Падение напряжения на резисторе – Источники энергии. Потенциал и падение напряжения

Источники энергии. Потенциал и падение напряжения

Еще один пост из серии основы основ. Заметил я, что многие совершенно не въезжают в концепцию падения напряжения, разности потенциалов и типов источников питания. Поэтому запилю ка я ликбез по этой теме. С самого начала. Потом заброшу его в начало рубрики «Начинающим». Пойдет как замена цикла статей канализационной электроники. Т.к. тот цикл писался для «Хакера» и особой подробностью не отличался ввиду ограничений на размер полосы.

Начало начал. Ноль.
Итак, начну с самого начала. Со дна. То есть с земли. Точки нулевого потенциала. Эта точка совершенно произвольная. Просто нам так удобно, что мы приняли ее за ноль. Надо же с чего то начинать. В однополярном питании это, обычно, минус питания. В двуполярном — нечто посредине, впрочем от конструкции зависит.

Источник энергии
Что такое вообще источник электрической энергии? Это всего лишь «зарядовый насос» который перекачивает электроны (или ионы) посредством химической, электростатической, сегнетоэлектрической, электромагнитной, термической, да любой энергии. Это не важно. Суть лишь в том, что он искажает нейтрально-равномерное распределение зарядов, стаскивая положительные в одну сторону, отрицательные в другую.

Как насос, поднимая воду на высоту, за счет энергии толпы грязных нигр, в поте лица вращающих его маховик, увеличивает потенциальную энергию воды, поднятую на высоту.

И вот если мы примем один конец нашей трубы-проводника за ноль, то на другой будет какой то потенциал. Какой?
А это зависит от силы источника энергии, ведь заряды сопротивляются, хотят обратно, к нулевому состоянию. Системе с минимальной энергией. А еще от характеристик самой силы. Например, химическая, что в солевых батарейках, не дает напряжения больше 1.5 вольт. Это свойства электролита и электродов (я химию уже подзабыл, но что то там связано с электрохимическим рядом).
Причем мы можем источники энергии составлять цепочкой. И тогда выходит, что выход первого, станет точкой нулевого потенциала для второго, такого же, и он сможет накачать еще столько же сверху. А относительно общего нуля будет вдвое больше.

Как если бы мы соединили два насоса последовательно, один набивает нам давление в 1 атмосферу, и второй относительно него набивает 1 атмосферу, а вместе они выдают аж два очка.

У меня на прошлой работе делали стендовые мультиметры. Делали их из обычных DT-838 прикручивая их на панели. Делали массово, сотнями. А все они с завода комплектуются батарейкой типа КРОНА которая тут оказывалась не нужна. Батарейка была голимая, но свои 9вольт давала. И таких батареек была целая коробка от телевизора, россыпью. А Крона прикольна тем, что она может соединяться своим разьемом с другой Кроной. Ну я от нефиг делать давай их соединять последовательно, раскладывая на полу. Сколько я их соединил я уже не помню. Потом мне тупо стало страшно, т.к. в длину у меня пространство кончилось, а в два слоя их соединять сцыкотно — так как концы близко получались. А у меня в результате получился источник напряжением чуть ли не под киловольт и способный дать в течении нескольких минут ток в пару ампер. Коротни я его на себя и от меня бы одни ботинки остались. Пришлось разобрать адскую машину.

Замкнутая цепь
Ну вот есть у нас источники энергии, каждый наращивает потенциал согласно своей дури. На вершине же этой цепи у нас будет их суммарный потенциал. Дикое количество нескомпенсированных зарядов, рвущихся к нулю. Их можно сравнить с сжатым воздухом.

Обратно они прорваться не могут — источник энергии не дает. Вперед — некуда. Для пробоя воздуха энергии не хватает. Вот и висят в таком состоянии. Как батарейка, никуда не подключенная — на выходе голый потенциал и никакой движухи. Напряжение есть, а тока нет. Осталось только дать им путь. Замкнем цепь. Накоротко, без полезной нагрузки.

И ток рванет по короткому пути, а потом обратно за счет источника энергии наверх и так далее. Напряжение наверху сразу же упадет в ноль. Но раз сопротивления нет, то с какой скростью он это будет делать? Идеальный насос, с бесконечной мощностью, разгонит нам ток до бесконечности.

Но в реальности выходит на сцену производительность насоса. Т.е. насос физически, ввиду своей конструкции, не может нам прокачать больше определенного объема (скажем, ограниченный размер цилиндра), а у батареи есть ограниченная площадь электродов, у генератора есть сопротивление обмоток. Получается в цепи все же есть сопротивление, это сопротивление источника. И выше него не прыгнешь. Также и с реальным источником напряжения. У него тоже всегда есть внутреннее сопротивление. И чем оно ниже, тем мощней источник, тем больший ток он сможет отдать.

Впрочем, никто не мешает взять и соединить два насоса-источника параллельно. И у нас получится, что они с одинаковым давлением (напряжением) родят вдвое больший ток. Правда тут надо учитывать, что ставить в параллель два источника с разным напряжением нельзя — тогда более слабый будет продавливаться более сильным и служить потребителем. Разумеется если внешней нагрузки, которая бы просадила напряжение до уровня слабого, нет.

Тоже самое касается и последовательного включения. Если мы воткнем в последовательное включение источник с большим внутренним сопротивлением чем у всех остальных, то он забьет всю цепь и будет обузой, не давая развивать максимальный ток.

Теперь вспомним о батарейках. Когда батарейка новая, то у ней малое внутреннее сопротивление, но чем больше электролита вступает в реакцию тем внутреннее сопротивление становится больше. И получается, что напряжение то она выдает и мультиметр показывает вроде бы четкие полтора вольта, но стоит затребовать с нее большой ток, как она мгновенно сдувается — возросшее сопротивление не позволяет выдать его и напряжение падает.

А теперь немног больше конкретики. Закон Ома для полной цепи.

Есть просто закон Ома: напряжение = ток * сопротивление

U = I * R

Это частный случай закона Ома для отдельного элемента цепи. Но есть еще закон Ома для полной цепи, с учетом источника.

Итак, у нас в цепи есть:

Наш идеальный насос — источник электродвижущей силы (ЭДС) — Е. У него бесконечная мощность и нулевое внутреннее сопротивление.
Но, чтобы жизнь не казалась медом, добавим еще и внутреннее сопротивление. Чтобы получить реальный источник. Re
А также есть нагрузки R1 и R2, включенные последовательно.

Ток (I) в последовательной неразветвленной цепи одинаков везде. И равен он величине ЭДС поделенной на сумму ВСЕХ сопротивлений, в том числе и внутреннего. И из этого получается вот что:

E = I*Re+I*R1+I*R2

Т.к. I*R=U перепишем все по иному:

E = I*Re + U1 + U2

Получается, что электродвижущая сила нашего источника, раскладывается, в зависимости от величины нагрузки, по всей цепи. Чем больше нагрузка, тем больше там надо приложить энергии для ее преодоления. Т.е. в нашей батарейке, если у нас E константа и не меняется (напомню, что она зависит только от химии процесса и подбора материалов батареи — т.е. это конструктивная особенность батареи), то при увеличении Re у нас, чтобы сохранить равенство, приходится снижать ток. А раз так, то падает U1 и U2 т.е. напряжение на потребителе. Еще, можно заметить, что у последовательных потребителей напряжение на каждом из них зависит от его R. И там где сопротивление больше — будет большее напряжение.

А что происходит когда мы тыкаем вольтметром в нашу дохлую батарею? А у вольтметра ОГРОМНОЕ сопротивление. И по сравнению с ним внутреннее сопротивление источника даже не отсвечивает.

Re <<<< Rвольтметра

А ток одинаково мал (доли милиампера) для всех потребителей. Таким образом в уравнении:

Е = I*Re + I*Rвольтметра

На цифрах:

Е=1.5
Re=10 Ом
Rвольтметра = 10 000 000 Ом
I = 1.5/10 000 010 = 1,499Е-7
I*Re = 0.00000015 * 10 = 1.499Е-6
I*Rвольтметра = 1,499Е-7 * 10 000 000 = 1.499

1.5 = 1.499Е-6 + 1.499

Львиная доля напряжения высадится там, где сопротивление больше — на вольтметре. И вольтметр покажет практически величину Е, но это будет работать лишь на малых токах. При снижении сопротивления нагрузки и увеличении тока, часть I*Re будет все весомей и весомей, пока не перетащит на себя все напряжение. Тогда на нагрузке напряжение упадет почти до нуля — батеря просто не способна дать ток, такой, чтобы удержать напряжение. Либо, если это не батарейка, а какой либо другой источник — источник не тянет нагрузку. А если у батареи от долгой работы на нагрузку увеличилось внутреннее сопротивление, то в этом случае батарейка села.

Источник напряжения. Стабилизация
Но бывают такие хитрые схемы, где у источника внутреннее сопротивление можно менять в широких пределах. И есть следящая система, которая регулирует его таким образом, чтобы на нагрузке было строго определенное напряжение. Разумеется до тех пор пока токи не выходят за оговоренные рамки, а дальше неизбежный провал. Причем если сопротивление нагрузки, например, уменьшится, то и сопротивление источника уменьшится, чтобы иметь возможность пустить через нагрузку больший ток и выровнять напряжение на нагрузке.

Если брать идеальный источник напряжения — фактически голый источник ЭДС с нулевым сопротивлением, то он при снижении нагрузки в ноль даст бесконечный ток. Простейшим примером источника напряжения является конденсатор в момент разрядки. У идеального конденсатора внутреннее сопротивление равно нулю, поэтому когда он разряжается, то на бесконечно малом промежутке времени дает бесконечно большой ток.

Потенциал
Исходя из названия величины — это потенциальная энергия электрического поля в конкретной точке. Но для того, чтобы ее замерить надо задать отправную точку, систему отсчета — точку нулевого потенциала. Она может быть где угодно. Зависит лишь от наших целей в текущий момент. Но обычно за ноль принимают корпус или минус питания. Это и будет нашей точкой нулевого потенциала — Землей.

Возьмем и пририсуем к нашей цепи эту точку, вот так.

Итак, у нас есть цепь. Параметры такие:

Е = 5В
R = 1 Ом — все резисторы, для простоты.
I = 1 A

Теперь найдем потенциал во всех точках. Он, традиционно, обозначется буквой фи. Правило тут простое:

  • 0. Выбираем точку нуля.
  • 1. Выбираем направление обхода.
  • 2. Выбираем направление тока в контуре. Совершенно произвольно, если ошибешься с направлением, то ряд величин будет с отрицательным знаком, но уравнение все равно сойдется. Однако лучше все же выбирать ток исходя из логического предположения того, как он должен течь при данном направлении источника — минусов будет меньше.
  • 2. Если источник нам по пути, то он увеличивает потенциал, на величину своей ЭДС.
  • 3. Если по пути нагрузка. То если ток совпадает с выбранным направление обхода, то потенциал уменьшаем на I*Rн Если же ток через нагрузку идет против нашего обхода, то увеличиваем потенциал на I*Rн.

И вернемся к нашему контуру:

  • 0. Точка нуля задана.
  • 1. Пусть обход контура по часовой.
  • 2. Ток по часовой.
  • 3. Проходим источник ЭДС. Потенциал в точке Б сразу же подскакивает на его величину. Вот оно максимальное напряжение. Но это где то в глубине батареи, мы его не замерим кроме как математически. Поэтому проходим внутреннее сопротивление. Идем по току, поэтому у нас потенциал снижается на I*Rе. В Точке В мы получили реальный потенциал на клемме нашей батареи. Идем дальше, дальше у нас резистор. Там ток течет по обходу, а значит потенциал уменьшается еще на I*R1. Дальше аналогично. В итоге, когда мы сделаем круг, на каждом резисторе потенциал будет падать до тех пор, пока не выйдет в ноль, по возвращении в точку начала обхода.

Если сделать обход в обратную сторону, то получится все то же самое, только потенциал будет рости до тех пор пока мы не дойдем до Е и, пройдя его против направления, не вычтем ЭДС выйдя опять на ноль.

Но это мы получали потенциал относительно нуля. А если взять разность потенциалов между точкой Г и Е ? А мы получим напряжение между двумя этими точками. Если ткнуть туда вольтметром, то он покажет именно это напряжение. Т.е. напряжение это разность потенциалов. А падение напряжения между точками — это та величина на которую меняется потенциал при переходе из одной точки схемы в другую.

И главное надо очень четко понять тот факт, что главное в цепи это разность потенциалов. Есть разность потенциалов — есть ток, заряды текут и стремятся эту разность свести на ноль. Нет — тока не будет, т.к. зарядам в этом случае совершенно не захочется куда то бежать и где то там что то выравнивать, т.к. энергия системы в этом случае минимальная.

Тока может и не быть, если цепь не замкнута, а вот потенциала хоть отбавляй. Например, лежит кусок провода, никуда не подключен. На концах разность ноль — все заряды равномерно распределены.
Пошла мимо провода электромагнитная волна, извне откуда то прилетела, послужила тем самым источником энергии и раскидала заряды по разным концам провода. Появилась разность потенциалов на концах.

Таким образом, даже в никуда не подключенной ноге микроконтроллера, если она висит в режиме высокого входного сопротивления (HiZ — т.е. практически никуда не подключена и цепь разомкнута), из воздуха, от случайных помех, могут наводится большие потенциалы, достаточные для хаотичного переключения входа из 0 в 1 и обратно. А если к ноге приделать длинный провод, то на нем может навестись такой потенциал, что контроллер пожгет нафиг. Поэтому то длинные линии обычно делают в виде токовой петли, с низким сопротивлением, чтобы не наводилось на них перенапряжений. А наличие-отсутствие сигнала ловят по наличию-отсутствию тока нужной величины.

Эту концепцию потенциала и зависимости тока от него надо понять досконально, на уровне спинного мозга. Потому что потом дальше оперирование будет в основном потенциалами относительно общей точки.

Понятие падения напряжения активно юзается при обсчете нелинейных элементов, вроде диодов.

Расчет резистора для светодиода
Итак, есть у нас светодиод. Некий абстрактный. И у него по даташиту падение напряжения 2.5 вольта. А допустимый ток 10мА. А еще есть батарея, дающая 5 вольт и имеющая внутреннее сопротивление в 1Ом.

Что означает падение напряжения светодиода? А то, что между его выводами напряжение может быть не выше 2.5 вольта. Т.е. воткнешь ты его на батарею хоть в 100 вольт, а там все равно должно быть 2.5 вольта. Достигается это за счет того, что сопротивление диода тем меньше, чем большее к нему приложено напряжение. Куда же деть остальные 97.5 вольт? А их придется высадить на внутреннем сопротивлении источника. А если оно мало? А не волнует! Придется вкачать большой ток, настолько болшой, чтобы на внутреннем сопротивлении источника высадило это злосчастные 97.5 вольт. Вот только ток там уйдет в сотни ампер. А светодиод от таких токов пыхнет плазменной вспышкой и устроит тебе КЗ со взрывом.

Конечно, у реального светодиода все не так страшно и сопротивление его бесконечно падать не может, а падение напряжения не константное и меняется, но когда эти отклонения будут значительными ток будет уже за гранью допустимого. Так что можно смело принять падение напряжения на светодиоде за константу.

Итак, вернемся к нашим баранам.

Есть источник, есть диод. Вот такая схема.

Е=I*Re+Vled
5=I*1 + 2.5

Воткнув наш пятивольтовый источник на наш 2.5 вольтовый диод мы получим падение напряжения на диоде 2.5 вольта. И столько же должно высадиться на внутреннем сопротивлении источника. Ток будет 2.5А это очень много, на два порядка выше чем разрешено. Значит надо добавить еще один резистор, дабы он сбросил на себя часть напряжения и обеспечил ток в 10мА.

Е=I*Re + I*R + 2.5

Понятно, т.к. I = 0.01 то вычислить R не сложно. R = 249 Ом. Ближайший из ряда E24 — 240 Ом.

Параметры диода из его даташита, токоограничительное сопротивление мы выбираем, а откуда взять внутреннее сопротивление источника? А обычно им пренебрегают, считая его равным нулю. Один фиг его сопротивление в порядки меньше чем сопротивление ограничивающего резистора.

Источник тока
Антипод источника напряжения. Если источник напряжения выдает напругу и может развить бесконечный ток, лишь бы эту напругу удержать.

То источник тока выдает ток и может выдать бесконечное напряжение, лишь бы этот ток продавить. Имеет бесконечное внутреннее сопротивление, поэтому его выдаваемое напряжение (I*Rвн) и стремится к бесконечности. У реального же источника тока есть внутреннее сопротивление и расположено оно параллельно. Т.е. если ток через нагрузку не продавливается, то он уходит по внутреннему сопротивлению, не давая броска напряжения до победного конца. И чем выше внутреннее сопротивление источника тока, тем большее падение напряжения будет на нем, а значит и большее напряжение на нагрузке. Тем самым, по закону Ома, через нагрузку продавит больший ток.

Источниками тока в природе является катушка индуктивности, в момент разрыва цепи. Поэтому то она так и искрит, т.к. накачивает дикое напряжение, стремясь пробить дорогу току и удержать его на прежнем уровне.

easyelectronics.ru

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

www.joyta.ru

Как найти падение напряжения 🚩 формула падения напряжения 🚩 Естественные науки

Независимо от того, какие именно параметры даны в условии задачи, переведите их в систему СИ.

Если в условии даны сопротивление нагрузки и выделяемая на ней мощность, руководствуйтесь следующими соображениями:R=U/I, где R — сопротивление, Ом, U — напряжение, В, I — сила тока, А.P=UI, где P — мощность, Вт, U — падение напряжения, В, I — сила тока, А.Отсюда следует, что P=I^2*R, то есть, I^2=P/R, или I=sqrt(P/R). Следовательно, U=R(sqrt(P/R)) или, после упрощения выражения, U=sqrt(P)*sqrt(R), где U — искомое падение напряжения на нагрузке, В, R — сопротивление, Ом, P — мощность, Вт.

Значительно более простой случай возникает, если найти падение напряжение необходимо, зная мощность и силу тока. Преобразовывать выражение не потребуется, поэтому сразу воспользуйтесь следующей формулой: U=P/I,где U — искомое падение напряжения, В, P — мощность, выделяемая на нагрузке, Вт, I — сила тока, проходящего через нагрузку, А. Если известны сопротивление нагрузки и проходящий через нее ток, падение напряжения на ней также вычислите в одно действие:U=IR,где U — искомое падение напряжения, В, I — ток, проходящий через нагрузку, А, R — сопротивление нагрузки, Ом. Помимо приведенных выше наиболее часто встречающихся задач, в учебниках попадаются и другие, в которых необходимо узнать падение напряжения на отрезке длинного однородного стержня, выполненного из материала, обладающего высоким сопротивлением. Для этого вначале вычислите падение напряжения на всей длине стержня (если оно не дано в условии задачи изначально). После этого вычтите друг из друга горизонтальные координаты точек, падение напряжения между которыми необходимо определить.

Напряжение на всей длине стержня поделите на его длину, после чего умножьте на рассчитанную вами длину отрезка, и вы получите падение напряжения между точками. Подобные делители встречаются в аппаратуре с бестрансформаторным питанием и используются в качестве переключателей сетевого напряжения — в данном случае простоте конструкции приносится в жертву коэффициент полезного действия и безопасность.

Завершив вычисления, при необходимости переведите результат в удобные для его представления единицы: вольты, милливольты, киловольты и т.п.

www.kakprosto.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *