Паяльная станция на атмега8. Паяльная станция на ATmega8: пошаговая инструкция по созданию профессионального инструмента своими руками

Как собрать паяльную станцию на микроконтроллере ATmega8. Какие компоненты понадобятся для сборки. Как спроектировать электрическую схему паяльной станции. Как собрать корпус и печатную плату устройства. Как запрограммировать микроконтроллер для управления паяльной станцией.

Содержание

Почему стоит сделать паяльную станцию своими руками

Создание паяльной станции своими руками имеет ряд преимуществ по сравнению с покупкой готового устройства:

  • Полный контроль над комплектующими и качеством сборки
  • Возможность кастомизации под свои нужды
  • Экономия средств при сохранении высокого качества
  • Получение ценного опыта в электронике и программировании
  • Гордость за самостоятельно созданный инструмент

Несмотря на большой выбор недорогих паяльных станций на рынке, они часто имеют недостатки в дизайне или качестве компонентов. Создавая станцию самостоятельно, вы получаете полный контроль над процессом и результатом.


Необходимые компоненты для сборки паяльной станции

Для создания паяльной станции на базе микроконтроллера ATmega8 понадобятся следующие основные компоненты:

  • Микроконтроллер ATmega8
  • Преобразователь напряжения 24В 50-60Вт
  • ЖК-дисплей HD44780 16×2
  • Поворотный энкодер
  • МОП-транзистор IRF540N
  • Операционный усилитель LM358N
  • Стабилизатор напряжения LM7805
  • Паяльник HAKKO 907 или его аналог
  • Корпус для станции
  • Печатная плата 100×150 мм
  • Радиоэлементы (резисторы, конденсаторы и др.)

Полный список компонентов с рекомендуемыми номиналами приведен в оригинальной инструкции. Большинство деталей можно заказать на китайских торговых площадках по доступным ценам.

Проектирование электрической схемы паяльной станции

Электрическая схема паяльной станции состоит из нескольких ключевых блоков:

  1. Блок питания на основе преобразователя 24В
  2. Схема управления нагревательным элементом паяльника
  3. Микроконтроллер ATmega8 с обвязкой
  4. ЖК-дисплей и органы управления

Рассмотрим основные особенности схемы:


  • Для питания логических элементов используется вторичная обмотка трансформатора на 9В, с последующим понижением до 5В через стабилизатор LM7805
  • Управление нагревом осуществляется через ШИМ-сигнал с микроконтроллера на МОП-транзистор IRF540N
  • Для измерения температуры жала используется операционный усилитель LM358N
  • Предусмотрены дополнительные разъемы для возможных будущих модификаций (второй паяльник, фен и т.д.)

При проектировании схемы важно учесть особенности используемого паяльника. Для HAKKO 907 и его качественных аналогов характерны следующие параметры:

  • Сопротивление нагревательного элемента: 3-4 Ом
  • Сопротивление термистора при комнатной температуре: 50-55 Ом
  • Сопротивление между жалом и ESD-заземлением: менее 2 Ом

Сборка корпуса и подготовка компонентов

Процесс сборки корпуса паяльной станции включает следующие этапы:

  1. Выбор подходящего корпуса с учетом размеров всех компонентов
  2. Разметка и вырезание отверстий под дисплей, регулятор, кнопки и разъемы
  3. Установка разъема для подключения паяльника
  4. Монтаж ЖК-дисплея и органов управления на переднюю панель
  5. Установка разъема питания и выключателя на заднюю панель

При выборе корпуса рекомендуется взять модель с запасом по объему. Это позволит в будущем добавить дополнительные функции, например, подсветку рабочей зоны или второй паяльник.


Для удобства монтажа компонентов можно использовать шлейфы от старой компьютерной техники (например, от флоппи-дисковода). Это упростит подключение дисплея и других элементов управления.

Изготовление и монтаж печатной платы

Печатная плата является ключевым элементом паяльной станции. Ее можно изготовить одним из следующих способов:

  • Заказать изготовление на специализированном производстве
  • Изготовить методом ЛУТ (лазерно-утюжная технология)
  • Выфрезеровать на станке с ЧПУ

При самостоятельном изготовлении платы следует учесть несколько моментов:

  • Использовать двустороннюю фольгированную заготовку для упрощения разводки
  • Сделать переходные отверстия для соединения слоев
  • Предусмотреть площадки для монтажа всех компонентов
  • Обеспечить достаточную ширину дорожек питания

После изготовления платы необходимо внимательно проверить отсутствие замыканий между дорожками и правильность разводки. Затем можно приступать к монтажу компонентов, начиная с самых мелких (резисторов и конденсаторов) и заканчивая крупными (микросхемами и разъемами).


Программирование микроконтроллера ATmega8

Микроконтроллер ATmega8 является «мозгом» паяльной станции. Для его программирования потребуется:

  1. Программатор (например, USBasp)
  2. Среда разработки (Arduino IDE или Atmel Studio)
  3. Прошивка с алгоритмом управления станцией

Основные функции, которые должна выполнять прошивка:

  • Считывание температуры с термодатчика паяльника
  • Управление нагревом через ШИМ-сигнал
  • Реализация ПИД-регулятора для точного поддержания температуры
  • Обработка сигналов с кнопок и энкодера
  • Вывод информации на ЖК-дисплей
  • Реализация дополнительных функций (таймер отключения, режим ожидания и т.д.)

При разработке прошивки рекомендуется использовать готовые библиотеки для работы с ЖК-дисплеем и ПИД-регулятором. Это значительно упростит процесс программирования.

Настройка и калибровка паяльной станции

После сборки и программирования паяльной станции необходимо провести ее настройку и калибровку. Этот процесс включает следующие этапы:

  1. Проверка всех напряжений питания
  2. Калибровка измерения температуры
  3. Настройка параметров ПИД-регулятора
  4. Проверка работы всех режимов и функций

Для калибровки измерения температуры потребуется эталонный термометр. Сравнивая его показания с данными на дисплее станции, можно внести корректировки в программу микроконтроллера.


Настройка ПИД-регулятора — важный этап, влияющий на точность поддержания температуры и скорость нагрева. Оптимальные параметры подбираются экспериментально, наблюдая за поведением системы при различных настройках.

Преимущества и недостатки самодельной паяльной станции

Создание паяльной станции своими руками имеет ряд преимуществ:

  • Полное понимание устройства и возможность быстрого ремонта
  • Возможность модификации и добавления новых функций
  • Экономия средств при сохранении высокого качества
  • Удовлетворение от создания сложного устройства своими руками

Однако есть и некоторые недостатки:

  • Необходимость затрат времени на проектирование и сборку
  • Отсутствие заводской гарантии
  • Возможные сложности с поиском некоторых компонентов

В целом, создание паяльной станции на базе ATmega8 — отличный проект для тех, кто хочет углубить свои знания в электронике и получить качественный инструмент для работы.


Паяльная станция своими руками на ATMega8

После того, как меня окончательно измучила моя паяльная станция 40 Вт неизвестного происхождения, я решился на создание паяльной станции своими руками профессионального уровня на АТМега8.

На рынке представлена недорогая продукция разных производителей (например, AIOU / YOUYUE и др.). Но у них, как правило, есть какой-то значительный дефект, либо спорный дизайн.

Предупреждаю: эта цифровая паяльная станция нужна, чтобы единственно паять, без лишних украшений типа AMOLED-дисплеев, сенсорных панелей, 50-ти режимов работы и интернет-управления.

Но все же у него будет несколько особенностей, которые вам пригодятся:

  • неактивный режим (поддерживает температуру 100-150°С, когда паяльник лежит на подставке.
  • таймер автоматического отключения, чтобы забывчивость не стала причиной пожара.
  • УАПП для отладки (только для данной сборки).
  • дополнительные разъемы на плате для подключения второго паяльника или фена.

Интерфейс достаточно прост: я сделал две кнопки, поворотный регулятор и ЖК-дисплей 16х2 (HD44780).

Для чего делать станцию самому

Причин, по которым представленные на рынке станции, не вызывают доверия, несколько: никогда нельзя знать наверняка, что вы приобрели хорошее изделие, до тех пор, пока оно не пройдет полный тест-драйв; пока вы не разберёте станцию, чтобы увидеть и оценить начинку и качество сборки; и, наконец, вы не можете пообщаться с другими владельцами этой же модели, чтобы поделиться впечатлениями и обсудить плюсы и минусы станции из-за того, что многие компании выпускают свою продукцию на рынок под новыми брендами каждые пару лет.

Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.

Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.

Шаг 1: Необходимые материалы

Список материалов и компонентов:

  • Преобразователь 24 В 50-60Вт. У моего трансформатора есть вторичная линия 9В, которая пойдет на логические элементы, в то время как первичная линия пойдет на паяльник. Также можете использовать понижающий преобразователь 5В для элементов, и отдельно внутреннее содержимое блока питания 24В для паяльника.
  • Микроконтроллер ATMega8.
  • Корпус. Подойдет любая коробка из твердого материала, предпочтительно металлическая, можно взять корпус от блока питания. Можно заказать такой корпус.
  • Двухсторонняя медная плата 100х150 мм.
  • Поворотный регулятор от старого кассетного магнитофона. Работает отлично, нужно только заменить колпачок регулятора.
  • ЖК-дисплей HD44780 16х2.
  • Радиокомпоненты (резисторы, конденсаторы и т.д.).
  • Стабилизатор напряжения LM7805 или аналогичный ему.
  • Радиатор размером не больше корпуса TO-220.
  • Сменный наконечник HAKKO 907.
  • МОП-транзистор IRF540N.
  • Операционный усилитель LM358N.
  • Мостовой выпрямитель, две штуки.
  • 5-контактное гнездо и штекер к нему.
  • Выключатель.
  • Штепсельная вилка на ваш выбор, я использовал разъем от старого компьютера.
  • Предохранитель 5А и держатель для предохранителя.

Время на сборку – примерно 4-5 дней.

Что касается источника питания, то вы можете сделать вполне жизнеспособные версии/дополнения. Например, можно получить блок питания 24В 3А, использовав LM317 и LM7805, чтобы сбросить напряжение до.
Все детали из этого списка можно заказать с китайских интернет-площадок.

Шаг 2: День первый – продумываем электрическую схему

У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).

Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.

Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.

Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.

Оригинал или качественный клон:

  • Сопротивление нагревательного элемента – 3-4 Ом
  • Термистор — 50-55 Ом при комнатной температуре
  • между жалом и ESD заземлением — меньше 2 Ом

Плохие клоны:

  • На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
  • на термопаре – 0-10 Ом
  • между жалом и ESD заземлением – меньше 2 Ом

Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.

Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.

  1. На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
  2. К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
  3. Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.

Управление через ШИМ

  1. На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
  2. Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
  3. Пины 1 и 2 соответствуют проводам нагревательного элемента.
  4. Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
  5. К пину 3 подключено ESD заземление паяльника.

Подключения к плате контроллера

Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.

Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.

В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).

Помимо основных разъемов я добавил 4-хпиновый разъем УАПП для установочной отладки (мы подключим только пины RX, TX и GND).

ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.

R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.

Шаг 3: День 2 – подготовительная работа

Корпус, который я заказал, оказался слишком мал для моего проекта, или компоненты оказались слишком велики, поэтому я заменил его на более вместительный. Минусом стало то, что и размер паяльной станции увеличился соответственно. Зато появилась возможность добавить дополнительные приборы – диодную лампу для комфортной работы, второй паяльник, разъем под жало для пайки припоем или дымоудалитель, и т.д.

Обе платы были скомпонованы в один блок.

Подготовка

Если вам повезло, и вы раздобыли подходящее гнездо для паяльника HAKKO, пропустите два параграфа.
Сначала я заменил родной штекер на паяльнике на новый. Он цельнометаллический и с блокирующей гайкой, это значит, что он всегда будет на своем месте и практически вечный. Я просто отрезал старый 5-типиновый штекер и припаял новый вместо него.

Для разъема сверлим отверстие в стенке корпуса. Проверьте, входит ли разъем в отверстие, и оставьте его там. Остальные компоненты передней панели мы установим позже.

Припаяйте к разъему 5 проводков и смонтируйте 5-типиновый разъем, который пойдет на плату. Затем вырежьте отверстия под ЖК-дисплей, поворотный регулятор и 2 кнопки. Если вы хотите вывести кнопку включения на переднюю панель, под нее тоже нужно вырезать отверстие.

На последней фотографии видно, что для подключения дисплея я использовал шлейф от старого флоппи-дисковода. Это отличный вариант, также можно использовать шлейф IDE (от дисковода жёстких дисков).

Затем подключите 4-хпиновый разъем к поворотному регулятору и если вы установили кнопки, подключите и их.
По углам выреза под дисплей хорошо было бы просверлить 4 отверстия под монтажные маленькие винты, иначе дисплей не будет держаться на своем месте. На заднюю панель я вывел разъем под шнур питания и выключатель.

Шаг 4: День 2 – Делаем печатную плату

Вы можете использовать мой чертеж для печатной платы, или сделать свой, удовлетворяющий вашим требованиям и техническим характеристикам.

Прикладываю ZIP-архив со схемой и топологией печатной платы в Eagle (окончательный вариант) и PDF-файл с верхним и нижним слоями платы.

Примечание: моя плата сделана для ленивых, если вы хотите, можете сделать однослойную плату, можете просто припаять соединительные провода к 5В дорожке/дорожки питания или поиграть с вариантами подключений так, что для работы понадобится только нижний слой платы. Для легкого монтажа/демонтажа я сделал дизайн со сквозными контактами, но с компонентами с поверхностным монтажом и определенными знаниями вы сможете сделать схему раза в два меньше.
На последнем фото схема практически полностью собрана и готова к установке в корпус.

Файлы

  • SID.zip
  • control_b.pdf
  • control_smb.pdf
  • control_Smt.pdf
  • control_t.pdf

Шаг 5: День 3 – Завершение сборки и кодировка

На этом этапе обязательно нужно проверить напряжение в ключевых точках вашего агрегата (5VDC, 24VDC выводы и т.д.). Стабилизатор LM7805, МОП-транзистор IRF540 и все активные и пассивные компоненты не должны нагреваться на этом этапе.

Если ничего не нагрелось и не загорелось, можно собирать все компоненты на места. Если ваша передняя панель уже собрана, вам осталось только припаять провода преобразователя, плавкий предохранитель, разъема питания и выключателя.

Шаг 6: Дни 4-13 – Микропрограммное обеспечение

Пока я пользуюсь сырым и непроверенным микропрограммным обеспечением, поэтому я решил отложить его публикацию, пока не напишу самодиагностирующую отладочную подпрограмму. Я бы не хотел, чтобы ваш дом или мастерская пострадали от пожара, поэтому дождитесь окончательной публикации.

Я планирую добавить ПИД-регулирование и несколько дополнительных режимов с фиксированной выходной мощностью. Если вы не хотите ждать пока я выложу программу и решили написать свою, поищите хорошие источники информации на следующие темы:

  1. Дискретные ПИД-регуляторы
  2. Реализация ПИД-регуляторов

Паяльная станция своими руками на ATMega8

После того, как меня окончательно измучила моя паяльная станция 40 Вт неизвестного происхождения, я решился на создание паяльной станции своими руками профессионального уровня на АТМега8.

На рынке представлена недорогая продукция разных производителей (например, AIOU / YOUYUE и др.). Но у них, как правило, есть какой-то значительный дефект, либо спорный дизайн.

Предупреждаю: эта цифровая паяльная станция нужна, чтобы единственно паять, без лишних украшений типа AMOLED-дисплеев, сенсорных панелей, 50-ти режимов работы и интернет-управления.

Но все же у него будет несколько особенностей, которые вам пригодятся:

  • неактивный режим (поддерживает температуру 100-150°С, когда паяльник лежит на подставке.
  • таймер автоматического отключения, чтобы забывчивость не стала причиной пожара.
  • УАПП для отладки (только для данной сборки).
  • дополнительные разъемы на плате для подключения второго паяльника или фена.

Интерфейс достаточно прост: я сделал две кнопки, поворотный регулятор и ЖК-дисплей 16х2 (HD44780).

Для чего делать станцию самому

Причин, по которым представленные на рынке станции, не вызывают доверия, несколько: никогда нельзя знать наверняка, что вы приобрели хорошее изделие, до тех пор, пока оно не пройдет полный тест-драйв; пока вы не разберёте станцию, чтобы увидеть и оценить начинку и качество сборки; и, наконец, вы не можете пообщаться с другими владельцами этой же модели, чтобы поделиться впечатлениями и обсудить плюсы и минусы станции из-за того, что многие компании выпускают свою продукцию на рынок под новыми брендами каждые пару лет.

Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.

Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.

Шаг 1: Необходимые материалы

Список материалов и компонентов:

  • Преобразователь 24 В 50-60Вт. У моего трансформатора есть вторичная линия 9В, которая пойдет на логические элементы, в то время как первичная линия пойдет на паяльник. Также можете использовать понижающий преобразователь 5В для элементов, и отдельно внутреннее содержимое блока питания 24В для паяльника.
  • Микроконтроллер ATMega8.
  • Корпус. Подойдет любая коробка из твердого материала, предпочтительно металлическая, можно взять корпус от блока питания. Можно заказать такой корпус.
  • Двухсторонняя медная плата 100х150 мм.
  • Поворотный регулятор от старого кассетного магнитофона. Работает отлично, нужно только заменить колпачок регулятора.
  • ЖК-дисплей HD44780 16х2.
  • Радиокомпоненты (резисторы, конденсаторы и т.д.).
  • Стабилизатор напряжения LM7805 или аналогичный ему.
  • Радиатор размером не больше корпуса TO-220.
  • Сменный наконечник HAKKO 907.
  • МОП-транзистор IRF540N.
  • Операционный усилитель LM358N.
  • Мостовой выпрямитель, две штуки.
  • 5-контактное гнездо и штекер к нему.
  • Выключатель.
  • Штепсельная вилка на ваш выбор, я использовал разъем от старого компьютера.
  • Предохранитель 5А и держатель для предохранителя.

Время на сборку – примерно 4-5 дней.

Что касается источника питания, то вы можете сделать вполне жизнеспособные версии/дополнения. Например, можно получить блок питания 24В 3А, использовав LM317 и LM7805, чтобы сбросить напряжение до.
Все детали из этого списка можно заказать с китайских интернет-площадок.

Шаг 2: День первый – продумываем электрическую схему

У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).

Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.

Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.

Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.

Оригинал или качественный клон:

  • Сопротивление нагревательного элемента – 3-4 Ом
  • Термистор — 50-55 Ом при комнатной температуре
  • между жалом и ESD заземлением — меньше 2 Ом

Плохие клоны:

  • На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
  • на термопаре – 0-10 Ом
  • между жалом и ESD заземлением – меньше 2 Ом

Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.

Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.

  1. На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
  2. К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
  3. Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.

Управление через ШИМ

  1. На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
  2. Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
  3. Пины 1 и 2 соответствуют проводам нагревательного элемента.
  4. Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
  5. К пину 3 подключено ESD заземление паяльника.

Подключения к плате контроллера

Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.

Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.

В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).

Помимо основных разъемов я добавил 4-хпиновый разъем УАПП для установочной отладки (мы подключим только пины RX, TX и GND).

ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.

R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.

Шаг 3: День 2 – подготовительная работа

Корпус, который я заказал, оказался слишком мал для моего проекта, или компоненты оказались слишком велики, поэтому я заменил его на более вместительный. Минусом стало то, что и размер паяльной станции увеличился соответственно. Зато появилась возможность добавить дополнительные приборы – диодную лампу для комфортной работы, второй паяльник, разъем под жало для пайки припоем или дымоудалитель, и т.д.

Обе платы были скомпонованы в один блок.

Подготовка

Если вам повезло, и вы раздобыли подходящее гнездо для паяльника HAKKO, пропустите два параграфа.
Сначала я заменил родной штекер на паяльнике на новый. Он цельнометаллический и с блокирующей гайкой, это значит, что он всегда будет на своем месте и практически вечный. Я просто отрезал старый 5-типиновый штекер и припаял новый вместо него.

Для разъема сверлим отверстие в стенке корпуса. Проверьте, входит ли разъем в отверстие, и оставьте его там. Остальные компоненты передней панели мы установим позже.

Припаяйте к разъему 5 проводков и смонтируйте 5-типиновый разъем, который пойдет на плату. Затем вырежьте отверстия под ЖК-дисплей, поворотный регулятор и 2 кнопки. Если вы хотите вывести кнопку включения на переднюю панель, под нее тоже нужно вырезать отверстие.

На последней фотографии видно, что для подключения дисплея я использовал шлейф от старого флоппи-дисковода. Это отличный вариант, также можно использовать шлейф IDE (от дисковода жёстких дисков).

Затем подключите 4-хпиновый разъем к поворотному регулятору и если вы установили кнопки, подключите и их.
По углам выреза под дисплей хорошо было бы просверлить 4 отверстия под монтажные маленькие винты, иначе дисплей не будет держаться на своем месте. На заднюю панель я вывел разъем под шнур питания и выключатель.

Шаг 4: День 2 – Делаем печатную плату

Вы можете использовать мой чертеж для печатной платы, или сделать свой, удовлетворяющий вашим требованиям и техническим характеристикам.

Прикладываю ZIP-архив со схемой и топологией печатной платы в Eagle (окончательный вариант) и PDF-файл с верхним и нижним слоями платы.

Примечание: моя плата сделана для ленивых, если вы хотите, можете сделать однослойную плату, можете просто припаять соединительные провода к 5В дорожке/дорожки питания или поиграть с вариантами подключений так, что для работы понадобится только нижний слой платы. Для легкого монтажа/демонтажа я сделал дизайн со сквозными контактами, но с компонентами с поверхностным монтажом и определенными знаниями вы сможете сделать схему раза в два меньше.
На последнем фото схема практически полностью собрана и готова к установке в корпус.

Файлы

  • SID.zip
  • control_b.pdf
  • control_smb.pdf
  • control_Smt.pdf
  • control_t.pdf

Шаг 5: День 3 – Завершение сборки и кодировка

На этом этапе обязательно нужно проверить напряжение в ключевых точках вашего агрегата (5VDC, 24VDC выводы и т.д.). Стабилизатор LM7805, МОП-транзистор IRF540 и все активные и пассивные компоненты не должны нагреваться на этом этапе.

Если ничего не нагрелось и не загорелось, можно собирать все компоненты на места. Если ваша передняя панель уже собрана, вам осталось только припаять провода преобразователя, плавкий предохранитель, разъема питания и выключателя.

Шаг 6: Дни 4-13 – Микропрограммное обеспечение

Пока я пользуюсь сырым и непроверенным микропрограммным обеспечением, поэтому я решил отложить его публикацию, пока не напишу самодиагностирующую отладочную подпрограмму. Я бы не хотел, чтобы ваш дом или мастерская пострадали от пожара, поэтому дождитесь окончательной публикации.

Я планирую добавить ПИД-регулирование и несколько дополнительных режимов с фиксированной выходной мощностью. Если вы не хотите ждать пока я выложу программу и решили написать свою, поищите хорошие источники информации на следующие темы:

  1. Дискретные ПИД-регуляторы
  2. Реализация ПИД-регуляторов

HM936D-AM8 Микросхема контроллера цифровой паяльной станции — Deeptronic

Хамуро

Описание продукта

HMC936D-AM8 — это микросхема контроллера для платы контроллера цифровой паяльной станции HM-936D. Контроллер реализован с использованием микроконтроллера ATMEGA8, запрограммированного с защитой от блокировки, чтобы отключить чип для чтения или модификации. Он работает на частоте 8 МГц с внутренней заводской калибровкой RC-тактовой частоты, поэтому нет необходимости использовать XTAL и связанные с ним конденсаторы. Рабочее меню, инициализация пользовательской калибровки датчика и параметр управления могут быть настроены для общего контроллера, поддерживающего множество нагревательных картриджей с различными типами датчиков, а также для специального контроллера (вашей собственной марки) для работы только с вашим поставляемым картриджем.

ВНИМАНИЕ!!! Избегайте использования порта ICSP при использовании этой микросхемы контроллера, так как микросхема может быть случайно стерта, и функция этой микросхемы не может быть восстановлена ​​после стирания. Используйте только последовательный порт (RX/TX) для настройки этого контроллера.

Характеристики конечного продукта

  • Удобный пользовательский интерфейс в режимах Цельсия и Фаренгейта
  • Диапазон регулирования 100 ºC – 450 ºC диапазон регулирования (в режиме Цельсия) или 215 ºF – 840 ºF (режим 9 градусов Фаренгейта)0008
  • Разрешение регулирования уставки 1 ºC (режим Цельсия) или 5 ºF (режим Фаренгейта)
  • Поддерживает нагревательные картриджи с датчиками различных типов (терморезисторы, термопары или датчики неизвестного типа)
  • Простая процедура калибровки

— Производственные характеристики

  • Конфигурируется как для семисегментного дисплея с общим анодом, так и для общего катода, предоставляя больше возможностей по лучшей цене и доступности.
  • Настраиваемое переназначение семи сегментов для дисплея, что обеспечивает гибкую конструкцию печатной платы с различной конфигурацией контактов семисегментного дисплея от разных поставщиков.
  • Настраиваемая настройка по умолчанию (в первый раз, когда продукт доставляется покупателю) для режима Цельсия/Фаренгейта, упрощающая нацеливание на различные предпочтения клиентов по всему миру.
  • Настраиваемое количество поддерживаемых типов датчиков и параметры инициализации их калибровки, поэтому вы можете настроить систему на работу со всеми типами датчиков (RTD, термопара или обычный/неизвестный тип) или настроить ее на работу только с определенным типом датчика. поставляемый картридж нагревателя.
  • Настраиваемые параметры управления (пропорциональное, интегральное и дифференциальное усиление), позволяющие настроить систему для достижения наилучшей производительности для сконфигурированных типов датчиков.

Справочные документы

  • Справочник по проектированию системы пайки

Категория: Продукты

Самодельная паяльная станция 2 (АВР)