Подбор резистора для светодиода: Расчёт резистора для светодиода | Онлайн калькулятор

Содержание

какие формулы помогут вычислить сопротивление

В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.

Что такое резистор и сопротивление светодиода?

Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току. Другими словами, для такого устройства в любое время должен действовать закон Ома.

 

Главная функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.

В каких случаях возможно подключение светодиода с помощью резистора?

Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе. В таком случае мощность потребления едва достигает 0.1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение. Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.

Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.

Виды резисторов

Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.

В зависимости от материала резистивного элемента выделяют следующие типы резисторов:

  • Металлофольговые;
  • Непроволочные;
  • Проволочные.

По способы защиты резисторы бывают:

  • Неизолированными;
  • Изолированными;
  • Вакуумными;
  • Герметизированными.

Назначение резисторов группирует устройства следующим образом:

  • Резисторы общего предназначения;
  • Высокочастотные;
  • Высокомегаомные;
  • Высоковольтные.

Расчет резистора для светодиода

Осуществить расчет резисторов по силам не только специалистам. Достаточно базовых знаний и понимания физики процесса. Чтобы определить необходимое сопротивление резисторов, нужно учитывать следующие важные факторы:

  • Маркировка на устройстве отображает так называемое напряжение падения, которое необходимо для расчета необходимого напряжения и для подбора резисторов.
  • Числовое значение напряжения определяется в виде разницы между напряжением агрегата и напряжением питания светодиода;
  • Чтобы рассчитать необходимое сопротивление, нужно разделить остаточное напряжение на величину тока, необходимую для бесперебойной работы системы.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

 

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами U

LED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Расчет резистора для светодиода: онлайн калькулятор

Питание светодиодов не такой простой вопрос, как может показаться. Они крайне чувствительны к режиму, в котором работают и не терпят перегрузок. Самое главное, что нужно запомнить – полупроводниковые излучающие диоды питают стабильным током, а не напряжением. Даже идеально стабилизированное напряжение не обеспечит поддержки заданного режима, это следствие внутренней структуры и принципа действия полупроводников. Тем не менее при грамотном подходе светодиоды можно подключать к питанию через токоограничивающий или добавочный резистор. Его расчет сводится к элементарному подбору такого сопротивления, на котором будут падать лишние Вольты при заданной величине тока. Давайте рассмотрим, как рассчитать его номинал вручную или воспользоваться онлайн калькулятором.

Хоть и главным параметром для питания светодиода является ток, но есть и такой, как падение напряжения. Это величина необходимая для того, чтобы он зажегся. Отталкиваясь от нее проводят вычисления ограничительного резистора.

Типовые напряжения LED разных типов:

Цвет Напряжение, В
Белый 2.8-3.2 для маломощных, 3.0 и выше для мощных (более 0.5 Вт)
Красный 1.6-2.0
Зеленый 1.9-4.0
Синий 2.8-3.2
Желтый, оранжевый 2.0-2.2
ИК До 1.9
УФ 3.1-4.4

Внимание! Если вы не можете найти документацию на имеющийся элемент – при использовании онлайн калькулятора возьмите данные из этой таблицы.

Чтобы сократить теорию, давайте сразу на практике рассчитаем сопротивление для подключения белого светодиода к бортовой цепи автомобиля 12В. Её фактическое значение при заведенном двигателе доходит до 14,2 В, а иногда и выше, значит его и берем для расчетов.

Тогда расчёт сопротивления для светодиода выполняют по закону Ома:

R=U/I

На светодиоде должно упасть усреднено 3 Вольта, значит нужно компенсировать:

Uрез=14,2-3=11,2 В

У обычного 5 мм светодиода номинальный ток равен 20 мА или 0,02 А. Рассчитываем сопротивление резистора, на котором должно упасть 11,2 В при заданном токе:

R=11,2/0,02=560 Ом или ближайший в большую сторону

Чтобы добиться стабильного питания и яркости в цепь питания дополнительно устанавливают стабилизатор L7805 или L7812 и проводят расчет относительно питающих 5 или 12 Вольт соответственно.

Как рассчитать резистор для подключения светодиода к сети 220 Вольт? Такой вопрос возникает, когда нужно сделать какую-то индикацию или маячок. Расчёт сопротивления в этом случае выглядит так:

Uрез=220-3=217 В

R=217/0,02=10850 Ом

Так как любой диод пропускает ток в одном направлении, то обратное напряжение приведет к тому, что он выйдет из строя. Значит параллельно светодиоду устанавливают еще один такой же или шунтирующий обычный маломощный выпрямительный диод, например, 1n4007.

С помощью нашего онлайн калькулятора можно рассчитать сопротивление для одного или нескольких соединенных последовательно или цепи параллельных светодиодов:

Если светодиодов несколько, тогда:

  • Для последовательного соединения резистор рассчитывают с учетом суммы падений на каждом элементе.
  • Для параллельного соединения сопротивление рассчитывают с учетом суммы токов каждого светоизлучающего диода.

Также нельзя забывать о мощности резистора, например, во втором примере с подключением цепи к сети 220В на нем будет выделяться мощность равная:

P=217*0,02=4,34 Вт

В данном случае это будет довольно крупный резистор. Чтобы уменьшить эту мощность, можно еще сильнее ограничить ток, например, в 0,01А, что снизит эту мощность в двое. В любом случае номинальная мощность сопротивления должна быть больше той, которая будет выделяться в процессе его работы.

Для долгой и стабильной работы излучателя при подключении к сети используйте в расчетах напряжение слегка выше номинального, то есть 230-240 В.

Если вам сложно посчитать или вы не уверены в чем-то, тогда наш онлайн калькулятор для расчета резистора для светодиода быстро подскажет вам, какой нужен резистор из стандартного размерного ряда, а также его минимальную мощность.

Расчет сопротивления резистора для светодиода

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (Uист — Uн) / Iн

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн)2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15)2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Пример правильного подключения резистора

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Расчет резистора для светодиода – формула и таблица подбора сопротивления

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных сферах – это связано с их сравнительно просто конструкцией, которая обеспечивает эргономичное соотношение стоимости, потребляемой энергии и производимого света. Единственная сложность, с которой может столкнуться обычный потребитель – грамотная установка светодиодов, которая позволит извлечь из их работы максимальную эффективность.

Одним из важнейших параметров, который нужно учитывать при запуске, является ограничение тока, подаваемого на тело светодиода. Расчет резистора для светодиода позволит добиться стабильной работы освещения и обеспечить долгий срок работы каждого отдельно взятого элемента.

Теоретическая часть

Светодиод – полупроводниковый элемент, который излучает свет при прохождении сквозь него тока с определенными параметрами. Долговечность подключенного устройства и стабильность его работы напрямую зависит от величины тока, которая на него подается. Именно стабильность, а не сила тока; вопреки распространенному мнению, даже незначительные превышения в этом параметре значительно увеличивают скорость паспортной деградации кристаллов, излучающих светодиодный свет.

Во избежание нежелательных перегрузок была предложена система ограничения подаваемого тока, которая называется «токоограничивающий резистор». Важно отметить, что он именно ограничивает ток, поступающий в устройство, но не стабилизирует его, поэтому при неправильно подобранном резисторе его наличие может оказаться бесполезным. Для правильного подбора сопротивления к конкретному источнику света необходимо узнать некоторые технические данные и провести расчет сопротивления резистора.

Светодиод и ограничитель для него

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Как подключить сопротивление к светодиоду

Расчет для мощного светодиода

В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.

Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.

Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0.05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:

R = (U — Umin) / I

Проводим элементарное вычисление, в ходе которого выясняем, что:

R = (12 — 3.1) / 0.05 = 178 Ом.

Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.

Таблица подбора резистора с максимально приближенным значением сопротивления

Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.

Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:

R = 178 + (178 × 0.15) ≈ 205 Ом.

Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.

Расчет для светодиода с тремя кристаллами

Существуют светодиоды, где используется несколько кристаллов. В этом случае нужно рассчитать необходимое сопротивление с учетом того, что каждый кристалл имеет свой собственный ток. Если светодиод одноцветный, то в ранее указанной формуле значение I нужно умножить на количество включенных кристаллов (n). Все остальные значения оставим аналогичными. Получаем:

R = (U — Umin) / I × n

R = (12 — 3.1) / 0.05 × 3= 534 Ом.

Добавляем амортизацию 15% и получаем:

R = 534 + (534 × 0.15) ≈ 614 Ом.

Ближайшим расчетным значением в таблице является сопротивление резистора в 612 Ом – это наш выбор.

Если элемент использует несколько кристаллов с разными напряжениями, расчет гасящего резистора по формуле выполняется для каждого отдельно взятого кристалла. Для подключения светодиодов к сети каждый резистор должен подавать ток на тот кристалл, для которого он рассчитывался, то есть подключение будет разветвлено на три или более контакта. Количество резисторов должно равняться количеству светящихся элементов в самом светодиоде.

Ни в коем случае не подключайте RGB-светодиоды через один общий резистор – один кристаллик может сгореть, а второй даже не засветится, нужно подбирать каждый вариант отдельно.

Простая формула позволяет рассчитать реально необходимые значения и выполнить подбор реального сопротивления. Таким образом, получаем стабильно работающие источники света, которые имеют резистор гасящего сопротивления, рассчитанного с достаточным запасом амортизации для предохранения от перепадов в сети.

Нежелательно использовать значение сопротивления меньше рассчитанного, иначе смысл наличия ограничителя пропадает совершенно. Также не стоит использовать параллельное подключение самих элементов.

Расчет резистора (сопротивления) для светодиода

Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации)  или его поломке.

Зачем резистор перед светодиодом.

В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Математический расчет.

Для подбора сопротивления придется вспомнить школьный курс физики.

На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

  • U – входное напряжение блока питания;
  • R – резистор с падением напряжения UR;
  • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

По второму закону Кирхгофа: 

U =  UR + ULED.   (1)

 Одновременно используем закон Ома:

U=I*R.   (2)

Подставим формулу (2) в формулу (1) и получим:

U = I*R + I*RLED.   (3)

Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

R = (U — ULED) / I.   (4)

Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

Р = U*I.   (5)

Примем напряжение блока питания U = 10 В.

Характеристики диода: ULED  = 2В, I = 40 мА = 0,04A.

Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).

Стоит учесть, что если полученной величины нет в стандартном ряду сопротивлений, то следует выбирать более высокоомный элемент.

Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX  примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

Возьмем напряжение источника питания U = 12 В.

Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

Преобразуем формулу (4), учитывая три LED элемента.

R = (U – 3*ULED) / I.

R = (12 – 3* 2) / 0,01 = 600 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах  ULED  = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (U – ULED) /3* I.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

Напряжение блока питания U = 12 В.

Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

Максимальное количество LED элементов n для одной ветки рассчитывается так:

n = (U — ULED) / ULED   (6)

В нашем случае n = (12 — 2) / 2 = 5 (шт).

Сопротивление резистора для одной ветки:

R = (U — n* ULED) / ILED .   (7)

Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).


 

Расчитываем резистор для светодиода, драйвер и гасящий конденсатор

Светодиодные элементы все чаще применяются в сферах деятельности человечества как осветительные приборы для помещений, в уличных фонарях, карманных фонариках, при освещении аквариума. В автомобильной индустрии группы светодиодов широко используются для подсветки габаритных огней, стоп сигналов и поворотов.

Внешний вид светодиодов

Отдельными элементами с различными цветами обеспечивают подсветку приборной панели, индикацию понижения уровня охлаждающей жидкости радиатора. Невозможно перечислить все направления их использования: от украшения новогодней елки, подсветки аквариума до приборов ракетно-космической техники.

Они постепенно вытесняют обычные лампы накаливания. Многочисленные Интернет магазины в режиме онлайн продают светодиодные ленты и другие осветительные приборы. Также можно найти калькулятор расчета схем драйверов для них, если появится необходимость их ремонта или изготовления своими руками. Такому бурному развитию есть целый ряд причин.

Основные преимущества

  • малое потребление энергии;
  • высокий КПД;
  • низкие напряжения;
  • почти отсутствует нагрев;
  • высокая степень электрической и пожарной безопасности;
  • крепкий корпус: отсутствие хрупких нитей накаливания и стеклянных колб делает их устойчивыми к механическим, вибрационным воздействиям;
  • безынерционное срабатывание обеспечивает быстродействие, нет затрат времени на разогрев нити накаливания;
  • прочность, малые габариты и долговечность;
  • непрерывный ресурс работы не менее 5 лет;
  • широкий выбор спектра (цвета) и возможность конструкции отдельного элемента делать рассеянное или направленное освещение.

Есть несколько существенных недостатков:

  1. Высокая стоимость.
  2. Интенсивность светового потока отдельного элемента мала.
  3. Чем выше напряжение требуемого источника питания, тем быстрее разрушается структура светодиодных элементов. Проблема перегрева решается установкой радиатора.

Параметры и особенности

Достоинств у светодиодов намного больше, чем недостатков, но по причине высокой стоимости народ не спешит приобретать осветительные приборы на основе светодиодов. Люди, обладающие необходимыми познаниями, покупают отдельные элементы и сами собирают светильники для аквариума, делают подключения на приборные панели автомобилей, стоповых сигналов и габаритов. Но для этого надо хорошо разобраться в принципах работы, параметрах и конструктивных особенностях светодиодов.

Параметры:

  • рабочий ток;
  • рабочее напряжение;
  • цвет светового потока;
  • угол рассеивания:
  • тип корпуса.

Особенностью конструкций является диаметр, форма линзы, которая определяет направленность и степень рассеивания светового потока. Участок цветового спектра свечения определяют примеси добавляемые в полупроводниковый кристалл диода. Фосфор, индий, галлий, алюминий обеспечивают подсветку от красного до желтого диапазона.

Состав азота, галлия, индия сделает спектр в диапазоне синего и зеленого цветов, если к кристаллу синего (голубого) спектра добавить люминофор, можно получить белый свет. Углы направления и рассеивания потоков определяет состав кристалла, но в большей степени форма линзы светодиода.

Для поддержания живого мира аквариума необходим процесс фотосинтеза водорослей. Здесь требуется правильный спектр и определенный уровень освещения аквариума, с чем хорошо справляются светодиоды.

Расчет параметров и схем

Определившись с цветом, направлением потока освещения и напряжением источника питания можно покупать светодиоды. Но чтобы собрать нужную схему, надо сделать расчет резистора светодиода в цепи, который гасит повышенное напряжение питания. Рабочий ток и напряжение нам известно по номиналам.

Надо обязательно учитывать, что светодиод это полупроводник, который имеет полярности.

Если перепутать полярности, он не засветится и может вообще выйти из строя. Хорошим примером для расчета гасящего резистора в схемах подключения светодиодов являются светотехнические приборы автомобиля. В качестве индикации состояния определенного технического параметра используется один светодиодный элемент, как вариант берется пониженный уровень охлаждающей жидкости радиатора.

Схема подключения светодиода

R = Uак. – Uраб./ I раб.
R = 12В – 3В/00,2А = 450 Ом = 0,45 кОм.

Uак – напряжение источника питания, в нашем случае автомобильный аккумулятор 12В;
Uраб – рабочее напряжение светодиода;
I раб – рабочий ток светодиода.

Можно рассчитать сопротивление гасящего резистора в схеме с последовательным подключением некоторого количества светодиодов. Такой вариант может использоваться для подсветки приборов на передней панели или в качестве стоповых огней автомобиля.

Схема последовательного подключения светодиодов и гасящего сопротивления

Расчет сопротивления аналогичный:

R = Uак – Uраб*n / Iраб.

R = 12В – 3В * 3/ 0.02А = 150 Ом = 0,15 кОм.

n – количество светодиодов 3 шт.

Стоит рассмотреть случай с шестью светодиодами; в стопорных фонарях применяют и большее количество, но методика расчета сопротивления и построение схемы будут те же.

R = Uак – Uраб*n / Iраб
R = 12В – 18 В/ 002А – рабочее напряжение диодов превышает напряжение источника питания, в этом случае придется диоды разделить на 2 группы по три диода и подключить их по параллельной схеме. Расчеты делаем для каждой группы отдельно.

Схема с шестью светодиодами

Предыдущий расчет с тремя светодиодами в схеме с последовательным подключением показывает, что для параллельного подключения в каждой группе величина сопротивления резистора должна быть по 0,15 кОм.

Несмотря на небольшой нагрев, светодиодные светильники не работают без радиатора. Например, для освещения аквариума сверху устанавливается крышка, на которой крепятся точечные источники света или светодиодная лента. Чтобы избежать ее перегрева, применяется алюминиевый профиль. Для изготовления радиатора начинают применять специальные пластмассы, рассеивающие тепло. Специалисты не рекомендуют самостоятельно заниматься их изготовлением, хотя никто не запрещает принимать меры по улучшению теплоотвода от мощных светильников. В качестве радиатора хорошо применять медь, обладающую высокой теплопроводностью.

На многих сайтах можно найти калькулятор, с помощью которого предоставляется возможность выбора схемы, внесения параметров диода и расчета в режиме онлайн резистора для одного светодиода или группы.

В специализированных магазинах можно купить диски с программным обеспечением и установить на домашний компьютер драйвера. Программа с драйверами легко скачивается бесплатно в режиме онлайн или покупается, если оплатить электронными деньгами на сайте.

Особенности, которые надо учитывать:

  • Не рекомендуется подключать светодиоды в параллельной схеме через одно сопротивление. При неисправности одного диода на остальные будет подаваться слишком мощное напряжение, что приведет все диоды к выходу из строя. Если попадется такая схема, можно через онлайн-калькулятор рассчитать и переделать ее, добавив отдельные сопротивления на светодиоды.

Схема параллельного подключения

  • В расчетах могут получиться значения резистора, которые не совпадают со стандартными номиналами, тогда выбирается сопротивление немного большее. Здесь удобно использовать калькулятор в онлайн режиме.
  • При совпадении рабочего напряжения светодиодов и источника питания в бытовых схемах для фонариков, елочных гирлянд иногда резистор не используют. При этом отдельные светодиоды светятся с разной яркостью, это вызвано разбросом их параметров. Рекомендуется в этих случаях применять конверторы для повышения напряжений.

Ниже изображена одна из простейших схем драйвера светодиодной лампы.

Схема и фото драйвера лампы MR-16

Схема собрана с применением вместо трансформатора конденсатора C1 и резистора R1. Напряжение подается на диодный мост. Ограничение тока обеспечивается за счет конденсатора С1, который создает сопротивление, но не рассеивает тепло, а уменьшает напряжение при последовательном подключении к цепи питания.

Выпрямленное напряжение сглаживается с помощью электролитического конденсатора С2. Сопротивление R1 предназначено для разрядки конденсатора С1 при отключении питания. R1 и R2 в работе схемы не участвуют. Резистор R2 предназначен для защиты конденсатора С2 от пробоя, если происходит обрыв в цепи питания лампы.

На фото представлен вид драйвера с двух сторон. Красный цилиндр — это изображение конденсатора С1, черный — С2.

Резистор. Видео

На вопрос, что такое резистор, и как он работает, ответит это видео. Простота изложения дает возможность усвоить материал даже новичку.

Учитывая все вышесказанное, можно сделать правильный самостоятельный расчет резистора для светодиода и приобрести в специализированном магазине то, что по-настоящему пригодится в хозяйстве.

Оцените статью:

Расчет сопротивления для светодиода - как подобрать?

Онлайн программа для расчета резистора при подключении светодиодов

Светодиод – нелинейный полупроводниковый прибор, которому для правильной и надежной работы необходим стабильный ток. Перегрузки по току могут вывести светодиод из строя. Самый простой вариант схемы питания в таком случае – ограничительный резистор, включенный последовательно. Расчет номинального сопротивления  и мощности резистора для светодиода не очень сложная задача, если правильно понимать физику процесса. Рассмотрим общие принципы такого расчета, а затем разберем несколько конкретных примеров из практики.

Теория

В общем случае схема выглядит так.

Рисунок 1

Между контактами «+» и «-» прикладывается напряжение. Обозначим его буквой U. Ток через резистор и светодиод будет протекать одинаковый, т.к. соединение последовательное. Согласно закону Ома получаем:

где R – сопротивление резистора;

rLED– сопротивление светодиода (дифференциальное).

Отсюда выражаем формулу, по которой можно произвести расчет сопротивления резистора R при заданном токе I:

Разберемся что такое дифференциальное сопротивление светодиода rLED. Для этого нам потребуется его вольтамперная характеристика (ВАХ).

Рисунок 2

Как видно из графиков ВАХ светодиодов – нелинейна. Говоря простым языком, его сопротивление постоянному току r=U/I есть переменная величина, которая уменьшается с ростом напряжения. Поэтому вводится понятие дифференциального сопротивления rLED=dU/dI, которое характеризует сопротивление диода в отдельно взятой точке кривой ВАХ.

Чтобы произвести расчет резистора для светодиода, определяем по графику прямое напряжение на светодиоде ULED при заданном токе I. Затем подставляем получившееся значение в формулу (2) и получаем

Еще один способ решения задачи – графический.

Допустим необходимо рассчитать сопротивление резистора для обеспечения светодиоду рабочего тока величиной 100 мА при напряжении источника питания – 5 вольт.

Для этого сначала на графике ВАХ светодиода отмечаем точку соответствующую току 100 мА (см. рисунок 3), затем проводим через эту точку и точку соответствующую 5 вольтам на оси абсцисс нагрузочную прямую до пересечения с осью ординат. Определяем значение тока, соответствующее этому пересечению (в нашем случае 250 мА) и по закону Ома производим расчет сопротивления резистора R= U / Iкз= 5 В / 0,25 А =20 Ом. Перед расчетом не забываем осуществлять перевод единиц измерения к надлежащему виду.

Рисунок 3

Следующим шагом будет определение мощности рассеиваемой на резисторе. Формула должна быть знакома всем из школьной физики (как и закон Ома):

P=I2×R.          (4)

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Ремарка

В данных расчетах мы пренебрегли зависимостью прямого напряжения светодиода от его температуры, однако не следует забывать, что такая зависимость существует и характеризуется параметром «температурный коэффициент напряжения» или сокращенно ТКН. Его значения отличается для разных видов светодиодов, но всегда имеет отрицательное значение. Это значит что при повышении температуры кристалла, прямое напряжение на нем становится меньше. Например, для рассмотренного выше белого светодиода XPE значение ТКН (оно приводится производителем в data sheet) составляет -4 мВ/°С. Следовательно при увеличении температуры кристалла на 25°С, прямое напряжение на нем уменьшится на 0,1 В.

Рисунок 5

Многие ведущие производители светодиодов имеют на официальных сайтах специальный сервис – «онлайн калькулятор», предназначенный для вычисления параметров светодиодов в различных режимах эксплуатации (в зависимости от температуры, тока и пр.). Этот инструмент значительно облегчает процедуры расчета и экономит время разработчику.

Какой резистор мне использовать со светодиодом? - Kitronik Ltd

Выбрать резистор для работы со светодиодом довольно просто, но для этого требуются некоторые знания о светодиодах и немного математики. Некоторые светодиоды, такие как светодиоды с изменяющимся цветом, мигающие светодиоды и светодиоды на 5 В, рассчитаны на работу от источника питания 5 В и поэтому не нуждаются в резисторе. Для всех остальных стандартных и ярких светодиодов потребуется резистор, ограничивающий ток. LED расшифровывается как Light Emitting Diode, и, как следует из названия, это диод, который излучает свет.Когда диод включен в цепь, на него падает 0,7 В. Точно так же на светодиодах падает напряжение, известное как прямое напряжение, хотя оно отличается для каждого светодиода. Для стандартного светодиода прямое напряжение обычно составляет 2 В, а для сверхяркого светодиода - около 3,5 В. Часть напряжения батареи падает на светодиод (прямое напряжение), а остальная часть напряжения падает на резистор. Это показано на диаграмме вверху справа. Поэтому мы можем записать это как:

Сопротивление можно рассчитать по закону Ома:

Светодиоды

обычно требуют от 10 до 20 мА, это подробно описано в спецификации светодиода вместе с прямым падением напряжения.Например, сверхяркий синий светодиод с батареей 9 В имеет прямое напряжение 3,2 В и типичный ток 20 мА.

Значит, резистор должен быть на 290 Ом или как можно ближе к нему.

Пусть ваш компьютер сделает всю работу

Мы добавили на веб-сайт Kitronik отличный инструмент, позволяющий упростить расчет резистора ограничения тока. Просто выберите, какой светодиод вы используете, из раскрывающегося списка. Введите напряжение аккумулятора, и он скажет вам, какой резистор использовать.Он даже сообщает вам, какие цветные полосы будут на резисторе. Нажмите здесь, чтобы перейти на страницу калькулятора

Подробнее об авторе подробнее »

© Kitronik Ltd - Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

Выбор светодиода и поиск резистора подходящего размера

Светоизлучающие диоды (СИД) - это диоды, которые излучают свет при включении питания. Светодиоды могут освещать комнату сейчас, тогда как в течение десятилетий они были слишком слабыми, чтобы делать что-то большее, чем просто индикатор.Со светодиодами весело играть, и это довольно безопасный способ познакомить детей с принципами работы электрических схем. Прежде чем подключать светодиоды к батареям, вам нужно знать несколько вещей.

Выбор светодиода: яркость и угол обзора

Рисунок 1: Светодиодные индикаторы сквозных отверстий от Cree. (Источник: Cree)

Вы должны знать, какой яркости вы хотите, чтобы светодиод был (сила света), какого цвета (или, если требуется точность, какой длины волны), угла обзора и какого размера должен быть светодиод.Яркость на самом деле вызывает беспокойство. Некоторые светодиоды слишком яркие, а некоторые должны быть очень тусклыми. Сложно передать уровни яркости в статье, поэтому вы можете сначала ознакомиться, купив несколько светодиодов с разной силой света. Пример ниже включает умеренно яркий светодиод на 605 мкд.

Ищите вариант «индикаторного светодиода» или «сквозного отверстия», если вы работаете с макетной платой, печатной платой или просто хотите, чтобы светодиоды с проводами можно было прикрепить к резистору и батарее с помощью зажимов типа «крокодил» (вы не хотите случайно купил светодиоды типа светильника).Сила света измеряется в милликанделах (мкд). Что касается угла обзора, не все светодиоды можно рассматривать со всех сторон на 360 градусов, как на лампочку накаливания. Угол обзора может не иметь большого значения для игр со светодиодами, но угол обзора 15 градусов аналогичен тому, что светодиоды видны только тогда, когда вы смотрите на них прямо. Точно так же, как некоторые светодиодные телевизоры не так хорошо просматриваются с кресла, расположенного слишком далеко от светодиодного телевизора, светодиодный индикатор на вашей макетной плате точно такой же.Длина волны соответствует цвету, но в большинстве таблиц указывается цвет напрямую, а также длина волны. Длина волны удобна, если вы пытаетесь подобрать точный цвет другого светодиода и знаете длину волны, или если вы используете светодиоды для отверждения краски или лака для ногтей. Например, отверждение жидкости, которая затвердевает только при определенной длине волны, не будет работать так же хорошо, если светодиод излучает неправильную длину волны. Некоторые лаки для ногтей затвердевают только под воздействием ультрафиолетового излучения в узком диапазоне, поэтому лампа для полимеризации может вообще не работать с лаком для ногтей другого производителя.

Светодиоды

чувствительны к полярности. Как и батарея, они не будут работать, если анод (+) и катод (-) не смещены должным образом. Если светодиод не горит, попробуйте поменять местами.

Выбор подходящего резистора

Можно зажечь светодиод, используя батарею без резистора вообще, но если вы не точно сопоставите светодиод с номинальным напряжением и током для светодиода, светодиод может быть тусклым или слишком ярким (и нагреваться ), или светодиод может даже взорваться.Без резистора, ограничивающего ток через светодиод, светодиод неизбежно изнашивается быстрее (тускнеет и гаснет).

Если вам нужно более долговечное решение, вам понадобится резистор, включенный последовательно со светодиодом, чтобы ограничить ток, протекающий через светодиод. Величина резистора зависит от закона Ома (V = IR). Вам необходимо знать напряжение источника питания (например, общее напряжение батареи), необходимое падение напряжения на светодиоде, чтобы он загорелся, и количество тока, которое должно протекать через светодиод, чтобы включить его.

Рекомендуемый рабочий ток и напряжение для светодиода можно найти в его техническом описании. Рабочее напряжение светодиода обычно называют прямым напряжением (). Это падение напряжения, необходимое на светодиоде, чтобы он загорелся. Рабочий ток светодиода обычно указывается как прямой ток ().

Расчет номинала резистора

Используйте эту формулу для расчета номинала резистора, который будет включен последовательно со светодиодом:

; где - напряжение питания.Светодиодам нужен постоянный ток (DC), а не переменный ток (AC). Батарея или источник переменного тока, преобразованный в постоянный ток, будут работать.

Расчетная мощность резистора

Не забывайте о мощности резистора. Если номинал резистора слишком низкий, он будет нагреваться, поскольку будет пытаться справиться с более сильным потоком тока, чем он рассчитан на обработку. Ватты - это единица измерения мощности, поэтому:

P = VI; где P - мощность резистора, V - падение напряжения на резисторе, а I - ожидаемый ток, протекающий через резистор.

Схема светодиода довольно проста и выглядит так, как показано на рисунке 1.

Рисунок 2: Резистор, соединенный последовательно со светодиодом и батареей, полярность указана.

Пример:

Cree C4SMF-BJF-CR24Q4T2 - это синий светодиод со сквозным отверстием 4 мм, который у таких дистрибьюторов, как mouser.com, стоит всего несколько центов. Яркость 605 мкд вполне достаточна для работы в помещении. Согласно значениям в параметрическом поиске Mouser Electronics для этого номера детали прямой ток составляет 20 мА (или 0,02 А) и равен 3.4 В. Если у нас есть батарея 9 В (), то мы можем рассчитать, что нам нужен резистор на 280 Ом:

Номинальная мощность резистора:

P = VI = x 0,20 A = 0,112

Номинальная мощность резистора должна быть не менее 1/10 Вт, но более стандартное значение - Вт, поэтому мы можем использовать резистор на 280 Ом на четверть ватта. Также подойдут резисторы большей мощности.

У меня к вам вопрос.

Токоограничивающие резисторы для светодиодов

Ограничение тока в светодиодах очень важно.Светодиод ведет себя совсем не так, как резистор в цепи. Резисторы ведут себя линейно по закону Ома: V = IR. Например, увеличивая напряжение на резисторе, ток будет увеличиваться пропорционально, пока номинал резистора остается неизменным. Достаточно просто. Светодиоды не ведут себя подобным образом. Они ведут себя как диод с характеристикой ВАХ, отличной от характеристики резистора.

Например, для диодов существует спецификация, называемая характеристическим (или рекомендуемым) прямым напряжением (обычно между 1.5-4В для светодиодов). Вы должны достичь характеристического прямого напряжения, чтобы «включить» диод или светодиод, но при превышении характеристического прямого напряжения сопротивление светодиода быстро падает. Поэтому светодиод начнет тянуть пучок тока и в некоторых случаях перегорает. Резистор используется последовательно со светодиодом, чтобы поддерживать ток на определенном уровне, называемом характеристическим (или рекомендуемым) прямым током.

Используя приведенную выше схему, вам необходимо знать три значения, чтобы определить значение резистора, ограничивающего ток.

i = прямой ток светодиода в амперах (см. Техническое описание светодиода)
Vf = прямое падение напряжения светодиода в вольтах (см. Техническое описание светодиода)
Vs = напряжение питания

После получения этих трех значений подставьте их в это уравнение, чтобы определить резистор ограничения тока:

Также помните об этих двух концепциях при обращении к схеме выше.

  1. Ток i, выходящий из источника питания через резистор и светодиод и обратно на землю, одинаков.(KCL)
  2. Падение напряжения на резисторе, помимо прямого падения напряжения светодиода, равно напряжению питания. (КВЛ)

Пример 1

Какой номинал токоограничивающего резистора следует использовать, если у вас есть один светодиод и вы хотите запитать его напряжением питания Vs = 3,8 В?

Чтобы рассчитать токоограничивающий резистор, вам сначала нужно посмотреть в таблице данных (всегда сначала RTFM!), Где указаны рекомендуемые параметры прямого напряжения и прямого тока светодиода.В этом примере они составляют 3,1 В и 30 мА соответственно. Не забудьте преобразовать все ваши единицы в вольты, амперы или омы! например 1 мА = 0,001 А

Если вы подставите значения в приведенное выше уравнение, вы получите:

23,3 Ом может оказаться нечетным значением для поиска, поэтому округлите его до следующего наибольшего общего значения.


Пример 2

Что, если вы хотите запитать светодиод высокой мощности? Какой должна быть номинальная мощность резистора?


Назначение резистора - ограничить ток и, таким образом, потреблять некоторую мощность.Вы должны быть уверены, что номинальная мощность (мощность) вашего резистора достаточна для используемой мощности. Уравнение мощности:

Допустим, вы используете приведенный выше светодиод с напряжением питания 12 В, прямым напряжением светодиода 3,9 В и общим прямым током 1400 мА. Какую мощность выбрать для резистора?

Резистор имеет падение напряжения, как и светодиод. Итак, согласно закону напряжения Кирхгофа:

Если вы решите падение напряжения на резисторе, вы получите 8.1В. Теперь у нас достаточно информации, чтобы подставить числа в уравнение мощности (не забудьте преобразовать все единицы в амперы и вольты, например, 1400 мА = 1,4 А):

Расчетное значение составляет примерно 12 Вт . Как правило, номинальная мощность резистора должна быть почти вдвое больше расчетной. Таким образом, резистора в районе 20-25 Вт и будет достаточно. Кроме того, имейте в виду, что резистор на 20-25 Вт будет чертовски большим!

Как рассчитать номинал резистора для светодиодов и цепей светодиодов

Как найти номинал резистора для различных типов цепей светодиодов

Следующее пошаговое руководство поможет вам найти правильное значение резистора ( или резисторы) для одного или нескольких светодиодов и цепочек цепочек светодиодов для подключения к батарее и источнику питания.

Если вы выберете эту тему, вы сможете:

  • Рассчитать номиналы резисторов для различных схем светодиодов
  • Рассчитать прямой ток светодиодов
  • Рассчитать прямое напряжение для разных светодиодов Цепи
  • Последовательное соединение светодиодов с батареей
  • Параллельное подключение светодиодов к батарее
  • Соединение светодиодов в последовательно-параллельной комбинации Цепи

Обновление: Вы также можете использовать этот светодиод Вычислитель резисторов для этой цели

Типичный светодиодный символ, конструкция и идентификация проводов.

Щелкните изображение, чтобы увеличить

Прежде чем мы углубимся в детали, мы попробуем прокатиться по простой схеме ниже, чтобы было легче понять другой расчет.

Щелкните изображение, чтобы увеличить

Это самая простая схема серии светодиодов .

Здесь напряжение питания составляет 6 В, прямое напряжение светодиода (V F ) составляет 1,3 В, а прямой ток (I F ) составляет 10 мА.

Теперь значение резистора (который мы подключим последовательно со светодиодом) для этой схемы будет:

Значение резистора = (V питание - V F) / I F = (6 - 1,3) / 10 мА = 470 Ом

Потребляемый ток = 20 мА

Формула номинальной мощности резистора для этой схемы

Номинальная мощность резистора = I F 2 x Значение резистора = (10 мА) 2 x 470 Ом = 0,047 Вт = 47 мВт

Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0.047 Вт x 2 = 0,094 Вт = резистор 94 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,094 Вт = (94 мВт)

Также имейте в виду, что:

  • Слишком сложно найти точное номинальные резисторы, которые вы рассчитали. Обычно резисторы бывают 1/4, 1/2, 1, 2, 5 и т. Д. Поэтому выберите следующее более высокое значение номинальной мощности. Например, если вы рассчитали номинальную мощность резистора 0,789 Вт = 789 мВт, вы должны выбрать резистор 1 Вт.
  • Слишком сложно найти точное значение резисторов, которое вы рассчитали. Как правило, резисторы имеют стандартные номиналы. Если вы не можете найти точное значение резистора, которое вы рассчитали, а затем выберите следующее значение резистора, которое вы рассчитали, например, если рассчитанное значение составляет 313,5 Ом, вы должны использовать ближайшее стандартное значение, что составляет 330 Ом. если ближайшее значение недостаточно близко, то можно сделать это, подключив резисторы последовательно - параллельная конфигурация.
  • I F = Прямой ток светодиода: Это максимальный ток, который светодиод может принимать непрерывно. Рекомендуется обеспечить 80% номинального прямого тока светодиодов для длительного срока службы и стабильности. Например, если номинальный ток светодиода составляет 30 мА, вы должны включить этот светодиод на 24 мА. Значение тока, превышающее это значение, сократит срок службы светодиода или может начать дымиться и гореть.
  • Если вы все еще не можете найти прямой ток светодиода, предположите, что он 20 мА, потому что типичный светодиод работает на 20 мА.
  • В F = прямое напряжение светодиода: Это прямое напряжение светодиода, то есть падение напряжения при подаче номинального прямого тока. Вы можете найти эти данные на пакетах светодиодов, но они находятся в диапазоне от 1,3 В до 3,5 В в зависимости от типа, цвета и яркости. Если вы все еще не можете найти прямое напряжение, просто подключите светодиод через 200 Ом с батареей 6 В. Теперь измерьте напряжение на светодиоде. Это будет 2 В, и это прямое напряжение.

Формула для определения номинала резистора (ов) для последовательного подключения светодиодов:

Ниже приведена еще одна простая схема светодиодов (светодиодов, подключенных последовательно).В этой схеме мы подключили последовательно 6 светодиодов. Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Щелкните изображение, чтобы увеличить

Значение резистора (светодиоды в серии) = (В питание - (В F x количество светодиодов)) / I F

Здесь полное прямое напряжение (V F ) из 6 светодиодов = 2 x 6 = 12 В

и прямой ток (I F ) такой же (т.е.е. 20 мА)

( Примечание: это последовательная цепь, поэтому ток в последовательной цепи в каждой точке одинаков, а напряжения складываются) .Теперь значение резистора (для последовательной цепи) будет:

= (В питание - (V F x количество светодиодов)) / I F = (18 - (2 x 6)) / 20 мА

= (18-12) / 20 мА = 300 Ом

Общий ток потребления = 20 мА

(Это последовательная цепь, поэтому токи одинаковы) Номинальная мощность резистора

= I F 2 x Номинал резистора = (20 мА) 2 x 300 Ом = 0.12 = 120 мВт

Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,12 Вт x 2 = 0,24 Вт = Резистор 240 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,24 Вт = (240 мВт)

Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с общим резистором):

Нажмите на изображение, чтобы увеличить

В этой схеме мы подключили светодиоды параллельно общему резистору.Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Значение резистора (светодиоды параллельно с общим резистором) = (В питание - В F) / (I F x количество светодиодов)

Здесь общий прямой ток (I F ) 4 светодиода = 20 мА x 4 = 0,08 А, и прямое напряжение (V F ) такое же (т.е. 2 В)

( Примечание: это параллельная цепь, поэтому напряжение параллельной цепи одинаково в каждой точке, а токи аддитивны).

Теперь значение резистора (для параллельной цепи с общим резистором) будет:

= (В , питание - В F) / (I F x количество светодиодов)

= (18 - 2) / 0,08

= 200 Ом

Общий ток потребления = 20 мА x 4 = 80 мА

(Это параллельная цепь, поэтому токи складываются)

Номинальная мощность резистора = I F 2 x Значение резистора = (20 мА) 2 x 200 Ом = 0.08 Вт = 80 мВт

Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 1,28 Вт x 2 = 2,56 Вт. резистор для этой схемы. Номинальная мощность резистора (значение удвоено) = 2,56 Вт (280 мВт)

Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с отдельным резистором)

Нажмите на изображение, чтобы увеличить

Это еще один способ подключения светодиодов параллельно с отдельными резисторами.В этой схеме мы подключили 4 светодиода параллельно с отдельными резисторами. Напряжение питания составляет 9 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Значение резистора (светодиоды включены параллельно с отдельным резистором) = (V питание - V F ) / I F Здесь общее прямое напряжение (V F ) светодиодов = 2 и прямой ток ( I F ) 20 мА (т.е. 20 мА)

( Примечание: это параллельная цепь, но мы находим значение резистора для каждой секции, а не для всей цепи.Таким образом, в каждом разделе схема становится последовательной (обратитесь к формуле последовательной схемы или к простой схеме 1 st выше, вы обнаружите, что они такие же)

Теперь значение резистора (для параллельной схемы с отдельным резисторов) будет:

= (V питание - V F ) / I F = (9-2) / 20 мА = 350 Ом

Общий ток потребления = 20 мА x 4 = 80 мА (Это является параллельной схемой, поэтому токи складываются)

Номинальная мощность резистора = I F 2 x Номинал резистора = (20 мА) 2 x 350 Ом = 0.14 = 140 мВт

Но это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,14 Вт x 2 = 0,28 Вт = резистор 280 мВт для этой схемы. Номинальная мощность резистора (значение удвоено) = 0,28 Вт (280 мВт)

Есть другой способ (последовательно-параллельная комбинация) для соединения светодиодов с батареей; Если вы поняли этот простой расчет, то я уверен, что вы легко сможете рассчитать номинал резисторов для схемы подключения последовательно-параллельной комбинации светодиодов.

Похожие сообщения:

Расчет значений резисторов, ограничивающих ток для светодиодных цепей


Светодиод - это один из тех компонентов продукта, который просто обязан работать. Если я смотрю на свой компьютер через комнату и не вижу, как его светодиодный индикатор мигает мне в ответ, я предполагаю, что он выключен; Никогда не ожидал, что светодиод мог перегореть. Для этого есть веская причина: при работе в соответствии со спецификациями срок службы светодиода составляет 100000 часов или более.

Ключом к увеличению срока службы светодиода является ограничение протекающего через него тока.Часто это делается с помощью простого резистора, значение которого рассчитывается по закону Ома. В этой статье рассматривается, как применить закон Ома к одиночным и кластерным схемам светодиодов. Я также предоставил электронную таблицу Excel, чтобы упростить и ускорить процесс.

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одного светодиода, основная форма закона Ома - V = IR - становится:

где:

  • V batt - напряжение между резистором и светодиодом.
  • В светодиода - прямое напряжение светодиода.
  • I led - прямой ток светодиода.

На рисунке 1 (а) показан пример схемы с одним светодиодом. Между прочим, V batt - V led - это падение напряжения на резисторе, а (I led ) 2 R - мощность, рассеиваемая резистором. Расчет рассеиваемой мощности - это этап, который многие люди - как любители, так и профессионалы - склонны пропускать.Итак, что вы называете резистором на 1/8 Вт, который должен рассеивать 1/2 Вт? Уголь.

Светодиоды в серии

Приведенное выше уравнение становится лишь немного сложнее, если вы соедините несколько светодиодов последовательно. Падение напряжения на светодиодах увеличивается, уменьшая падение напряжения на резисторе. Ток через резистор (и светодиоды) остается прежним:

, где n - количество последовательно включенных светодиодов. Рисунок 1 (b) показывает пример с тремя последовательно включенными светодиодами.Падение напряжения на светодиодах в три раза больше, чем у одного светодиода.

светодиодов параллельно

Если вы подключите несколько светодиодов параллельно, ток через резистор возрастет (хотя ток через каждый светодиод останется прежним). Падение напряжения на светодиодах не изменяется, как и падение напряжения на резисторе:

, где m - количество параллельно включенных светодиодов. Рисунок 1 (c) показывает пример с тремя светодиодами, подключенными параллельно.Ток в цепи в три раза превышает ток одного светодиода.

РИСУНОК 1. Простые светодиодные схемы. (а) Схема с одним светодиодом. (б) светодиоды последовательно. (c) параллельные светодиоды.


Светодиодные массивы

Если вы соединяете несколько светодиодов в массив, вам просто нужно объединить последовательную и параллельную формы уравнений:

Важно, чтобы в каждой из m параллельных ветвей цепи было n светодиодов (соединенных последовательно) и чтобы все светодиоды имели одинаковый светодиод V и светодиод I .В противном случае все ставки отменены. На рис. 2 (а) показаны четыре светодиода, подключенные таким образом, что предыдущее уравнение не применяется. Рисунок 2 (b) показывает один из нескольких «правильных» способов подключения четырех светодиодов.

РИСУНОК 2. Светодиодные матрицы .


Регулировка яркости

Контроль яркости полезен для гаджетов, которые могут использоваться в различных условиях окружающего освещения (снаружи / внутри, ночью / днем ​​и т. Д.). Для этой функции требуется два резистора - один фиксированный (R f ) и один переменный (R v ).R f ограничивает ток, когда R v находится на минимальном значении - обычно 0 Ом - что позволяет максимальному току протекать через светодиод. Значение R f рассчитывается, когда R v = 0:

.

, где Iled (max) - это максимальный ток, который вы хотите через светодиод.

Увеличение настройки R v добавляет сопротивление цепи, уменьшая ток через светодиод. Когда R v установлен на максимальное значение, через светодиод проходит минимальный ток.Значение рэндов против определяется по формуле:

, где I led (min) - это минимальный ток, который вы хотите через светодиод.

РИСУНОК 3. Регулировка яркости.


Этапы проектирования

Существует четыре шага для выбора подходящего номинала (значений) токоограничивающего резистора:

  • Используя желаемые рабочие характеристики и спецификации светодиода, решите соответствующие уравнения для "идеальных" номиналов резистора.
  • Выберите подходящие «реальные» значения резистора.Если в расчетах указан резистор 132,27 Ом, ближайшие «реальные» значения резистора будут 130 Ом и 150 Ом (допуск 5%). Конечно, вы можете выбрать другие значения в зависимости от того, что у вас есть под рукой.
  • Вставьте значения резисторов, которые вы выбрали, снова в вычисления, чтобы увидеть, будут ли они удовлетворять желаемым рабочим характеристикам.
  • Выполните вычисления, используя выбранные значения резисторов с крайними допусками. Резистор 150 Ом с допуском 5% может иметь диапазон от 142 Ом.От 5 Ом до 157,5 Ом и редко бывает точно 150 Ом. Также рассчитайте ток, потребляемый схемой, и необходимую мощность, рассеиваемую резисторами.

Некоторые люди не выполняют ни одного из этих шагов и просто угадывают значение. Большинство из них проходят первые два шага, что обычно нормально, если вы не работаете слишком близко к пределам светодиода, где допуски могут подтолкнуть вас к краю. Выполнив все четыре шага, вы можете гарантировать, что ваши светодиоды, по крайней мере, работают безопасно и прослужат долгое время.

Множественные итерации - это перетаскивание

Подсчитать подходящие резисторы для светодиодных цепей довольно просто. Это займет всего несколько минут, даже если вы пройдете все четыре этапа проектирования. В этом нет ничего страшного, если вам нужно сделать это только один раз, но что, если вы хотите увидеть влияние различных резисторов в цепи? Что делать, если у вас есть набор светодиодов, и вы хотите определить, как лучше всего их подключить? ( На рис. 4 показаны четыре способа подключения шести светодиодов.) Расчеты по-прежнему просты; вам просто нужно повторить их еще несколько раз.Это утомительно, и именно тогда люди склонны совершать ошибки.

Чтобы избавиться от скуки и связанных с ней ошибок, я составил электронную таблицу Excel, в которой выполняются все необходимые вычисления, включая поиск «реальных» значений резисторов. Это реальная экономия времени!

РИСУНОК 4. Способы подключения шести светодиодов.


Использование электронной таблицы

Электронная таблица (доступна на веб-сайте Nuts & Volts по адресу www.nutvolts.com ) разбит на три раздела. В первом разделе «Характеристики цепи» вы вводите параметры цепи. Во втором разделе, «Расчетные значения I & R и предлагаемые резисторы», вычисляются необходимые номиналы резисторов и предлагаются «настоящие» резисторы для использования в схеме. Последний раздел, «Расчетная производительность с использованием выбранных резисторов», позволяет вам подключать значения резисторов (предлагаемые значения или значения по вашему выбору) и рассчитывать токи светодиодов, токи источника питания и рассеиваемую мощность резистора.Также учитывается допуск резистора. Примечание. Вам следует изменить только значения, выделенные синим полужирным шрифтом. Обычный черный текст изменять нельзя. NV

РИСУНОК 5. Вид электронной таблицы.


Загрузки

Что в почтовом индексе? Таблица калькулятора резисторов

AMZ Расчетный резистор для светодиода

AMZ Расчетный резистор для светодиода

Расчет номинала резистора для светодиода


Этот калькулятор используется для определения значения падающего резистора, необходимого для ограничения тока светодиода до выбранных миллиампер.Vf по умолчанию составляет 1,95 В и типичен для большинства светодиодов, за исключением синего и белого, которые будут немного выше. Значение R1 указывается в омах.

Мощность резистора, используемого для R1, должна быть больше, чем значение, указанное калькулятором. Пример: если в поле «Мощность» указано 0,07, то можно использовать резистор 0,125 Вт (1/8 Вт) или выше.


Введите ток, при котором светодиод должен работать, и калькулятор найдет значение резистора.В качестве альтернативы вы можно оставить поле тока светодиода пустым, и калькулятор сообщит, сколько миллиампер использует светодиод. Значения напряжения питания и прямого напряжения светодиода необходимо всегда вводить в форму. Мощность для резистор R1 - это минимум, который следует использовать. Выберите резистор следующей более высокой мощности. Резистор 1/4 Вт составляет 0,250 Вт, резистор 1/2 Вт равен 0,500 Вт, резистор 1 Вт равен 1 000 Вт и так далее.

20 мА - типичный максимальный ток для большинства светодиодов. Выберите значение меньше 20, если не используется специальный светодиод.Ток в 5 миллиампер должен быть достаточно ярким для большинства светодиодов, а 2 или 3 мА достаточно для синего индикатора.

Я тестировал светодиоды на 3 мА. и записали прямое падение напряжения для использования в калькуляторе. По возможности я использовал светодиоды разных типов для каждого измерения.
Пример: Для красной пары я использовал 5-миллиметровый патрон для первого теста и прямоугольную форму для второго теста. То же самое с зеленым и желтым.
Светодиод прямого напряжения
красный 1.98v 1,96 В
Зеленый 1,94 В 1,92 В
Желтый 1,90 В 1,92 В
Синий 2,76 В 2,78 В
белый 2,78 В 2,76 В
Розовый 2,84 В 2,84 В
Ультрафиолетовый 3,10 В 3.16v
Необходимо преобразовать коэффициент усиления напряжения в децибелы?

AMZ-FX Домашняя страница Главная страница Lab Notebook Блог гитарных эффектов

© 2003,2009,2015 Джек Орман
Все права защищены.

Политика конфиденциальности

светодиодов (светоизлучающих диодов) | Electronics Club

Светодиоды (светодиоды) | Клуб электроники

Тестирование | Цвет | Размеры и формы | Резистор | Светодиоды последовательно | Светодиодные данные | Мигает | Подставки

Смотрите также: Лампы | Диоды

LED = светоизлучающий диод

светодиода излучают свет, когда через них проходит электрический ток.

Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом. Никогда не подключайте светодиод напрямую к батарее или источнику питания.

светодиода должны быть подключены правильно, на схеме может быть указано a или + для анода и k или - для катода (да, это действительно k, а не c, для катода).Катод - это короткий вывод, и на корпусе может быть небольшое сглаживание. круглых светодиодов. Если вы видите внутри светодиода, катод - это электрод большего размера, но это не официальный метод идентификации.

Пайка светодиодов

Светодиоды

могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными. При пайке большинства светодиодов особых мер предосторожности не требуется.

Rapid Electronics: светодиоды


Тестирование светодиода

Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод может быть разрушенным чрезмерным током, проходящим через него.

Светодиоды

должны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для в целях тестирования 1к резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше. Не забудьте правильно подключить светодиод.

Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор. значение для светодиода.


Цвета светодиодов

Цвет светодиода определяется его полупроводниковым материалом, а не окраской. «упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде. упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»). Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.

Синие и белые светодиоды могут быть дороже других цветов.

Двухцветные светодиоды

Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад). объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.

Трехцветные светодиоды

Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один. пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.

На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные длины трех выводов. Центральный вывод (k) является общим катодом для оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.

Rapid Electronics: красный / зеленый светодиод

RGB светодиода

светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе. Каждый внутренний светодиод можно переключить включается и выключается по отдельности, позволяя производить диапазон цветов:

  • Красный + зеленый дает желтый
  • Красный + синий дает пурпурный
  • Зеленый + синий дает голубой
  • Красный + зеленый + синий дает белый

Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.

Rapid Electronics: RGB LED



Размеры, формы и углы обзора светодиодов

Светодиоды

доступны в самых разных размерах и формах. «Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно, лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.

Светодиоды круглого сечения используются часто и их очень легко установить на коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать светодиод, если необходимо.Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях. Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.

Фотография © Rapid Electronics

Светодиоды различаются не только цветами, размерами и формами, но и углом обзора. Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзор угол 60 °, но другие имеют узкий луч 30 ° или меньше.

Склад Rapid Electronics особенно широкий выбор светодиодов и их веб-сайт является хорошим проводником по широкому ассортименту доступных включая новейшие светодиоды высокой мощности.


Расчет номинала резистора светодиода

Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод. иначе он перегорит практически мгновенно.

Номинал резистора R определяется по формуле:

R = номинал резистора в омах ().
В S = напряжение питания.
В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).
I = ток светодиода в амперах (A)

Ток светодиода должен быть меньше максимально допустимого для вашего светодиода.Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей. Для расчета ток должен быть в амперах (А). Чтобы преобразовать мА в А, разделите ток в мА на 1000.

Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора. что на больше , так что ток будет немного меньше, чем вы выбрали. На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток. (например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.

Например,

Если напряжение питания V S = 9V, и у вас красный светодиод (V L = 2V), требующий тока I = 20 мА = 0,020 А,
R = (9В - 2В) / 0,02А = 350, так что выберите 390 (ближайшее стандартное значение, которое больше).

Напряжение светодиода

Напряжение V L светодиода определяется цветом светодиода. Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.

Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.

Расчет формулы светодиодного резистора по закону Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где:
V = напряжение на резисторе (в данном случае = V S - V L )
I = ток через резистор

Итак, R = (V S - V L ) / I

Для получения дополнительной информации о расчетах см. Страницу закона Ома.



Подключение светодиодов последовательно

Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно. Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.

Все светодиоды, подключенные последовательно, пропускают одинаковый ток , поэтому лучше, если они все того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода. (4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .

Пример расчетов:

Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее 3 × 2 В + 2 В = 8 В, поэтому батарея 9 В и будет идеальной.
В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,
Резистор R = (V S - V L ) / I = (9-6) / 0.015 = 3 / 0,015 = 200,
, поэтому выберите R = 220 (ближайшее стандартное значение, которое больше).

Избегайте параллельного подключения светодиодов!

Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.

Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.

Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.


Чтение таблицы технических данных для светодиодов

Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды. Эти таблицы содержат много полезной информации в компактной форме, но они могут быть трудным для понимания, если вы не знакомы с используемыми сокращениями. Вот важные свойства светодиодов:

  • Максимальный прямой ток, I F макс.
    «Вперед» означает, что светодиод правильно подключен.
  • Типичное прямое напряжение, В F тип.
    Это V L в расчете светодиодного резистора, около 2В или 4В для синих и белых светодиодов.
  • Сила света
    Яркость при заданном токе, например 32 мкд при 10 мА (мкд = милликандела).
  • Угол обзора
    60 ° для стандартных светодиодов, другие излучают более узкий луч около 30 °.
  • Длина волны
    Пиковая длина волны излучаемого света, она определяет цвет светодиода, е.грамм. красный 660 нм, синий 430 нм (нм = нанометр).

Следующие два свойства можно игнорировать для большинства цепей:

  • Максимальное прямое напряжение, В F макс.
    Это можно игнорировать, если у вас есть подходящий резистор, включенный последовательно.
  • Максимальное обратное напряжение, В R max.
    Это можно игнорировать, если светодиоды подключены правильно.

Мигающие светодиоды

Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему) а также сам светодиод.Микросхема мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду). Мигающие светодиоды предназначены для прямого подключения к определенному напряжению питания, например, 5 В или 12 В. без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть построить свою собственную схему для мигания обычного светодиода, например Проект мигающего светодиода, в котором используется 555 нестабильная схема.

Rapid Electronics: мигающие светодиоды


Светодиодные экраны

Светодиодные экраны

представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме. является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже проиллюстрировать некоторые из популярных дизайнов.

Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи
Фотографии © Rapid Electronics

Rapid Electronics: светодиодные дисплеи

Подключение выводов светодиодных дисплеев

Существует много типов светодиодных дисплеев, поэтому для штыревые соединения. На диаграмме справа показан пример из Быстрая электроника. Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях: Общий анод (SA) со всеми светодиодными анодами, соединенными вместе, и общий катод (SC) со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты нет (NP), но их позиция все еще пронумерована.

См. Также: Драйверы дисплея.


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад рекомендую их как поставщика.


Книг по комплектующим:


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *