Как правильно подобрать предохранитель по сечению кабеля. Какие факторы нужно учитывать при выборе номинала предохранителя. Как рассчитать необходимое сечение кабеля для заданного тока. Какие существуют таблицы соответствия сечений кабелей и номиналов предохранителей.
Основные принципы подбора предохранителя по сечению кабеля
При выборе предохранителя для защиты кабельной линии необходимо учитывать несколько важных факторов:
- Номинальный ток нагрузки
- Длительно допустимый ток кабеля
- Ток короткого замыкания
- Время срабатывания защиты
- Селективность с другими защитными устройствами
Номинал предохранителя должен быть больше рабочего тока, но меньше длительно допустимого тока кабеля. При этом предохранитель должен надежно отключать ток короткого замыкания за требуемое время.
Расчет необходимого сечения кабеля
Для определения минимально допустимого сечения кабеля используется следующая формула:
S = I * L / (k * ΔU)
где:
- S — сечение кабеля, мм2
- I — расчетный ток, А
- L — длина кабеля, м
- k — удельная проводимость материала жил (для меди 57, для алюминия 34)
- ΔU — допустимая потеря напряжения, В
Полученное значение округляется до ближайшего стандартного сечения.
Таблица соответствия сечений кабелей и номиналов предохранителей
Для упрощения подбора можно использовать типовые таблицы соответствия. Например:
Сечение медного кабеля, мм2 | Номинал предохранителя, А |
---|---|
1.5 | 10 |
2.5 | 16 |
4 | 25 |
6 | 32 |
10 | 50 |
16 | 63 |
25 | 80 |
35 | 100 |
Данные значения являются ориентировочными и могут корректироваться с учетом конкретных условий применения.
Особенности подбора предохранителей для различных типов нагрузок
При выборе предохранителей необходимо учитывать характер нагрузки:
- Для двигательной нагрузки номинал предохранителя выбирается с учетом пусковых токов.
- Для осветительных цепей учитывается коэффициент одновременности.
- Для нагревательных приборов важно обеспечить термическую стойкость кабеля.
Какие еще факторы нужно принимать во внимание при подборе предохранителей для разных типов электроприемников? Давайте рассмотрим подробнее.
Выбор предохранителей для защиты электродвигателей
При подборе предохранителей для защиты электродвигателей необходимо учитывать следующие особенности:
- Пусковой ток двигателя может в 5-7 раз превышать номинальный
- Длительность пуска может достигать нескольких секунд
- Возможны частые пуски и реверсы
Поэтому номинал предохранителя для двигателя выбирается по формуле:
Iпр = k * Iном
где:
- Iпр — номинальный ток предохранителя
- k — коэффициент запаса (2.5-3 для нечастых пусков, 1.6-2 для частых пусков)
- Iном — номинальный ток двигателя
При этом сечение кабеля выбирается по длительному току с учетом условий прокладки и окружающей среды.
Подбор предохранителей для осветительных сетей
Для защиты осветительных цепей важно учитывать следующие факторы:
- Коэффициент одновременности включения светильников
- Пусковые токи газоразрядных ламп
- Возможность подключения дополнительных нагрузок
Номинал предохранителя выбирается по расчетному току группы светильников с запасом 20-30%. Сечение кабеля определяется по длительно допустимому току и проверяется на потерю напряжения.
Выбор защиты для нагревательных приборов
При защите цепей питания электронагревательных приборов необходимо обеспечить:
- Термическую стойкость кабеля
- Защиту от токов перегрузки
- Быстрое отключение при коротких замыканиях
Номинал предохранителя выбирается на 25-30% больше расчетного тока нагрузки. Сечение кабеля проверяется на нагрев длительным током и на термическую стойкость при коротком замыкании.
Проверка селективности защиты
При выборе предохранителей важно обеспечить селективность срабатывания защит в разных точках сети. Для этого номиналы последовательно установленных предохранителей должны отличаться на 1-2 ступени.
Например, если на вводе стоит предохранитель на 100 А, то на отходящих линиях можно ставить предохранители на 63 А и ниже. Это обеспечит отключение только поврежденного участка при коротком замыкании.
Проверка чувствительности защиты
Выбранный предохранитель должен надежно срабатывать при минимальном токе короткого замыкания в конце защищаемой линии. Для этого должно выполняться условие:
Iкз.мин ≥ 3 * Iпр
где:
- Iкз.мин — минимальный ток короткого замыкания
- Iпр — номинальный ток предохранителя
Если это условие не выполняется, необходимо выбрать предохранитель с меньшим номинальным током или увеличить сечение кабеля для уменьшения его сопротивления.
Особенности выбора автоматических выключателей
В современных электроустановках вместо плавких предохранителей часто используются автоматические выключатели. При их выборе учитываются следующие параметры:
- Номинальный ток расцепителя
- Уставка срабатывания защиты от перегрузки
- Уставка срабатывания защиты от короткого замыкания
- Предельная отключающая способность
Номинальный ток расцепителя выбирается аналогично номиналу предохранителя. Уставка защиты от перегрузки должна быть на 25-30% выше расчетного тока нагрузки. Уставка защиты от КЗ выбирается по минимальному току короткого замыкания.
Заключение
Правильный подбор предохранителей и сечений кабелей играет важную роль в обеспечении надежной и безопасной работы электроустановок. При выборе необходимо учитывать множество факторов и выполнять все необходимые проверки. Рекомендуется использовать типовые решения и справочные таблицы, а в сложных случаях проводить детальные расчеты.
Таблица сечений кабеля, предохранителей
Рекомендации по монтажу проводов питания (12В) изделий1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.
2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 — 10,3 Ом,
б) для провода сечением 9,0мм2 — 0,4 Ом.
В промежутке между этими значениями — обратно пропорционально сечению провода.
3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м;
i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin — минимально-допустимое сечение провода, мм2.
Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).
Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.
При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.
При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.
Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.
Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.
************************************************
Подбор сечения силового кабеля.
Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.
1 Ом = 1 Вольт /1 Ампер
Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.
Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)
Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)
Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.
Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A
Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.
******************************************************
СОВЕТ
Memory 12V+
В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.
источник АвтоАудиоЦентр — ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы — Питание аудио системы
Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя
Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.
Причины перегорания предохранителей
Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.
Их может быть несколько:
Перегорание предохранителя от короткого замыкания | Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая. |
Перегруз так же ведет к перегоранию предохранителя | Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки. |
Зависимость силы тока от напряжения | Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко. |
Работа предохранителя на грани срабатывания | Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока. |
Наиболее частые причины перегорания предохранителей в процентном соотношении | Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано. |
Выбор диаметра проволоки и ремонт предохранителя
Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.
Выбор диаметра проводника
Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.
Диаметр провода в зависимости от номинального тока предохранителя
- Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.
Измерение диаметра провода
- Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.
Измерение диаметра проволоки при помощи линейки или штангенциркуля
- Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.
Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.
- Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
- Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.
На фото формула расчета диаметра провода
- Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.
Формула расчета диаметра провода
- Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.
Поправочные коэффициенты для формул в зависимости от материала провода
Ремонт предохранителей
Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.
Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.
- Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.
Съёмные плавкие вставки
- То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
- С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.
Ремонт трубчатого предохранителя
- Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
- С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.
«Жучок» на ножевой предохранитель
Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.
Расплавленные брызги металла на корпусе предохранителя
- Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.
Установка «жучка» поверх предохранителя
- Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.
Вывод
Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.
ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.
Условия выбора плавких предохранителей
В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.
Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.
В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.
При выборе предохранителя, должны выполняться условия:
- номинальное напряжение предохранителя должно соответствовать напряжению сети:
Uном = Uном.сети (1)
- номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:
Iном.откл > Iмакс.кз (2)
Условия выбора плавких вставок:
- ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:
Iн.вс. > Iраб.макс. (3)
- при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:
Iн.вс. > Iпуск.дв/k (4)
где:
k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).
Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.
Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.
Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.
При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.
И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.
Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.
При защите сборки, ток плавкой вставки выбирают по трем условиям:
- по наибольшему длительному току:
- при полной нагрузке сборки и пуске наиболее мощного двигателя:
- при самозапуске двигателей:
где:
k – коэффициент, учитывающий условия пуска двигателя;
— сумма пусковых токов самозапускающих двигателей;
— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;
Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.
В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.
Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.
Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.
Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:
- при Uн.сети = 500 В Iн.вс = 4,5*Рн;
- при Uн.сети = 380 В Iн.вс = 6*Рн;
- при Uн.сети = 220 В Iн.вс = 10,5*Рн.
После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.
Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.
Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.
Литература:
1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
Пример выбора плавких предохранителей
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
Расчет
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Таблица 2
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Поделиться в социальных сетях
Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него «жука». Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.
Ток плавле- ния, А | Диаметр, мм | |||||
---|---|---|---|---|---|---|
Медь | Алюминий | Никелин | Железо | Олово | Свинец | |
0,5 | 0,03 | 0,04 | 0,05 | 0,06 | 0,11 | 0.13 |
1 | 0,05 | 0,07 | 0,08 | 0,12 | 0,18 | 0,21 |
2 | 0,09 | 0,1 | 0,13 | 0,19 | 0,29 | 0,33 |
3 | 0,11 | 0,14 | 0,18 | 0,25 | 0,38 | 0,43 |
4 | 0,14 | 0,17 | 0,22 | 0,3 | 0,46 | 0,52 |
5 | 0,16 | 0,19 | 0,25 | 0,35 | 0,53 | 0,6 |
6 | 0,18 | 0,22 | 0,28 | 0,4 | 0,6 | 0,68 |
7 | 0,2 | 0,25 | 0,32 | 0,45 | 0,66 | 0,75 |
8 | 0,22 | 0,27 | 0,34 | 0,48 | 0,73 | 0,82 |
9 | 0,24 | 0,29 | 0,37 | 0,52 | 0,79 | 0,89 |
10 | 0,25 | 0,31 | 0,39 | 0,55 | 0,85 | 0,95 |
15 | 0,32 | 0,4 | 0,52 | 0,72 | 1,12 | 1,25 |
20 | 0,39 | 0,48 | 0,62 | 0,87 | 1,35 | 1,52 |
25 | 0,46 | 0,56 | 0,73 | 1 | 1,56 | 1,75 |
30 | 0,52 | 0,64 | 0,81 | 1,15 | 1,77 | 1,98 |
35 | 0,58 | 0,7 | 0,91 | 1,26 | 1,95 | 2,2 |
40 | 0,63 | 0,77 | 0,99 | 1,38 | 2,14 | 2,44 |
45 | 0,68 | 0,83 | 1,08 | 1,5 | 2,3 | 2,65 |
50 | 0,73 | 0,89 | 1,15 | 1,6 | 2,45 | 2,78 |
60 | 0,82 | 1 | 1,3 | 1,8 | 2,80 | 3,15 |
70 | 0,91 | 1,1 | 1,43 | 2 | 3,1 | 3,5 |
80 | 1 | 1,22 | 1,57 | 2,2 | 3,4 | 3,8 |
90 | 1,08 | 1,32 | 1,69 | 2,38 | 3,64 | 4,1 |
100 | 1,15 | 1,42 | 1,82 | 2,55 | 3,9 | 4,4 |
120 | 1,31 | 1,6 | 2,05 | 2,85 | 4,45 | 5 |
140 | 1,45 | 1,78 | 2,28 | 3,18 | 4,92 | 5,5 |
160 | 1,59 | 1,94 | 2,48 | 3,46 | 5,38 | 6 |
180 | 1,72 | 2,10 | 2,69 | 3,75 | 5,82 | 6,5 |
200 | 1,84 | 2,25 | 2,89 | 4,05 | 6,2 | 7 |
225 | 1,99 | 2,45 | 3,15 | 4,4 | 6,75 | 7,6 |
250 | 2,14 | 2,6 | 3,35 | 4,7 | 7,25 | 8,1 |
275 | 2,2 | 2,8 | 3,55 | 5 | 7,7 | 8,7 |
300 | 2,4 | 2,95 | 3,78 | 5,3 | 8,2 | 9,2 |
Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки.
Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики.
Плавкие вставки можно так же рассчитать по предложенной ниже методике.
Расчёт проводников для плавких предохранителей
Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам:где: d – диаметр проводника, мм; k – коэффициент, зависящий от материала проводника согласно таблице.
где: m – коэффициент, зависящий от материала проводника согласно таблице.
Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники). Таблица коэффициентов.
Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам: Для малых токов (тонкие проводники диаметром от 0,02 до 0,2 мм):
Для больших токов (толстые проводники):
Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле:
где: I – ток, текущий через проводник; R – сопротивление проводника; t – время нахождения плавкой вставки под током I.
Сопротивление плавкой вставки рассчитывается по формуле:
где: p– удельное сопротивление материала проводника; l – длина проводника; s – площадь сечения проводника.
Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем.
Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле:
где: W — количество теплоты, необходимое для расплавления плавкой вставки; I — ток плавления; R — сопротивление плавкой вставки.
Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле:
где: лямбда 🙂 — удельная
Подбор предохранителя по сечению кабеля
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: |
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.
В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.
Поистине универсальное приспособление
Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.
Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t
+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.
Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.
Как правильно выбрать предохранитель
Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.
Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
- I nom – номинальный ток защиты, A.
- P max – максимальная мощность, W.
- U – напряжение питания, V.
Хотя лучше пользоваться специально созданными для этой цели таблицами.
Приведем некоторые данные из них:
- Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
- 50W – 0,25A.
- 100W – 0,5A.
- 150W – 1A.
- 250W – 2A.
- 500W – 3A.
- 800W – 4A.
- 1kW – 5A.
- 1,2kW – 6A.
- 1,6kW – 8A.
- 2kW – 10A.
- 2,5kW – 12A.
- 3kW – 15A.
- 4kW – 20A.
- 6kW – 30A.
- 8kW – 40A.
- 10kW – 50A.
Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.
Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.
Кулибиным на заметку
При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.
Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.
Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.
Обратимся к справочнику:
- Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
- 2A – 0,09 мм – 0,10 мм.
- 3A – 0,11мм – 0,14 мм.
- 5A – 0,16 мм – 0,19 мм.
- 7A – 0,20 мм – 0,25 мм.
- 10A – 0,25 мм – 0,30 мм.
- 15A – 0,33 мм – 0,40 мм.
- 20A – 0,40 мм – 0,48 мм.
- 25A – 0,46 мм – 0,56 мм.
- 30A – 0,52 мм – 0,64 мм.
- 35A – 0,58 мм – 0,70 мм.
- 40A – 0.63 мм – 0,77 мм.
- 45A – 0,68 мм – 0,83 мм.
- 50A – 0,73 мм – 0,89 мм.
Таким образом, данная проволока сгодится для предохранителя на 30A.
Имеется 3 способа ремонта трубчатого предохранителя:
- Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
- Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
- Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.
Описанную технологию можно успешно использовать для ремонта любых типов вставок.
Таблица диаметров плавких вставок
Если в предохранителе перегорает плавкая вставка, ее нужно заменить. Но что делать, если нет под рукой стандартизированных вставок? Как выбрать ток плавления вставки? Ток плавления – это удвоенное значение тока номинального тока потребителя. Так, если номинальная нагрузка составляет 10 А, выбираем ток плавкой вставки, равный 20 А. Надо иметь в виду, что предохранитель мгновенно не перегорает, ему нужно какое-то время. Поэтому пусковые токи двигателей или другие кратковременные повышенные токи не влияют на работу предохранителя. Назначение плавких вставок как и автоматических выключателей –защита сети и потребителей от перегрузок и коротких замыканий. Главное отличие плавких вставок от автоматов – это одноразовое использование. В последнее время все больше отходят от применения предохранителей, предпочитая их автоматическим выключателям. Плюс плавких вставок – это относительная доступность, дешевизна в применении. Минус – при срабатывании, чтобы включить, нужно время для замены вставки; при замене вставки нужно отключать напряжение.
I=80√d3 |
Выбор количества кабельных сердечников
Зависимость от места установки
Выбор количества кабельных жил в основном зависит от типа системы, в которой он будет установлен.
Выбор количества кабельных сердечников с упором на параметры размеров (фото dnvkema.com)Обычно у нас есть два типа систем:
- А идеально сбалансированная система а Система
- A с некоторой степенью дисбаланса (или несбалансированной системой) .
Общие размеры кабеля включают в себя следующие параметры:
- Условия установки кабеля и груз, который он будет нести
- Непрерывный ток номинального кабеля
- Падение напряжения и короткое замыкание
- Замкнутая цепь с полным сопротивлением
Вот, я собираюсь описать, как можно выбрать количество ядер.
3-жильный кабель
Эти кабели обычно используются для идеально сбалансированной 3-фазной системы Важным примером 3-фазной нагрузки является Электродвигатель, поэтому в большинстве случаев они питаются по 3-жильным кабелям. A может иметь нейтральный провод. Этот провод позволяет использовать 3-фазную систему при более высоких напряжениях , в то время как он все еще будет поддерживать однофазные нагрузки более низкого напряжения. В таких случаях маловероятно, что нагрузки будут идентичны, поэтому нейтраль будет нести несбалансированного тока системы . Чем больше степень дисбаланса, тем больше ток нейтрали. Когда есть некоторая степень дисбаланса , а величина тока повреждения очень мала, то используются кабели с 3,5 сердечниками. В этих типах кабелей используется нейтраль уменьшенного поперечного сечения по сравнению с 3-мя главными проводами, которая используется для передачи небольшого количества несбалансированных токов. При наличии серьезных дисбалансовых условий величина тока повреждения увеличится до очень высокого уровня. Обычно в случае линейных нагрузок нейтраль переносит ток только из-за дисбаланса между фазами. Нелинейные нагрузки , такие как импульсные источники питания, компьютеры, оргтехника, балласты ламп и трансформаторы на низких нагрузках, генерируют гармонические токи третьего порядка (определение гармоник и их происхождение), которые представляют собой в фазе всех фаз поставки. Эти токи не нейтрализуются в звездной точке трехфазной системы, как токи нормальной частоты, но суммируются, так что нейтраль несет очень тяжелых токов третьей гармоники. Вот почему нейтраль кабеля, питающего оборудование, не уменьшается и имеет площадь поперечного сечения , такую же, как у главного провода , для передачи этого большого значения тока. Некоторые условия могут возникать, когда величина тока (нейтрального) тока
Группа |
05.18.2020
Legrand, мировой специалист в области электрических и цифровых строительных инфраструктур, объявляет о запуске своей социальной стены, посвященной кризису COVID19.
|
05.12.2020 20:30
Legrand сегодня завершила выпуск облигаций с фиксированной ставкой на сумму 600 миллионов евро со сроком погашения 10 лет и годовым купоном 0.75% 0, Эта операция увеличивает средний срок погашения долговых обязательств по облигациям до 6,7 лет, при этом следующая дата погашения назначена на 19 апреля 2022 года на сумму 400 млн. Евро. Успех этого выпуска, подписанного в 3,2 раза, еще раз демонстрирует уверенность инвесторов в надежности модели развития Legrand.
Финансы |
05.07.2020 07:30
Ответственная мобилизация для преодоления последствий кризиса в области здравоохранения Производительность показала хорошее сопротивление в первом квартале 2020 года …
|
04.11.2020 11:30
Legrand Совет директоров провел заседание в пятницу, 10 апреля, чтобы принять решение об условиях проведения Объединенного общего собрания акционеров, которое будет подтверждено в среду, 27 мая 2020 года.
|
04.09.2020
После начала текущего глобального кризиса в области здравоохранения Legrand предпринял ряд мер, направленных на защиту как своих сотрудников, так и клиентов.На основе этой беспрецедентной мобилизации Legrand вносит свой вклад в продолжающиеся усилия солидарности, чтобы сдержать санитарное, социальное и экономическое воздействие COVID-19.
|
03.26.2020 07:30
Legrand полностью мобилизован для решения проблем, связанных с ухудшением здоровья и экономической ситуации в мире, вызванным быстрым распространением Covid-19 во многих странах
Финансы |
03.19.2020 19:30
На основании разрешения, выданного на очередном и внеочередном общем собрании акционеров 29 мая 2019 года на реализацию программы обратного выкупа акций, Legrand объявила о подписании мандата на покупку до 515 000 акций в период с 20 марта по 20 мая 2020 года. Целью данной транзакции является приобретение акций для распределения по планам акций с наступающими сроками.
WEPs |
03.09.2020
В Международный день прав женщин Legrand подтверждает свою приверженность гендерному равенству, поддерживая Принципы расширения прав и возможностей женщин (WEP), определенные ООН «Женщины и Глобальный договор».
|
28.02.2020 07:30
Жиль Шнепп, председатель Legrand, предложил Совету директоров, который принял его, внести новое изменение в управление Группой. После первого шага, предпринятого в феврале 2018 года, к руководству, отвечающему самым высоким стандартам и наилучшим практикам, с одной стороны, путем постоянного разделения кабинетов Председателя и Главного исполнительного директора, а с другой стороны, путем назначения Бенуа Кокварта на должность Главного исполнительного директора. — сегодня объявлен еще один шаг …
|
02.27.2020 08:00
Опираясь на динамику роста благодаря приобретению лидеров, Legrand объявила сегодня о покупке Focal Point, укрепляя прочные позиции в технических решениях архитектурного освещения для коммерческих зданий в Соединенных Штатах.
Группа |
02.13.2020
В качестве инклюзивной компании Legrand принял участие во втором издании autre cercle — Ifop, которое состоялось 12 февраля 2020 года в Париже.
Финансы |
02.13.2020 07:30
Общий рост продаж + 10% Интегрированная производительность в полном соответствии с целями Product picture Product преимущество 1. Простой на месте обработки 2. приспосабливает различные спецификации безопасности Спаривание ПРЕДОХРАНИТЕЛЬ 3. обеспеченные шпоночных корпусами 4. Множественное подключение и отключение cycles 5 , Высокая нагрузочная способность 6. TUV approved More product Click здесь, чтобы узнать цену и более information Good обзор: More продукты Slocable: Certifications Certificates: TUV, CE, ROHS, ISO9001, BV и т.д. Q1: Что такое ваша компания Основные продукты? Вы производитель или трейдер? Мы являемся производителем с опытом работы более 9 лет. по электронной почте / TradeManager, мы ответим вам в течение 1 часа в рабочее время.3.5-жильный кабель
3-фазная система4-жильный кабель
5 и 6-жильные кабели
Органические изменения в продажах: -7,3%
Скорректированная операционная маржа до приобретения: 18,7%
Твердый баланс и финансовое положение
Органический рост продаж: +2.Держатель предохранителя1000V 20А водонепроницаемый держатель предохранителя с предохранителем провода постоянного тока для солнечных system
изоляции material PPO Номинальный ток MAX.30A (1 … 30А) Номинальное напряжение 1000 / 1500В DC Испытательное напряжение 6кВ (50Гц, 1мин ) Сопротивление контакта <0.5mΩ Материал контакта Медь, tinned Степень protection IP67 безопасности class II пламени класс UL94-V0 Вставка силы Max.50N Выход силы Диапазон температур окружающей среды Min.50N от -40 ° C ~ + 85 ° C (МЭК) Подходящее сечение кабеля 2.5 / 4,0 / 6,0 / 10.0mm2 14/12 / 10 / 8AWG
Солнечные кабели, солнечные соединители, фотоэлектрические держатели предохранителей, автоматические выключатели и другие солнечные относительные продукты.
Q3: Как ваша компания работает с Качественный контроль?
1) Все сырье, которое мы выбрали, высокого качества. проверка в каждом процессе.
Q4: Предоставляете ли вы OEM Службу проекта?
Заказ OEM & ODM горячо приветствуется, и мы имеем полный успешный опыт в проектах OEM.
Более того, наша команда по исследованиям и разработкам предоставит вам профессиональные предложения.
Q5: Как я могу получить Sample?
Мы рады предложить вам образцы, образцы предоставляются бесплатно, но вам необходимо оплатить курьерскую доставку.
Если у вас есть счет курьера, вы можете отправить курьеру для сбора образцов. Заказы: 10-18 дней.