Параллельный участок цепи: Параллельное соединение проводников — Технарь

Содержание

Параллельное соединение проводников — Технарь

Другой способ соединения проводников, применяемый на практике, называется параллельным. На рисунке 267, а изображено параллельное соединение двух электрических ламп, а на рисунке 267, б — схема этого соединения. Если в этой цепи выключить одну лампу, то другая будет продолжать гореть.

При параллельном соединении все проводники одним своим концом присоединяются к одной точке цепи А, а вторым к другой точке В (рис. 267, б). Поэтому напряжение на концах всех параллельно соединенных проводников одно и то же. Изображенные на рисунке 267, а лампы горят при одинаковом напряжении.

В точке В (рис. 267, б) электрический ток I разветвляется на два тока I, и I2, сходящиеся вновь в точке А, подобно тому как изображенный на рисунке 268 поток воды в реке распределяется по двум каналам, сходящимся затем вновь.

Понятно, что

I = I1 + I2

т. е. сила тока в не разветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках.

При параллельном соединении как бы увеличивается площадь поперечного сечения проводника. Поэтому общее сопротивление цепи уменьшается и становится меньше сопротивления каждого из проводников, входящих в цепь. Так, например, сопротивление цепи, состоящей из двух одинаковых ламп (рис. 267, а), в два раза меньше сопротивления одной лампы:

R = R1/2

Участок цепи, состоящий из n параллельно соединенных проводников с одинаковым сопротивлением, можно рассматривать как один проводник, площадь сечения которого в n раз больше площади сечения одного проводника той же длины. Во столько же раз будет меньше и сопротивление этого участка, т, е.

R = R1/n

Сложнее рассчитывается сопротивление цепи, состоящей из нескольких проводников с разным сопротивлением. В этом случае надо складывать не сопротивления проводников, а величины, обратные сопротивлениям:

1/R = 1/R1 + 1/R2

Пример 1. В осветительную цепь включены параллельно четыре лампы сопротивлением 120 Ом каждая. Найти общее сопротивление участка цепи.

Пример 2. Участок цепи состоит из двух параллельно соединенных проводников сопротивлением R1 = 3 Ом, R2 = 6 Ом. Найти сопротивление этого участка цепи.

В одну и ту же электрическую цепь параллельно могут быть включены самые различные потребители электрической энергии. На рисунке 269 показано параллельное включение электрических ламп, нагревательных приборов и электродвигателя.

Параллельно включаемые в данную сеть потребители должны быть рассчитаны на одно и то же напряжение, равное напряжению в сети.

Напряжение в сети, используемое у нас для освещения и в бытовых приборах, бывает 127 и 220 В. Поэтому электрические лампы и различные бытовые электрические приборы изготовляют на 127 и 220 В. В практике часто применяется смешанное (последовательное и параллельное) соединение проводников,

Вопросы. 1. Какое соединение проводников называют параллельным? Изобразите его на схеме. 2. Какая из электрических величин одинакова для всех проводников, соединенных параллельно? 3. Как выражается сила тока в цепи до ее разветвления через силы токов в отдельных ветвях разветвления? 4. Во сколько раз сопротивление участка цепи, состоящего из двух одинаковых проводников, соединенных параллельно, меньше сопротивления одного проводника? 5. Как включают электрические лампы и бытовые электрические приборы в сеть? 6. Какие напряжения используют для освещения и бытовых нужд?

Упражнения. 1. Два проводника сопротивлением 10 и 15 Ом соединены параллельно. Найдите полное сопротивление этого участка. 2. Два проводника сопротивлением 4 и 8 Ом соединены параллельно. Напряжение на проводниках 4 В. Найдите силу тока в каждом проводнике и в общей цепи.

Задание

Основываясь на законе Ома для участка цепи и его следствиях, докажите, что сопротивление R участка цепи, состоящего из двух проводников сопротивлением R1 и R2, соединенных параллельно, рассчитывается по формуле: 1/R = 1/R1 + 1/R2, или R = R1*R2/R1+R2.

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников


Напряжение, сила тока и сопротивление — физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик Ом. Закон Ома звучит так: Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка: I = U / R. Причиной сопротивления металлического проводника является взаимодействие электронов при их движении с ионами кристаллической решетки. В электрических цепях чаще всего проводники (потребители электрической энергии) соединяются последовательно (например, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы).

При последовательном соединении (рис. 1) сила тока в обоих проводниках (лампочках) одинакова: I = I1 = I2, напряжение на концах рассматриваемого участка цепи складывается из напряжения на первой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротивлений лампочек R = R1 + R2.

При параллельном соединении (рис. 2) резисторов напряжение на участке цепи и на концах резисторов одинаково: U = U1 = U2. Сила тока в неразветвленной части цепи равна сумме сил токов в от­дельных резисторах:

I = I1 + I2. Общее сопротивление участка меньше сопротивления каждого резистора. Если сопротивления резисторов одинаковы (R1 = R2), то общее сопротивление участка R= R1 /2 = R2/2. Параллельно соединяются сетевые потребители, которые рассчитаны на напряжение, равное напряжению сети.


Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. 10 класс. Физика. — Объяснение нового материала.

Комментарии преподавателя

Закон Ома для участка цепи

Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Ома оказался справедливым не только для металлов, но и для растворов электролитов. Сформулированный закон имеет место для так называемого однородного участка цепи – участка, не содержащего источников тока.

Математическая запись закона Ома проста, как и его формулировка, но экспериментально подтвердить эту зависимость очень трудно. Сила тока, протекающая по участку цепи, мала. Поэтому используют достаточно чувствительные приборы. Г. Ом изготовил чувствительный прибор для измерения силы тока, а в качестве источника тока использовал термопару. Действие амперметра и вольтметра основано на применение закона Ома для участка цепи. Угол поворота стрелки прибора пропорционален силе тока.

Из математической записи закона Ома:

 

можно выразить напряжение :

и сопротивление проводника:

.

Таким образом, закон Ома связывает три параметра, характеризующих постоянный электрический ток, проходящий по проводнику, и позволяет находить любой из них, если известны два других.

Закон Ома имеет границы применимости и выполняется только в том случае, когда при прохождении тока температура заметно не меняется. На вольт–амперной характеристике лампы накаливания видно, что график сильно искривляется при напряжении выше 10В, значит, закон Ома выше этого напряжения применять нельзя.

Также нельзя говорить, что сопротивление проводника зависит от напряжения и силы тока в цепи. Сопротивление участка цепи зависит от свойств проводника: длины, площади поперечного сечения и материала, из которого состоит проводник.

где l-длина проводника, s-его площадь поперечного сечения.

ρ –удельное сопротивление проводника – это физическая величина, характеризующая зависимость сопротивления проводника от материала, из которого он изготовлен.

Удельное сопротивление показывает, каким сопротивлением обладает сделанный из этого вещества проводник длиной 1м и площадью поперечного сечения 1м2 .

Из формулы видно, что единицей измерения в системе СИ является Ом·м. Но так как площадь поперечного сечения проводника достаточно мала, используют единицы измерения

при вычислении площадь поперечного сечения проводника следует выражать в мм2.

В заключении хочется заметить, что Ом начал свои опыты, когда был учителем физики в гимназии. В своих экспериментах Ом брал куски проволоки одинакового диаметра, но разного материала и изменял их длину таким образом, чтобы в цепи сила тока имела одинаковое значение. Находящаяся рядом магнитная стрелка отклонялась при прохождении тока в цепи. Установив связь между напряжением и силой тока, Г. Ом вывел один из основных законов постоянного тока.

Последовательное соединение проводников

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного приёмника электрического тока, а из нескольких различных, которые могут быть соединены между собой по-разному. Зная сопротивление каждого и способ их соединения, можно рассчитать общее сопротивление цепи.

На рисунке а изображена цепь последовательного соединения двух электрических ламп, а на рисунке б — схема такого соединения. Если выключать одну лампу, то цепь разомкнётся и другая лампа погаснет.

Рис. Последовательное включение лампочек и источников питания

Мы уже знаем, что при последовательном соединении сила тока в любых частях цепи одна и та же, т. е.

I = I1 = I2

А чему равно сопротивление последовательно соединённых проводников?

Соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

Последовательное соединение проводников

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):

R = R1 + R2

Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома:

U1 = IR1, U2 = IR2.

Из приведённых равенств видно, что напряжение будет большим на проводнике с наибольшим сопротивлением, так как сила тока везде одинакова.

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

U = U1 + U2.

Это равенство вытекает из закона сохранения энергии. Электрическое напряжение на участке цепи измеряется работой электрического тока, совершающейся при прохождении по участку цепи электрического заряда в 1 Кл. Эта работа совершается за счёт энергии электрического поля, и энергия, израсходованная на всём участке цепи, равна сумме энергий, которые расходуются на отдельных проводниках, составляющих участок этой цепи.

Все приведённые закономерности справедливы для любого числа последовательно соединённых проводников.

Пример 1. Два проводника сопротивлением R1 = 2 Ом, R2 = 3 Ом соединены последовательно. Сила тока в цепи I = 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Запишем условие задачи и решим её.


ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

 

Расчет параметров электрической цепи
при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов
во всех параллельно соединенных участках

2. напряжение на всех параллельно соединенных участках цепи одинаково


3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению :

( R — сопротивление проводника,
1/R — электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

( при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков,
равна сумме работ на отдельных участках:

A=A1+A2

5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков,
равна сумме мощностей на отдельных участках:

P=P1+P2

Для двух сопротивлений:

т.е. чем больше сопротивление, тем меньше в нём сила тока.

Домашняя работа.

Задание 1. Ответить на вопросы.

  1. Какое соединение проводников называют последовательным? Изобразите его на схеме.
  2. Какая электрическая величина одинакова для всех проводников, соединённых последовательно?
  3. Как найти общее сопротивление цепи, зная сопротивление отдельных проводников, при последовательном соединении?
  4. Как найти напряжение участка цепи, состоящего из последовательно соединённых проводников, зная напряжение на каждом?
  5. Какое соединение проводников называют параллельным? Изобразите его на схеме.
  6. Какая из электрических величин одинакова для всех проводников, соединённых параллельно?
  7. Как выражается сила тока в цепи до её разветвления через силы токов в отдельных ветвях разветвления?
  8. Как изменяется общее сопротивление разветвления после увеличения числа проводников в разветвлении?
  9. Какое соединение проводников применяется в жилых помещениях? Какие напряжения используются для бытовых нужд?

Задание 2. Решите задачи.

1. Две лампочки соединены последовательно. Сила тока на первой лампочке 2А. Найдите общее напряжение и напряжение на каждой из ламп, если сопротивление на первой лампе 3Ом, а на второй 4Ом.

2. Две лампочки соединены параллельно. Напряжение на второй лампочке10В. Найдите силу тока в цепи и на каждой из ламп, если сопротивление на первой лампе 1Ом, а на второй 2Ом.

К занятию прикреплен файл  «Это интересно». Вы можете скачать файл в любое удобное для вас время.

Использованные источники:

  • http://www.tepka.ru/
  • http://class-fizika.narod.ru
  • http://www.youtube.com/watch?v=cVKE9NItreo
  • http://znaika.ru/catalog/10-klass/physics/
  • http://www.youtube.com/watch?v=NB7hOVYe7h0
  • https://www.youtube.com/watch?v=cVKE9NItreo
  • https://www.youtube.com/watch?v=0hFWeR8ybxs
  • http://www.youtube.com/watch?v=EDI8DzWSSWY
  • http://www.youtube.com/watch?v=bH_-qGnjJqc
     

 


 

 

Сила тока при параллельном соединении формула

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Параллельное соединение элементов в электрической цепи

Прежде чем приступать к формированию электропроводки в любом типе помещения, разработке электрической цепи для других топов объектов, важно изучить основные способы соединений элементов, используемые на практике.

Наибольшее распространение получили следующие варианты:

  • параллельное;
  • последовательное;
  • смешанное соединение.

Если выбран вариант последовательного соединения, это означает, что все, используемые в цепи элементы, связываются друг с другом электрическими проводами последовательно. В результате, участок цепи, на котором устанавливается такой способ монтажа, не будет иметь в своей конструкции узлов.

Если соединение выполнено параллельно, то здесь объединение элементов в цепи будет выполнено при помощи двух узлов, при этом связь со всеми другими узлами будет отсутствовать. Важно разобраться, какая сила тока при параллельном соединении элементов будет в цепи.

Смешанный тип соединения может использоваться в сложных цепях, состоящих из множества различных элементов, многофункционального узла, выполняющего, как правило, широкий набор операций.

Сила тока в параллельном проводнике

Если в цепи использовано последовательное соединение отдельных ее элементов, то сила тока здесь на всех участках, во всех проводниках будет оставаться одинаковой. Рассчитать напряжение можно, используя простое правило – необходимо сложить все напряжения, получаемые на концах каждого из проводников и получим искомый результат.

Совсем по-другому проявляется сила тока в параллельном проводнике.

При любой нагрузке в электроцепи будет возникать определенное сопротивление. Оно, естественно, будет препятствовать прохождению электрического тока без каких-либо потерь. В целом, ток так и движется – постепенно, от источника по проложенным заранее проводникам к нагруженным элементам. Чтобы обеспечить легкое прохождение тока по проводникам, важно, чтобы этот проводник мог легко и просто отдавать электроны, т.е. – обладать хорошей проводимостью.

Большая часть современных цепей использует медные проводники, а обязательным элементом также являются приемники энергии. Каждый такой приемник создает определенную нагрузку и имеет то или иное электрическое сопротивление. От приведенных выше параметров, в конечном итоге, зависит сила тока при параллельном соединении проводников.

Особенности цепи, в которой используется параллельное соединение

Как уже отмечалось, в данном варианте монтажа электроцепи, все ее элементы, проводники, соединяются друг с другом параллельным методом. Соответственно, все начала проводников соединяются при помощи медных (преимущественно) проводников в один пучок. Аналогичным способом в одну точку также собираются и концы проводников. Как же рассчитывается сила тока в цепи при параллельном соединении? Лучше всего разобраться в данном вопросе поможет достаточно простой и понятный пример.

Нарисуем на листе бумаги такой вид соединения, который у специалистов называется «разветвленным» и обеспечим нахождение в каждой отдельной ветви по одному резистору (сопротивлению). Далее проследим, каким образом будет вести себя электрический ток, протекающий по цепи. Достигнув места разветвления, ток разделится на каждый резистор, установленный далее по определенной ветке линии. Следовательно, реальный ток в цепи будет равен величина, состоящей из суммы токов на всех сопротивлениях (с учетом количества разветвлений). Как считается сила тока разобрались, а вот напряжение при параллельном сопротивлении на всех элементах в сети будет оставаться одинаковым.

Примечательно, что все установленные на различных ветвях цепи резисторы можно заменить одним таким резистором, эквивалентным по сопротивлении сумме замещаемых элементов. Рассчитать, какова сила тока при параллельном соединении резисторов поможет важнейший закон Ома!

Область применения

А можно ли на практике использовать данные сведения? Есть ли от них реальная польза?

Прежде всего, рассмотрим организацию соединения проводников и сопротивлений в домашних условиях. Как правило, такие схемы собираются доля обеспечения работы многорожковых люстр, светильников с некоторым количеством ламп освещения. Если использовать здесь последовательную схему, то все лампочки будут включаться одновременно. При использовании параллельного метода можно выводить необходимое количество светильников на один выключатель и включать одну, две и более лампочек в зависимости от ранее принятого решения, с учетом вопросов экономичности, целесообразности и, конечно же, дизайна.

Подведем итог

Наконец, все, используемые в квартире, загородном доме бытовые приборы и устройства подключены к сети напряжением 220В параллельно. Это подключение происходит с помощью распределительного щитка. Зная, чему равна сила тока при параллельном соединении, можно уверенно отметить, данный способ позволит эффективно управлять используемой электротехникой, приборами и предметами освещения в квартире.

Похожие статьи по теме

Поделитесь своим мнением

Отменить ответ

Популярное на сайте

Опросы

Наш сайт Все-электричество предоставляет вашему вниманию подробную информацию об электрике. Публикация наших материалов может разрешаться только в том случае если вы укажите ссылку на источник с указанием нашего проекта. Перед использованием нашего проекта рекомендуем прочесть пользовательское соглашение. Вся информация на сайте Все-электричество предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

Рисунок 1.9.1.

По закону Ома, напряжения и на проводниках равны

Общее напряжение на обоих проводниках равно сумме напряжений 1 и 2:

где – электрическое сопротивление всей цепи. Отсюда следует:

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения 1 и 2 на обоих проводниках одинаковы:

Сумма токов 1 + 2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

Этот результат следует из того, что в точках разветвления токов (узлы и ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу за время Δ подтекает заряд Δ, а утекает от узла за то же время заряд 1Δ + 2Δ. Следовательно, = 1 + 2.

Рисунок 1.9.2.

Записывая на основании закона Ома

где – электрическое сопротивление всей цепи, получим

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Рисунок 1.9.3.

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Рисунок 1.9.4.

Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.

Виды соединений электропроводки: рассмотрим подробно

Параллельное соединение

Параллельным соединением сопро­тивлений называется соединение (рис. 1-8), при кото­ром к двум точкам электрической цепи присоединено несколько со­противлений, образующих развет­вление, состоящее из параллель­ных ветвей. Таким образом, при параллельном соединении один за­жим каждого сопротивления при­соединен к одному узлу, а другой зажим каждого сопротивления к другому узлу.

Так как напряжение на каждом из сопротивлений равно напряжению между узлами, то напряжения на сопротивлениях ветвей одинаковы, т. е.

U = Ul = U2 = U3,

или, выражая напряжения через произведение соответст­вующих токов и сопротивлений, можно написать:

I1r1 = I2r2 = I3r3,

откуда

I1 : I2 = r2 : r1 и i2 :i3 = r3 : r2

т. е. токи в ветвях распределяются об­ратно пропорционально сопротивле­ниям ветвей.

Согласно первому правилу Кирхгофа

I = I1 + I2 + I3

или, выражая токи через отношения напряжения к соответ­ствующим сопротивлениям, получим:

U:r = U1 : r1 + U2 : r2 + U3 : r3 откуда после сокращения

1 : r = (1 : r1) + (1 : r2) + (1 : r3)

или

g = g1 + g2 + g3

Сопротивление г принято называть общим или экви­валентным сопротивлением цепи, a g — общей или эквивалентной проводимо­стью цепи.

Из формулы следует, что при параллельном соединении сопротивлений эквивалентная проводимость цепи равна сумме проводимостей отдельных вет­вей.

Формула дает возможность определить эквива­лентное сопротивление разветвленной цепи. Например, при трех ветвях, приведя к общему знаменателю правую часть уравнения, получим:

1 : r = (r1r2 + r1r3 + r2r3) : r1r2r3

откуда эквивалентное сопротивление цепи

r = r1r2r3 : (r1r2 + r1r3 + r2r3)

Если сопротивления ветвей равны, то

r = r31 : 3r21 = r1 : 3

Если разветвление имеет п параллельных ветвей с оди­наковыми сопротивлениями n1, то эквивалентное сопротив­ление разветвления

r = r1 : n

Эквивалентное сопротивление разветвления, состоящего из двyx параллельных ветвей согласно уравнению, определяется по формуле

r = (r1r2) : (r1 + r2)

Большинство приемников энергии, в том числе лампы накапливания, нагревательные приборы, двигатели, пред­назначены для работы при неизменном номинальном на­пряжении. Поэтому они в большинстве случаев соединяются параллельно, так как при этом способе соединения все они находятся под одним и тем же номинальным напряжением и режим работы каждого из них практически не зависит от режима работы остальных.

Пример 1-10. Определить сопротивление лампы накаливания мощ­ностью Рл = 100 вт и напряжением = 220 в. Определить сопротив­ление двадцати параллельно включенных таких ламп.

Так как мощность Р = UI = U2/r, то сопротивление лампы нака­ливания

rл = U2 : Pл = 2202 : 100 = 484 ом

Общее сопротивление двадцати параллельно соединенных ламп

r = rл : 20 = 484 : 20 = 24,2 ом

1. Что такое электрическое соединение

Официальное определение электрического соединения находим во 2-м разделе Госстандарта РФ 52002 2003 под номером 104, в котором этим понятием определяют соединение участков электрической цепи, с помощью которого образуется электрическая цепь. Однако чтобы вникнуть в логику этого определения, потребуется дальнейшее изучение акта для выяснения, а что же такое «участок электрической цепи», сама «электрическая цепь» и для чего, собственно, предназначена. В других же источниках определение электрического соединения проводников повторяет (хотя и другими словами) приведенное выше.

Оставив в стороне теорию, рассмотрим, что представляет собой электрическое соединение (ЭС) и каково его предназначение.

Заметим, что ЭС можно рассматривать с самых разных точек зрения, которые соответствуют его официальному определению. При этом в любом случае оно выполняет свою заранее заданную функцию — пропускает электрический ток. т. е. предназначено для передачи электроэнергии.

  • ЭС может быть довольно сложным, состоящим из множества составляющих его структур (элементов, узлов, систем и т. д.). К примеру, ЭС вашего домашнего телевизора с источником питания, которым является электростанция — весьма сложная структура. И состоит она из множества проводников, линий электропередач (и иных электрических соединителей), подстанций, трансформаторов, электрических счетчиков, домашней электросети и, наконец, шнура телевизора. Можно сказать, что ЭС домашнего телевизора с электростанцией в свою очередь требует соединения множества иных электрических цепей.
  • ЭС присутствует также в любом электрическом приборе, устройстве и т.д. между их отдельными элементами и узлами. Т. е., по сути, мы имеем в каждом из них целый ряд соединений электрических элементов, без которых их работа попросту невозможна.
  • Но наиболее наглядным для каждого из нас является ЭС бытовых приборов с источниками питания, которыми мы у себя в квартире или доме считаем электрические розетки. И обеспечивается это ЭС с помощью т. н. электрических соединителей или разъемов, состоящих из известных всем вилок и розеток. Более точное и наукоемкое их определение желающие могут найти в ГОСТе IEC 60050-151-2014, вступившем в действие в 2015 году.

Что нужно для работы электротехнического устройства?

На представленной схеме хорошо просматривается возможность протекания тока различными путями. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной. Для приемника задается его сопротивление R.

Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, то есть фаза — это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке. Зато в последовательную цепь можно включить много лампочек, каждая из которых рассчитана на гораздо меньшее напряжение в сети.

Индуктивность является также и коэффициентом пропорциональности, измеряемом в Генри.

С их помощью можно установить взаимосвязь между теми значениями, которые имеют токи, напряжения, ЭДП по всей электрической цепи или на отдельных её участках.

Во всех её элементах течёт один и тот же ток. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, то есть будет иметь место шестипроводная линия, что неэкономично.

В ней, размещённые элементы изображаются с помощью условных обозначений. Чаще всего используют принципиальную схему электрической цепи.

Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т. При этом соединении напряжение на каждом участке равно напряжению U, которое приложено к узловым точкам цепи.
Монтажные схемы и маркировка электрических цепей

Основные параметры последовательного и параллельного подключений

Типы подключений следует различать из-за особенностейосновных параметров электрической цепи при таких подключениях.

При параллельном подключении, напряжение на элементах цепи всегда будет постоянным, а сила тока суммируется из токов на каждом элементе. Есть еще такой параметр, как сопротивление. Мы не рекомендуем заучивать наизусть все формулы, а руководствоваться законом Ома, предположив, что один из параметров будет постоянным. Но для ускорения решения задач заучить выкладку может быть полезно. Собственно, там отношение единицы к сопротивлению цепи, равно сумме отношений 1 к каждому из сопротивлений.

При последовательном подключении, напряжение на каждом элементе будет суммироваться, а сила тока будет постоянной. Сопротивление мы также можем узнать из закона Ома. Или же запомнить, что сопротивление равно сумме сопротивлений элементов цепи.

Особенности параметров при последовательном и параллельном подключениях можно легко запомнить, если представить, что соединительные провода – это трубы, а электрический ток вода. Сравнить с водой тут можно именно силу тока. Почему же силу тока? Потому что ток характеризуется количеством заряженных частиц (читай, как наличие воды в трубе).

Представим, что в случае последовательного подключения мы соединяем две трубы одинакового сечения (представим именно одинаковое сечение, т.к. дальше уже начинают влиять такие параметры, как сопротивление) и в каждой трубе есть вода при её наличии в водопроводе. Если же мы соединим две трубы параллельно, то поток распределится равномерно (а на деле в соответствии с геометрическими параметрами труб) между двумя трубами, т.е сила тока будет суммироваться из всех участков.

Почему всё происходит именно так и почему при параллельном подключении ток распределяется именно по двум проводникам и суммируется? Это сложный фундаментальный вопрос, обсуждение которого займет ни одну статью. На данный момент предлагаю считать, что это просто свойство, которое нужно знать. Как и то, что лёд ощущается холодным, а огонь горячим.

При смешанномподключении мы предварительно должны разбить цепь на простые для пониманияучастки, а затем проанализировать, как они в итоге будут соединены.Соответственно, на выходе мы получим простой вариант несложного подключения,которое однозначно будет или последовательное, или параллельное.

Зная все эти параметры, мы легко можем проанализировать любую электрическую цепь и собрать новую с нужными параметрами.

Подключение в распределительной коробке

Узловые точки удобно создавать с применением специализированных изделий. Типовые коробки создают из непроводящего, устойчивого к процессам коррозии пластика. В современных моделях предусмотрены входные отверстия с заглушками, фиксаторы для кабельной продукции. Крышка закрепляется герметично, обеспечивая дополнительную защиту от неблагоприятных внешних воздействий.

При большом количестве проводов случайные ошибки исключают с применением разноцветных оболочек

Способы соединения электрической цепи

Разобравшись с терминологией и графическим обозначением элементов, можно перейти к непосредственному рассмотрению способов соединения, представленных в следующей таблице:

Общее описание пути тока

Такие объекты, как ЦРП, находятся уже в непосредственной близости от городов, сел и т. д. Здесь происходит не только распределение, но и понижение напряжения до 220 или же 110 кВ. После этого электроэнергия передается на подстанции, расположенные уже в черте города.

При прохождении таких небольших подстанций напряжение понижается еще раз, но уже до 6-10 кВ. После этого осуществляется передача и распределение электроэнергии по трансформаторным пунктам, расположенным по разным участкам города. Здесь также стоит отметить, что передача энергии в черте города к ТП осуществляется уже не при помощи ЛЭП, а при помощи проложенных подземных кабелей. Это гораздо целесообразнее, чем применение ЛЭП. Трансформаторный пункт – это последний объект, на котором происходит распределение и передача электроэнергии, а также ее понижение в последний раз. На таких участках напряжение снижается до уже привычных 0,4 кВ, то есть 380 В. Далее оно передается в частные, многоэтажные дома, гаражные кооперативы и т. д.

Если кратко рассмотреть путь передачи, то он примерно следующий: источник энергии (электростанция на 10 кВ) – трансформатор повышающего типа до 110-1150 кВ – ЛЭП – подстанция с трансформатором понижающего типа – трансформаторный пункт с понижением напряжения до 10-0,4 кВ – потребители (частный сектор, жилые дома и т. д.).

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном — проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Подробности Категория: Статьи Создано: 06.09.2017 19:48

Как подключить в кукольном домике несколько светильников

Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.

Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.

Примечание: в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.

Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.

Название элементаСимвол на схемеИзображение
батарейка/ элемент питания
выключатель
провод
пересечение проводов (без соединения)
соединение проводов (пайкой, скруткой)
лампа накаливания
неисправная лампа
неработающая лампа
горящая лампа

Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.

Последовательное подключение

Выглядит оно вот так.

Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.

Достоинства – простота соединения.
Недостатки – если перегорела хоть одна лампочка, то не будет работать вся цепь.

Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.

При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U, измеряется в вольтах V. Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.

Пример №1: вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.

У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.
Подробнее о том, как выбрать источник питания написано в этой статье

Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.

Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.

Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.

Исходя из этого, для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения – параллельное.

Читайте так же статьи по теме:

  • Обзор миниатюрных ламп накаливания
  • Диоды или лампы накаливания

Параллельное подключение лампочек

Вот так выглядит параллельное подключение лампочек.

В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.

При выходе из строя одной лампочки другие продолжают гореть.

Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.

По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.

Вывод: при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.

Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.

Комбинированное подключение

Пример комбинированного подключения.

Три последовательные цепи, соединенные параллельно

А вот другой вариант:

Три параллельные цепи, соединенные последовательно.

Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки – как параллельное соединение.

Пример

При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.

Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.

Но нельзя включить одну-единственную лампочку.

При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:

А при нарушении на последовательном участке вот так:

Пример:

Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.

На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.

Пример

У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь – последовательно. Разбиваем систему на три параллельных цепи.

В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.

Пример

Для кукольных домиков можно использовать такое смешанное подключение.

Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух – по одной лампочке, есть двухрожковое бра из двух лампочек и трехрожковая люстра. В люстре и бра лампочки соединены последовательно.

У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V. А у тех, что соединены последовательно напряжение складывается на участке цепи
. Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки).
Для участка люстры 12V_3=4V (напряжение одной лампочки люстры).
Больше трех лампочек в одном светильнике соединять последовательно не стоит.

Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике, самые базовые принципы. Удачи!

Всем доброго времени суток. В прошлой статье я рассмотрел , применительно к электрическим цепям, содержащие источники энергии. Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса , называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье. Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и .

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии

Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

В чем измеряется

Единицей напряжения называют вольт (В). Один Вольт выражается в разности потенциалов двух точек электрического поля, силы которого совершают работу в 1 Дж для перемещения заряда в 1 Кл из первой точки во вторую. Измеряют напряжение специальным прибором — вольтметром.

Таким образом, значение 220 В подразумевает, что электрическое поле данной сети способно совершить работу (потратить энергию) в 220 Дж для «протаскивания» зарядов через цепь и нагрузку.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр


Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже


Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Технические нюансы разных видов соединения проводов

Многие важные решения зависят от реальных условий монтажа и последующей эксплуатации. Вместо дешевого проводника из алюминия профильные специалисты предпочитают медь. Некоторое увеличение стоимости компенсируется меньшим удельным сопротивлением, стойкостью к изгибам, долговечностью. Класс защитных оболочек выбирают с учетом огнестойкости строительных конструкций.

Для удобного и надежного соединения многожильных проводников пользуются наконечниками. Некоторые изделия такого типа устанавливают с применением специального прессующего инструмента.

Варианты подключения электропроводки

Теперь давайте разберемся, какая должна быть электропроводка и как соединять провода. Для расключения однофазной сети необходимо применять трехжильный провод.

При этом следует применять нормы из п.1.1.29 ПУЭ для облегчения прокладки и снижения вероятности перепутывания проводов.

Цветовое обозначение проводов

Трехжильный провод следует применять со следующими проводами:

  • Фазный провод – цветовое обозначение для однофазной сети не нормируется. Для трехфазной сети желтый, зеленый, красный – соответственно фазы А,В и С.

Обратите внимание! Для трехфазной цепи нормы ПУЭ нормируют не только цветовую гамму обозначения каждой фазы, но и их расположение в распределительных щитках разных конструкций.

  • Нулевой провод – для любых сетей должен применяться проводник голубого цвета. При обозначении шин или клеммников применяется символ «N».
  • Заземляющий провод – в любых сетях должен применяться провод с       продольными желто-зелеными полосами. При обозначении шин и клеммников применяется знак заземления.

Подключение в распределительном щитке

Теперь давайте рассмотрим виды соединения электропроводки в разных участках нашей электрической сети.

Начнем с распределительного щитка:

  • Сначала разберемся с фазным проводом. Он должен подключаться через защитное устройство. Это могут быть предохранители, пробки, но чаще всего используются автоматические выключатели. Питающий провод к автоматическим выключателям обычно подводится сверху, вы же подключаетесь снизу.
  • Нулевой провод ,согласно норм ПУЭ, не должен иметь коммутационных устройств. Поэтому обычно для него организуют отдельный клеммник в боковой части щитка. К нему мы подключаем голубую жилу нашего провода.
  • Это же правило относится и к заземляющему проводу. Только для него следует создать отдельный клеммник. К нему мы и подключаем наш желто-зеленый провод.

Подключение УЗО для всех групп потребителей

Отдельно остановимся на подключении УЗО. Для этого нам необходимо использовать не только фазный, но и нулевой провод. И схема во многом зависит от места установки УЗО.

Если вы устанавливаете УЗО на все группы вашей электрической сети:

  • В этом случае фазный и нулевой провод с счетчика подключается к вводам УЗО. Тут важно не перепутать и нулевой провод подключить к клемме, обозначенной «N». Иначе УЗО не будет работать.
  • Фазный провод на выходе УЗО подключаем ко всем автоматам, питающим отдельные группы.
  • Нулевой провод на выходе УЗО подключаем к шине или клеммнику, от которого подключаются нулевые провода всех групп.

Если вы устанавливаете УЗО на отдельную группу:

  • В этом случае фазный провод на ввод УЗО берется от автоматического выключателя группы.
  • Нулевой провод на ввод УЗО берется с нулевой шины вашего распределительного щитка.
  • С выводов УЗО нулевой и фазный провод идут непосредственно к потребителям.

Подключение в распределительной коробке

Соединение электропроводки на колодки при соблюдении указанных выше норм также не позволит вам запутаться. Отличается здесь только подключение светильников и розеток, но они незначительны.

При подключении розеток нам достаточно при помощи клемм сделать ответвление фазного, нулевого и заземляющего провода:

  • Для этого приходящий провод разрезается и каждая жила подключается к отдельному клеммнику. Для подключения одной розетки необходимо три клеммы, двух розеток — четыре, трех — пять и так далее.
  • Теперь подключаем к одной клемме фазный провод приходящего провода. Ко второй клемме подключается провод группы, идущий к другим присоединениям. К третьей клемме крепим фазный провод, идущий к нашей розетке.
  • Идентично выполняем операции с нулевым и заземляющим проводом.

Подключение светильника

Подключение светильников несколько усложняется ввиду наличия включателя.

  • Если вы вызвались подключать светильники своими руками, то на первом этапе делаем те же операции, что и при подключении розеток. То есть, разделываем кабель и каждую жилу       подключаем к разным клеммникам. Так же можно сразу подключить провод, идущий к другим электроприемникам данной группы.
  • Согласно норм ПУЭ, выключатель сети освещения должен отключать фазный провод. Поэтому от клеммника фазных проводов делаем подключение к выключателю.
  • Если у вас однокнопочный выключатель, то на выходе с выключателя будет один провод. Если двух и более кнопочный, то два или более, соответственно. Мы рассмотрим однокнопочный выключатель для упрощения предоставления информации. Для двух, трех и более кнопочных выключателей схема подключения идентична.
  • Провод, подключенный к выводу выключателя, отправляется обратно в распределительную коробку. Здесь мы устанавливаем еще один фазный клеммник,       к которому и подключается наш провод.
  • Теперь берется трехжильный провод, который подключен непосредственно к светильнику. Фазная жила этого провода подключается к фазному клеммнику провода, пришедшего от выключателя. Нулевая жила подключается к клеммнику нулевых жил, а заземляющая — к клеммнику заземляющих жил. Все, подключение нашего светильника выполнено. Если же посмотреть соответствующие видео, то данный процесс станет для вас еще более понятным.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже


Принципиальная схема (слева) и схема её замещения (справа).

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

2.2. Виды соединения проводников

На практике соединение проводников может выполняться одним из четырех видов:

2.2.1. Последовательное

Последовательное электрическое соединение проводников применяется в случае необходимости обеспечения одинаковой силы тока на всех участках цепи. В качестве примера можно привести старую гирлянду на елку. Она же демонстрирует и недостаток такого соединения — при перегорании одной лампочки (нарушение цепи) гаснут и все остальные.

2.2.2. Параллельное

Электрические соединения проводников параллельные являются самыми распространенными, т к. при этом ко всем элементам цепи подводится электроток одинакового напряжения. А вот сила тока отличается. Но в случае неисправности какого-либо одного элемента цепи, это не повлияет на работу остальных. Примером может служить подключение всех электроприборов в квартире или доме. Так, отключение верхнего света в комнате не влияет на работу телевизора и т. д.

2.2.3. Смешанное

Смешанное соединение электрической цепи означает наличие в ней, как последовательного, так параллельного соединений проводников.

2.2.4. Мостовая схема

Принцип мостовой схемы соединения проводников лежит в основе моста английского физика Ч. Уинстона, позволяющего измерять сопротивление проводников.

 

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа


Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Как соединить вольтметр и амперметр в цепь

К числу основных электротехнических параметров относятся сила тока и вольтаж. Для контроля этих величин используют приборы – амперметры и вольтметры. Требования по подключению этих приборов в цепь определяются, исходя из законов, которые действуют для последовательного и параллельного соединения.

Для измерения величины тока производится включение амперметра в цепь строго последовательно с рабочей нагрузкой. Важно, чтобы сопротивление самого прибора было минимальным, чтобы не допустить его влияние на работу электрооборудования. Если амперметр подключить параллельно, это приведет к выходу амперметра из строя.

Для измерения напряжения вольтметр в цепь подключается строго параллельно источнику или приемнику тока. Сам измерительный прибор должен иметь довольно высокое собственное сопротивление. Это требуется, чтобы при измерении можно было пренебречь величиной тока, который отбирается через вольтметр.

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.


Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

Проанализировав данное выражение можно прийти к следующим практически выводам:

  1. При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВНСледовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.
  2. Напряжение источника питания при подключении различных нагрузок изменяется, причем, чем меньше величина сопротивления нагрузки, тем меньше величина напряжения источника питания, так как разная величина сопротивления нагрузки вызывает разный ток в цепи, а следовательно изменяется падение напряжение на внутреннем сопротивлении источника
  3. В некоторых случаях возникает необходимость в измерении внутреннего сопротивления источника энергии. Это возможно сделать с помощью следующей схемы


Схема для измерения источника энергии.
В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

Некоторые факты

  1. Каждый электропроводный материал имеет некоторое сопротивление, являющееся сопротивляемостью материала электрическому току.
  2. Сопротивление измеряется в Омах. Символ единицы измерения Ом – Ω.
  3. Разные материалы имеют разные значения сопротивления.
    • Например, сопротивление меди 0.0000017 Ом/см 3
    • Сопротивление керамики около 10 14 Ом/см 3
  4. Чем больше значение сопротивления, тем выше сопротивляемость электрическому току. Медь, которая часто используется в электрических проводах, имеет очень малое сопротивление. С другой стороны, сопротивление керамики очень велико, что делает ее прекрасным изолятором.
  5. Работа всей цепи зависит от того, какой тип соединения вы выберете для подключения резисторов в этой цепи.
  6. U=IR. Это закон Ома, установленный Георгом Омом в начале 1800х. Если вам даны любые две из этих переменных, вы легко найдете третью.
    • U=IR: Напряжение (U) есть результат умножения силы тока (I) * на сопротивление (R).
    • I=U/R: Сила тока есть частное от напряжение (U) ÷ сопротивление (R).
    • R=U/I: Сопротивление есть частное от напряжение (U) ÷ сила тока (I).
  • Запомните: при параллельном соединении существует несколько путей прохождения тока по цепи, поэтому в такой цепи общее сопротивление будет меньше сопротивления каждого отдельного резистора. При последовательном соединении ток проходит через каждый резистор в цепи, поэтому сопротивление каждого отдельного резистора добавляется к общему сопротивлению.
  • Общее сопротивление в параллельной цепи всегда меньше сопротивления одного резистора с самым низким сопротивлением в этой цепи. Общее сопротивление в последовательной цепи всегда больше сопротивления одного резистора с самым высоким сопротивлением в этой цепи.

Физика 8 класс. Последовательное и параллельное соединение проводников :: Класс!ная физика

Физика 8 класс. ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

Включим в электрическую цепь в качестве нагузки ( потребителей тока) две лампы накаливания,
каждая из которых обладает каким-то определенным сопротивлением, и каждую из которых
можно заменить проводником с таким же сопротивлением.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи
при последовательном соединении сопротивлений:

1. сила тока во всех последовательно соединенных участках цепи одинакова

2. напряжение в цепи, состоящей из нескольких последовательно соединенных участков,
равно сумме напряжений на каждом участке

3. сопротивление цепи, состоящей из нескольких последовательно соединенных участков,
равно сумме сопротивлений каждого участка


4. работа электрического тока в цепи, состоящей из последовательно соединенных участков,
равна сумме работ на отдельных участках

А = А1 + А2

5. мощность электрического тока в цепи, состоящей из последовательно соединенных участков,
равна сумме мощностей на отдельных участка

Р = Р1 + Р2

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ


 

Расчет параметров электрической цепи
при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов
во всех параллельно соединенных участках

2. напряжение на всех параллельно соединенных участках цепи одинаково


3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению :

( R — сопротивление проводника,
1/R — электрическая проводимость проводника)

Устали? — Отдыхаем!

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников

Как мы уже говорили, чтобы создать электрический ток в проводнике, необходимо существование электрического поля. Иными словами, на концах этого проводника должны быть разные потенциалы, то есть проводник должен находиться под напряжением. Как вы понимаете, чем больше будет разность потенциалов, тем больше будет напряженность электрического поля. Следовательно, поле будет действовать на заряды сильнее, и они будут двигаться по проводнику быстрее. Это приведет к увеличению силы тока. Таким образом, мы можем заключить, что для каждого проводника существует определенная взаимосвязь между напряжением и силой тока. Зависимость силы тока от напряжения в данном проводнике называют вольт-амперной характеристикой проводника.

Подавая различное напряжение на концы проводника можно измерять силу тока и, таким образом, вывести зависимость между силой тока и напряжением. Наиболее простую форму имеет вольт-амперная характеристика металлов и растворов электролитов. Итак, эту вольт-амперную характеристику установил Георг Ом, проведя многочисленные опыты. Он доказал, что сила тока в проводнике прямо пропорциональна напряжению на концах этого проводника.

Как вы знаете из курса физики восьмого класса, закон Ома для участка цепи звучит так: сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению и обратно пропорциональна сопротивлению данного участка:

Единица измерения сопротивления названа в честь Георга Ома:

Как видно из формулы, проводник обладает сопротивлением 1 Ом, если при напряжении 1 В, в этом проводнике возникает сила тока в 1 А.

Если мы изобразим эту зависимость графически, то графики будут представлять собой прямые линии. Это говорит нам о линейной зависимости силы тока от напряжения.

Угол наклона прямой, соответствующей каждому проводнику будет обусловлен сопротивлением проводника. Используя наш график, мы можем с уверенностью сказать, что проводник номер 3 обладает самым маленьким сопротивлением, а проводник номер 1 обладает самым большим сопротивлением:

То есть, при одинаковом напряжении во всех трех проводниках будет различная сила тока, в зависимости от сопротивления данного проводника.

Очевидно, что сопротивление — это основная электрическая характеристика проводника, которая и обуславливает индивидуальную вольт-амперную характеристику. Разумеется, пользуясь законом Ома, можно определить сопротивление того или иного проводника экспериментально. Рассмотрим участок цепи между точками 1 и 2, обладающими различными потенциалами.

Подключим вольтметр для измерения разности потенциалов и подключим амперметр для измерения силы тока в проводнике. Тогда сопротивление проводника будет равно отношению напряжения между точками 1 и 2 к силе тока:

В восьмом классе мы уже говорили, чем обусловлено сопротивление проводников. Дело в том, что свободные электроны, перемещаясь по проводнику, неизбежно взаимодействуют с кристаллической решеткой, соударяясь с ее узлами, с ионами или различными примесями. Все это приводит к замедлению движения электронов, то есть, к уменьшению силы тока. Исходя из этого, можно сделать вывод, что чем длиннее проводник, тем больше его сопротивление.

Чем толще проводник, тем меньше его сопротивление.

И, конечно же, сопротивление проводника зависит от самого вещества, из которого сделан проводник.

Также, сопротивление зависит от внешних условий (в первую очередь от температуры), но к этому вопросу мы вернемся чуть позже — при изучении полупроводников. Таким образом, сопротивление проводника рассчитывается по формуле:

Напомним, какие величины входят в эту формулу. l — это длина проводника, S — это площадь поперечного сечения проводника, а ρ0 — это удельное сопротивление проводника.

Удельным сопротивлением проводника называется сопротивление проводника из данного вещества длиной 1 м и площадью поперечного сечения 1 м2.

Если мы выразим удельное сопротивление из формулы, по которой рассчитывается сопротивление проводника, то убедимся, что удельное сопротивление измеряется в омах умноженных на метр:

Конечно, удельные сопротивления многих материалов уже давно измерены экспериментально и сведены в таблицы.

Как вы видите, в таблице все вещества разделены на три группы: проводники, полупроводники и диэлектрики. Нетрудно догадаться, что проводники обладают очень маленьким удельным сопротивлением (поэтому они и хорошо проводят ток). Диэлектрики, напротив, обладают огромным удельным сопротивлением (поэтому их используют для изоляции). Полупроводники занимают промежуточную стадию, но их удельные сопротивления интереснее рассматривать в таблицах, показывающих зависимость удельного сопротивления полупроводников от температуры. Если вы обратили внимание, то в таблице указано, что данные значения удельных сопротивлений тех или иных веществ наблюдаются при определенной температуре. Поэтому, следует понимать, что при других температурах, эти значения могут быть иными.

Закон Ома для участка цепи имеет огромное значение для расчета электрических цепей, поэтому, было бы хорошо, если бы вы запомнили формулу, описывающую закон Ома.

Пример решения задачи.

Задача. В лампе накаливания используется вольфрамовая нить, радиус которой равен 0,01 мм. Длина этой нити составляет 20 см. Если лампочка рассчитана на 80 мА, то, каково напряжение на ней?

простых параллельных схем | Последовательные и параллельные схемы

На этой странице мы изложим три принципа, которые вы должны понимать в отношении параллельных цепей:

  1. Напряжение: Напряжение одинаково на всех компонентах в параллельной цепи.
  2. Ток: Полный ток цепи равен сумме токов отдельных ветвей.
  3. Сопротивление: Отдельные сопротивления уменьшают , чтобы равняться меньшему общему сопротивлению, а не добавляют , чтобы получить общее.

Давайте взглянем на несколько примеров параллельных цепей, демонстрирующих эти принципы.

Начнем с параллельной схемы, состоящей из трех резисторов и одной батареи:

Напряжение в параллельных цепях

Первый принцип для понимания параллельных цепей заключается в том, что напряжение одинаково на всех компонентах в цепи . Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, и напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени.

Следовательно, в приведенной выше схеме напряжение на R 1 равно напряжению на R 2 , которое равно напряжению на R 3 , которое равно напряжению на батарее.

Это равенство напряжений можно представить в другой таблице для наших начальных значений:

Применение закона Ома для простых параллельных схем

Как и в случае с последовательными цепями, применимо то же предостережение для закона Ома: значения напряжения, тока и сопротивления должны быть в одном контексте, чтобы вычисления работали правильно.

Однако в приведенной выше примерной схеме мы можем немедленно применить закон Ома к каждому резистору, чтобы найти его ток, потому что мы знаем напряжение на каждом резисторе (9 вольт) и сопротивление каждого резистора:

На данный момент мы еще не знаем, каков полный ток или полное сопротивление для этой параллельной цепи, поэтому мы не можем применить закон Ома к крайнему правому столбцу («Всего»). Однако, если мы внимательно подумаем о том, что происходит, должно стать очевидным, что общий ток должен равняться сумме всех токов отдельных резисторов («ответвлений»):

По мере того, как полный ток выходит из положительной (+) клеммы аккумулятора в точке 1 и проходит по цепи, часть потока разделяется в точке 2 и проходит через R 1 , еще часть разделяется в точке 3, чтобы пройти через R 2 , а оставшаяся часть идет через R 3 .Подобно реке, разветвляющейся на несколько более мелких ручьев, общий расход всех потоков должен равняться расходу всей реки.

То же самое происходит, когда токи через R 1 , R 2 и R 3 соединяются, чтобы течь обратно к отрицательной клемме батареи (-) в направлении точки 8: поток тока из точки 7 до точки 8 должно равняться сумме токов (ответвлений) через R 1 , R 2 и R 3 .

Это второй принцип параллельных цепей: полный ток цепи равен сумме токов отдельных ветвей .

Используя этот принцип, мы можем заполнить место ИТ на нашем столе суммой I R1 , I R2 и I R3 :

Как рассчитать полное сопротивление в параллельных цепях

Наконец, применив закон Ома к крайнему правому столбцу («Всего»), мы можем вычислить полное сопротивление цепи:

Уравнение сопротивления в параллельных цепях

Обратите внимание на кое-что очень важное. Общее сопротивление цепи составляет всего 625 Ом: на меньше , чем у любого из отдельных резисторов.В последовательной цепи, где полное сопротивление было суммой отдельных сопротивлений, общее сопротивление должно было быть на больше , чем у любого из резисторов по отдельности.

Здесь, в параллельной цепи, наоборот: мы говорим, что отдельных сопротивлений уменьшают , а не прибавляют , чтобы получилось .

Этот принцип завершает нашу триаду «правил» для параллельных цепей, точно так же, как было обнаружено, что у последовательных цепей есть три правила для напряжения, тока и сопротивления.

Математически соотношение между общим сопротивлением и отдельными сопротивлениями в параллельной цепи выглядит следующим образом:

Как изменить схемы нумерации параллельных цепей для SPICE

Та же основная форма уравнения работает для любого числа резисторов, соединенных вместе параллельно, просто добавьте столько членов 1 / R к знаменателю дроби, сколько необходимо для размещения всех параллельных резисторов в цепи.

Как и в случае с последовательной схемой, мы можем использовать компьютерный анализ для перепроверки наших расчетов.Во-первых, конечно, мы должны описать нашу примерную схему компьютеру в понятных ему терминах. Я начну с рисования схемы:

.

И снова мы обнаруживаем, что исходная схема нумерации, используемая для идентификации точек в цепи, должна быть изменена в интересах SPICE.

В SPICE все электрически общие точки должны иметь одинаковые номера узлов. Так SPICE узнает, что с чем связано и как.

В простой параллельной схеме все точки электрически являются общими в одном из двух наборов точек.В нашей примерной схеме провод, соединяющий верхние части всех компонентов, будет иметь один номер узла, а провод, соединяющий нижние части компонентов, будет иметь другой номер.

Оставаясь верным соглашению о включении нуля в качестве номера узла, я выбираю числа 0 и 1:

Пример, подобный этому, делает обоснование номеров узлов в SPICE довольно ясным для понимания. Поскольку все компоненты имеют общие наборы чисел, компьютер «знает», что все они подключены параллельно друг другу.

Чтобы отобразить токи ответвлений в SPICE, нам нужно вставить источники нулевого напряжения последовательно (последовательно) с каждым резистором, а затем привязать наши измерения тока к этим источникам.

По какой-то причине создатели программы SPICE сделали так, чтобы ток мог быть рассчитан только с по от источника напряжения. Это несколько раздражающее требование программы моделирования SPICE. После добавления каждого из этих «фиктивных» источников напряжения необходимо создать несколько новых номеров узлов, чтобы подключить их к соответствующим резисторам ответвления:

Как проверить результаты компьютерного анализа

Все фиктивные источники напряжения настроены на 0 вольт, чтобы не влиять на работу схемы.

Файл описания схемы или список цепей выглядит так:

Параллельная схема
 v1 1 0
 r1 2 0 10к
 r2 3 0 2k
 r3 4 0 1k
 vr1 1 2 постоянного тока 0
 vr2 1 3 постоянного тока 0
 vr3 1 4 постоянного тока 0
 .dc v1 9 9 1
 .print dc v (2,0) v (3,0) v (4,0)
 .print dc i (vr1) i (vr2) i (vr3)
 .конец
 

Запустив компьютерный анализ, мы получили следующие результаты (я снабдил распечатку описательными этикетками):

версия 1 v (2) v (3) v (4)
9.000E + 00 9.000E + 00 9.000E + 00 9.000E + 00
аккумулятор Напряжение R1 R2 напряжение Напряжение R3

Напряжение

версия 1 я (vr1) я (vr2) я (vr3)
9.000E + 00 9.000E-04 4.500E-03 9.000E-03
аккумулятор R1 ток R2 ток R3 ток

Напряжение

Эти значения действительно совпадают со значениями, вычисленными ранее по закону Ома: 0.9 мА для I R1 , 4,5 мА для I R2 и 9 мА для I R3 . При параллельном подключении, естественно, все резисторы имеют одинаковое падение напряжения на них (9 вольт, как у батареи).

Три правила параллельных цепей

Таким образом, параллельная цепь определяется как цепь, в которой все компоненты подключены между одним и тем же набором электрически общих точек. Другими словами, все компоненты подключены друг к другу через клеммы.Из этого определения следуют три правила параллельных цепей:

  • Все компоненты имеют одинаковое напряжение.
  • Сопротивления уменьшаются до меньшего общего сопротивления.
  • Токи ответвления в сумме равняются большему общему току.

Как и в случае с последовательными цепями, все эти правила находят корень в определении параллельной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

ОБЗОР:

  • Компоненты в параллельной цепи имеют одинаковое напряжение: E Всего = E 1 = E 2 =. . . E n
  • Общее сопротивление в параллельной цепи на меньше , чем любое из отдельных сопротивлений: R Всего = 1 / (1 / R 1 + 1 / R 2 +… 1 / R n )
  • Общий ток в параллельной цепи равен сумме токов отдельных ответвлений: I Всего = I 1 + I 2 +.. . Я н. .

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Параллельные схемы — Видеолекция по схемам

Когда мы начали четвертую главу, мы упомянули, что существует четыре основных способа соединения цепей. В 4.3 мы рассмотрим параллельные схемы, которые являются вторым основным методом.

Параллельные компоненты и схемы — еще один фундаментальный способ соединения электрических и электронных устройств. Параллельная схема характеризуется одинаковым напряжением на каждом компоненте в цепи, и вы заметите, что здесь у нас есть источник напряжения, и этот источник подключен непосредственно к каждому компоненту.Два компонента подключены параллельно; оба конца каждого компонента напрямую соединены друг с другом. Мы просто смотрим на R1 и R2, мы знаем, что они параллельны, потому что оба конца упомянутых компонентов подключены друг к другу и, следовательно, эти два параллельны. Точно так же, если каждый компонент в цепи напрямую соединен с каждым другим компонентом в цепи, тогда вся цепь параллельна, и, как вы можете видеть, каждый отдельный компонент здесь напрямую соединен друг с другом, поэтому мы можем сказать, что вся эта схема находится в параллельно.Каждый компонент в параллельной цепи будет иметь одинаковое напряжение на нем, и это будет вне приложенного напряжения.

К параллельным цепям применяются следующие принципы: все компоненты будут иметь одинаковое напряжение на них. Общий ток больше, чем ток любой одной ветви, и мы увидим это, посмотрев на наши расчеты схемы. Мы обнаружим, что полный ток будет суммой всех трех составляющих токов, сложенных вместе. Общее сопротивление меньше, чем сопротивление любой одной ветви, и мы обнаружим, что существует практическое правило относительно параллельных цепей: если у нас есть несколько сопротивлений в параллельной цепи, вы обнаружите, что общее сопротивление будет меньше, чем самое маленькое сопротивление. , поэтому общее сопротивление меньше, чем сопротивление любой ветви.Общая мощность больше, чем любая рассеиваемая мощность на компонентах, поэтому общая мощность будет суммой всех рассеиваемых мощностей компонентов, сложенных вместе, и она будет больше, чем рассеиваемая мощность любого отдельного компонента.

Математические отношения

Затем у нас есть некоторые формулы, математические соотношения в параллельных цепях. Закон Кирхгофа по току используется для анализа цепи так же, как закон Кирхгофа по напряжению в последовательных цепях. Здесь у нас есть формула для параллельного сопротивления, мы применим ее всего через пару моментов, а затем у нас есть текущее соотношение, ток будет I1 + I2 + I3 и так далее.Приложенное напряжение будет одинаковым на V1, V2, а также, рассеиваемая мощность будет суммой мощности, падающей на все компоненты.

Прежде всего, давайте посмотрим на формулу для параллельного сопротивления, и мы поговорим о параллельном сопротивлении, мы говорим о том, что у нас есть это напряжение, и оно соединено между двумя компонентами. Теперь это может быть много компонентов, просто для простоты мы собираемся разобраться с двумя для начала, но мы рассчитываем: каково полное сопротивление, которое видит этот источник питания? Он видит 1 кОм параллельно с 2 кОм, но что это за общее сопротивление, и это формула для его расчета.

Почему бы нам не записать здесь фактические значения и не провести немного вычислений? Прежде всего, давайте начнем с одного повторения, а первый — с одним повтором над R1. Теперь R1 в этом случае равен 1K, что будет единицей, деленной на 1000. Затем мы собираемся добавить это к сумме единицы, деленной на, и второй компонент здесь равен 2K, разделенный на 2000. Затем мы собираемся сложить их. мы собираемся сделать один из того, что это за ценность. Если один больше 1000, это будет около 1000 или 0,001, а один больше 2000 будет вдвое меньше, то есть около 0.0005, и примерно, если мы сложим эти два вместе, мы получим около 0,0015, 15 000. Наш расчет будет выглядеть примерно так: на единицу больше этого значения, и это будет равняться нашему сопротивлению.

Я не ожидаю, что вы будете делать подобные вещи в своей голове, поэтому давайте возьмем калькулятор и посмотрим, как мы это сделаем. Прежде всего, мы хотим узнать единицу по R1, поэтому мы щелкнем по 1000, а затем у нас будет функция от единицы по x, поэтому, если мы нажмем на нее, мы увидим, что у нас есть 1000, это один показатель минус три и эквивалентно этому значению прямо здесь.Затем мы добавим это к 2000 и сделаем то же самое, один над x, а затем посмотрим на знак равенства, чтобы увидеть, какова общая сумма, а это 1,5 тысячи. Помните, что наше общее сопротивление будет на единицу больше этого значения, и поэтому мы снова воспользуемся функцией «одно сопротивление по x», и здесь мы получим наше значение 666,66 Ом. Если бы мы перерисовали здесь нашу схему, если бы мы сказали, что здесь отсутствует источник питания, и мы поместили бы сопротивление здесь, эквивалентное сопротивление составило бы 666,66 Ом, а наше ответное напряжение — десять вольт.Это дает нам параллельное сопротивление. То есть, помните, десять вольт, когда они приложены к этим двум компонентам, представляют собой ощутимое сопротивление, то есть параллельное сопротивление.

Есть кое-что, что не входит в это, и меня действительно беспокоит то, что вы сможете использовать формулу, но в качестве ориентира позвольте нам кратко взглянуть на то, на что мы на самом деле смотрим. Если вы помните, в предыдущих главах мы рассматривали нечто, называемое спермой, и говорили, что сперма является ответной реакцией на сопротивление.То, что мы делаем здесь, когда мы сказали 1 на 1000 плюс 1 на 2000, мы складываем общее количество семен. Мы получили это значение прямо здесь, и на самом деле это было общее количество сперматозоидов, и если вы помните, что сопротивление равняется единице по сравнению с семенами, и поэтому мы сделали это, чтобы мы могли вычислить параллельное сопротивление, поэтому мы сделали одно по x, и это то, что дало нам это ценить. По сути, когда вы вычисляете параллельное сопротивление, вы складываете общие проводящие токи, а затем берете обратную величину этой общей проводимости, указывающую сопротивление.В вашей книге это не обсуждается, но я просто хотел рассказать немного о том, почему именно эта схема работает. Если вы не хотите знать, почему это работает, это нормально, но просто используйте эту формулу для расчета параллельного сопротивления. Помните, что в интуитивных соотношениях мы упоминали, что параллельное сопротивление всегда будет меньше наименьшего значения сопротивления. В этом случае R1 — наименьшее значение 1 кОм, а параллельное сопротивление было меньше наименьшего значения 1 кОм.

Давайте продолжим и сделаем еще несколько вычислений здесь, мы рассчитали общее сопротивление и снова добавим его, и мы сказали, что наше общее сопротивление составляет 666,66 Ом, а наше приложенное напряжение — десять вольт. Что касается тока, запомните, что ток равен напряжению, разделенному на сопротивление, поэтому здесь у нас есть приложенное напряжение к этому компоненту, поэтому у нас есть десять вольт, разделенных на 1 кОм, это будет десять миллиампер, и помните, что у нас здесь те же десять вольт на наших 2 кОм, так что это будет десять вольт на 2К, что будет пять миллиампер, так что наш общий ток через оба компонента будет 15 миллиампер.

Другой способ сделать это — использовать калькулятор, но помните, что мы вычислили общее сопротивление, поэтому мы могли бы сказать, что десять вольт, разделенных на 666 Ом, также должны дать 15 миллиампер, и если бы мы быстро схватили калькулятор, давайте посмотрим Если мы сможем подтвердить, что… 15 миллиампер — это, собственно, ответ. Мы вычислили ток, и теперь приложенное напряжение ВА между R1 и R2 — одно и то же, поэтому в напряжении нет ничего особенного. Мощность, мы будем смотреть на общую мощность, которая будет суммой P1 + P2 +, сколько бы дополнительных компонентов у нас не было.Опять же, мы могли бы сначала посмотреть на людей, поэтому индивидуальное падение напряжения на 1 кОм составило десять миллиампер, и это будет мощность здесь. Десять миллиампер, умноженных на десять вольт, дадут нам 100 милливатт, что будет на R1, поэтому помните, что десять миллиампер прошли через этот компонент, умноженное на напряжение, которое дало бы нам этот ток. Тогда на R2 ток был пять миллиампер, умноженных на приложенное напряжение, десять вольт равнялись половине этого, 50 милливатт, поэтому у нас должно быть 150 милливатт мощности.Мы могли бы сделать это по-другому, мы могли бы сказать, что наше общее приложенное напряжение умножено на наш общий ток, поэтому в этом случае мы могли бы сказать, что десять вольт — это наше приложенное общее напряжение, умноженное на общий ток, который составляет 15 миллиампер, получается 10 x 15 быть 150 милливатт.

Это был наш основной расчет сопротивления, напряжения, тока и мощности для основных параллельных цепей.

Параллельные источники напряжения

Параллельные источники напряжения, иногда в цепи требуется больше мощности, чем может быть предоставлено одним источником напряжения, поэтому то, на что мы смотрим здесь, давайте представим, что у нас есть источник напряжения и к нему подключены некоторые параллельные компоненты, давайте скажем, мы можем выбрать несколько из них.Здесь мы обнаружим, что ток, потребляемый всеми этими компонентами, будет весьма значительным, и что этот блок питания сам по себе может иметь трудности с обеспечением такого большого тока, поэтому вы можете вставить сюда еще один блок питания и подключите его параллельно этому источнику питания, и это может помочь в обеспечении дополнительных потребностей в токе всех этих компонентов. Если вы собираетесь это сделать, на нем должно быть одинаковое напряжение, поэтому, если это обычная батарея, 1,5 вольта, а у нас есть еще 1.Здесь источник 5 В, это не будет проблемой, и источник по-прежнему будет составлять 1,5 В, это просто означает, что у вас будет дополнительное питание для обеспечения всех этих компонентов. Общее напряжение будет таким же, но текущая емкость увеличится.

В этом уроке мы рассмотрели некоторые расчеты, касающиеся параллельных цепей, мы вычислили сопротивление, напряжение, ток и мощность, а также рассмотрели два различных отношения в параллельных цепях и определили параллельные цепи.

Видеолекции, созданные Тимом Фигенбаумом в Общественном колледже Северного Сиэтла.

Практический рабочий лист параллельных цепей постоянного тока с рабочим листом ответов

Позвольте электронам сами дать вам ответы на ваши собственные «практические проблемы»!

Примечания:

По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом. С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, чтобы проверить их работу.Хотя такой подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: ученики должны построить свои собственные «практические задачи» с реальными компонентами и попытаться математически предсказать различные значения напряжения и тока. Таким образом, математическая теория «оживает», и учащиеся получают практические навыки, которых они не приобрели бы, просто решая уравнения.

Еще одна причина для использования этого метода практики — научить студентов научному методу : процессу проверки гипотезы (в данном случае математических предсказаний) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся. Обсудите эти вопросы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, вместо того, чтобы просто говорить им, что они должны и не должны делать.Я никогда не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

Примечание для тех инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое студентам для построения реальных схем вместо того, чтобы просто математически анализировать теоретические схемы:

Какова цель студентов, посещающих ваш курс?

Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах.Если ваша цель — обучить физиков-теоретиков, то во что бы то ни стало придерживайтесь абстрактного анализа! Но большинство из нас планируют, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

Кроме того, если студенты создают свои собственные практические задачи, они учатся выполнять первичное исследование , тем самым давая им возможность продолжить свое образование в области электрики / электроники в автономном режиме.

В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их ученики применяли высшую математику в реальных экспериментах, не представляющих опасности для безопасности и стоивших меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставьте своих учеников практиковать математику на множестве реальных схем!

Проводимость | Последовательные и параллельные схемы

Когда ученики впервые видят параллельное уравнение сопротивления, возникает естественный вопрос: «Откуда взялось , что ?» Это действительно странная арифметика, и ее происхождение заслуживает хорошего объяснения.

В чем разница между сопротивлением и проводимостью?

Сопротивление, по определению, является мерой трения , которое компонент представляет для прохождения тока через него. Сопротивление обозначается заглавной буквой «R» и измеряется в единицах «Ом». Тем не менее, мы также можем рассматривать это электрическое свойство с точки зрения его обратного: насколько легко, , это для тока, протекающего через компонент, а не как сложно .

Если сопротивление — это слово, которое мы используем, чтобы обозначить меру того, насколько трудно протекать току, то хорошим словом, чтобы выразить, насколько легко ток протекает, будет проводимость .Математически проводимость обратно пропорциональна сопротивлению:

.

Чем больше сопротивление, тем меньше проводимость — и наоборот.

Это должно иметь интуитивный смысл, потому что сопротивление и проводимость — противоположные способы обозначения одного и того же существенного электрического свойства.

Если сравнивать сопротивления двух компонентов и обнаруживается, что компонент «A» имеет половину сопротивления компонента «B», то мы могли бы в качестве альтернативы выразить это соотношение, сказав, что компонент «A» на в два раза больше, чем на проводимость, как компонент «Б.«Если компонент« A »имеет сопротивление только на одну треть от сопротивления компонента« B », то мы могли бы сказать, что он на в три раза больше, чем на проводимости, чем компонент« B »и так далее.

Единица проводимости

Продолжая эту идею, были созданы символ и единица измерения проводимости. Символ — заглавная буква «G», а единица измерения — mho , что означает «ом», написанное наоборот (и вы не думали, что у электронщиков есть чувство юмора!).

Несмотря на свою уместность, блок MHO был заменен в последующие годы блоком Siemens (сокращенно прописной буквой «S»).Это решение об изменении названий единиц напоминает изменение единицы измерения температуры в градусах по Цельсию на градусы по Цельсию или изменение единицы измерения частоты c.p.s. От (циклов в секунду) до Гц, . Если вы ищете здесь образец, то Сименс, Цельсий и Герц — это фамилии известных ученых, имена которых, к сожалению, меньше говорят нам о природе единиц, чем их первоначальные обозначения.

В качестве примечания: единицы измерения Siemens никогда не выражаются без последней буквы «s».Другими словами, не существует такой вещи, как «siemen», как в случае с «ом» или «mho». Причина тому — правильное написание фамилий ученых.

Единица измерения электрического сопротивления была названа в честь кого-то по имени «Ом», тогда как единица измерения электрической проводимости была названа в честь кого-то по имени «Сименс», поэтому было бы неправильно «выделять единицу» последнюю единицу, поскольку ее конечная «s» не соответствует обозначают множественность.

Возвращаясь к нашему примеру с параллельной схемой, мы должны увидеть, что несколько путей (ветвей) для тока уменьшают общее сопротивление для всей цепи, поскольку ток может легче проходить через всю сеть из нескольких ветвей, чем через любую только тех сопротивлений отрасли.Что касается сопротивления , дополнительные ответвления приводят к меньшему общему количеству (ток встречает меньшее сопротивление). Однако с точки зрения проводимости дополнительные ответвления приводят к большей сумме (ток протекает с большей проводимостью).

Общее параллельное сопротивление

Общее параллельное сопротивление на меньше , чем любое из сопротивлений отдельных ветвей, потому что параллельные резисторы вместе оказывают меньшее сопротивление, чем по отдельности:

Общая параллельная проводимость

Общая параллельная проводимость на больше, чем на , чем проводимость любой из отдельных ветвей, потому что параллельные резисторы проводят вместе лучше, чем по отдельности:

Если быть более точным, общая проводимость в параллельной цепи равна сумме индивидуальных проводимостей:

Если мы знаем, что проводимость — это не что иное, как математическая обратная величина (1 / x) сопротивления, мы можем перевести каждый член приведенной выше формулы в сопротивление, подставив обратную величину каждой соответствующей проводимости:

Решая приведенное выше уравнение для полного сопротивления (вместо обратного значения общего сопротивления), мы можем инвертировать (возвратить) обе части уравнения:

Итак, мы наконец пришли к нашей загадочной формуле сопротивления! Электропроводность (G) редко используется в качестве практического измерения, поэтому приведенная выше формула часто используется при анализе параллельных цепей.

ОБЗОР:

  • Проводимость противоположна сопротивлению: это мера того, насколько легко, , чтобы электрический ток протекал через что-то.
  • Электропроводность обозначается буквой «G» и измеряется в единицах mhos или Siemens .
  • Математически проводимость равна обратной величине сопротивления: G = 1 / R

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Что такое «последовательные» и «параллельные» схемы? | Последовательные и параллельные схемы

Цепи, состоящие только из одной батареи и одного сопротивления нагрузки, очень просто анализировать, но они не часто встречаются на практике.Обычно мы находим цепи, в которых вместе соединено более двух компонентов.

Серия

и параллельные схемы

Существует два основных способа соединения более двух компонентов схемы: серии и параллельно .

Схема конфигурации серии

Сначала пример последовательной схемы:

Здесь у нас есть три резистора (с маркировкой R 1 , R 2 и R 3 ), соединенных длинной цепочкой от одного вывода батареи к другому.(Следует отметить, что нижний индекс — эти маленькие цифры в правом нижнем углу буквы «R» — не связаны со значениями резисторов в омах. Они служат только для идентификации одного резистора от другого.)

Определяющей характеристикой последовательной цепи является то, что существует только один путь для прохождения тока. В этой схеме ток течет по часовой стрелке от точки 1 к точке 2, точке 3 к точке 4 и обратно до 1.

Конфигурация параллельной цепи

Теперь давайте посмотрим на другой тип схемы, параллельную конфигурацию:

Опять же, у нас есть три резистора, но на этот раз они образуют более одного непрерывного пути прохождения тока.Есть один путь от 1 к 2 до 7 к 8 и снова к 1. Есть еще один от 1 до 2 до 3 до 6 до 7 до 8 и снова 1. И затем есть третий путь от 1 до 2 до 3 до 4 до 5 до 6 до 7 до 8 и снова обратно к 1. Каждый отдельный путь (через рэндов 1 , рэндов 2 и рэндов 3 ) называется ветвью .

Определяющей характеристикой параллельной цепи является то, что все компоненты подключены между одним и тем же набором электрически общих точек. Глядя на принципиальную схему, мы видим, что все точки 1, 2, 3 и 4 электрически общие.То же самое и с точками 8, 7, 6 и 5. Обратите внимание, что все резисторы, а также батарея подключены между этими двумя наборами точек.

И, конечно же, сложность не ограничивается простыми последовательностями и параллелями! У нас могут быть цепи, которые представляют собой комбинацию последовательной и параллельной цепи.

Схема последовательной параллельной конфигурации

В этой схеме у нас есть две петли для протекания тока: одна от 1 до 2 до 5 до 6 и снова обратно к 1, а другая от 1 до 2 до 3 до 4 до 5 до 6 и снова обратно к 1 .Обратите внимание, как оба пути тока проходят через R 1 (от точки 1 к точке 2). В этой конфигурации мы бы сказали, что R 2 и R 3 параллельны друг другу, а R 1 включены последовательно с параллельной комбинацией R 2 и R 3 .

Это всего лишь предварительный обзор того, что будет в будущем. Не волнуйся! Мы рассмотрим все эти схемы подробно, по очереди! Вы можете сразу перейти к следующим страницам, посвященным последовательным и параллельным схемам, или к разделу Что такое последовательно-параллельная схема? в главе 7.

Основы последовательного и параллельного подключения

Что такое последовательное соединение?

Основная идея «последовательного» соединения заключается в том, что компоненты соединяются встык в линию, образуя единый путь, по которому может течь ток:

Что такое параллельное соединение?

С другой стороны, основная идея «параллельного» подключения состоит в том, что все компоненты подключаются через выводы друг друга. В чисто параллельной схеме никогда не может быть более двух наборов электрически общих точек, независимо от того, сколько компонентов подключено.Есть много путей для прохождения тока, но только одно напряжение на всех компонентах:

Конфигурации последовательных и параллельных резисторов

имеют очень разные электрические свойства. В следующих разделах мы рассмотрим свойства каждой конфигурации.

ОБЗОР:

  • В последовательной цепи все компоненты соединены встык, образуя единый путь для прохождения тока.
  • В параллельной цепи все компоненты соединены друг с другом, образуя ровно два набора электрически общих точек.
  • «Ветвь» в параллельной цепи — это путь для электрического тока, образованный одним из компонентов нагрузки (например, резистором).

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Учебное пособие по физике: Параллельные схемы

Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением. Когда все устройства соединены с использованием параллельных соединений, схема называется параллельной схемой .В параллельной схеме каждое устройство помещается в свою отдельную ветвь . Наличие ответвлений означает, что существует несколько путей, по которым заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет проходить через единственный резистор, присутствующий в одной ветви. По прибытии в место разветвления или узел плата делает выбор относительно того, через какую ветвь пройти на обратном пути к терминалу с низким потенциалом.

Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4. В этом разделе было подчеркнуто, что добавление большего количества резисторов в параллельную цепь приводит к довольно неожиданному результату — уменьшению общего сопротивления. . Поскольку существует несколько путей, по которым может протекать заряд, добавление еще одного резистора в отдельную ветвь обеспечивает еще один путь, по которому заряд может проходить через основную область сопротивления в цепи.Это уменьшенное сопротивление в результате увеличения количества ответвлений будет иметь эффект увеличения скорости, с которой течет заряд (также известной как ток). Чтобы сделать этот довольно неожиданный результат более разумным, была введена аналогия с платными дорогами. Плата за проезд — это основное место сопротивления автомобильному потоку на платной дороге. Добавление дополнительных пунктов взимания платы за проезд в пределах их собственного отделения на платной дороге обеспечит больше путей для автомобилей, проезжающих через станцию ​​взимания платы. Эти дополнительные пункты пропуска снизят общее сопротивление потоку автомобилей и увеличат скорость их движения.

Текущая

Скорость, с которой заряд проходит через цепь, называется током. Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами таким образом, что в одном месте ток меньше, чем в другом. В параллельной схеме заряд делит на отдельные ветви, так что в одной ветви может быть больше тока, чем в другой.Тем не менее, если брать в целом, общая сумма тока во всех ветвях при сложении равна величине тока в местах за пределами ветвей. Правило, что ток везде одинаковый все еще работает, только с закруткой. Сила тока вне ветвей равна сумме токов в отдельных ветвях. Это все еще та же величина тока, только разделенная на несколько путей.

В форме уравнения этот принцип можно записать как

I итого = I 1 + I 2 + I 3 +…

, где I total — общая сумма тока вне ветвей (и в батарее), а I 1 , I 2 и I 3 представляют ток в отдельных ветвях цепи.

В этом блоке широко использовалась аналогия между расходом заряда и расходом воды. Еще раз вернемся к аналогии, чтобы проиллюстрировать, как сумма текущих значений в ветвях равна сумме вне ветвей.Поток заряда в проводах аналогичен потоку воды в трубах. Рассмотрим приведенные ниже схемы, на которых поток воды в трубах делится на отдельные ответвления. В каждом узле (место разветвления) вода проходит двумя или более отдельными путями. Скорость, с которой вода поступает в узел (измеряется в галлонах в минуту), будет равна сумме расходов в отдельных ветвях за пределами узла. Точно так же, когда две или более ветви подаются в узел, скорость, с которой вода вытекает из узла, будет равна сумме расходов в отдельных ветвях, которые подаются в узел.

Тот же принцип разделения потока применяется к электрическим цепям. Скорость, с которой заряд поступает в узел, равна сумме расходов в отдельных ветвях за пределами узла. Это проиллюстрировано в приведенных ниже примерах. В примерах вводится новый символ схемы — буква A, заключенная в круг. Это символ амперметра — устройства, используемого для измерения силы тока в определенной точке. Амперметр способен измерять ток, оказывая при этом незначительное сопротивление потоку заряда.

На диаграмме A показаны два резистора, подключенных параллельно узлам в точках A и B. Заряд течет в точку A со скоростью 6 ампер и делится на два пути — один через резистор 1, а другой через резистор 2. Ток в ветви с резистором 1 — 2 ампера, а ток в ветви с резистором 2 — 4 ампера. После того, как эти две ветви снова встретятся в точке B, чтобы сформировать единую линию, ток снова станет равным 6 ампер. Таким образом, мы видим, что принцип, согласно которому ток вне ветвей равен сумме тока в отдельных ветвях, справедлив.

I итого = I 1 + I 2

6 ампер = 2 ампера + 4 ампера

Схема B выше может быть немного сложнее, если три резистора расположены параллельно. На схеме обозначены четыре узла, обозначенные буквами A, B, C и D. Заряд течет в точку A со скоростью 12 ампер и делится на два пути: один проходит через резистор 1, а другой направляется к точке B (и резисторам 2). и 3). 12 ампер тока делятся на 2-амперную (через резистор 1) и 10-амперную (в направлении точки B).В точке B происходит дальнейшее разделение потока на два пути — один через резистор 2, а другой через резистор 3. Ток в 10 ампер, приближающийся к точке B, делится на 6-амперный канал (через резистор 2) и 4-канальный. -амперный тракт (через резистор 3). Таким образом, видно, что значения тока в трех ветвях составляют 2 ампера, 6 ампер и 4 ампера, и что сумма значений тока в отдельных ветвях равна току вне ветвей.

I всего = I 1 + I 2 + I 3

12 ампер = 2 ампер + 6 ампер + 4 ампер

Анализ потока в точках C и D также может быть проведен, и будет замечено, что сумма расходов потока в этих точках равна скорости потока, находящейся непосредственно за этими точками.

Эквивалентное сопротивление

Фактическая величина тока всегда изменяется обратно пропорционально величине общего сопротивления. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Чтобы исследовать эту взаимосвязь, давайте начнем с простейшего случая, когда два резистора помещены в параллельные ветви, каждый из которых имеет одинаковое значение сопротивления 4 Ом.Поскольку схема предлагает два равных путей для потока заряда, только половина заряда выберет для прохождения через данную ветвь. В то время как каждая отдельная ветвь предлагает сопротивление 4 Ом любому заряду, который проходит через нее, только половина всего заряда, протекающего по цепи, будет встречать сопротивление 4 Ом этой отдельной ветви. Таким образом, что касается батареи, которая накачивает заряд, наличие двух параллельно подключенных резисторов 4 Ом было бы эквивалентно наличию одного резистора 2 Ом в цепи.Таким же образом, наличие двух параллельно подключенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 3 Ом. А наличие двух параллельных резисторов 12 Ом было бы эквивалентно наличию в цепи одного резистора 6 Ом.

Теперь давайте рассмотрим другой простой случай, когда три резистора включены параллельно, каждый из которых имеет одинаковое сопротивление 6 Ом. С тремя равными путями для прохождения заряда через внешнюю цепь, только одна треть заряда будет проходить через данную ветвь.Каждая отдельная ветвь обеспечивает сопротивление 6 Ом проходящему через нее заряду. Однако тот факт, что только одна треть заряда проходит через определенную ветвь, означает, что общее сопротивление цепи составляет 2 Ом. Что касается батареи, которая нагнетает заряд, наличие трех параллельных резисторов 6 Ом было бы эквивалентно наличию одного резистора 2 Ом в цепи. Таким же образом, наличие трех параллельно подключенных резисторов сопротивлением 9 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 3 Ом.А наличие трех параллельных резисторов 12 Ом было бы эквивалентно наличию одного резистора 4 Ом в цепи.

Это концепция эквивалентного сопротивления. Эквивалентное сопротивление схемы — это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от набора резисторов, присутствующих в схеме. Для параллельных цепей математическая формула для вычисления эквивалентного сопротивления (R eq ) составляет

. 1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 +…

, где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, подключенных параллельно. Приведенные выше примеры можно рассматривать как простые случаи, в которых все пути обладают одинаковым сопротивлением отдельному заряду, который проходит через них. Вышеупомянутые простые случаи были выполнены без использования уравнения. Тем не менее, уравнение подходит как для простых случаев, когда резисторы ответвления имеют одинаковые значения сопротивления, так и для более сложных случаев, когда резисторы ответвления имеют разные значения сопротивления.Например, рассмотрим применение уравнения к одному простому и одному сложному случаю ниже.

Случай 1 : Три резистора 12 Ом включены параллельно

1 / R экв = 1 / R 1 + 1 / R 2 + 1 / R 3

1 / R экв = 1 / (12 Ом) + 1 / (12 Ом) + 1 / (12 Ом)

Использование калькулятора …

1 / R экв. = 0,25 Ом -1

R экв = 1 / (0,25 Ом -1 )

R экв. = 4,0 Ом

Случай 2 : резисторы 5,0 Ом, 7,0 Ом и 12 Ом включены параллельно

1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3

1 / R экв. = 1 / (5.0 Ом) + 1 / (7,0 Ом) + 1 / (12 Ом)

Использование калькулятора …

1 / R экв. = 0,42619 Ом-1

R экв = 1 / (0,42619 Ом -1 )

R экв. = 2,3 Ом


Ваша очередь попробовать

Нужно больше практики? Используйте два параллельных резистора виджет ниже, чтобы попробовать некоторые дополнительные проблемы.Введите любые два желаемых значения сопротивления. Используйте свой калькулятор, чтобы определить значения рэндов и рэндов. Затем нажмите кнопку Отправить , чтобы проверить свои ответы. Попробуйте столько раз, сколько хотите, с разными значениями сопротивления.

Падения напряжения для параллельных ветвей

В разделе «Схемы» учебного пособия «Физический класс» подчеркивалось, что любое повышение напряжения, полученное за счет заряда в батарее, теряется из-за заряда, когда он проходит через резисторы внешней цепи.Общее падение напряжения во внешней цепи равно увеличению напряжения при прохождении заряда через внутреннюю цепь. В параллельной схеме заряд не проходит через каждый резистор; скорее, он проходит через единственный резистор. Таким образом, полное падение напряжения на этом резисторе должно соответствовать напряжению батареи. Не имеет значения, проходит ли заряд через резистор 1, резистор 2 или резистор 3, падение напряжения на резисторе, которое выбирает для прохождения, должно равняться напряжению батареи.В форме уравнения этот принцип можно было бы выразить как

В аккумулятор = В 1 = В 2 = В 3 = …

Если три резистора размещены в параллельных ветвях и питаются от 12-вольтовой батареи, то падение напряжения на каждом из трех резисторов составляет 12 вольт. Заряд, протекающий по цепи, встретит только один из этих трех резисторов и, таким образом, столкнется с одним падением напряжения на 12 вольт.

Диаграммы электрических потенциалов были представлены в Уроке 1 этого устройства и впоследствии использовались для иллюстрации последовательных падений напряжения, происходящих в последовательных цепях.Диаграмма электрического потенциала — это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.

Как показано на диаграмме электрических потенциалов, все позиции A, B, C, E и G имеют высокий электрический потенциал. Один заряд выбирает только один из трех возможных путей; таким образом, в позиции B один заряд переместится в точку C, E или G, а затем пройдет через резистор, находящийся в этой ветви.Заряд не теряет свой высокий потенциал до тех пор, пока не пройдет через резистор, либо от C к D, от E к F или от G к H. После того, как он пройдет через резистор, заряд вернется почти до 0 вольт и вернется к отрицательному значению. клемму аккумуляторной батареи для повышения ее напряжения. В отличие от последовательных цепей, заряд в параллельной цепи встречает единственное падение напряжения на своем пути через внешнюю цепь.

Ток через данную ветвь можно предсказать, используя уравнение закона Ома, падение напряжения на резисторе и сопротивление резистора.Поскольку падение напряжения на каждом резисторе одинаково, фактором, определяющим, что резистор имеет наибольший ток, является сопротивление. Резистор с наибольшим сопротивлением испытывает наименьший ток, а резистор с наименьшим сопротивлением — наибольший ток. В этом смысле можно сказать, что заряд (как и люди) выбирает путь наименьшего сопротивления. В форме уравнения это может быть указано как

I 1 = Δ V 1 / R 1 I 2 = Δ V 2 / R 2 I 3 = Δ V 3 / R 3

Этот принцип иллюстрируется схемой, показанной ниже.Произведение I • R одинаково для каждого резистора (и равно напряжению батареи). Тем не менее, ток у каждого резистора разный. Ток наибольший там, где сопротивление наименьшее, и ток наименьший, где сопротивление наибольшее.

Математический анализ параллельных цепей

Приведенные выше принципы и формулы могут использоваться для анализа параллельной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в параллельной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока через батарею (I до ), а также падений напряжения и тока для каждого из трех резисторов.

Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.

1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 = (1/17 Ω) + (1/12 Ω) + (1/11 Ω)

1 / R экв = 0.23306 Ом -1

R экв = 1 / (0,23306 Ом -1 )

R экв. = 4,29 Ом

(округлено от 4,29063 Ом)

Теперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома. При использовании уравнения закона Ома (ΔV = I • R) для определения тока в батарее важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R.Расчет показан здесь:

I до = ΔV аккумулятор / R eq = (60 В) / (4,29063 Ом)

I до = 14,0 А

(округлено от 13,98396 А)

Напряжение батареи 60 В представляет собой усиление электрического потенциала за счет заряда, проходящего через батарею. Заряд теряет такое же количество электрического потенциала при любом прохождении через внешнюю цепь.То есть падение напряжения на каждом из трех резисторов такое же, как и напряжение, полученное в батарее:

ΔV аккумулятор = ΔV 1 = ΔV 2 = ΔV 3 = 60 В

Осталось определить три значения — ток каждого отдельного резистора. Закон Ома снова используется для определения значений тока для каждого резистора — это просто падение напряжения на каждом резисторе (60 В), деленное на сопротивление каждого резистора (указанное в формулировке задачи).Расчеты показаны ниже.

I 1 = ΔV 1 / R 1

I 1 = (60 В) / (17 Ом)

I 1 = 3,53 А

I 2 = ΔV 2 / R 2

I 2 = (60 В) / (12 Ом)

I 2 = 5,00 А

I 3 = ΔV 3 / R 3

I 3 = (60 В) / (11 Ом)

Я 3 = 5.45 ампер

Для проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма значений тока для каждого отдельного резистора равна общему току в цепи (или в батарее). . Другими словами, I tot = I 1 + I 2 + I 3 ?

Является ли I tot = I 1 + I 2 + I 3 ?

Из 14.0 ампер = 3,53 ампер + 5,00 ампер + 5,45 ампер?

14,0 А = 13,98 А?

Да !!

(Разница в 0,02 ампера — это просто результат предыдущего округления значения I до от 13,98.)

Математический анализ этой параллельной цепи включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом.Здесь необходимо учитывать концепции, согласно которым падение напряжения на каждом из трех резисторов равно напряжению батареи, и что сумма тока в каждом резисторе равна общему току. Эти представления необходимы для завершения математического анализа. В следующей части Урока 4 будут исследованы комбинированные или составные схемы, в которых одни устройства включены параллельно, а другие — последовательно.

Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже.Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.

Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать — это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока.Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, расположить и подключить их так, как вам нужно. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. По мере того, как в цепь добавляется все больше и больше резисторов, эквивалентное сопротивление цепи ____________ (увеличивается, уменьшается) и общий ток цепи ____________ (увеличивается, уменьшается).

2.Три одинаковых лампочки подключены к D-ячейке, как показано ниже. P, Q, X, Y и Z обозначают местоположения вдоль цепи. Какое из следующих утверждений верно?

а. Ток в точке Y больше, чем ток в точке Q.

г. Ток на Y больше, чем на P.

.

г. Ток в точке Y больше, чем ток в точке Z.

г. Ток в точке P больше, чем ток в точке Q.

.

e.Ток на Q больше, чем на P.

.

ф. Сила тока одинакова во всех местах.

3. Три одинаковые лампочки подключены к D-ячейке, как показано ниже. P, Q, X, Y и Z обозначают местоположения вдоль цепи. В каком месте (ах), если таковые имеются, будет ток …

а. … так же, как у X?

г…. такой же, как у Q?

г. … так же, как у Y?

г. … меньше, чем у Q?

e. … меньше, чем у P?

ф. … вдвое больше, чем у Z?

г. … в три раза больше, чем в Y?

4. Какие изменения можно внести в схему ниже, чтобы уменьшить ток в ячейке? Перечислите все подходящие варианты.

а. Увеличьте сопротивление лампы X.

г. Уменьшите сопротивление лампы X.

.

г. Увеличьте сопротивление лампы Z.

.

г. Уменьшите сопротивление лампы Z.

.

e. Увеличьте напряжение ячейки (как-нибудь).

ф. Уменьшите напряжение ячейки (как-нибудь).

г. Снять лампу Y.

.

5.Аккумулятор на 12 В, резистор на 12 Ом и резистор на 4 Ом подключаются, как показано на рисунке. Ток в резисторе 12 Ом равен ____ току в резисторе 4 Ом.

а. 1/3

г. 1/2

г. 2/3

г. то же, что

e.1,5 раза

ф. дважды

г. трижды

ч. четыре раза


6. Аккумулятор на 12 В, резистор на 12 Ом и резистор на 4 Ом подключены, как показано.Падение напряжения на резисторе 12 Ом равно ____ падению напряжения на резисторе 4 Ом.

а. 1/3

г. 1/2

г. 2/3

г. то же, что

e. 1,5 раза

ф.дважды

г. трижды

ч. четыре раза

7. Аккумулятор на 12 В и резистор на 12 Ом подключаются, как показано на схеме. Резистор на 6 Ом добавлен к резистору на 12 Ом, чтобы создать цепь Y, как показано.Падение напряжения на резисторе 6 Ом в цепи Y равно ____ падению напряжения на резисторе в цепи X.

а. больше, чем

г. меньше

г. то же, что

8. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:

а. Два резистора 6 Ом, помещенные параллельно, обеспечат сопротивление, эквивалентное одному резистору _____ Ом.

г. Три резистора 6 Ом, помещенные параллельно, обеспечат сопротивление, эквивалентное одному резистору _____ Ом.

г. Три резистора сопротивлением 8 Ом, помещенные параллельно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом размещены параллельно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом размещены параллельно.Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

ф. Три резистора с сопротивлением 12 Ом, 6 Ом и 21 Ом размещены параллельно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

9. На основании ваших ответов на вышеуказанный вопрос заполните следующую формулировку:

Общее или эквивалентное сопротивление трех параллельно включенных резисторов будет _____.

а. больше, чем сопротивление самого большого значения R.

г. меньше, чем сопротивление наименьшего значения R из трех.

г. где-то между наименьшим значением R и наибольшим значением R.

г. … ерунда! Такого обобщения сделать нельзя. Результаты меняются.

10. Три резистора включены параллельно.При размещении в цепи с источником питания 12 В. Определите эквивалентное сопротивление, полный ток цепи, падение напряжения и ток в каждом резисторе.


ПАРАЛЛЕЛЬНЫЕ ЦЕПИ

ПАРАЛЛЕЛЬНЫЕ ЦЕПИ ПАРАЛЛЕЛЬНЫЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Цепь, в которой два или более электрических сопротивления или нагрузки подключен к одному источнику напряжения и представляет собой параллельную цепь.Параллель Схема отличается от последовательной схемы тем, что предусмотрено более одного пути для текущего потока — чем больше путей добавлено параллельно, тем меньше противодействия к потоку электронов от источника. В последовательной схеме сложение сопротивления увеличивает сопротивление току. Минимальные требования для параллельной цепи следующие:

(1) источник питания.
(2) проводника.
(3) сопротивление или нагрузка для каждого пути тока.
(4) два или более путей для прохождения тока.

На рисунке 8-62 показана параллельная цепь с тремя путями прохождения тока. Точки A, B, C и D подключены к одному и тому же проводнику и находятся на такой же электрический потенциал. Аналогичным образом точки E, F, G и H с таким же потенциалом. Поскольку приложенное напряжение появляется между точками A и E, одинаковое напряжение приложено между точками B и F, точками C и G, а между точками D и H. Таким образом, при параллельном включении резисторов на источнике напряжения каждый резистор имеет одинаковое приложенное напряжение, хотя токи через резисторы могут отличаться в зависимости от значений сопротивление.Напряжение в параллельной цепи можно выразить следующим образом:

Где ЕТ — приложенное напряжение, Е1 — напряжение на R1, Е2 — напряжение на R2, а E3 — это напряжение на R3 (рисунок 8-62).

Ток в параллельной цепи делится между различными ветвями. в зависимости от сопротивления каждой ветви (см. рисунок 8-63). Ветвь с малым сопротивлением будет иметь больший ток. поток, чем ветвь, имеющая высокое сопротивление.Действующий закон Кирхгофа утверждает, что ток, текущий к точке, равен току утекает из этой точки. Таким образом, ток в цепи может быть математически выражается следующим образом:
где IT — общая ток, а I1, I2 и I3 — токи через R1, R2 и R3 соответственно. Закон Кирхгофа и Ома можно применить, чтобы найти полный ток в схеме, показанной на рисунке 8-63.

Ток через ветвь, содержащую сопротивление R1, составляет

Ток через R2 равен

Ток через R3 равен

Суммарный ток IT равен

В параллельной цепи IT = I1 + I2 + I3.По закону Ома следующее отношения можно получить:

Подставляя эти значения в уравнение для полного тока,

В параллельной цепи ET = E1 = E2 = E3. Следовательно,

Деление на E дает,

Это уравнение является обратной формулой для нахождения общей суммы или ее эквивалента. сопротивление параллельной цепи. Другая форма уравнения может быть получена решая для RT.

Анализ уравнения для полного сопротивления в параллельной цепи показывает, что RT всегда меньше наименьшего сопротивления в параллельном схема. Таким образом, резисторы на 10 Ом, 20 Ом и 40 Ом подключены параллельно. иметь общее сопротивление менее 10 Ом.

Если в параллельной цепи только два резистора, обратная формула

В упрощенном виде это становится:

Эта упрощенная, более короткая формула может использоваться, когда два сопротивления в параллели.Другой метод можно использовать для любого количества резисторов в параллельны, если они имеют одинаковое сопротивление. Величина сопротивления одного резистора делится на количество параллельно включенных резисторов, чтобы определить общую сопротивление.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *