Параллельное и последовательное соединение проводников: примеры параллельного и последовательного соединения

Содержание

Последовательное и параллельное соединение: схемы подключений

Ток в электроцепи проходит по проводникам от источника напряжения к нагрузке, то есть к лампам, приборам. В большинстве случаев в качестве проводника используются медные провода. В цепи может быть предусмотрено несколько элементов с разными сопротивлениями. В схеме приборов проводники могут быть соединены параллельно или последовательно, также могут быть смешанные типы.

Элемент схемы с сопротивлением называется резистором, напряжение данного элемента является разницей потенциалов между концами резистора. Параллельное и последовательное электрическое соединение проводников характеризуется единым принципом функционирования, согласно которому ток протекает от плюса к минусу, соответственно потенциал уменьшается. На электросхемах сопротивление проводки берется за 0, поскольку оно ничтожно низкое.

Параллельное соединение предполагает, что элементы цепы подсоединены к источнику параллельно и включаются одновременно. Последовательное соединение означает, что проводники сопротивления подключаются в строгой последовательности друг за другом.

При просчете используется метод идеализации, что существенно упрощает понимание. Фактически в электрических цепях потенциал постепенно снижается в процессе перемещения по проводке и элементам, которые входят в параллельное или последовательное соединение.

Последовательное соединение проводников

Схема последовательного соединения подразумевает, что они включаются в определенной последовательности один за другим. Причем сила тока во всех из них равна. Данные элементы создают на участке суммарное напряжение. Заряды не накапливаются в узлах электроцепи, поскольку в противном случае наблюдалось бы изменение напряжения и силы тока. При постоянном напряжении ток определяется значением сопротивления цепи, поэтому при последовательной схеме сопротивление меняется в случае изменения одной нагрузки.

Недостатком такой схемы является тот факт, что в случае выхода из строя одного элемента остальные также утрачивают возможность функционировать, поскольку цепь разрывается. Примером может служить гирлянда, которая не работает в случае перегорания одной лампочки. Это является ключевым отличием от параллельного соединения, в котором элементы могут функционировать по отдельности.

Последовательная схема предполагает, что по причине одноуровневого подключения проводников их сопротивление в любой точки сети равно. Общее сопротивление равняется сумме уменьшения напряжений отдельных элементов сети.

При данном типе соединения начало одного проводника подсоединяется к концу другого. Ключевая особенность соединения состоит в том, что все проводники находятся на одном проводе без разветвлений, и через каждый из них протекает один электроток. Однако общее напряжение равно сумме напряжений на каждом. Также можно рассмотреть соединение с другой точки зрения – все проводники заменяются одним эквивалентным резистором, и ток на нем совпадает с общим током, который проходит через все резисторы. Эквивалентное совокупное напряжение является суммой значений напряжения по каждому резистору. Так проявляется разность потенциалов на резисторе.

Использование последовательного подключения целесообразно, когда требуется специально включать и выключать определенное устройство. К примеру, электрозвонок может звенеть только в момент, когда присутствует соединение с источником напряжения и кнопкой. Первое правило гласит, что если тока нет хотя бы на одном из элементов цепи, то и на остальных его не будет. Соответственно при наличии тока в одном проводнике он есть и в остальных. Другим примером может служить фонарик на батарейках, который светит только при наличии батарейки, исправной лампочки и нажатой кнопки.

В некоторых случаях последовательная схема нецелесообразна. В квартире, где система освещения состоит из множества светильников, бра, люстр, не стоит организовывать схему такого типа, поскольку нет необходимости включать и выключать освещение во всех комнатах одновременно. С этой целью лучше использовать параллельное соединение, чтобы иметь возможность включения света в отдельно взятых комнатах.

Параллельное соединение проводников

В параллельной схеме проводники представляют собой набор резисторов, одни концы которых собираются в один узел, а другие – во второй узел. Предполагается, что напряжение в параллельном типе соединения одинаковое на всех участках цепи. Параллельные участки электроцепи носят название ветвей и проходят между двумя соединительными узлами, на них имеется одинаковое напряжение. Такое напряжение равно значению на каждом проводнике. Сумма показателей, обратных сопротивлениям ветвей, является обратной и по отношению к сопротивлению отдельного участка цепи параллельной схемы.

При параллельном и последовательном соединениях отличается система расчета сопротивлений отдельных проводников. В случае параллельной схемы ток уходит по ветвям, что способствует повышению проводимости цепи и уменьшает совокупное сопротивление. При параллельном подключении нескольких резисторов с аналогичными значениями совокупное сопротивление такой электроцепи будет меньше одного резистора число раз, равное числу резисторов в схеме.

В каждой ветви предусмотрено по одному резистору, и электроток при достижении точки разветвления делится и расходится к каждому резистору, его итоговое значение равно сумме токов на всех сопротивлениях. Все резисторы заменяются одним эквивалентным резистором. Применяя закон Ома, становится понятным значение сопротивления – при параллельной схеме суммируются значения, обратные сопротивлениям на резисторах.

При данной схеме значение тока обратно пропорционально значению сопротивления. Токи в резисторах не взаимосвязаны, поэтому при отключении одного из них это никоим образом не отразится на остальных. По этой причине такая схема используется во множестве устройств.

Рассматривая возможности применения параллельной схемы в быту, целесообразно отметить систему освещения квартиры. Все лампы и люстры должны быть соединены параллельно, в таком случае включение и отключение одного из них никак не влияет на работу остальных ламп. Таким образом, добавляя выключатель каждой лампочки в ветвь цепи, можно включать и отключать соответствующий светильник по необходимости. Все остальные лампы работают независимо.

Все электроприборы объединяются параллельно в электросеть с напряжением 220 В, затем они подключаются к распределительному щитку. То есть все приборы подключаются независимо от подключения прочих устройств.

Законы последовательного и параллельного соединения проводников

Для детального понимания на практике обоих типов соединений, приведем формулы, объясняющие законы данных типов соединений. Расчет мощности при параллельном и последовательном типе соединения отличается.

При последовательной схеме имеется одинаковая сила тока во всех проводниках:

I = I1 = I2.

Согласно закону Ома, данные типы соединений проводников в разных случаях объясняются иначе. Так, в случае последовательной схемы, напряжения равны друг другу:

U1 = IR1, U2 = IR2.

Помимо этого, общее напряжение равно сумме напряжений отдельно взятых проводников:

U = U1 + U2 = I(R1 + R2) = IR.

Полное сопротивление электроцепи рассчитывается как сумма активных сопротивлений всех проводников, вне зависимости от их числа.

В случае параллельной схемы совокупное напряжение цепи аналогично напряжению отдельных элементов:

U1 = U2 = U.

А совокупная сила электротока рассчитывается как сумма токов, которые имеются по всем проводникам, расположенным параллельно:

I = I1 + I2.

Чтобы обеспечить максимальную эффективность электрических сетей, необходимо понимать суть обоих типов соединений и применять их целесообразно, используя законы и рассчитывая рациональность практической реализации.

Смешанное соединение проводников

Последовательная и параллельная схема соединения сопротивления могут сочетаться в одной электросхеме при необходимости. К примеру, допускается подключение параллельных резисторов по последовательной схеме к другому резистору или их группе, такое тип считается комбинированным или смешанным.

В таком случае совокупное сопротивление рассчитывается посредством получения сумм значений для параллельного соединения в системе и для последовательного. Сначала необходимо рассчитывать эквивалентные сопротивления резисторов в последовательной схеме, а затем элементов параллельного. Последовательное соединение считается приоритетным, причем схемы такого комбинированного типа часто используются в бытовой технике и приборах.

Итак, рассматривая типы подключений проводников в электроцепях и основываясь на законах их функционирования, можно полностью понять суть организации схем большинства бытовых электроприборов. При параллельном и последовательном соединениях расчет показателей сопротивления и силы тока отличается. Зная принципы расчета и формулы, можно грамотно использовать каждый тип организации цепей для подключения элементов оптимальным способом и с максимальной эффективностью.

Параллельное и последовательное соединение проводников: определения и применение

Параллельное и последовательное соединение проводников – способы коммутации электрической цепи. Электрические схемы любой сложности можно представить посредством указанных абстракций.

Определения

Существует два способа соединения проводников, становится возможным упростить расчет цепи произвольной сложности:

  • Конец предыдущего проводника соединен непосредственно с началом следующего – подключение называют последовательным. Образуется цепочка. Чтобы включить очередное звено, нужно электрическую схему разорвать, вставив туда новый проводник.
  • Начала проводников соединены одной точкой, концы – другой, подключение называется параллельным. Связку принято называть разветвлением. Каждый отдельный проводник образует ветвь. Общие точки именуются узлами электрической сети.

На практике чаще встречается смешанное включение проводников, часть соединена последовательно, часть – параллельно. Нужно разбить цепь простыми сегментами, решать задачу для каждого отдельно. Сколь угодно сложную электрическую схему можно описать параллельным, последовательным соединением проводников. Так делается на практике.

Коммутация электрической цепи

Использование параллельного и последовательного соединения проводников

Термины, применяемые к электрическим цепям

Теория выступает базисом формирования прочных знаний, немногие знают, чем напряжение (разность потенциалов) отличается от падения напряжения. В терминах физики внутренней цепью называют источник тока, находящееся вне – именуется внешней. Разграничение помогает правильно описать распределение поля. Ток совершает работу. В простейшем случае генерация тепла согласно закону Джоуля-Ленца. Заряженные частицы, передвигаясь в сторону меньшего потенциала, сталкиваются с кристаллической решеткой, отдают энергию. Происходит нагрев сопротивлений.

Для обеспечения движения нужно на концах проводника поддерживать разность потенциалов. Это называется напряжением участка цепи. Если просто поместить проводник в поле вдоль силовых линий, ток потечет, будет очень кратковременным. Процесс завершится наступлением равновесия. Внешнее поле будет уравновешено собственным полем зарядов, противоположным направлением. Ток прекратится. Чтобы процесс стал непрерывным, нужна внешняя сила.

Таким приводом движения электрической цепи выступает источник тока. Чтобы поддерживать потенциал, внутри совершается работа. Химическая реакция, как в гальваническом элементе, механические силы – генератор ГЭС. Заряды внутри источника движутся в противоположную полю сторону. Над этим совершается работа сторонних сил. Можно перефразировать приведенные выше формулировки, сказать:

  • Внешняя часть цепи, где заряды движутся, увлекаемые полем.
  • Внутренняя часть цепи, где заряды движутся против напряженности.

Генератор (источник тока) снабжен двумя полюсами. Обладающий меньшим потенциалом называется отрицательным, другой – положительным. В случае переменного тока полюсы непрерывно меняются местами. Непостоянно направление движения зарядов. Ток течет от положительного полюса к отрицательному. Движение положительных зарядов идет в направлении убывания потенциала. Согласно этому факту вводится понятие падения потенциала:

Падением потенциала участка цепи называется убыль потенциала в пределах отрезка. Формально это напряжение. Для ветвей параллельной цепи одинаково.

Под падением напряжения понимается и нечто иное. Величина, характеризующая тепловые потери, численно равна произведению тока на активное сопротивление участка. Законы Ома, Кирхгофа, рассмотренные ниже, формулируются для этого случая. В электрических двигателях, трансформаторах разница потенциалов может значительно отличаться от падения напряжения. Последнее характеризует потери на активном сопротивлении, тогда как первое учитывает полную работу источника тока.

Здесь поясним: часть энергии превращается в магнитный поток или химическое взаимодействие, цепь на участке нельзя считать последовательной. Имеется ветвление, вследствие наличия реактивной составляющей импеданса, либо других сил. Обмотка двигателя наделена ярко выраженным индуктивным сопротивлением, посредством которого происходит передача магнитного поля для совершения работы. Мощность сдвигается по фазе, часть идет на выделение тепла. На практике считается паразитным явлением. Законы последовательного и внешнего соединения проводников в физике формулируются для простейших случаев. Постоянным называют ток одного направления, неизменной амплитуды, инженеры под этим понимают выпрямленное напряжение.

При решение физических задач для упрощения двигатель может включать в свой состав ЭДС, направление действия которой противоположно эффекту источника питания. Учитывается факт потери энергии через реактивную часть импеданса. Школьный и вузовский курс физики отличается оторванностью от реальности. Вот почему студенты, раскрыв рот, слушают о явлениях, имеющих место в электротехнике. В период, предшествующий эпохе промышленной революции, открывались главные законы, ученый должен объединять роль теоретика и талантливого экспериментатора. Об этом открыто говорят предисловия к трудам Кирхгофа (работы Георга Ома на русский язык не переведены). Преподаватели буквально завлекали люд дополнительными лекциями, сдобренными наглядными, удивительными экспериментами.

Электрическая цепь

Законы Ома и Кирхгофа применительно к последовательному и параллельному соединению проводников

Для решения реальных задач используются законы Ома и Кирхгофа. Первый выводил равенство чисто эмпирическим путем – экспериментально – второй начал математическим анализом задачи, потом проверил догадки практикой. Приведем некоторые сведения, помогающие решению задачи:

  1. В трактате о математическом исследовании гальванических цепей Георг Ом: ток при последовательном соединении проводников одинаков. Магнитная стрелка в каждом участке цепи отклонялась в опытах на фиксированный угол. Открытию закона Ома предшествовал доклад Эрстеда о действии проводника с током на морской компас. Силу тока принято было характеризовать отклонением магнитной стрелки от начального положения. Для пущей верности Ом располагал перед опытом в направлении Земного меридиана.
  2. В узле параллельной электрической цепи ток разветвляется. Правило получил Кирхгоф, исследуя прохождение электричества через металлическую круглую пластину, стремясь получить обобщенную формулу для всех случаев. Задуманное удалось, побочным продуктом стали два закона Кирхгофа, один гласит: сумма токов узла цепи равна нулю. Входящие берутся с одним знаком, исходящие – с другим.
  3. Второй закон Кирхгофа поможет анализировать последовательную цепь. Утверждает: в замкнутом (читай – последовательном) контуре сумма падений напряжений равна сумме ЭДС. Напоминаем, ток в каждой точке постоянный (см. выше). ЭДС – источники тока, поле направлено противоположно прочей части цепи, которую принято называть внешней. На законе зиждется факт использования последовательного включения батареек с суммированием эффекта по напряжению. Две таблетки 1,5 В, будучи включены, дают 3 вольта. В последовательной цепи напряжение складывается.

    Закон Кирхгофа

  4. Последнее правило едва ли нуждается в доказательстве. Утверждает: напряжение на ветвях цепи с обоими общими узлами одинаково. Факт легко осознать на примере удлинителя-переноски. Сколько бы приборов туда ни включили, сетевое напряжение останется прежним. Посему не находим нужным приводить аксиоме доказательств. Продвинутые пользователи заметят: напряжение реального источника падает при перегрузке, возразим: допустимые нормы контролируются пробками распределительного щитка.

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном – проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Последовательное и параллельное соединение проводников

В реальной жизни сложно себе представить существование в электрической цепи одного единственного потребителя. Такие цепи существуют, но всегда очень примитивны. Например, если мы с вами включим в розетку одну единственную лампочку, то в цепи лампочка-розетка, мы будем иметь одно единственное устройство-потребитель. Даже если электризуются волосы, то можно говорить о двух потребителях. Но на практике таких устройств всегда гораздо больше и если рассмотреть ту же самую цепь в разрезе электростанция-лампочка, то схема подключения будет содержать уже множество дополнительных потребителей.

Внутри электрических устройств также используются целые схемы, которые содержат в своем составе множество элементов. Например, управляющая схема телевизора состоит из множества резисторов, транзисторов, диодов и других элементов. Достаточно взглянуть на любую печатную плату и обратить внимание на количество вспомогательных «дорожек». Все они соединены последовательно или параллельно. Кроме того, типы соединений могут смешиваться.

Каждый тип соединения подразумевает определенное соотношение между основными параметрами, такими как напряжение, сила тока и сопротивление.

Типов соединения бывает всего два, а третий – это комбинированный вариант подключения.

Первый вариант соединения – это последовательное подключение. Второй вариант – параллельное подключение. Эти подключения могут комбинироваться в реальной практике.

Чем отличаются параллельное и последовательное подключения

Последовательное подключение представляет собой последовательное соединение проводников в одной общей электрической цепи.

Почему оно последовательное?

Всё очень просто – проводники располагаются в электрической цепи аналогично птицам, которые сидят на проводе – один за другим. В данном случае представим, что птицы держатся за лапы – каждая птица держит своей левой лапой правую лапу ближайшей птицы. Получаем ёлочную гирлянду. Все сидят последовательно.

Кстати говоря, если свободные лапы крайних птиц прислонить к источнику питания, то выйдет фейерверк :)…

Представим, например, светодиод, который имеет + и -. Для того, чтобы объединить такие светодиоды в единую последовательную цепь, мы должны соединить ножку + первого светодиода с плюсом источника постоянного тока, а ножку – соединить с ножкой + следующего светодиода. Ножку – следующего светодиода мы подключаем также к ножке + следующего светодиода, а – подключаем к – источника постоянного тока. Вот мы и собрали простейшую последовательную цепь из трех элементов.

Параллельное подключение выглядит немного иначе.

Если вернуться к примеру с птицами, то птицы уже не сидят на проводе одна за другой, а держат друг друга лапами.

Причем, птицы так извернулись, что одна птица держит своей правой лапой, правую лапу соседней птицы, а левой лапой левую лапу этой же птицы.

Для того, чтобы зажарить таких птиц, остаётся только прислонить букет из этих соответствующих друг другу лап к полюсам источника тока.

Здесь мы берем, скажем, два светодиода, которые имеют ножки + и – соответственно, и соединяем сначала ножки светодиодов по принципу + к + и – к -.

Собранную цепь мы подключаем к источнику тока соответственно полюсам, т.е. общий плюс от двух светодиодов присоединяем к + источника тока, а общий – к минусу источника тока. В результате получили параллельную цепь.

Смешанное соединение сочетает в себе как параллельное, так и последовательные соединения. В зависимости от цели, эти комбинации могут быть различными.

На практике чаще всего используются именно смешанные схемы. Часто анализ такого соединения вызывает затруднения у студентов и школьников.

На самом же деле, тут нет ничего сложного.

Для того, чтобы разобраться во всех параметрах, нужно попросту разложить цепь на удобные фрагменты.

Так, если мы имеем ряд последовательно подключенных резисторов, которые скомпонованы вместе с параллельно соединенными резисторами, то цепь можно разбить на два обобщенных условных участка, где и определить значимый параметр.

Часто испуг вызывает появление в схеме поворотов, углов и изгибов. Человек теряется и не понимает, что от смены направления линии соединительных проводов, логика не меняется.  

Основные параметры последовательного и параллельного подключений

Типы подключений следует различать из-за особенностей основных параметров электрической цепи при таких подключениях.

При параллельном подключении, напряжение на элементах цепи всегда будет постоянным, а сила тока суммируется из токов на каждом элементе. Есть еще такой параметр, как сопротивление. Мы не рекомендуем заучивать наизусть все формулы, а руководствоваться законом Ома, предположив, что один из параметров будет постоянным. Но для ускорения решения задач заучить выкладку может быть полезно. Собственно, там отношение единицы к сопротивлению цепи, равно сумме отношений 1 к каждому из сопротивлений.

При последовательном подключении, напряжение на каждом элементе будет суммироваться, а сила тока будет постоянной. Сопротивление мы также можем узнать из закона Ома. Или же запомнить, что сопротивление равно сумме сопротивлений элементов цепи.

Особенности параметров при последовательном и параллельном подключениях можно легко запомнить, если представить, что соединительные провода – это трубы, а электрический ток вода. Сравнить с водой тут можно именно силу тока. Почему же силу тока? Потому что ток характеризуется количеством заряженных частиц (читай, как наличие воды в трубе).

Представим, что в случае последовательного подключения мы соединяем две трубы одинакового сечения (представим именно одинаковое сечение, т.к. дальше уже начинают влиять такие параметры, как сопротивление) и в каждой трубе есть вода при её наличии в водопроводе. Если же мы соединим две трубы параллельно, то поток распределится равномерно (а на деле в соответствии с геометрическими параметрами труб) между двумя трубами, т.е сила тока будет суммироваться из всех участков.

Почему всё происходит именно так и почему при параллельном подключении ток распределяется именно по двум проводникам и суммируется? Это сложный фундаментальный вопрос, обсуждение которого займет ни одну статью. На данный момент предлагаю считать, что это просто свойство, которое нужно знать. Как и то, что лёд ощущается холодным, а огонь горячим.

При смешанном подключении мы предварительно должны разбить цепь на простые для понимания участки, а затем проанализировать, как они в итоге будут соединены. Соответственно, на выходе мы получим простой вариант несложного подключения, которое однозначно будет или последовательное, или параллельное.

Зная все эти параметры, мы легко можем проанализировать любую электрическую цепь и собрать новую с нужными параметрами.

Как пользоваться знаниями про особенности параллельного и последовательного подключений

Наверное, самый главный вопрос, который встаёт перед учеником – это зачем вообще всё это знать?

Тут всё довольно просто. Зная эти параметры, можно легко собрать нужную цепь. Например, представим, что мы хотим соединить два аккумулятора, напряжение каждого из которых 6 В для подключения автомобильного светодиода, рассчитанного на 12 В. Как соединить аккумуляторы? Если параллельно, то получим повышенную емкость и напряжение 6 В. Диод не «раскурится». Если же использовать последовательное подключение, то на выходе будем иметь сумму 6 В + 6 В = 12 В. Задача решена. Таких примеров можно привести очень и очень много.

Ещё один вопрос, как рассчитывать другие параметры (емкость, мощность, индуктивность) при последовательном и параллельном соединении проводников.

Например, если мы подключим последовательно 5 конденсаторов, как узнать общую емкость этой цепи? Конечно же, можно, опять-таки, заучить формулы. На практике вы их забудете сразу, как перестанете решать подобные задачи. Поэтому, гораздо важнее держать в уме физическое определение ёмкости, а уже из него выводить конкретный частный случай, помня, что при последовательном подключении сила тока всегда одинакова, а напряжение суммируется.

Вас также может заинтересовать

Последовательное и параллельное соединение проводников

 

Если нам надо, чтобы электроприбор работал, мы должны подключить его к источнику тока. При этом ток должен проходить через прибор и возвращаться вновь к источнику, то есть цепь должна быть замкнутой.

Но подключение каждого прибора к отдельному источнику осуществимо, в основном, в лабораторных условиях. В жизни же приходится иметь дело с ограниченным количеством источников и довольно большим количеством потребителей тока. Поэтому создают системы соединений, позволяющие нагрузить один источник большим количеством потребителей. Системы при этом могут быть сколь угодно сложными и разветвленными, но в их основе лежит всего два вида соединения: последовательное и параллельное соединение проводников. Каждый вид имеет свои особенности, плюсы и минусы. Рассмотрим их оба.

Последовательное соединение проводников

Последовательное соединение проводников – это включение в электрическую цепь нескольких приборов последовательно, друг за другом. Электроприборы в данном случае можно сравнить с людьми в хороводе, а их руки, держащие друг друга – это провода, соединяющие приборы. Источник тока в данном случае будет одним из участников хоровода.

Напряжение всей цепи при последовательном соединении будет равно сумме напряжений на каждом включенном в цепь элементе. Сила тока в цепи будет одинакова в любой точке. А сумма сопротивлений всех элементов составит общее сопротивление всей цепи. Поэтому последовательное сопротивление можно выразить на бумаге следующим образом:

I=I_1=I_2=⋯=I_n  ;     U=U_1+U_2+⋯+U_n  ;     R=R_1+R_2+⋯+R_n  ,

где I - сила тока, U- напряжение, R – сопротивление,  1,2,…,n – номера элементов, включенных в цепь.

Плюсом последовательного соединения является простота сборки, а минусом – то, что если один элемент выйдет из строя, то ток пропадет во всей цепи. В такой ситуации неработающий элемент будет подобен ключу в выключенном положении. Пример из жизни неудобства такого соединения наверняка припомнят все люди постарше, которые украшали елки гирляндами из лампочек.

Если в такой гирлянде выходила из строя хотя бы одна лампочка, приходилось перебирать их все, пока не найдешь ту самую, перегоревшую. В современных гирляндах эта проблема решена. В них используют специальные диодные лампочки, в которых при перегорании сплавляются вместе контакты, и ток продолжает беспрепятственно проходить дальше.

Параллельное соединение проводников

При параллельном соединении проводников все элементы цепи подключаются к одной и той же паре точек, можно назвать их А и В. К этой же паре точек подключают источник тока. То есть получается, что все элементы подключены к одинаковому напряжению между А и В. В то же время ток как бы разделяется на все нагрузки в зависимости от сопротивления каждой из них.

Параллельное соединение можно сравнить с течением реки, на пути которой возникла небольшая возвышенность. Вода в таком случае огибает возвышенность с двух сторон, а потом вновь сливается в один поток. Получается островок посреди реки. Так вот параллельное соединение – это два отдельных русла вокруг острова. А точки А и В – это места, где разъединяется и вновь соединяется общее русло реки.

Напряжение тока в каждой отдельной ветви будет равно общему напряжению в цепи. Общий ток цепи будет складываться из токов всех отдельных ветвей. А вот общее сопротивление цепи при параллельном соединении будет меньше сопротивления тока на каждой из ветвей. Это происходит потому, что общее сечение проводника между точками А и В как бы увеличивается за счет увеличения числа параллельно подключенных нагрузок. Поэтому общее сопротивление уменьшается. Параллельное соединение описывается следующими соотношениями:

U=U_1=U_2=⋯=U_n  ;     I=I_1+I_2+⋯+I_n  ;      1/R=1/R_1 +1/R_2 +⋯+1/R_n   ,

где I - сила тока, U- напряжение, R – сопротивление,  1,2,…,n – номера элементов, включенных в цепь.

Огромным плюсом параллельного соединения является то, что при выключении одного из элементов, цепь продолжает функционировать дальше. Все остальные элементы продолжают работать. Минусом является то, что все приборы должны быть рассчитаны на одно и то же напряжение. Именно параллельным образом устанавливают розетки сети 220 В в квартирах. Такое подключение позволяет включать различные приборы в сеть совершенно независимо друг от друга, и при выходе их строя одного из них, это не влияет на работу остальных.

Нужна помощь в учебе?



Предыдущая тема: Расчёт сопротивления проводников и реостаты: формулы
Следующая тема:&nbsp&nbsp&nbspРабота и мощность тока

Последовательное и параллельное соединение - это... Что такое Последовательное и параллельное соединение?

Последовательное и параллельное соединение

Последовательное соединение проводников.

Параллельное соединение проводников.

Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все, входящие в цепь, элементы объединены двумя узлами и не имеют связей с другими узлами. При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I = I1 = I2

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи: U = U1 + U2

Резисторы

Катушка индуктивности

Электрический конденсатор

.

Мемристоры

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках: I = I1 + I2

Напряжение на участках цепи АВ и на концах всех параллельно соединенных проводников одно и то же: U = U1 = U2

Резисторы

.

Катушка индуктивности

.

Электрический конденсатор

.

Мемристоры

См. также


Wikimedia Foundation. 2010.

  • Последовательное деление
  • Последняя фантазия

Смотреть что такое "Последовательное и параллельное соединение" в других словарях:

  • Последовательное и параллельное соединение проводников — Последовательное соединение проводников …   Википедия

  • Параллельное соединение — Последовательное соединение проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы… …   Википедия

  • Параллельное соединение (информатика) — В области телекоммуникаций и информатике параллельным соединением называют метод передачи нескольких сигналов с данными одновременно по нескольким параллельным каналам. Это принципиально отличается от последовательного соединения; это различие… …   Википедия

  • Последовательное соединение — проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так,… …   Википедия

  • Последовательное соединение (информатика) — В области телекоммуникаций и информатике под термином последовательное соединение понимают процесс пересылки данных по одному биту за раз (последовательно) по каналу связи или компьютерной шине. Это противопоставляется параллельному соединению, в …   Википедия

  • СОЕДИНЕНИЕ — (1) деталей, изделий, конструкций способы механического скрепления или сочленения составных частей для образования из них машин, агрегатов, механизмов, приборов, а также сборных элементов в строительных конструкциях с целью выполнения ими… …   Большая политехническая энциклопедия

  • Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) …   Википедия

  • Электрическая цепь — У этого термина существуют и другие значения, см. Цепь (значения). Рисунок 1  Условное обозначение электрической цепи Электрическая цепь   совокупность устройств, элементов, предназначенных для протекания …   Википедия

  • Электрические цепи — Электрической цепью называют совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток. Изображение электрической цепи с помощью условных знаков называют электрической схемой… …   Википедия

  • Реостатно-контакторная система управления — (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия …   Википедия


Как отличить параллельное соединение от последовательного

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

В физике изучается тема про параллельное и последовательное соединение, причем это могут быть не только проводники, но и конденсаторы. Здесь важно не запутаться в том, как выглядит каждое из них на схеме. А уже потом применять конкретные формулы. Их, кстати, нужно помнить наизусть.

Как различить эти два соединения?

Внимательно посмотрите на схему. Если провода представить как дорогу, то машины на ней будут играть роль резисторов. На прямой дороге без каких-либо разветвлений машины едут одна за другой, в цепочку. Так же выглядит и последовательное соединение проводников. Дорога в этом случае может иметь неограниченное количество поворотов, но ни одного перекрестка. Как бы ни виляла дорога (провода), машины (резисторы) всегда будут расположены друг за другом, по одной цепочке.

Совсем другое дело, если рассматривается параллельное соединение. Тогда резисторы можно сравнить со спортсменами на старте. Они стоят каждый на своей дорожке, но направление движения у них одинаковое, и финиш в одном месте. Так же и резисторы — у каждого из них свой провод, но все они соединены в некоторой точке.

Формулы для силы тока

О ней всегда идет речь в теме «Электричество». Параллельное и последовательное соединение по-разному влияют на величину силы тока в резисторах. Для них выведены формулы, которые можно запомнить. Но достаточно просто запомнить смысл, который в них вкладывается.

Так, ток при последовательном соединении проводников всегда одинаков. То есть в каждом из них значение силы тока не отличается. Провести аналогию можно, если сравнить провод с трубой. В ней вода течет всегда одинаково. И все препятствия на ее пути будут сметаться с одной и той же силой. Так же с силой тока. Поэтому формула общей силы тока в цепи с последовательным соединением резисторов выглядит так:

Здесь буквой I обозначена сила тока. Это общепринятое обозначение, поэтому его нужно запомнить.

Ток при параллельном соединении уже не будет постоянной величиной. При той же аналогии с трубой получается, что вода разделится на два потока, если у основной трубы будет ответвление. То же явление наблюдается с током, когда на его пути появляется разветвление проводов. Формула общей силы тока при параллельном соединении проводников:

Если разветвление составлено из проводов, которых больше двух, то в приведенной формуле на такое же количество станет больше слагаемых.

Формулы для напряжения

Когда рассматривается схема, в которой выполнено соединение проводников последовательно, то напряжение на всем участке определяется суммой этих величин на каждом конкретном резисторе. Сравнить эту ситуацию можно с тарелками. Удержать одну из них легко получится одному человеку, вторую рядом он тоже сможет взять, но уже с трудом. Держать в руках три тарелки рядом друг с другом одному человеку уже не удастся, потребуется помощь второго. И так далее. Усилия людей складываются.

Формула для общего напряжения участка цепи с последовательным соединением проводников выглядит так:

Другая ситуация складывается, если рассматривается параллельное соединение резисторов. Когда тарелки ставятся друг на друга, их по-прежнему может удержать один человек. Поэтому складывать ничего не приходится. Такая же аналогия наблюдается при параллельном соединении проводников. Напряжение на каждом из них одинаковое и равно тому, которое на всех них сразу. Формула общего напряжения такая:

Формулы для электрического сопротивления

Их уже можно не запоминать, а знать формулу закона Ома и из нее выводить нужную. Из указанного закона следует, что напряжение равно произведению силы тока и сопротивления. То есть U = I * R, где R — сопротивление.

Тогда формула, с которой нужно будет работать, зависит от того, как выполнено соединение проводников:

  • последовательно, значит, нужно равенство для напряжения — Iобщ * Rобщ = I1 * R1 + I2 * R2;
  • параллельно необходимо пользоваться формулой для силы тока — Uобщ / Rобщ = U1 / R1 + U2 / R2 .

Далее следуют простые преобразования, которые основываются на том, что в первом равенстве все силы тока имеют одинаковое значение, а во втором — напряжения равны. Значит, их можно сократить. То есть получаются такие выражения:

  1. R общ = R 1 + R 2 (для последовательного соединения проводников).
  2. 1 / R общ = 1 / R 1 + 1 / R 2 (при параллельном соединении).

При увеличении числа резисторов, которые включены в сеть, изменяется количество слагаемых в этих выражениях.

Стоит отметить, что параллельное и последовательное соединение проводников по-разному влияют на общее сопротивление. Первое из них уменьшает сопротивление участка цепи. Причем оно оказывается меньше самого маленького из использованных резисторов. При последовательном соединении все логично: значения складываются, поэтому общее число всегда будет самым большим.

Работа тока

Предыдущие три величины составляют законы параллельного соединения и последовательного расположения проводников в цепи. Поэтому их знать нужно обязательно. Про работу и мощность необходимо просто запомнить базовую формулу. Она записывается так: А = I * U * t, где А — работа тока, t — время его прохождения по проводнику.

Для того чтобы определить общую работу при последовательном соединении нужно заменить в исходном выражении напряжение. Получится равенство: А = I * (U 1 + U 2) * t, раскрыв скобки в котором получится, что работа на всем участке равна их сумме на каждом конкретном потребителе тока.

Аналогично идет рассуждение, если рассматривается схема параллельного соединения. Только заменять полагается силу тока. Но результат будет тот же: А = А 1 + А 2.

Мощность тока

При выведении формулы для мощности (обозначение «Р») участка цепи опять нужно пользоваться одной формулой: Р = U * I. После подобных рассуждений получается, что параллельное и последовательное соединение описываются такой формулой для мощности: Р = Р 1 + Р 2.

То есть, как бы ни были составлены схемы, общая мощность будет складываться из тех, которые задействованы в работе. Именно этим объясняется тот факт, что нельзя включать в сеть квартиры одновременно много мощных приборов. Она просто не выдержит такой нагрузки.

Как влияет соединение проводников на ремонт новогодней гирлянды?

Сразу же после того, как перегорит одна из лампочек, станет ясно, как они были соединены. При последовательном соединении не будет светиться ни одна из них. Это объясняется тем, что пришедшая в негодность лампа создает разрыв в цепи. Поэтому нужно проверить все, чтобы определить, какая перегорела, заменить ее – и гирлянда станет работать.

Если в ней используется параллельное соединение, то она не перестает работать при неисправности одной из лампочек. Ведь цепь не будет полностью разорвана, а только одна параллельная часть. Чтобы отремонтировать такую гирлянду, не нужно проверять все элементы цепи, а только те, которые не светятся.

Что происходит с цепью, если в нее включены не резисторы, а конденсаторы?

При их последовательном соединении наблюдается такая ситуация: заряды от плюсов источника питания поступают только на внешние обкладки крайних конденсаторов. Те, что находятся между ними, просто передают этот заряд по цепочке. Этим объясняется то, что на всех обкладках появляются одинаковые заряды, но имеющие разные знаки. Поэтому электрический заряд каждого конденсатора, соединенного последовательно, можно записать такой формулой:

Для того чтобы определить напряжение на каждом конденсаторе, потребуется знание формулы: U = q / С. В ней С — емкость конденсатора.

Общее напряжение подчиняется тому же закону, который справедлив для резисторов. Поэтому, заменив в формуле емкости напряжение на сумму, мы получим, что общую емкость приборов нужно вычислять по формуле:

Упростить эту формулу можно, перевернув дроби и заменив отношение напряжения к заряду емкостью. Получается такое равенство: 1 / С = 1 / С 1 + 1 / С 2.

Несколько по-другому выглядит ситуация, когда соединение конденсаторов — параллельное. Тогда общий заряд определяется суммой всех зарядов, которые накапливаются на обкладках всех приборов. А значение напряжения по-прежнему определяется по общим законам. Поэтому формула для общей емкости параллельно соединенных конденсаторов выглядит так:

С = (q 1 + q 2 ) / U.

То есть эта величина считается, как сумма каждого из использованных в соединении приборов:

Как определить общее сопротивление произвольного соединения проводников?

То есть такого, в котором последовательные участки сменяют параллельные, и наоборот. Для них по-прежнему справедливы все описанные законы. Только применять их нужно поэтапно.

Сперва полагается мысленно развернуть схему. Если представить ее сложно, то нужно нарисовать то, что получается. Объяснение станет понятнее, если рассмотреть его на конкретном примере (см. рисунок).

Ее удобно начать рисовать с точек Б и В. Их необходимо поставить на некотором удалении друг от друга и от краев листа. Слева к точке Б подходит один провод, а вправо направлены уже два. Точка В, напротив, слева имеет два ответвления, а после нее расположен один провод.

Теперь необходимо заполнить пространство между этими точками. По верхнему проводу нужно расположить три резистора с коэффициентами 2, 3 и 4, а снизу пойдет тот, у которого индекс равен 5. Первые три соединены последовательно. С пятым резистором они параллельны.

Оставшиеся два резистора (первый и шестой) включены последовательно с рассмотренным участком БВ. Поэтому рисунок можно просто дополнить двумя прямоугольниками по обе стороны от выбранных точек. Осталось применить формулы для расчета сопротивления:

  • сначала ту, которая приведена для последовательного соединения;
  • потом для параллельного;
  • и снова для последовательного.

Подобным образом можно развернуть любую, даже очень сложную схему.

Задача на последовательное соединение проводников

Условие. В цепи друг за другом подсоединены две лампы и резистор. Общее напряжение равно 110 В, а сила тока 12 А. Чему равно сопротивление резистора, если каждая лампа рассчитана на напряжение в 40 В?

Решение. Поскольку рассматривается последовательное соединение, формулы его законов известны. Нужно только правильно их применить. Начать с того, чтобы выяснить значение напряжения, которое приходится на резистор. Для этого из общего нужно вычесть два раза напряжение одной лампы. Получается 30 В.

Теперь, когда известны две величины, U и I (вторая из них дана в условии, так как общий ток равен току в каждом последовательном потребителе), можно сосчитать сопротивление резистора по закону Ома. Оно оказывается равным 2,5 Ом.

Ответ. Сопротивление резистора равно 2,5 Ом.

Задача на соединение конденсаторов, параллельное и последовательное

Условие. Имеются три конденсатора с емкостями 20, 25 и 30 мкФ. Определите их общую емкость при последовательном и параллельном соединении.

Решение. Проще начать с параллельного подключения. В этой ситуации все три значения нужно просто сложить. Таким образом, общая емкость оказывается равной 75 мкФ.

Несколько сложнее расчеты будут при последовательном соединении этих конденсаторов. Ведь сначала нужно найти отношения единицы к каждой из этих емкостей, а потом сложить их друг с другом. Получается, что единица, деленная на общую емкость, равна 37/300. Тогда искомая величина получается приблизительно 8 мкФ.

Ответ. Общая емкость при последовательном соединении 8 мкФ, при параллельном — 75 мкФ.

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Последовательное и параллельное соединение проводников

Последовательное соединение проводников

Проводники в электрических цепях могут соединяться как последовательным, так и параллельным способами.

Определение 1

В условиях последовательного соединения проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

I1 =I2=I.

Рисунок 1.9.1. Последовательное соединение проводников.

Опираясь на закон Ома, можно заявить, что напряжения U1 и U2 на проводниках равняются следующим выражениям:

U1=IR1, U2=IR2.

Общее напряжение U на обоих проводниках эквивалентно сумме напряжений U1 и U2:

U=U1+U2=I(R1+R2)=IR,

где R является электрическим сопротивлением всей цепи.

Из этого следует, что общее сопротивление R равняется сумме сопротивлений на входящих в данную цепь отдельных проводников:

R=R1+R2.

Данный результат применим для любого количества последовательно соединенных проводников.

Параллельное соединение проводников

Определение 2

В условиях параллельного соединения (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках эквивалентны друг другу, из чего следует:

U1=U2=U.

Совокупность существующих в обоих проводниках токов I1+I2 равняется значению тока в неразветвленной цепи, то есть:

I=I1 + I2.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Данный результат исходит из того, что заряды не могут копиться в точках разветвления, то есть в узлах A и B, цепи постоянного тока.

Пример 1

Так, например, узлу A за время Δt сообщается заряд IΔt, а уходит из узла за то же время зарядI1Δt+I2Δt. Таким образом, подтверждается выражение I=I1 + I2.

Рисунок 1.9.2.Параллельное соединение проводников.

Опираясь на закон Ома, запишем для каждой ветви:

I1=UR1, I2=UR2, I=UR,

где R является электрическим сопротивлением всей цепи, получим

1R=1R1+1R2

Определение 3

В условиях параллельного соединения проводников обратная общему сопротивлению цепи величина, равняется сумме величин, обратных сопротивлениям параллельно включенных проводников.

Полученный вывод может быть применим для любого количества включенных параллельно проводников.

Применение формул для расчета сопротивления сложной цепи

Формулы для последовательного и параллельного соединений проводников дают возможность во многих случаях рассчитывать сопротивление сложной цепи, которая состоит из многих резисторов. На рис. 1.9.3 проиллюстрирована подобная сложная цепь и указана последовательность необходимых для расчета вычислений.

Рисунок 1.9.3. Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах (Ом).

Стоит акцентировать внимание на том факте, что далеко не каждая сложная цепь, состоящая из проводников с разными сопротивлениями, может быть рассчитана с использованием формул для последовательного и параллельного соединений. На рис. 1.9.4 изображена электрическая цепь, которую рассчитать данным методом не получится.

Рисунок 1.9.4. Пример электрической цепи, не сводящейся к комбинации последовательно и параллельно соединенных проводников.

Аналогичные иллюстрированной на рисунке 1.9.4 цепи, так же, как и цепи с разветвлениями, содержащие более одного источника, можно рассчитать, используя правила Кирхгофа.

Последовательное и параллельное соединение проводов резистора. Параллельное соединение сопротивлений (резисторов)

1. С последовательным подключением проводов

1. Сила тока во всех проводниках одинакова :

I 1 = I 2 = I

2. Общее напряжение U на обоих проводниках равно сумме напряжений U 1 и U 2 на каждом проводе :

U = U 1 + U 2

3. закон Ома, напряжения U 1 и U 2 на проводниках равны U 1 = IR 1, U 2 = IR 2 общее напряжение U = IR Где R Это электрическое сопротивление всей цепи, тогда IR = IR 1 + I R 2. Отсюда следует

рэнд = 1 рэнд + рэнд 2

Импеданс последовательной цепи равен сумме сопротивлений отдельных проводов.

Этот результат действителен для любого количества последовательно соединенных проводов.

2. При параллельном подключении провода

1. Напряжение U 1 и U 2 на обоих проводниках одинаковы

U 1 = U 2 = U

2. Сумма токов I 1 + I 2, , протекающая по обоим проводникам, равна току в неразветвленной цепи :

I = I 1 + I 2

Этот результат следует из того факта, что в точках разветвления токов (узлы A и B ) в цепи заряды постоянного тока не могут накапливаться.Например, к узлу A во времени Δ t утечки заряда I Δ t , и заряд одновременно уходит от узла I 1 Δ t + I 2 Δ t ... Следовательно, I = I 1 + I 2.

3. Написание на основе закона Ома

где R - электрическое сопротивление всей цепи, получаем

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме значений, обратных сопротивлениям параллельно соединенных проводников.

Этот результат действителен для любого количества параллельно соединенных проводов.

Формулы последовательного и параллельного соединения проводов позволяют во многих случаях рассчитать сопротивление сложной цепи, состоящей из множества резисторов. На рисунке показан пример такой сложной схемы и показана последовательность расчетов. Сопротивления всех проводов указаны в омах (Ом).


На практике одного источника тока в цепи недостаточно, и тогда источники тока также соединяются между собой для питания цепи.Подключение источников к батарее может быть последовательным и параллельным.

При последовательном соединении два соседних источника соединены с противоположными полюсами.

То есть, чтобы соединить батареи последовательно, положительный полюс первой батареи подключается к «плюсу» электрической цепи. Положительный полюс второй батареи подключается к ее отрицательной клемме и т. Д. Отрицательная клемма последней батареи подключается к «минусу» электрической цепи.

Полученная последовательно включенная батарея имеет ту же емкость, что и одиночная батарея, а напряжение такой батареи равно сумме напряжений включенных в нее батарей. Те. если батареи имеют одинаковое напряжение, то напряжение батареи равно напряжению одной батареи, умноженному на количество батарей в батарее.


1. ЭДС аккумулятора равна сумме ЭДС отдельных источников ε = ε 1 + ε 2 + ε 3

2 . Суммарное сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батарея = r 1 + r 2 + r 3

Если к аккумулятору подключено n одинаковых источников, то ЭДС аккумулятора ε = nε 1, а сопротивление r аккумулятора = nr 1

3.

При параллельном подключении подключите все положительные и все отрицательные полюса двух источников n.

То есть при параллельном подключении батареи соединяются таким образом, что положительные выводы всех батарей соединяются с одной точкой электрической цепи («плюс»), а отрицательные выводы всех батарей соединяются с другой точкой электрической цепи. цепь («минус»).

Подключайте только параллельно источников от тот же ЭДС ... Получающаяся при параллельном подключении батарея имеет то же напряжение, что и одиночная батарея, а емкость такой батареи равна сумме емкостей батареи, включенные в него.Те. если батареи имеют одинаковую емкость, то емкость батареи равна емкости одной батареи, умноженной на количество батарей в батарее.


1. ЭДС батареи идентичных источников равна ЭДС одного источника. ε = ε 1 = ε 2 = ε 3

2. Сопротивление аккумулятора меньше сопротивления одного источника r аккумулятор = r 1 / n
3. Сила тока в такой цепи по закону Ома

Электрическая энергия, запасенная в аккумуляторной батарее, равна сумме энергий отдельных батарей (произведение энергий отдельных батарей, если батареи одинаковые), независимо от того, подключены ли батареи параллельно или последовательно. .

Внутреннее сопротивление аккумуляторов, изготовленных по той же технологии, примерно обратно пропорционально емкости аккумулятора. Следовательно, поскольку при параллельном подключении емкость аккумулятора равна сумме емкостей включенных в него аккумуляторов, то есть увеличивается, то внутреннее сопротивление уменьшается.

Параллельное соединение сопротивлений - это такое соединение, когда начало сопротивлений соединено с одной общей точкой, а концы - с другой.

Параллельное соединение сопротивлений имеет следующие свойства:

Напряжения на выводах всех сопротивлений одинаковы:

U 1 = U 2 = U 3 = U;

Проводимость всех параллельно соединенных сопротивлений равна сумме проводимости отдельных сопротивлений:

1 / R = 1 / R 1 + 1 / R 2 + 1 / R 3 = R 1 R 2 + R 1 R 3 + R 2 R 3 / R 1 R 2 R 3,

где R - эквивалентное (результирующее) сопротивление трех сопротивлений (в данном случае R 1, R 2 и R 3).

Для получения сопротивления такой цепи необходимо перевернуть дробь, определяющую значение ее проводимости. Следовательно, сопротивление параллельного разветвления трех резисторов:

R = R 1 R 2 R 3 / R 1 R 2 + R 2 R 3 + R 1 R 3.

Эквивалентное сопротивление - это сопротивление, которое может заменить несколько сопротивлений (подключенных параллельно или последовательно) без изменения величины тока в цепи.

Чтобы найти эквивалентное сопротивление при параллельном соединении, необходимо сложить проводимость всех отдельных секций, т.е.е. найти полную проводимость. Суммарная проводимость - это полное сопротивление, обратное величине.

При параллельном подключении эквивалентная проводимость равна сумме проводимостей отдельных ветвей, поэтому эквивалентное сопротивление в этом случае всегда меньше наименьшего из параллельно подключенных сопротивлений.

На практике могут быть случаи, когда цепочка состоит из более чем трех параллельных ветвей. Все полученные соотношения остаются в силе для схем, состоящих из любого количества параллельно включенных резисторов.

Найдем эквивалентное сопротивление двух параллельно соединенных сопротивлений R 1 и R 2 (см. Рис.). Электропроводность первой ветви составляет 1 / R 1, проводимость второй ветви составляет 1 / R 2 ... Общая проводимость:

1 / R = 1 / R 1 + 1 / R 2.

Подведем к общему знаменателю:

1 / R = R 2 + R 1 / R 1 R 2,

, следовательно, эквивалентное сопротивление

R = R 1 R 2 / R 1 + R 2.

Эта формула используется для расчета общего сопротивления цепи, состоящей из двух параллельно соединенных сопротивлений.

Таким образом, эквивалентное сопротивление двух параллельно соединенных сопротивлений равно произведению этих сопротивлений на их сумму.

Параллельное соединение с равным сопротивлением R 1 их эквивалентное сопротивление будет в несколько раз меньше, т. Е.

R = R 1 / n.

На схеме, показанной на последнем рисунке, включены пять сопротивлений R 1 по 30 Ом каждое. Следовательно, общее сопротивление R составит

R = R 1/5 = 30/5 = 6 Ом.

Можно сказать, что сумма токов, приближающихся к узловой точке A (на первом рисунке), равна сумме выходящих из нее токов:

Я = Я 1 + Я 2 + Я 3.

Рассмотрим, как происходит разветвление тока в цепях с сопротивлениями R 1 и R 2 (второй рисунок). Поскольку напряжение на выводах этих сопротивлений одинаковое, то

U = I 1 R 1 и U = I 2 R 2.

Левые части этих равенств совпадают, следовательно, правые части также равны:

I 1 R 1 = I 2 R 2,

или

I 1 / I 2 = R 2 / R 1,

Тех. ток при параллельном соединении ветвей сопротивлений обратно пропорционален сопротивлениям ветвей (или прямо пропорционален их проводимости).Чем больше сопротивление ветви, тем меньше ток в ней, и наоборот.

Таким образом, из нескольких одинаковых резисторов можно получить общий резистор с большей рассеиваемой мощностью.

При параллельном подключении неравных резисторов резистор с наивысшим сопротивлением дает наибольшую мощность.

Пример 1. Два резистора включены параллельно. Сопротивление R 1 = 25 Ом, а R 2 = 50 Ом. Определить полное сопротивление цепи R всего

Решение.R total = R 1 R 2 / R 1 + R 2 = 25. 50/25 + 50 ≈ 16,6 Ом.

Пример 2. В ламповом усилителе три лампы, нити накаливания которых соединены параллельно. Ток накала первой лампы I 1 = 1 ампер, второй I 2 = 1,5 ампера и третьей I 3 = 2,5 ампера. Определить общий ток в цепях накаливания лампы усилителя I. Итого.

Решение. I total = I 1 + I 2 + I 3 = 1 + 1,5 + 2,5 = 5 ампер.

Резисторы параллельного подключения часто встречаются в радиооборудовании.Два или более резистора подключаются параллельно в случаях, когда ток в цепи слишком велик и может вызвать чрезмерный нагрев резистора.

Примером параллельного соединения электрической энергии потребителей может служить включение электрических ламп обычной осветительной сети, включенных параллельно. Преимущество параллельного подключения потребителей в том, что отключение одного из них не влияет на работу других.

Последовательное, параллельное и смешанное включение резисторов. Значительное количество включенных в электрическую цепь приемников (электрические лампы, электронагревательные приборы и т. Д.) Можно рассматривать как элементы, имеющие определенное сопротивление . Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменить конкретные приемники резисторами с определенными сопротивлениями. Существуют следующие способы подключения резисторов (приемников электрической энергии): последовательный, параллельный и смешанный.

Последовательное соединение резисторов . Последовательное соединение нескольких резисторов, конец первого резистора подключается к началу второго, конец второго - к началу третьего и т. Д. При таком подключении все элементы последовательной цепи проходят
одинаково ток I.
Последовательное подключение приемников показано на рис. 25, а.
Заменив лампы на резисторы с сопротивлениями R1, R2 и R3, получаем схему, показанную на рис.25, корп.
Если предположить, что в источнике Ro = 0, то для трех последовательно включенных резисторов по второму закону Кирхгофа можно записать:

E = IR 1 + IR 2 + IR 3 = I (R 1 + R 2 + R 3) = IR экв (19)

где R eq = R 1 + R 2 + R 3.
Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов. Поскольку напряжения на отдельных участках цепи по закону Ома: U 1 = IR 1; U 2 = IR 2, U 3 = IR s и в данном случае E = U, то для рассматриваемой схемы

U = U 1 + U 2 + U 3 (20)

Следовательно, напряжение U на выводах истока равно сумме напряжений на каждом из последовательно соединенных резисторов.
Из этих формул также следует, что напряжения распределяются между последовательно включенными резисторами пропорционально их сопротивлениям:

U 1: U 2: U 3 = R 1: R 2: R 3 (21)

, то есть чем больше сопротивление любого приемника в последовательной цепи, тем больше приложенное к нему напряжение.

Если несколько, например n, резисторов с одинаковым сопротивлением R1 соединены последовательно, эквивалентное сопротивление цепи Rek будет в n раз больше сопротивления R1, i.е. Рек = nR1. Напряжение U1 на каждом резисторе в этом случае в n раз меньше полного напряжения U:

При последовательном соединении приемников изменение сопротивления одного из них немедленно влечет за собой изменение напряжения на других подключенных к нему приемниках. При отключении или прерывании электрической цепи в одном из приемников и в остальных приемниках ток прекращается. Поэтому последовательное подключение приемников применяется редко - только в том случае, если напряжение источника электроэнергии больше номинального напряжения, на которое рассчитан потребитель.Например, напряжение в электрической сети, от которой питаются вагоны метро, ​​составляет 825 В, а номинальное напряжение электрических ламп, используемых в этих вагонах, составляет 55 В. Таким образом, в вагонах метро электрические лампы включают 15 ламп последовательно в каждый контур.
Параллельное соединение резисторов . Параллельное соединение нескольких приемников, они соединяются между двумя точками электрической цепи, образуя параллельные ответвления (рис. 26, а). Замена

ламп с резисторами с сопротивлениями R1, R2, R3, получаем схему, показанную на рис.26, корп.
При параллельном включении на все резисторы подается одинаковое напряжение U. Следовательно, по закону Ома:

I 1 = U / R 1; I 2 = U / R 2; I 3 = U / R 3.

Ток в неразветвленной части цепи по первому закону Кирхгофа I = I 1 + I 2 + I 3, или

I = U / R 1 + U / R 2 + U / R 3 = U (1 / R 1 + 1 / R 2 + 1 / R 3) = U / R экв (23)

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном включении трех резисторов определяется по формуле

1/ R экв = 1 / правая 1 + 1 / правая 2 + 1 / правая 3 (24)

Путем введения в формулу (24) вместо значений 1 / R eq, 1 / R 1, 1 / R 2 и 1 / R 3, соответствующих проводимости G eq, G 1, G 2 и G 3 , получаем: эквивалент проводимости параллельной цепи, равной сумме проводов параллельно включенных резисторов :

G экв = G 1 + G 2 + G 3 (25)

Таким образом, с увеличением количества параллельно включенных резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.
Из приведенных выше формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическому сопротивлению или прямо пропорционально их проводимости. Например, с тремя филиалами

I 1: I 2: I 3 = 1 / R 1: 1 / R 2: 1 / R 3 = G 1 + G 2 + G 3 (26)

В этом отношении существует полная аналогия между распределением токов в отдельных ответвлениях и распределением потоков воды по трубам.
Приведенные выше формулы позволяют определить сопротивление эквивалентной цепи для различных конкретных случаев ... Например, при параллельном включении двух резисторов результирующее сопротивление цепи равно

R экв = R 1 R 2 / (R 1 + R 2)

с тремя параллельно включенными резисторами

R экв = R 1 R 2 R 3 / (R 1 R 2 + R 2 R 3 + R 1 R 3)

Когда несколько, например n, резисторов с одинаковым сопротивлением R1 соединены параллельно, результирующее сопротивление цепи Rek будет в n раз меньше сопротивления R1, i.е.

R eq = R1 / n (27)

Ток I1, проходящий через каждую ветвь, в этом случае будет в n раз меньше полного тока:

I1 = I / n (28)

При параллельном подключении приемников все они находятся под одинаковым напряжением, и режим работы каждого из них не зависит от других. Это означает, что ток, проходящий через любой из приемников, не окажет существенного влияния на другие приемники.При любом отключении или отказе любого приемника остальные приемники остаются включенными.

ченны. Таким образом, параллельное соединение имеет существенные преимущества перед последовательным, в результате чего оно стало наиболее распространенным. В частности, электрические лампы и двигатели, рассчитанные на работу при определенном (номинальном) напряжении, всегда подключаются параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели должны включаться под разными напряжениями во время регулирования скорости, поэтому они переключаются с последовательного на параллельный режим во время разгона.

Смешанное подключение резисторов . Смешанное соединение называется соединением, при котором некоторые резисторы включены последовательно, а некоторые - параллельно. Например, на схеме рис.27, а есть два последовательно соединенных резистора с сопротивлениями R1 и R2, резистор с сопротивлением R3 подключен параллельно им, а резистор с сопротивлением R4 - последовательно с группой резисторов с сопротивлениями R1, R2 и R3.
Сопротивление эквивалентной цепи в смешанном соединении обычно определяется методом преобразования, при котором сложная цепь последовательно преобразуется в простую.Например, для схемы на рис. 27, а сначала определите эквивалентное сопротивление R12 последовательно включенных резисторов с сопротивлениями R1 и R2: R12 = R1 + R2. В этом случае схема на рис. 27, а заменяется схемой замещения на рис. 27, б. Тогда эквивалентное сопротивление R123 параллельно соединенных сопротивлений и R3 определяется по формуле

R 123 = R 12 R 3 / (R 12 + R 3) = (R 1 + R 2) R 3 / (R 1 + R 2 + R 3).

В этом случае диаграмма на рис.27, б заменена эквивалентной схемой на рис. 27, в. После этого эквивалентное сопротивление всей цепи находится путем суммирования сопротивления R123 и сопротивления R4, соединенных последовательно с ним:

R eq = R 123 + R 4 = (R 1 + R 2) R 3 / (R 1 + R 2 + R 3) + R 4

Последовательные, параллельные и смешанные соединения широко используются для изменения сопротивления пусковых реостатов при пуске e. п. из. постоянный ток.

Проводимость | Последовательные и параллельные схемы

Когда учащиеся впервые видят параллельное уравнение сопротивления, возникает естественный вопрос: «Откуда взялось , эта штука ?» Это действительно странная арифметика, и ее происхождение заслуживает хорошего объяснения.

В чем разница между сопротивлением и проводимостью?

Сопротивление, по определению, является мерой трения , которое компонент представляет для прохождения тока через него. Сопротивление обозначается заглавной буквой «R» и измеряется в единицах «Ом». Однако мы можем думать об этом электрическом свойстве с точки зрения его обратного: насколько легкий для тока, протекающего через компонент, а не как трудно .

Если сопротивление - это слово, которое мы используем, чтобы обозначить меру того, насколько трудно протекать току, тогда хорошим словом, чтобы выразить, насколько легко ток течет, будет проводимость .Математически проводимость обратно пропорциональна сопротивлению:

.

Чем больше сопротивление, тем меньше проводимость - и наоборот.

Это должно иметь интуитивный смысл, потому что сопротивление и проводимость - противоположные способы обозначения одного и того же существенного электрического свойства.

Если сравнивать сопротивления двух компонентов и обнаруживается, что компонент «A» имеет половину сопротивления компонента «B», то мы могли бы в качестве альтернативы выразить это соотношение, сказав, что компонент «A» на в два раза больше, чем на проводимость, как компонент «Б.«Если компонент« A »имеет сопротивление только на одну треть от сопротивления компонента« B », то мы можем сказать, что он на в три раза больше, чем на проводимость, чем компонент« B »и так далее.

Единица проводимости

Продолжая эту идею, были созданы символ и единица измерения проводимости. Символ представляет собой заглавную букву «G», а единица измерения - mho , что означает «ом», написанное в обратном порядке (и вы не думали, что у инженеров-электронщиков есть чувство юмора!).

Несмотря на свою уместность, в последующие годы блок mho был заменен блоком Siemens (сокращенно прописной буквой «S»).Это решение об изменении названий единиц напоминает изменение единицы измерения температуры в градусах по Цельсию на градусов по Цельсию или изменение единицы измерения частоты c.p.s. От (циклов в секунду) до Гц, . Если вы ищете здесь образец, то Сименс, Цельсий и Герц - это фамилии известных ученых, имена которых, к сожалению, меньше говорят нам о природе единиц, чем их первоначальные обозначения.

В качестве примечания: единицы измерения Siemens никогда не выражаются без последней буквы «s».Другими словами, не существует такой вещи, как «siemen», как в случае с «ом» или «mho». Причина тому - правильное написание фамилий ученых.

Единица измерения электрического сопротивления была названа в честь кого-то по имени «Ом», тогда как единица измерения электрической проводимости была названа в честь кого-то по имени «Сименс», поэтому было бы неправильно «выделять единицу» последнюю единицу, поскольку ее конечная «s» не соответствует обозначают множественность.

Возвращаясь к нашему примеру с параллельной цепью, мы должны увидеть, что несколько путей (ветвей) для тока уменьшают общее сопротивление для всей цепи, поскольку ток может легче проходить через всю сеть из нескольких ветвей, чем через любую из них. только тех сопротивлений отрасли.Что касается сопротивления , дополнительные ответвления приводят к меньшему общему количеству (текущий встречает меньшее сопротивление). Однако с точки зрения проводимости дополнительные ответвления приводят к большей сумме (ток протекает с большей проводимостью).

Общее параллельное сопротивление

Общее параллельное сопротивление на меньше , чем любое из сопротивлений отдельных ветвей, потому что параллельные резисторы вместе оказывают меньшее сопротивление, чем по отдельности:

Общая параллельная проводимость

Общая параллельная проводимость на больше, чем на , чем проводимость любой из отдельных ветвей, потому что параллельные резисторы проводят вместе лучше, чем по отдельности:

Точнее, полная проводимость в параллельной цепи равна сумме индивидуальных проводимостей:

Если мы знаем, что проводимость - это не что иное, как математическая обратная величина (1 / x) сопротивления, мы можем перевести каждый член приведенной выше формулы в сопротивление, подставив обратную величину каждой соответствующей проводимости:

Решая приведенное выше уравнение для полного сопротивления (вместо обратного значения общего сопротивления), мы можем инвертировать (возвратить) обе части уравнения:

Итак, мы наконец пришли к нашей загадочной формуле сопротивления! Электропроводность (G) редко используется в качестве практического измерения, поэтому приведенная выше формула часто используется при анализе параллельных цепей.

ОБЗОР:

  • Проводимость противоположна сопротивлению: это мера того, насколько легко для электрического тока, протекающего через что-то.
  • Электропроводность обозначается буквой «G» и измеряется в единицах mhos или Siemens .
  • Математически проводимость равна обратной величине сопротивления: G = 1 / R

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Применение последовательного и параллельного соединения проводов.Сопротивление Последовательное и параллельное соединение, Подключение проводов

Содержание:

Во всех электрических цепях используются резисторы - элементы с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств появляется возможность регулировать напряжение и силу тока на любых участках цепи. Эти свойства лежат в основе работы практически всех электронных устройств и оборудования. Итак, напряжение при параллельном и последовательном включении резисторов будет отличаться.Поэтому каждый вид компаунда можно использовать только при определенных условиях, чтобы электрическая цепь могла полноценно выполнять свои функции.

Последовательное напряжение

При последовательном соединении два резистора больше подключаются к общей цепи таким образом, что каждый из них контактирует с другим устройством только в одной точке. Другими словами, конец первого резистора соединен с началом второго, а конец второго - с началом третьего и т. Д.

Особенностью этой схемы является пропускание через все подключенные резисторы одного и того же электрического тока. По мере увеличения количества элементов в рассматриваемой цепи электрический ток становится все труднее. Это связано с увеличением общего сопротивления резисторов при их последовательном включении. Это свойство отражено в формуле: R общее = R 1 + R 2.

Распределение напряжения в соответствии с законом Ома осуществляется на каждом резисторе по формуле: V Rn = i Rn x R n.Таким образом, с увеличением сопротивления резистора падающее на него напряжение увеличивается.

Параллельное напряжение

При параллельном включении включение резисторов в электрическую цепь выполняется таким образом, что все резистивные элементы соединяются между собой сразу обоими контактами. Одна точка, представляющая собой электрический узел, может одновременно подключать несколько резисторов.

Такое соединение предполагает протекание отдельного тока в каждом резисторе.Сила этого тока обратно пропорциональна. В результате происходит увеличение общей проводимости этого участка цепи с общим уменьшением сопротивления. В случае параллельного соединения резисторов с разным сопротивлением значение общего сопротивления в этой области всегда будет ниже наименьшего сопротивления отдельного резистора.

На представленной схеме напряжение между точками A и B - это не только общее напряжение для всей площадки, но и напряжение, приходящее на каждый отдельно взятый резистор.Таким образом, в случае параллельного соединения напряжение, подаваемое на все резисторы, будет одинаковым.

В результате напряжение при параллельном и последовательном подключении будет отличаться в каждом случае. Благодаря этому свойству есть реальная возможность настроить это значение на любом участке цепочки.

Параллельные соединения резисторов, формула для расчета которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространенным типом включения элементов в электрическую цепь.При параллельном соединении проводов два и более элемента совмещаются своими контактами с обеих сторон соответственно. Соединение их с общей схемой осуществляется этими узловыми точками.

GIF? X15027 "ALT =" (! Lang: общий вид ">!}

Общий вид

Особенности включения

Таким образом, проводники часто включаются в сложные цепи, содержащие, помимо этого, последовательное соединение отдельных секций.

Для такого включения типичны следующие особенности:

  • Суммарное напряжение в каждой из ветвей будет иметь одинаковое значение;
  • Электрический ток, протекающий в любом из сопротивлений, всегда обратно пропорционален величине их номинала.

В частном случае, когда все включенные параллельно резисторы имеют одинаковые номиналы, то проточные «индивидуальные» токи также будут равны друг другу.

Плата

Сопротивление ряда проводящих элементов, соединенных параллельно, определяется известной формой расчета, которая предполагает сложение их проводников (обратное сопротивление величин).

Ток, протекающий в каждом отдельном проводнике в соответствии с законом Ома, можно найти по формуле:

I = u / r (один из резисторов).

После ознакомления с общими принципами работы СКК элементы сложных цепочек можно обрабатывать на конкретных примерах решения задач этого класса.

Типовые соединения

Пример №1

Часто для решения задачи перед спроектированным конструктором необходимо объединить несколько элементов в результате определенного сопротивления. При рассмотрении простейшего варианта такого решения предполагается, что общее сопротивление цепи из нескольких элементов должно составлять 8 Ом. Этот пример требует отдельного рассмотрения по той простой причине, что в стандартном ряду сопротивлений номинальное значение 8 Ом (их всего 7.5 и 8,2 Ом).

Решением этой простейшей задачи является получение соединения двух одинаковых элементов с сопротивлением до 16 Ом каждый (такие значения в резистивном ряду существуют). По приведенной выше формуле общее сопротивление цепи в этом случае рассчитывается очень просто.

Из него следует:

16х16 / 32 = 8 (ОМ), то есть ровно столько, сколько требуется.

Относительно простым способом можно решить проблему формирования общего сопротивления, равного 8 Ом.

Пример №2.

В качестве еще одного характерного примера формирования необходимого сопротивления можно рассмотреть схему, состоящую из 3-х резисторов.

Общее значение R такого включения можно рассчитать по формуле последовательного и параллельного включения в проводниках.

GIF? X15027 "ALT =" (! LANG: Example ">!}

В соответствии со значениями, указанными на картинке, общее сопротивление цепи будет:

1 / R = 1/2 + 1/220 + 1/470 = 0.0117;

R = 1 / 0,0117 = 85,67.

В результате находим суммарное сопротивление всей цепи, полученное путем параллельного соединения трех элементов с номиналами 200, 240 и 470 Ом.

Важно! Указанный метод применим и при подсчете произвольного количества подключенных к параллельным проводам или потребителям.

Также следует отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у наименьшего номинала.

Расчет комбинированных схем

Рассмотренный метод также может применяться при расчете сопротивлений более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, потому что при формировании цепочек используются сразу оба метода. Смешанный состав резисторов представлен на рисунке ниже.

GIF? X15027 "ALT =" (! Lang: Mixed scheme ">!}

Mixed scheme

Для упрощения расчета сначала разделим все резисторы по типу включения на две независимые группы.Один из них - последовательное подключение, а второй - имеет тип подключения параллельного типа.

Из представленной схемы видно, что элементы R2 и R3 соединены последовательно (объединены в группу 2), которая, в свою очередь, включена параллельно резистору R1, входящему в группу 1.

В предыдущем аннотации было обнаружено, что мощность тока в проводнике зависит от напряжения на его концах. Если в эксперименте изменить проводники, оставив напряжение на них неизменным, можно показать, что при постоянном напряжении на концах проводника ток обратно пропорционален его сопротивлению.Комбинируя зависимость тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = u / r . Этот закон, установленный экспериментально, называется законом Ома (для участка цепи).

Закон Ома для участка цепи : Сила тока в проводнике прямо пропорциональна напряжению, приложенному к его концам, и обратно пропорциональна сопротивлению проводника. Прежде всего, закон всегда справедлив для твердых и жидких металлических проводников.А также для некоторых других веществ (обычно твердых или жидких).

Потребители электроэнергии (лампочки, резисторы и т. Д.) Могут по-разному подключаться друг к другу в электрической цепи. D. ВА Основные типы подключения проводов : Последовательный и параллельный. И есть еще два редких соединения: смешанное и мостиковое.

Последовательное подключение проводов

При последовательном соединении проводов конец одного проводника соединяется с началом другого проводника, а его конец - с началом третьего и т. Д.Например, подключение электрических лампочек в Рождественской гирлянде. При последовательном соединении проводников ток проходит через все фонари. При этом один и тот же заряд проходит через сечение каждого проводника за единицу времени. То есть заряд не накапливается ни в одной части проводника.

Следовательно, при последовательном соединении проводов Мощность тока на любом участке цепи одинакова: I 1 =. I 2 = И. .

Общее сопротивление последовательно соединенных проводников равно сумме их сопротивлений : R 1 + R 2 = R . Потому что при последовательном соединении проводов их общая длина увеличивается. Она больше, чем длина каждого отдельного проводника, соответственно увеличивает сопротивление проводников.

По закону напряжение на каждом проводе составляет: U 1 =. I * 1. рэнд , У 2 = I * R 2 . В этом случае полное напряжение равно U = i ( Р 1 +. р 2) . Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полного напряжения на последовательно подключенном проводе равно величине напряжений на каждом проводе : U = u 1 + U 2 .

Из тех же уравнений следует, что последовательное соединение проводников используется, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

Для постоянного подключения проводов действуют справедливые законы :

1) сила тока во всех проводниках одинакова; 2) напряжение на всем соединении равно величине напряжений на отдельных проводниках; 3) Сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

Параллельное соединение проводов

Пример Параллельное соединение Кондуктор обслуживает подключение потребителей электрической энергии в квартире. Так вот, параллельно включаются лампочки, чайник, утюг и т. Д.

При параллельном соединении жил все жилы присоединяются к одной точке цепи одним концом. И второй конец к другой точке цепочки. Подключенный к этим точкам вольтметр покажет напряжение и на проводе 1, и на проводе 2.При этом напряжение на концах всех параллельно соединяемых проводников одинаковое: U 1 = U 2 = U .

При параллельном соединении проводов электрическая цепь разветвляется. Следовательно, часть общего заряда проходит по одному проводнику, а часть - по другому. Следовательно, при параллельном соединении проводов ток в неразрывной части цепи равен величине тока в отдельных проводниках: I =. I 1+. I 2. .

В соответствии с законом Ома I = u / r, i 1 = u 1 / r 1, i 2 = u 2 / r 2 . Отсюда следует: U / r = u 1 / r 1 + u 2 / r 2, u = u 1 = u 2, 1 / R = 1 / R 1 + 1 / R 2 Значение обратного общего сопротивления параллельно подключенным проводам равно сумме обратного сопротивления каждого проводника.

При параллельном соединении проводов их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединить два проводника с одинаковым сопротивлением g. , то их общее сопротивление составляет: R = g / 2 . Это связано с тем, что при параллельном соединении проводников площадь их сечения увеличивается. В результате сопротивление снижается.

Из полученных формул понятно, почему параллельно включаются потребители электроэнергии.Все они рассчитаны на определенное одинаковое напряжение, которое в квартирах составляет 220 В. Зная сопротивление каждого потребителя, вы можете рассчитать силу тока в каждом из них. И соответствие общей силы тока предельно допустимой силе.

Для параллельного соединения проводов справедливы законы:

1) напряжение на всех жилах одинаково; 2) мощность тока в месте соединения проводов равна сумме токов в отдельных проводниках; 3) Обратное сопротивление всего соединения равно количеству величин обратных сопротивлений отдельных проводников.

Сопротивление проводов. Параллельное и последовательное соединение проводов.

Электрическое сопротивление - Физическая величина, характеризующая свойства проводника по предотвращению прохождения электрического тока и равное отношение на концах проводника к силе тока, протекающего по нему. Сопротивление цепей переменного тока и переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления.Сопротивлением (резистором) еще называют радиодетали, предназначенные для управления электрическими цепями активного сопротивления.

Сопротивление (часто обозначается буквой R. или R. ) Считается, в определенных пределах, постоянным значением для этого проводника; Его можно рассчитать как

R. - сопротивление;

U. - разность электрических потенциалов (напряжений) на концах проводника;

I. - Сила тока, протекающего между краями проводника под действием разности потенциалов.

При последовательном подключении Проводники (рис. 1.9.1) Мощность тока во всех проводниках одинакова:

По закону Ома напряжения U. 1 I. U. 2 на проводниках равны

.

При последовательном включении полное сопротивление цепи равно сумме сопротивлений отдельных проводов.

Этот результат действителен для любого количества последовательно соединенных проводников.

С параллельным соединением (рис. 1.9.2) напряжение U. 1 I. U. 2 На обеих направляющих то же самое:

Этот результат следует из того факта, что в точках разветвления (узлы A. и B. ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A. Во время Δ. т. Комиссия I. Δ т. , и отрывается от узла за то же время заряда I. 1 Δ. т. + I. 2 Δ. т. . Следовательно, I. = I. 1 + I. 2.

Запись по закону Ома

При параллельном соединении проводов значение общего сопротивления цепи равно сумме обратных сопротивлений включенного параллельного проводника.

Этот результат справедлив для любого количества включенных параллельных проводников.

Формулы последовательного и параллельного соединения проводов позволяют во многих случаях рассчитать сопротивление сложной цепи, состоящей из множества резисторов.На рис. 1.9.3 Приведен пример такой сложной схемы и указана последовательность расчетов.

Следует отметить, что не все сложные цепи, состоящие из проводов с разным сопротивлением, можно рассчитать по формулам для последовательного и параллельного соединения. На рис. 1.9.4 Показан пример электрической схемы, которую невозможно рассчитать указанным выше методом.

При решении задач принято преобразовывать схему, чтобы она была максимально простой.Для этого используются эквивалентные преобразования. Эквивалентными называются такие преобразования части схемы электрической цепи, при которых токи и напряжения в непреобразованной части остаются неизменными.

Существует четыре основных типа подключения проводов: последовательный, параллельный, смешанный и мостовой.

Последовательное соединение

Последовательное соединение - Это соединение, при котором ток тока на всем участке цепи одинаков.Яркий пример последовательного подключения - старая елочная гирлянда. Там лампочки подключены последовательно, между собой. А теперь представьте, перегорела одна лампочка, оборвалась цепь, а остальные лампочки ухожены. Отказ одного элемента, приводящий к отказу всех остальных, является существенным недостатком последовательного соединения.

При последовательном включении сопротивления элементов суммируются.

Параллельное соединение

Параллельное соединение - это соединение, в котором напряжение на концах участка цепи одинаковое.Параллельное соединение является наиболее распространенным, в основном потому, что все элементы находятся под одним напряжением, ток тока распределяется по-разному, и когда один из элементов выходит, все остальные продолжают работать.

При параллельном подключении эквивалентное сопротивление равно:

В случае двух параллельно включенных резисторов

В случае трех параллельно соединенных резисторов:

Смешанное соединение

Смешанное соединение - Соединение, которое представляет собой комбинацию последовательных и параллельных соединений.Чтобы найти эквивалентное сопротивление, нужно «минимизировать» схему путем попеременного преобразования параллельных и последовательных участков цепи.


Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем добавим к нему оставшееся сопротивление R 3. Следует понимать, что после преобразования эквивалентного сопротивления резистор R 1 R 2 и резистор R 3 соединяются последовательно.

Итак, остались самые интересные и сложные соединения проводников.

Схема моста

Мостовая схема подключения показана на рисунке ниже.



Чтобы минимизировать мост, один из треугольников моста заменяется эквивалентной звездой.

И найдите сопротивление R 1, R 2 и R 3.

Последовательное и параллельное подключение презентационных проводов. Презентация «Последовательное и параллельное соединение проводов». Изучение последовательного и параллельного подключения

При последовательном соединении проводов конец одного проводника соединяется с началом другого и т. Д.На рисунках изображена цепочка последовательного соединения двух ламп и схема такого подключения. Если одна из лампочек перегорит, цепь разомкнется, а другая погаснет.

Когда проводники соединены последовательно, сила тока на всех участках цепи одинакова: Согласно закону Ома, напряжения U1 и U2 на проводниках равны: полное напряжение U на обоих проводниках равно сумма напряжений U1 и U2: где R - электрическое сопротивление всей цепи.Из этого следует: При последовательном соединении общее сопротивление цепи равно сумме сопротивлений отдельных проводников.

При параллельном соединении проводов их начало и конец имеют общие точки подключения к источнику тока.

При параллельном подключении напряжения U1 и U2 на всех участках цепи одинаковы: сумма токов I1 и I2, протекающих по обоим проводникам, равна току в неразветвленной цепи: Запись по закону Ома: где R - электрическое сопротивление всей цепи, получаем, обратное полному сопротивлению цепи, равно сумме значений, противоположных сопротивлениям параллельно соединенных проводников.

Задача 1 Два провода соединены последовательно. Сопротивление одного проводника R = 2 Ом, другого R = 3 Ом. Показание амперметра, подключенного к первому проводнику, I = 0,5 Ом. Определите силу тока, протекающего по второму проводнику, общую силу тока в цепи, общее напряжение цепи.

Дано: R1 = 2 Ом R2 = 3 Ом I1 = 0,5 А Решение: I1 = I2 = Iu; I2 = Iu = 0,5 AU1 = I1R1; U1 = 0.5 х 2 = 1 (В) U2 = I2R2; U2 = 0,5 х 3 = 1,5 (В) Uu = U1 + U2; Uu = 1 + 1,5 = 2,5 (В) I2, Iu, Uu =? Ответ: I2 = Iu = 0,5 А, Uu = 2,5 В.

Слайд 9

Слайд 10

Слайд 11

Слайд 12

Слайд 13

Слайд 14

Цель 3.

Доктора Ватсона и Шерлока Холмса в новогоднюю ночь пригласили друзья. И вдруг, как гласит один из законов Мерфи: «Все, что нужно сломать, обязательно сломается, и в самый неподходящий момент.«А что случилось? Когда хозяин дома стал включать гирлянду на елку для детей, перегорела одна из лампочек на 3,5 В. Дети расстроены, хозяин в панике, потому что запасного света нет лампочка под рукой. Мы должны спасти праздник, - решил Холмс. И, попросив всех успокоиться, Холмс произнес волшебные слова и совершил одно действие. К радости детей гирлянда загорелась. Позже доктор Ватсон попросил Холмса , что он сделал? Что ответил Холмс?

Slide 15

Преимущества и недостатки соединений

Пример последовательного подключения: гирлянда.Пример параллельного подключения: лампы в рабочем кабинете. Достоинства и недостатки подключений: Параллельное - при перегорании одной лампы горят остальные. Но когда вы включите лампу с меньшим возможным напряжением, она перегорит. Последовательный - лампы с меньшим возможным напряжением включаются в цепь с более высоким напряжением, но при перегорании одной лампы не сгорят все.

Slide 16

Домашнее задание:

Приведите примеры последовательного и параллельного подключения проводов в вашем доме.Повторить. § 48, 49. Упражнение. 22 (2), упражнение 23 (3.4).

Посмотреть все слайды

Опыт показал взаимосвязь между силой тока, напряжением и сопротивлением при последовательном соединении. Последовательное подключение электрических цепей и решение задач по этим схемам.

Посмотреть содержание документа


«Презентация к уроку» Последовательное соединение проводов. «



Символ

Название

Гальванический

Резистор

Амперметр

Вольтметр


Физические величины и их буквенные обозначения.

Сила тока

Напряжение

Сопротивление


Ампер

Вольт

Сила тока

Напряжение

Сопротивление


Физические величины и устройства для их измерения.

Амперметр

Вольтметр

Сила тока

Напряжение


Георг Симон Ом

Известный немецкий физик



Ток (A)

I 1

I 2

Напряжение (В)

U 1

U 2

Сопротивление (Ом)

R 1

R 2


  • При последовательном подключении сила тока в любой части цепи одинакова, т.е.е.

I = I 1 = I 2 .

Суммарное напряжение в цепи при последовательном включении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

U = U 1 + U 2

  • Общее сопротивление цепи при последовательном включении равно сумме сопротивлений отдельных проводников:

R = R 1 + Р 2 .




15 Ом

20 Ом



1. Согласно схеме на рис. 17, определите

показание амперметра и общее сопротивление

в электрической цепи, если R 1 = 5 Ом, R 2 = 3 Ом.

2. Каковы показания амперметра и общее сопротивление электрической цепи

,

показано на рис. 18, если R 1 = 10 Ом, R 2 = 2 Ом?

3. Согласно схеме на рис. 21,

определяют показания амперметра и

сопротивления R2, ​​если R1 = 4 Ом.

Цель урока: 1. Ознакомить учащихся с последовательным и параллельным соединением проводов 2. Закономерности, существующие в цепи при последовательном и параллельном соединении проводов. Приложение 3. Научить решать задачи по теме: Последовательное и параллельное соединение проводов 4. Закрепить знания обучающихся о различных соединениях проводов и сформировать умение рассчитывать параметры комбинированных цепей










Преимущества и недостатки последовательного подключения Преимущества: Имея элементы, рассчитанные на низкое напряжение (например, лампочки), вы можете соединить их последовательно в необходимом количестве и подключить к источнику с высоким напряжением (так бывают елочные гирлянды. устроено) Недостаток: Достаточно одному устройству (или элементу) выйти из строя при обрыве цепи, а все остальные устройства не работают




Достоинства и недостатки параллельного подключения Достоинства: При выходе из строя одной из ветвей остальные продолжают работать.В этом случае каждую ветку можно подключать и отключать отдельно. Недостаток: можно включать устройства, рассчитанные только на это напряжение.


Использование последовательного подключения Основным недостатком последовательного подключения проводов является то, что при выходе из строя одного из элементов соединения отключаются остальные. Так, например, если перегорела одна из лампочек елочной гирлянды, тогда все остальные погаснут. Указанный недостаток может превратиться в преимущество. Представьте, что какую-то цепь нужно защитить от перегрузки: при увеличении тока цепь должна автоматически отключиться. Как это сделать? (Как это сделать? (Например, использовать предохранители) Приведите примеры применения для последовательного подключения проводов

Применение параллельного подключения Различные потребители могут быть подключены параллельно в одну электрическую цепь.электрическая энергия Такая схема подключения потребителей тока применяется, например, в жилых помещениях. Вопрос к студентам: Как соединены между собой электроприборы в вашей квартире?









Могу ли я использовать две одинаковые лампы на 110 В в сети 220 В? Как? Сколько одинаковых резисторов было подключено последовательно, если каждый из них имеет сопротивление 50 Ом, а их общее сопротивление - 600 Ом? Два резистора с сопротивлением 5 Ом и 10 Ом подключены параллельно к батарее.Текущая сила у кого из них больше? Как изменится сопротивление электрической цепи, если подключить другой резистор к любому звену в цепи: а) последовательно б) параллельно? Как подключить четыре резистора с сопротивлением 0,5 Ом, 2 Ом, 3,5 Ом и 4 Ом, чтобы их общее сопротивление составляло 1 Ом? Проверка знаний


Повторение

Чижова Вера Александровна

Учитель физики и информатики

МБОУ СОШ с.Красное,

Ненецкий автономный округ.


  • Скорость движения заряда по проводнику
  • Заряд, проходящий через проводник за 1 с
  • Обозначается ()
  • Единица измерения (А) ампер
  • Измеряется амперметром
  • Зависит от напряжения и сопротивление (закон Ома)

  • Напряжение - это работа электрического поля по перемещению единичного заряда (1С) по проводнику
  • Обозначается буквой (U)
  • Измеряется с помощью вольтметра
  • Единица измерения (В) Вольт

  • Свойство проводника препятствовать движению заряженных частиц по проводнику под действием электрического поля
  • Обозначается R
  • Единица измерения (Ом)
  • Зависит от физических свойств проводника

Законы последовательного соединения проводов

  • Сила тока одинакова во всех частях цепи
  • Общее сопротивление цепи равно сумме сопротивлений отдельных участков цепи
  • Общее напряжение равно сумме напряжений в отдельных участках

  • 1) Требуется сделать елочную гирлянду из лампочек.рассчитан на напряжение 6 В, чтобы его можно было включить в сеть с напряжением 120 В. Сколько лампочек для этого взять?
  • A) 4. B) 8 C) 16 D) 20 E) 30.
  • 2) Определите полное сопротивление цепи, если сопротивление выводных проводов составляет 2 Ом, включенной части реостата
  • Лампы 64 Ом и 294 Ом (рис. 159).
  • 1,240 Ом; 2,180 Ом; 3,100 Ом; 4.120 Ом; 5,360 Ом.
  • 3) При замере напряжения на проводе R 1 оно оказалось равным 12 В.Когда вольтметр был подключен к проводнику R 2 , , то он показал 45 В (рис. 160). Рассчитайте сопротивление R 2, если R 1 = 40 Ом.
  • А) 360 Ом; Б) 135 Ом; Б) 150 Ом; Г) 4 Ом; Е) 40 Ом.
  • 4) Каждый из двух нагревательных элементов котла имеет ток 5 А. Определите ток в питающих проводах, если элементы соединены последовательно.
  • А) 25 А; Б) 5 А; Б) 10 А; Г) 2,5 А.
  • 5) Проводники с сопротивлением 2.4 и 6 Ом соединены последовательно и включены в сеть с напряжением 36 В. Рассчитайте ток в проводниках.
  • А) 3 А; Б) 0,33 А; Б) 432 А; Г) 0,5 А; E) 0,3 А.

  • 1) Ток в проводнике R 1 равно 4 А. Какой ток в проводнике R 2 (рис.161).
  • А) 4 А; Б) 2 А; Б) 8 А; Г) 16 А.
  • 2) Сопротивление лампы R 1 = 300 Ом, а напряжение на ней 90 В.Что покажет вольтметр, если его подключить к лампе с сопротивлением R2 = 400 Ом (рис. 162)?
  • A) 240 В; Б) 180 В; Б) 100 В; Г) 120 В; E) 360 В.
  • 3) Три одинаковые лампы соединены последовательно с напряжением 120 В (рис. 163). Какое напряжение на каждом из них?
  • A) 360 В; Б) 120 В; Б) 60 В; Г) 4 В; E) 40 В.
  • 4) На рисунке 164 изображен ступенчатый реостат, в котором сопротивления R 1 = R 2 = R 3 =… = R 5 = 10 Ом.Рассчитайте сопротивление в данном положении подвижного контакта К.
  • А) 20 Ом; Б) 50 Ом; Б) 40 Ом; Г) 30 Ом; Д) 3,3 Ом.
  • 5) Сопротивление электрической лампы R , а амперметр был подключен к сети 200 В, как показано на рисунке 165. Вычислите сопротивление R , , если амперметр показывает ток 0,5 А. Сопротивление лампы 240 Ом.
  • А) 120 Ом; Б) 160 Ом; Б) 260 Ом; Г) 60 Ом.

  • Резистор номиналом 2 (Ом) включен в цепь 12 В. Какое сопротивление нужно подключить еще один резистор, чтобы сила тока была 2А

Повторение: последовательное соединение проводов

  • В цепи с напряжением источника 12 В подключаются два резистора и лампочка. Напряжение на лампочке 5В, на первом резисторе 3В. Сопротивление второго резистора 6 (Ом). Определяем сопротивление первого резистора и лампочки
  • .

  • Ток в неразветвленной части цепи равен сумме токов в ветвях
  • Напряжение на всех параллельных участках одинаково
  • Обратная величина общего сопротивления равна сумме взаимные значения сопротивлений всех параллельных участков


Задания по параллельному подключению потребителей



Сопротивления резисторов соответственно равны 4.6,12 (Ом). Определите силу тока в каждом резисторе, если напряжение между точками A и B составляет 24 В. Определить ток в неразветвленной части цепи



Токи в резисторах соответственно равны 2А, 1,5А, 3А. Определите сопротивление резисторов, если напряжение между точками A и B составляет 16 В.


Д / с § 48,49 упражнение 22 (1,2), упражнение 23 (3)

СШ №20 Должность: учитель физики Последовательный составной проводников составной проводников нет вилок, когда конец одного проводника соединен с началом другого проводника ... При согласованном соединении проводников : - сила тока, протекающего через каждый ...

Последовательное и параллельное соединение ...

... "Куринская общеобразовательная школа" Последовательное и параллельное соединение проводников ... Урок физики 8 класс Тип ... Тема урока: « Последовательные и параллельные соединения проводников ». Задачи урока: Сформулировать законы согласованных и параллельных соединений проводников ... Упражнение 1 ...

Исследование последовательного и параллельного подключения ...

Романовский район. ЦЕЛИ УРОКА: Проверить законы , согласованные и параллельные соединения проводников ... Оборудование: Источник питания Двухпроводный ... напряжение менее 220 В. Выход При согласованное соединение проводников напряжения на концах рассматриваемого участка цепи ...

Напряженность и потенциал электростатического поля в проводнике В проводниках присутствуют электрически заряженные частицы - носители заряда... - комбинации параллельных и последовательных подключений конденсаторов. 4.2. Соединение конденсаторы 1) Параллельное соединение Соединение : Общее - это напряжение U ...

8pow

Сопротивление. Юниты сопротивления. Закон Ома для участка цепи. 7. Соединение жилы ... 8. Параллельное соединение жилы ... 9. Электроток работ. 10. Мощность электрического тока.одиннадцать ...

Для цепной секции. Последовательный составной проводников ... Параллельный составной проводников ... Электротоковые работы. Сила электрического тока. Нагревание проводников электрошок. Закон Джоуля-Ленца. 4. Консистент соединение проводов ... Принципиальная схема Монтаж ...

2. Какие физические величины сохраняются на уровне в соответствии с соединение проводников Каково общее сопротивление при последовательном соединении проводниках ? Ответ: При согласованном соединении сила тока во всех резисторах одинакова, а...

Пара зажимов (точек или узлов цепи) называется параллельными. Свойства соединения проводников СЛЕДУЮЩАЯ СОЕДИНЕНИЕ ПРОВОДНИКИ ПАРАЛЛЕЛЬНО СОЕДИНЕНИЕ ПРОВОДНИКИ Сила тока: Сила тока одинакова во всех частях цепи. Сила ...

Учебное пособие по физике: два типа соединений

Когда в цепи с источником энергии присутствуют два или более электрических устройства, существует несколько основных способов их соединения.Их можно соединить последовательно или соединить параллельно . Предположим, что в одну цепь включены три лампочки. При последовательном соединении они соединяются таким образом, чтобы отдельный заряд проходил через каждую из лампочек последовательно. При последовательном соединении заряд проходит через каждую лампочку. При параллельном подключении один заряд, проходящий через внешнюю цепь, будет проходить только через одну из лампочек.Лампочки помещаются в отдельную ветвь, и заряд, проходящий через внешнюю цепь, проходит только через одну из ветвей на обратном пути к клемме с низким потенциалом. Способы подключения резисторов будут иметь большое влияние на общее сопротивление цепи, общий ток в цепи и ток в каждом резисторе. В Уроке 4 мы исследуем влияние типа подключения на общий ток и сопротивление цепи.

Обычная физическая лаборатория состоит в построении обоих типов цепей с лампами, подключенными последовательно, и лампами, подключенными параллельно. Эти две схемы сравниваются и противопоставляются.

Основные вопросы, вызывающие беспокойство при такой лабораторной деятельности, как правило, следующие:

  • Что происходит с общим током в цепи при увеличении количества резисторов (лампочек)?
  • Что происходит с общим сопротивлением в цепи при увеличении количества резисторов (лампочек)?
  • Если один из резисторов выключен (т.е.е., лампочка гаснет ), что происходит с другими резисторами (лампочками) в цепи? Они остаются включенными (т.е. горят)?

Исследование последовательных соединений

При проведении лабораторных работ для двух типов цепей производятся совершенно разные наблюдения. Последовательная цепь может быть построена путем соединения лампочек таким образом, чтобы оставался единственный путь для потока заряда; луковицы добавляются к той же линии без точки ветвления.По мере того, как добавляется все больше и больше лампочек, яркость каждой лампочки постепенно уменьшается. Это наблюдение является индикатором того, что ток в цепи уменьшается.

Итак, для последовательных цепей по мере добавления резисторов общий ток в цепи уменьшается. Это уменьшение тока согласуется с выводом о том, что общее сопротивление увеличивается.

Последнее наблюдение, которое является уникальным для последовательных цепей, - это эффект вынимания лампы из розетки.Если одна из трех лампочек в последовательной цепи вывинчивается из патрона, то наблюдается, что остальные лампочки сразу же гаснут. Чтобы устройства в последовательной цепи работали, каждое устройство должно работать. Если один погаснет, погаснут все. Предположим, что вся бытовая техника на домашней кухне подключена последовательно. Чтобы холодильник работал на этой кухне, должны быть включены тостер, посудомоечная машина, мусоропровод и верхний свет. Чтобы одно устройство, включенное последовательно, работало, все они должны работать.Если ток равен , отрежьте от любого из них, он отключается от всех из них. Совершенно очевидно, что приборы на кухне не подключены последовательно.

Исследование параллельных подключений

Используя тот же набор проводов, D-элементов и лампочек, можно таким же образом исследовать параллельные цепи. Можно исследовать влияние количества резисторов на общий ток и общее сопротивление.На схемах ниже изображены обычные способы построения схемы с параллельным подключением лампочек. Следует отметить, что исследование общего тока для параллельных соединений требует добавления индикаторной лампы . Лампа индикатора размещена вне ответвлений и позволяет наблюдать влияние дополнительных резисторов на общий ток. Лампочки, размещенные в параллельных ветвях, служат только индикатором тока, протекающего через эту конкретную ветвь.Поэтому, исследуя влияние количества резисторов на общий ток и сопротивление, нужно внимательно следить за лампочкой индикатора, а не за лампочками, помещенными в ответвления. На диаграмме ниже показаны типичные наблюдения.

Из показаний лампочек индикаторов на приведенных выше схемах видно, что добавление большего количества резисторов приводит к тому, что лампочка индикатора становится ярче. Для параллельных цепей с увеличением количества резисторов общий ток также увеличивается.Это увеличение тока согласуется с уменьшением общего сопротивления. Добавление резисторов в отдельную ветвь приводит к неожиданному результату уменьшения общего сопротивления!

Если отдельная лампочка в параллельной ветви вывинчивается из патрона, то ток в общей цепи и в других ветвях все равно остается. Удаление третьей лампочки из патрона приводит к преобразованию схемы из параллельной цепи с тремя лампами в параллельную цепь с двумя лампами.Если бы приборы на домашней кухне были подключены параллельно, то холодильник мог бы работать без включения посудомоечной машины, тостера, мусоропровода и верхнего освещения. Одно устройство может работать без включения других. Поскольку каждое устройство находится в своей отдельной ветви, выключение этого устройства просто прекращает подачу заряда в эту ветвь. По другим ответвлениям к другим приборам по-прежнему будет поступать заряд. Совершенно очевидно, что бытовая техника подключена параллельно.

Аналогия с платной станции

Эффект добавления резисторов совершенно иной, если они добавляются параллельно, по сравнению с их последовательным соединением. Последовательное добавление большего количества резисторов означает увеличение общего сопротивления; тем не менее, добавление большего количества резисторов параллельно означает уменьшение общего сопротивления. Тот факт, что можно добавить больше резисторов параллельно и добиться меньшего сопротивления, многих очень беспокоит. Аналогия может помочь прояснить причину этой изначально надоедливой правды.

Поток заряда по проводам цепи можно сравнить с потоком автомобилей по платной дороге в очень густонаселенном мегаполисе. Основными источниками сопротивления на платных дорогах являются посты. Остановка автомобилей и принуждение их к уплате дорожных сборов не только замедляет движение автомобилей, но и в районе с интенсивным движением, также вызовет узкое место с резервной копией на многие мили. Скорость, с которой автомобили проезжают через точку на этой платной системе, значительно снижается из-за наличия платы за проезд.Очевидно, что платные автодорожные сборы являются основным препятствием для движения автомобилей.

Теперь предположим, что в попытке увеличить скорость потока Управление взимания платы за проезд решает добавить еще две точки взимания платы за проезд на определенной станции взимания платы, где узкое место создает проблемы для путешественников. Они рассматривают два возможных способа подключения своих платных пунктов оплаты - последовательно или параллельно. При последовательном добавлении платных постов (т. Е. Резисторов) они добавляли бы их таким образом, чтобы каждая машина, движущаяся по шоссе, должна была бы последовательно останавливаться на каждой плате за проезд.При наличии только одного пути через пункты взимания платы за проезд каждая машина должна будет останавливаться и платить за проезд в каждой будке. Вместо того, чтобы платить 60 центов один раз в одной будке, теперь им придется платить по 20 центов трижды в каждой из трех платных. Совершенно очевидно, что добавление платных постов последовательно имело бы общий эффект увеличения общего сопротивления и уменьшения общей скорости потока автомобиля (т. Е. Тока).

Другим способом добавления двух дополнительных пунктов взимания платы на этой конкретной станции сбора платы за проезд может быть параллельное добавление пунктов взимания платы.Каждую будку можно разместить в отдельном филиале. Машины, проезжающие по платной дороге, останавливались только у одной из трех будок. У автомобилей будет три возможных пути, по которым они будут проезжать через станцию ​​сбора платы за проезд, и каждая машина выберет только один из маршрутов. Совершенно очевидно, что параллельное добавление платных постов приведет к уменьшению общего сопротивления и увеличению общей скорости потока автомобилей (т. Е. Тока) вдоль платной дороги. Как и в случае добавления дополнительных электрических резисторов параллельно, добавление дополнительных плат в параллельных ветвях создает меньшее общее сопротивление.Обеспечивая большее количество путей (то есть ответвлений), по которым заряд и автомобили могут проходить через узкие места, скорость потока может быть увеличена.

Мы хотели бы предложить ... Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать - это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока.Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Обратите внимание на электрическую проводку, указанную ниже. Укажите, являются ли соединения последовательными или параллельными. Объясните каждый выбор.

2. Ниже показаны две электрические цепи. Для каждой цепи укажите, какие два устройства подключены последовательно, а какие - параллельно.

Последовательно? ___________________

Параллельно? _________________

Последовательно? ___________________

Параллельно? _________________

Электрическое сопротивление в последовательных и параллельных сетях

Последовательное соединение

Общее сопротивление для резисторов, подключенных последовательно, можно рассчитать как

R = R 1 + R 2 +.... + R n (1)

где

R = сопротивление (Ом, Ом)

Пример - Последовательные резисторы

Три резистора 33 Ом , 33 Ом и 47 Ом подключаются последовательно. Общее сопротивление можно рассчитать как

R = ( 33 Ом) + ( 33 Ом) + ( 47 Ом)

= 113 Ом

Параллельное соединение

Общее сопротивление для резисторов, подключенных параллельно, можно рассчитать как

1 / R = 1 / R 1 + 1 / R 2 +.... + 1 / R n (2)

Эквивалентное сопротивление двух параллельно подключенных резисторов может быть выражено как

R = R 1 R 2 / (R 1 + R 2 ) (3)

Пример - параллельные резисторы

Три резистора 33 Ом , 33 Ом и 47 Ом подключены параллельно. Общее сопротивление можно рассчитать как

1 / R = 1 / ( 33 Ом ) + 1 / ( 33 Ом ) + 1 / (47 Ом )

= 0.082 (1 / Ом)

R = 1 / (0,082 Ом)

= 12,2 Ом

Если напряжение батареи 12 В - ток в цепи можно рассчитать с помощью закон

I = U / R

= (12 В) / (12,2 Ом)

= 0,98 ампер

Можно рассчитать ток через каждый резистор

I 1 = U / R 1 = (12 В) / (33 Ом) = 0.36 ампер

I 2 = U / R 2 = (12 В) / (33 Ом) = 0,36 ампер

I 3 = U / R 3 = (12 В) / (47 Ом) = 0,26 ампера

Параллельно подключенные резисторы - Калькулятор

Сложите сопротивления до пяти параллельно подключенных резисторов и (необязательно) напряжение цепи.

Общее сопротивление и ток - и отдельные токи во всех резисторах - будут рассчитаны:

R 1 (Ом)

R 2 (Ом)

R 3 ( Ом)

R 4 (Ом )

R 5 (Ом)

Напряжение (В)

I 1 (А)

49 950000 (амперы)

I 3 (амперы)

I 4 (амперы)

I 5 (амперы)

R (

R) I (амперы)

Параллельное и последовательное соединение.Последовательное и параллельное соединение проводников

В физике мы изучаем тему параллельного и последовательного соединения, причем это могут быть не только проводники, но и конденсаторы. Важно не забыть, как смотреть каждый из них на схеме. А затем примените определенную формулу. Их нужно запомнить.

Как отличить эти два соединения?

Внимательно посмотрите на схему. Если провода изображать как дорогу, то машина на нем будет играть роль резисторов.По прямой дороге без разветвлений машины едут одна за другой цепочкой. Точно так же выглядит и последовательное соединение проводников. Дорога в этом случае может иметь неограниченное количество поворотов, но без перекрестков. Как бы ни виляла дорога (провода), механизмы (резисторы) всегда располагаются друг за другом, на одной цепи.

Другое дело, если рассматривать параллельное подключение. Тогда резисторы можно сравнить со спортсменами на старте.Они стоят каждый на своем пути, но направление движения одинаково, и финишируют в одном месте. Точно так же резисторы - каждый со своим проводом, но все они в какой-то момент подключены.

Формула для силы тока

Это всегда тема «Электричества». Параллельное и последовательное включение по-разному влияет на величину тока в резисторах. Для них формулы, которые можно запомнить. Но просто запомните тот смысл, который в них вложен.

Итак, ток при последовательном соединении проводов всегда один и тот же. То есть каждое значение силы тока ничем не отличается. Проведем аналогию, если сравнить проволоку с трубой. В нем вода всегда течет одинаково. И все препятствия на ее пути будут смеяться с такой же силой. То же самое с силой тока. Поэтому формула полного тока в цепи при последовательном включении резисторов выглядит так:

Рекомендовано

Происхождение славян.Влияние разных культур

славян (под этим именем), по мнению некоторых исследователей, появилось в повести только в 6 веке нашей эры. Однако язык национальности несет в себе архаичные черты индоевропейского сообщества. Это, в свою очередь, говорит о том, что происхождение славян h ...

I Итого = I 1 = I 2

Здесь буква I обозначает ток. Это обычное сокращение, поэтому вам нужно его запомнить.

Ток при параллельном подключении не будет постоянным. По той же аналогии с трубой получается, что вода разделяется на два потока, если труба будет раскручиваться. То же явление наблюдается и при шоке, когда на его пути появляются разветвляющиеся провода. Формула для полного тока в параллельных проводниках:

I Итого = I 1 + I 2

Если вилка состоит из проводов, которых больше двух, то в приведенной выше формуле, в таком же количестве будет больше сроков.

Формулы для напряжения

Если рассматривать схему, в которой проводники соединены последовательно, напряжение всего участка определяется суммой этих значений на каждом конкретном резисторе. Сравните эту ситуацию с тарелками. Удержать одного из них легко одному человеку, вторую сторону он возьмет, но с трудом. Удержать три тарелки рядом друг с другом у одного человека не получится, понадобится помощь второго. И так далее. Усилия народа прибавились.

Формула для графика полного напряжения цепи при последовательном соединении проводов выглядит так:

U Итого = U 1 + U 2 , где U - обозначение, принятое для электрического Напряжение.

Другая ситуация возникает, если рассматривать параллельное соединение резисторов. Когда пластины кладут друг на друга, они все еще могут удерживать одного человека. Поэтому складывания нету. Такая же аналогия наблюдается при параллельном соединении проводов.Напряжение на каждом из них одинаковое и равное напряжению на всех сразу. Формула для полного напряжения:

U Итого = U 1 = U 2

Формулы для электрического сопротивления

Они уже не могут вспомнить, а знают формулу закона Ома. и из него вывести желаемое. Из закона следует, что напряжение равно произведению силы тока и сопротивления. То есть U = I * R, где R - сопротивление.

Тогда формула, которая вам нужна, будет работать, зависит от того, как подключены проводники.

  • Соответственно, нам нужно равенство напряжений - I Итого * R Итого = I 1 * R 1 + I 2 * R 2;
  • Параллельно необходимо использовать формулу для силы тока - U Итого / R Итого = U 1 / R 1 + U 2 / R 2 .

Далее следует простое преобразование, исходя из того, что в первом равенстве все токи имеют одинаковое значение, а во втором - напряжения равны.Значит, их можно было сократить. То есть такие выражения:

  1. R Итого = R 1 + R 2 (для последовательного соединения проводов).
  2. 1 / R Итого = 1 / R 1 + 1 / R 2 (при параллельном подключении).

Увеличение количества резисторов, включенных в сеть, изменение количества слагаемых в этих выражениях.

Стоит отметить, что параллельное и последовательное соединение проводов по-разному влияет на общее сопротивление.Первый из них снижает сопротивление цепи. И это меньше самого маленького из используемых резисторов. При последовательном соединении все логические значения добавляются, поэтому общее число всегда будет наибольшим.

Ток

Последние три значения - это законы параллельного соединения и последовательного расположения проводников в цепи. Следовательно, они знают, что надо. О работе и мощности нужно просто запомнить основную формулу. Записывается так: A = I * U * t А - ток, t-время его прохождения через проводник.

Для определения общей работы последовательного соединения необходимо заменить в исходном выражении деформацию. Получите равенство: A = I * (U 1 + U 2 ) * t, открыв скобки, в которых будет работать на всей площади, равная сумме каждого конкретного потребителя тока.

Аналогично идет рассуждение, если схема параллельного подключения. Только предполагается замена нынешней. Но результат тот же: A = A 1 + A 2 .

Допустимая нагрузка по току

При выводе формулы для мощности (символ «R») части схемы снова необходимо использовать одну формулу: P = U * I. После этих размышлений оказывается, что параллельные и последовательные соединения описываются формулой для мощности P = P 1 + P 2 .

То есть, как бы ни были схемы, общая мощность будет состоять из тех, кто задействован в работе. Этим объясняется тот факт, что нельзя одновременно включать в сеть квартиры мощные устройства. Он просто не выдерживает такой нагрузки.

Как происходит подключение кондукторов для ремонта гирлянды?

Сразу после того, как перегорит одна из лампочек, станет понятно, как они были подключены.Последовательное соединение будет отключено от любого из них. Это происходит потому, что вышедшая из строя лампа создает разрыв в цепи. Так что нужно все проверить, чтобы определить, что продуло, замените и гирлянда заработает.

При параллельном подключении не перестает работать при выходе из строя одной из лампочек. Потому что цепь полностью разорвана, и только одна параллельная часть. Чтобы закрепить такую ​​гирлянду, не нужно проверять все элементы схемы, а только те, которые не светятся.

Что будет с цепочкой, если в ее состав не входят резисторы, а конденсаторы?

В их последовательном соединении сложилась такая ситуация: заряды от плюсов источник питания поступает только на внешнюю облицовку крайних конденсаторов.Те, что находятся между ними, просто передают этот заряд по цепочке. Это объясняет тот факт, что все пластины имеют одинаковые заряды, но разные знаки. Следовательно, электрический заряд каждого конденсатора, соединенного последовательно, можно записать по следующей формуле:

Q Итого = q 1 = q 2 .

Для определения напряжения на каждом конденсаторе потребуется знание формулы: U = q / C. В нем - емкость конденсатора.

Общее напряжение подчиняется тому же закону, который действует для резисторов. Следовательно, заменяя в формуле емкости напряжение суммы, получаем, что общую емкость приборов нужно рассчитывать по формуле:

C = q / (U 1 + U 2 ).

Чтобы упростить эту формулу, изменив дроби и заменив отношение напряжения к зарядной емкости. Это равенство: 1 / S = 1 / S 1 + 1 / S 2 .

Несколько иная ситуация, когда подключение конденсаторов - параллельное. Тогда общий заряд определяется суммой всех зарядов, которые накапливаются на пластинах всех устройств. Но величина напряжения продолжает определяться по общим законам. Следовательно, формула для полной емкости конденсаторов, соединенных параллельно:

C = C 1 + S 2.

Как определить полное сопротивление произвольного соединения проводов?

То есть область, в которой последовательные области чередуются с параллельными и наоборот. Они по-прежнему справедливы по всем законам. Только наносить их нужно поэтапно.

Сначала предполагалось мысленно расширить схему. Если представить это, то нужно нарисовать то, что получится. Объяснение станет более понятным, если рассмотреть его на конкретном примере (см. Рисунок).

Рисование удобно начинать с точек B и C.Их нужно поставить на некотором расстоянии друг от друга и от краев листа. Слева, до точки Б, один провод, а направо на двоих. Точка Напротив, слева есть две ветви, а после нее - один провод.

Теперь вам нужно заполнить пространство между этими точками. К верхнему проводу следует поместить три резистора с коэффициентами 2, 3 и 4, а к нижнему пойдет тот, индекс которого равен 5. Первые три соединены последовательно. С пятым резистором они параллельны.

Остальные два резистора (первый и шестой) подключены последовательно с участком BC.Итак, вы можете просто добавить два прямоугольника по обе стороны от выбранных точек. Осталось применить формулу для расчета сопротивления:

  • Во-первых, то, что предусмотрено для последовательного подключения;
  • Затем для параллельного;
  • И снова для последовательного.

Аналогичным образом можно развернуть любую, даже очень сложную схему.

Проблема для последовательного соединения проводов

A Состояние. В цепь друг к другу подключены две лампы и резистор.Суммарное напряжение 110 В и ток 12 А. Какое сопротивление резистора, если каждая лампа рассчитана на нагрузку 40 В?

Решение. Поскольку это последовательное соединение, формула его законов известна. Их нужно только применять. Для начала узнать, какое напряжение падает на резистор. Для этого из суммы нужно отнять вдвое напряжение одной лампы. Получается 30.

Теперь, когда вы знаете две величины, U и I (вторая из них указана в условии, потому что полный ток - это ток каждого последующего пользователя), вы можете подсчитать сопротивление резистора в соответствии с Закон Ома.Он равен 2,5 Ом.

Ответ. сопротивление резистора равно 2,5 Ом.

Задача подключения конденсаторов параллельно и последовательно

Условие.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *