильника на рабочая плоскость к люменам, создаваемым только лампами. (Также называется «CU»)

ИНДЕКС ЦВЕТООТРАЖЕНИЯ (CRI): Шкала влияния источника света на цвет внешний вид объекта по сравнению с его цветным внешним видом под эталонным источником света. Выражается по шкале от 1 до 100, где 100 означает отсутствие изменения цвета. Низкий рейтинг CRI предполагает что цвета объектов будут казаться неестественными под определенным источником света.

ЦВЕТОВАЯ ТЕМПЕРАТУРА : Цветовая температура является характеристикой внешнего вида цвета источник света, связывающий цвет с эталонным источником, нагретым до определенной температуры, измеряется термической единицей Кельвина. Измерение также можно описать как «тепло» или «прохлада» источника света. Обычно источники ниже 3200K считаются «теплыми»; пока те, что выше 4000К, считаются «крутыми» источниками.

КОМПАКТНЫЙ ФЛУОРЕСЦЕНТНЫЙ : Маленькая люминесцентная лампа, которая часто используется в качестве альтернативы лампы накаливания.Срок службы лампы примерно в 10 раз больше, чем у ламп накаливания, и составляет 3-4 часа. в раз эффективнее. Также называются лампами PL, Twin-Tube, CFL или BIAX.

ПОСТОЯННАЯ ВАТТАЖНОСТЬ (CW) БАЛЛАСТ : Премиум-тип СПРЯТЕННОГО балласта, в котором первичная и вторичная обмотки изолированы. Считается высокоэффективным балластом с высокими потерями. с отличной регулировкой мощности.

АВТОМАТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ КОНСТАНТА (CWA) БАЛЛАСТ : популярный тип HID балласт, в котором первичная и вторичная катушки электрически соединены.Считается соответствующий баланс между стоимостью и производительностью.

КОНТРАСТ: Отношение между яркостью объекта и его фоном.

CRI: (СМ. ИНДЕКС ЦВЕТА)

УГОЛ ОБРЕЗКИ : Угол от вертикальной оси приспособления, под которым отражатель, жалюзи или другое экранирующее устройство закрывает прямую видимость лампы. Это дополнительный угол угол экранирования.

КОМПЕНСАЦИЯ ДНЕВНОГО СВЕТА : Система затемнения, управляемая фотоэлементом, который уменьшает мощность ламп при дневном свете. По мере увеличения дневного света интенсивность лампы уменьшается. Энергосберегающая технология, используемая в районах со значительным дневным освещением.

DIFFUSE : термин, описывающий распределение рассеянного света. Относится к рассеянию или размягчению свет.

РАССЕИВАТЕЛЬ: Прозрачный кусок стекла или пластика, который экранирует источник света в приспособление.Свет, проходящий через диффузор, будет перенаправлен и рассеян.

ПРЯМОЙ БЛИК : Блики, возникающие при прямом взгляде на источники света. Часто результат недостаточно экранированные источники света. (См. ОБЗОР)

DOWNLIGHT : Тип потолочного светильника, обычно полностью встраиваемый, в который попадает большая часть света. направлен вниз. Может иметь открытый отражатель и / или экранирующее устройство.

ЭФФЕКТИВНОСТЬ : показатель, используемый для сравнения светоотдачи с потреблением энергии.Эффективность измеряется в люменах на ватт. Эффективность аналогична эффективности, но выражается в разных единицы измерения. Например, если источник мощностью 100 Вт дает 9000 люмен, то эффективность составляет 90 люмен. на ватт.

ЭЛЕКТРОЛЮМИНЕСЦЕНТ: Технология источника света, используемая в знаках выхода, которая обеспечивает равномерная яркость, длительный срок службы лампы (примерно восемь лет) при очень низком потреблении энергия (менее одного ватта на лампу).

ЭЛЕКТРОННЫЙ БАЛЛАСТ : ПРА, в котором используются полупроводниковые компоненты для увеличения частота работы люминесцентной лампы (обычно в диапазоне 20-40 кГц.Меньший индуктивный Компоненты обеспечивают контроль тока лампы. Эффективность люминесцентной системы повышается за счет работа лампы высокой частоты.

ЭЛЕКТРОННЫЙ ДИММИНИРУЮЩИЙ БАЛЛАСТ : Электронный люминесцентный балласт с регулируемой мощностью.

EMI: Сокращенное обозначение электромагнитных помех. Высокочастотные помехи (электрические шум), вызванный электронными компонентами или люминесцентными лампами, который мешает работе электрическое оборудование.EMI измеряется в микровольтах и ​​может контролироваться фильтрами. Так как EMI может создавать помехи для устройств связи, Федеральная комиссия по связи (FCC) установил лимиты для EMI.

ЭНЕРГОСБЕРЕГАЮЩИЙ БАЛЛАСТ : Тип магнитного балласта, сконструированный таким образом, что компоненты работают более эффективно, холоднее и дольше, чем «стандартный магнитный» балласт. По законам США, стандартные магнитные балласты больше не производятся.

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА : Лампа с меньшей мощностью, обычно производящая меньше люмен.

FC: (СМОТРЕТЬ ПОДВЕСКУ)

ФЛУОРЕСЦЕНТНАЯ ЛАМПА : Источник света, состоящий из трубки, заполненной аргоном, вместе с криптон или другой инертный газ. При подаче электрического тока возникающая дуга излучает ультрафиолетовое излучение. излучение, которое возбуждает люминофор внутри стенки лампы, заставляя их излучать видимый свет.

FOOTCANDLE (FC): Английская единица измерения освещенности (или уровня освещенности) на поверхность.Одна фут-свеча равна одному люмену на квадратный фут.

FOOTLAMBERT : английская единица яркости. Один футламберт равен 1 / p кандел на квадратный фут.

ЯРКОСТЬ: Достаточное влияние яркости или различий в яркости в пределах поля зрения высокий, чтобы вызвать раздражение, дискомфорт или потерю зрения.

ГАЛОГЕН: (СМ. ГАЛОГЕННАЯ ЛАМПА Вольфрама)

ГАРМОНИЧЕСКОЕ ИСКАЖЕНИЕ : Гармоника - это синусоидальная составляющая периодической волны. имеющий частоту, кратную основной частоте.Гармонические искажения от осветительное оборудование может создавать помехи другим приборам и работе электроэнергии сети. Общее гармоническое искажение (THD) обычно выражается в процентах от ток основной линии. THD для 4-футовых люминесцентных балластов обычно составляет от 20% до 40%. Для компактных люминесцентных балластов уровни THD более 50% не являются редкостью.

HID: Сокращенное обозначение разряда высокой интенсивности. Общий термин, описывающий пары ртути, металл галогенидные, натриевые источники высокого давления и (неофициально) натриевые источники света и светильники низкого давления.

HIGH-BAY: Относится к типу освещения в промышленных помещениях, где потолок составляет 20 градусов. футов или выше. Также описывает само приложение.

HIGH OUTPUT (HO): Лампа или балласт, предназначенный для работы при более высоких токах (800 мА) и производить больше света.

HIGH POWER FACTOR : ПРА с номинальным коэффициентом мощности 0,9 или выше, который достигается с помощью конденсатора.

НАТРИЕВАЯ ЛАМПА ВЫСОКОГО ДАВЛЕНИЯ : Газоразрядная лампа высокой интенсивности (HID), свет которой производится излучением паров натрия (и ртути).

HOT RESTART или HOT RESTRIKE : Явление повторного зажигания дуги в СКРЫТОМ свете. источник после кратковременного отключения питания. Горячий перезапуск происходит, когда дуговая трубка остыла. достаточное количество.

IESNA: Сокращенное название Общества инженеров по освещению Северной Америки.

ОСВЕЩЕНИЕ : фотометрический термин, который определяет количество света, падающего на поверхность или плоскость. Освещенность обычно называют уровнем освещенности. Выражается в люменах на квадратный фут. (фут-кандел) или люмен на квадратный метр (люкс).

НЕПРЯМОЙ СБЛИК : Слепящий свет от отражающей поверхности.

МГНОВЕННЫЙ ЗАПУСК : Люминесцентная схема, которая мгновенно зажигает лампу с очень высокой пусковое напряжение от балласта.Лампы мгновенного пуска имеют одноштырьковые цоколи.

КРЕСТ-КОЭФФИЦИЕНТ ТОКА ЛАМПЫ (LCCF): Пиковый ток лампы, деленный на среднеквадратичное значение. (средний) ток лампы. Производители ламп требуют <1,7 для максимального срока службы лампы. LCCF 1,414 идеальная синусоида.

КОЭФФИЦИЕНТ СТАРЕНИЯ ЛАМПЫ (LLD): Коэффициент, представляющий снижение светового потока с течением времени. Коэффициент обычно используется как множитель начального просвета. рейтинг в расчетах освещенности, который компенсирует снижение светового потока.LLD коэффициент - безразмерное значение от 0 до 1.

LAY-IN-TROFFER: Люминесцентный светильник; обычно приспособление размером 2 х 4 фута, которое устанавливается или «кладется» в специфическая потолочная сетка.

LED: Сокращенное обозначение светодиода. Технология освещения, используемая для знаков выхода. Потребляет небольшую мощность и имеет номинальный срок службы более 80 лет.

ЛИНЗА : Прозрачный или полупрозрачный материал, изменяющий характеристики направления света. проходя через это.Обычно из стекла или акрила.

КОЭФФИЦИЕНТ ПОТЕРЯ СВЕТА (LLF): Факторы, которые позволяют системе освещения работать с меньшими затратами. чем начальные условия. Эти коэффициенты используются для расчета поддерживаемого уровня освещенности. LLF разделены на две категории: восстанавливаемые и невозмещаемые. Примеры: люмен лампы. износ и износ поверхности светильников.

СТОИМОСТЬ ЖИЗНИ : Общие затраты, связанные с покупкой, эксплуатацией и обслуживанием система в течение жизни этой системы.

ЗАСЛОНКА: Оптическая сборка решетчатого типа, используемая для управления распределением света от осветительного прибора. Может варьируются от пластика с мелкими ячейками до решеток из анодированного алюминия с большими ячейками, используемых в параболических люминесцентные светильники.

КОЭФФИЦИЕНТ НИЗКОЙ МОЩНОСТИ : Фактически, нескорректированный коэффициент мощности балласта менее 0,9. (СМ. НПФ)

НАТРИЙ НИЗКОГО ДАВЛЕНИЯ : Газоразрядная лампа низкого давления, свет в которой излучение паров натрия.Считается монохроматическим источником света (большинство цветов отображается как серый).

ЛАМПА НИЗКОГО НАПРЯЖЕНИЯ : Лампа (обычно компактная галогенная) и хорошая цветопередача. Лампа работает от 12 В и требует использования трансформатора. Популярный лампы MR11, MR16 и PAR36.

ВЫКЛЮЧАТЕЛЬ НИЗКОГО НАПРЯЖЕНИЯ : Реле (переключатель с магнитным приводом), которое позволяет дистанционное управление освещением, включая централизованные часы или компьютерное управление.

LUMEN: Единица светового потока или светового потока. Световой поток лампы - это мера светового потока. общий световой поток лампы.

ЛЮМИНАР : Полный осветительный прибор, состоящий из лампы или ламп, а также их частей. предназначен для распределения света, удержания ламп и подключения ламп к источнику питания. Также называется приспособление.

LUMINAIRE EFFICIENCY : Отношение общей световой отдачи светильника к световому потоку. мощность ламп, выраженная в процентах.Например, если два светильника используют один и тот же лампы, больше света будет испускаться из светильника с более высокой эффективностью.

ЯРКОСТЬ: Фотометрический термин, который количественно определяет яркость источника света или освещенная поверхность, отражающая свет. Выражается в футламбертах (английских единицах) или канделах. за квадратный метр (метрические единицы).

ЛЮКС (LX): Метрическая единица измерения освещенности поверхности.Один люкс равен одному люмен на квадратный метр. Один люкс равен 0,093 фут-канделы.

ПОДДЕРЖИВАЕМАЯ ОСВЕЩЕННОСТЬ : Относится к уровням освещенности помещения, отличным от начального или номинального. условия. Эти термины учитывают факторы световых потерь, такие как уменьшение светового потока лампы, светильник. износ грязи и износ поверхности комнаты.

MERCURY VAPOR LAMP : Тип газоразрядной лампы высокой интенсивности (HID), в которой большая часть свет создается за счет излучения паров ртути.Излучает сине-зеленый свет. Доступны в прозрачных лампах и лампах с люминофорным покрытием.

METAL HALIDE : Тип разрядной лампы высокой интенсивности (HID), в которой большая часть света образуется за счет излучения паров галогенидов металлов и ртути в дуговой трубке. Доступен в прозрачном и лампы с люминофорным покрытием.

MR-16: Низковольтная кварцевая лампа с рефлектором, всего 2 дюйма в диаметре. Обычно лампа и отражатели представляют собой единый блок, который направляет резкий и точный луч света.

НАДИР 91 048: Ссылка направление непосредственно под светильником, или «прямо вниз» (0 градусов угла).

NEMA: Сокращенное обозначение Национальной ассоциации производителей электрооборудования.

NIST: Сокращенное обозначение Национального института стандартов и технологий.

НПФ (НОРМАЛЬНЫЙ КОЭФФИЦИЕНТ МОЩНОСТИ) : Комбинация пускорегулирующего устройства / лампы, в которой нет компонентов. (например, конденсаторы) были добавлены, чтобы скорректировать коэффициент мощности, сделав его нормальным (существенно низким, обычно 0.5 или 50%).

ДАТЧИК ПОМЕЩЕНИЯ : Устройство управления, которое выключает свет после того, как пространство становится незанятые. Может быть ультразвукового, инфракрасного или другого типа.

ОПТИКА: Термин, относящийся к компонентам осветительной арматуры (таким как отражатели, рефракторы, линзы, жалюзи) или светоизлучающие или светорегулирующие характеристики прибора.

PAR LAMP : Лампа с параболическим алюминированным отражателем.Лампа накаливания, галогенид металла или компактный Люминесцентная лампа используется для перенаправления света от источника с помощью параболического отражателя. Лампы бывают доступны с раздачей наводнением или спотом.

PAR 36: Лампа PAR диаметром 36 1/8 дюйма параболической формы. отражатель (СМ. ПАР. ЛАМПУ).

ПАРАБОЛИЧЕСКИЙ СВЕТИЛЬНИК : популярный тип люминесцентных светильников с жалюзи алюминиевых перегородок изогнутой параболической формы.Результирующее светораспределение, производимое эта форма обеспечивает меньшее количество бликов, лучший контроль света и считается более эстетичной. обращаться.

PARACUBE : Пластиковая решетка с металлическим покрытием, состоящая из небольших квадратов. Часто используется для замены линза в установленном troffer для улучшения ее внешнего вида. Паракуб визуально комфортный, но КПД светильника снижается. Также используется в помещениях с компьютерными экранами из-за их способность уменьшать блики.

ФОТОЭЛЕМЕНТ: Светочувствительное устройство, используемое для управления светильниками и диммерами в ответ на обнаруженные уровни освещенности.

ФОТОМЕТРИЧЕСКИЙ ОТЧЕТ : Фотометрический отчет - это набор печатных данных, описывающих свет распределение, эффективность и зональный световой поток светильника. Этот отчет создан из лабораторные испытания.

КОЭФФИЦИЕНТ МОЩНОСТИ : Отношение напряжения переменного тока x ампер через устройство к мощности переменного тока устройство.Такое устройство, как балласт, которое измеряет 120 В, 1 А и 60 Вт, имеет мощность коэффициент 50% (вольт x ампер = 120 ВА, следовательно, 60 Вт / 120 ВА = 0,5). Некоторые коммунальные услуги взимают заказчики систем с низким коэффициентом мощности.

ПРЕДВАРИТЕЛЬНЫЙ НАГРЕВ : Тип цепи балласта / лампы, в котором используется отдельный стартер для нагрева люминесцентной лампы. лампа до того, как будет подано высокое напряжение для запуска лампы.

QUAD-TUBE LAMP : Компактная люминесцентная лампа с двойной двойной трубкой.

РАДИОЧАСТОТНЫЕ ПОМЕХИ (RFI): Помехи в диапазоне радиочастот вызвано другим высокочастотным оборудованием или устройствами в непосредственной близости. Флуоресцентное освещение системы генерируют RFI.

БЫСТРЫЙ ЗАПУСК (RS): Самая популярная комбинация люминесцентных ламп и пускорегулирующих устройств, используемая сегодня. Этот балласт быстро и эффективно предварительно нагревает катоды лампы для запуска лампы. Использует двухконтактную базу.

ROOM CAVITY RATIO (RCR): Соотношение размеров комнаты, используемое для количественной оценки того, как свет будет взаимодействуют с поверхностями комнаты.Коэффициент, используемый при расчетах освещенности.

ОТРАЖЕНИЕ: Отношение света, отраженного от поверхности, к свету, падающему на поверхность. Коэффициент отражения часто используется для расчета освещения. Коэффициент отражения темного ковра составляет около 20%, а чистая белая стена - примерно от 50% до 60%.

ОТРАЖАТЕЛЬ: Часть светильника, которая закрывает лампы и перенаправляет свет. испускается лампой.

РЕФРАКТОР: Устройство, используемое для перенаправления светового потока от источника, в первую очередь путем изгиба. волны света.

УДАЛЕНО: Термин, используемый для описания дверной коробки троффера, на которой находится линза или жалюзи. над поверхностью потолка.

ПОЛОЖЕНИЕ: Способность балласта поддерживать постоянную (или почти постоянную) выходную мощность в ваттах. (светоотдача) при колебаниях напряжения питания балласта. Обычно указывается как +/- процентное изменение выпуска по сравнению с +/- процентным изменением ввода.

РЕЛЕ: Устройство, которое включает или выключает электрическую нагрузку при небольших изменениях тока или Напряжение.Примеры: реле низкого напряжения и твердотельное реле.

ПОВТОРНЫЙ : относится к модернизации приспособления, комнаты или здания путем установки новых частей или оборудование.

САМОСВЕТИТЕЛЬНЫЙ ЗНАК ДЛЯ ВЫХОДА : Технология освещения с использованием стекла с люминофорным покрытием трубки, заполненные радиоактивным газом тритием. Знак выхода не использует электричество и, следовательно, не требует быть зашитым.

SEMI-SPECULAR: Термин, описывающий характеристики светоотражения материала.Некоторый свет отражается направленно с некоторым рассеянием.

УГОЛ ЭКРАНА : Угол, измеряемый от плоскости потолка до линии обзора, где становится видна оголенная лампа в светильнике. Более высокие углы экранирования уменьшают прямые блики. это дополнительный угол угла отсечки. (См. УГОЛ ОБРЕЗКИ).

КРИТЕРИЙ РАСПОЛОЖЕНИЯ : Максимальное расстояние, на котором могут быть размещены внутренние приспособления, на которые обеспечивает равномерное освещение рабочей плоскости.Высота светильника над рабочей плоскостью умноженное на критерий расстояния, равняется расстоянию между светильником.

SPECULAR: Зеркальная или полированная поверхность. Угол отражения равен углу заболеваемость. Это слово описывает отделку материала, из которого изготовлены некоторые жалюзи и отражатели.

СТАРТЕР: Устройство, используемое с балластом для запуска предварительного нагрева люминесцентных ламп.

СТРОБОСКОПИЧЕСКИЙ ЭФФЕКТ : Состояние, при котором вращающееся оборудование или другое быстро движущееся объекты кажутся стоящими из-за переменного тока, подаваемого к источникам света.Иногда его называют «стробоскопическим эффектом».

T12 LAMP : Промышленный стандарт для люминесцентных ламп толщиной 12 1/8 дюйма (1 дюйм) диаметр. Другие размеры - лампы T10 (1 дюйм) и T8 (1 дюйм).

ТАНДЕМНАЯ ПРОВОДКА : Вариант подключения, при котором пускорегулирующие устройства используются совместно двумя или более светильниками. Это снижает затраты на рабочую силу, материалы и энергию. Также называется проводкой «ведущий-ведомый».

ТЕПЛОВОЙ КОЭФФИЦИЕНТ : коэффициент, используемый в расчетах освещения, который компенсирует изменение светоотдачи люминесцентной лампы из-за изменения температуры стенки колбы.Применяется при рассматриваемая комбинация лампы и балласта отличается от используемой в фотометрических тесты.

TRIGGER START : Тип балласта, обычно используемый с прямой мощностью 15 и 20 Вт. флюоресцентные лампы.

TROFFER: Термин, используемый для обозначения встраиваемого люминесцентного светильника (комбинация корыто и сундук).

Вольфрамовая галогенная лампа : Газонаполненная лампа накаливания с вольфрамовой нитью колба лампы из кварца, выдерживающая высокие температуры.Эта лампа содержит некоторые галогены (а именно йод, хлор, бром и фтор), которые замедляют испарение вольфрам. Также обычно называется кварцевой лампой.

TWIN-TUBE: (СМ. КОМПАКТНАЯ ЯРКОСТЬ)

УЛЬТРАФИОЛЕТОВЫЙ (УФ): Невидимое излучение с более короткой длиной волны и более высокой частоты, чем видимый фиолетовый свет (буквально за пределами фиолетового света).

ЛАБОРАТОРИИ БАЗОВЫХ РАБОТНИКОВ (UL): Независимая организация, чья в обязанности входит тщательное тестирование электротехнической продукции.Когда продукты проходят эти испытания, они могут быть помечены (и объявлены) как «внесенные в список UL». Испытания UL только на безопасность продукта.

ВАНДАЛОУСТОЙЧИВОСТЬ: Светильники с прочными корпусами, защитой от взлома и винты с защитой от взлома.

VCP: Сокращенное обозначение вероятности визуального комфорта. Рейтинговая система оценки прямых дискомфортные блики. Этот метод представляет собой субъективную оценку визуального комфорта, выраженную как процент жителей помещения, которым не понравится прямой свет.VCP позволяет несколько Факторы: яркость светильника под разными углами обзора, размер светильника, размер помещения, светильник монтажная высота, освещенность и отражательная способность поверхности комнаты. Таблицы VCP часто представлены как часть фотометрических отчетов.

ОЧЕНЬ ВЫСОКАЯ МОЩНОСТЬ (VHO): Люминесцентная лампа, работающая при "очень высоком" токе. (1500 мА), что дает больший световой поток, чем лампа с «высокой выходной мощностью» (800 мА) или стандартный выход лампа (430 мА).

VOLT: Стандартная единица измерения электрического потенциала.Он определяет «силу» или «давление» электричества.

НАПРЯЖЕНИЕ: Разница в электрическом потенциале между двумя точками электрической цепи.

WALLWASHER: Описывает светильники, освещающие вертикальные поверхности.

ВАТТ (Вт) : Единица измерения электрической мощности. Определяет уровень потребления энергии. электрическим устройством во время его работы. Стоимость энергии при эксплуатации электрического устройства рассчитывается как его мощность, умноженная на часы использования.В однофазных цепях это связано с вольтами. и амперы по формуле: Вольт x Ампер x PF = Ватт. (Примечание: для цепей переменного тока коэффициент мощности должен быть включены.)

ПЛОСКОСТЬ РАБОТЫ: Уровень, на котором выполняется работа, и на которой указывается освещенность и измеряется. Для офисных помещений это обычно горизонтальная плоскость на высоте 30 дюймов над полом. (высота стола).

ZENITH: Направление непосредственно над светильником (180 (угол).



Основы освещения - один из серии документов, известных под общим названием Руководство по обновлению освещения . Щелкните ниже, чтобы перейти к другим документам этой серии.

Планировка

Технический

Приложения

ЗЕЛЕНЫЙ ФОНАРЬ: яркое вложение в окружающую среду

Чтобы получить дополнительную информацию или заказать другие документы или приложения из этой серии, свяжитесь с офисом программы Green Lights по телефону: Программа «Зеленый свет»
Агентство по охране окружающей среды США
401 M Street, SW (6202J)
Вашингтон, округ Колумбия 20460

или позвоните по горячей линии информации о зеленых огнях по телефону (202) 775-6650, факсу (202) 775-6680.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *