Подбор сечения кабеля: Калькулятор расчета сечения кабеля

Содержание

Правильный расчет сечения кабеля

Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным проблемам. Любой провод в вашей квартире должен быть рассчитан правильно, что бы он мог исправно служить долгие года, т.е не греться при длительном прохождении по нему рабочего тока. Запомните это!

Правильный расчет сечения кабеля всегда должен начинаться с подсчета нагрузки, которая будет от него работать. Потом, исходя из расчетов, по таблице представленной ниже выбирается сечение кабеля.

Популярное мнение, что на розетки бери провода сечением 2,5 мм2, а на свет 1,5 мм2 часто бывает ошибочным. Современная бытовая техника имеет такую мощность, которая легко может вывести из строя современный кабель 2,5 мм2, изготовленный по ТУ. По этому поводу читайте статью, думаю вам будет полезно знать: Зачем нужно определять сечение кабеля по диаметру перед покупкой еще в магазине?.

Неправильный расчет, мощная духовка, не качественный кабель, плохой монтаж дадут нам большие неприятности.

Мои рекомендации приводящие к долгой работе выбранных проводов и кабелей

  • Выбирайте кабели и провода с разумным запасом.
  • Не сажайте много розеток на одну линию. Лучше разделите их и подключите к разным автоматическим выключателям.
  • Хорошо смотрите, какой кабель покупаете. Цифрам на бирке не всегда можно верить. Считайте сечение сами. Как это сделать можете узнать в этой статье: Как определить сечение кабеля по его диаметру.

Правильный расчет сечения кабеля

Итак, считаем всю нагрузку, которая будет работать от рассчитываемого кабеля. Допустим, это будет группа кухонных розеток. Как правило, сюда включают: электрочайник - 1,5 кВт, микроволновка - 1 кВт, кухонный комбайн – 1 кВт, холодильник – 300 Вт, телевизор 200 Вт. Все складываем и получаем 4 кВт. Вы на эти цифры не смотрите. Считайте ту мощность, которая указана в паспортах на ваши электроприборы или написана на их корпусах.

Далее считаем величину длительного тока, который будут потреблять приборы мощность 4 кВт. Данный расчет я бы советовал делать по очень простой формуле:

I=P/U,

где I – длительный ток, P – мощность электроприборов, U – напряжение сети (220В).

Что получаем?

I=4000Вт/220В=18,18А

Тут я не учитывал косинус фи, так как он практически равен единице и понижающий коэффициент одновременности, т.е. вероятность того, что все приборы будут работать одновременно. Я считаю, что стоит перестраховаться и убрать его. Я думаю, что любая женщина сможет его обойти. Она все включит, что бы быстрее с домашними делами закончить и еще фен сюда принесет, чтобы волосы заодно высушить. Этот лишний 1 кВт фена мы и не учитывали. Он сможет сгубить проводку.

После расчета смотрим таблицы ПУЭ 1.3.4 - 1.3.11 и выбираем сечение кабеля в большую сторону. Для нашего случая лучшим вариантом будет 2,5 мм2.

В данных таблицах значения тока для одних и тех же сечений указаны разные. Это в зависит от способа прокладки кабеля, количества жил в нем и т.д. Разные электрики приводят разные токи во время расчета сечения провода, так как пользуются разными таблицами. Я стараюсь лишний раз перестраховаться и, как уже писал выше, выбирать кабель с разумным запасом, тем более он в последнее время такое г… Я придерживаюсь значений для трехжильных проводов, проложенных в одной трубе из таблицы 1.3.4. Ниже для вашего удобства сделал небольшую таблицу для медных проводов.

 

Сечение токопроводящей жилы, мм2 Допустимый длительный ток, А Допустимая мощность, кВт
1,5 15 3,3
2,5 21 4,6
4 27 5,9
6 34 7,5
10 50 11
16 70 15,4
25 85 18,7
35 100 22
50 135 29,7

Выбирайте кабели с разумным запасом.

Улыбнемся:

Прибегает электрик к связисту,
- Дай когти, надо на столб слазить.
Тот ему дал. Прибегает электрик через десять минут.
- Слышь, связист, дай ещё одни когти.
- А те куда делись?!
- Да на столбе остались.

Расчет сечения кабеля по мощности: диаметр и нагрузка

Каждый электрик, пусть даже с небольшим опытом, должен знать, как правильно сделать выбор сечения кабеля. Без осуществления правильного расчета кабеля, ожидать качественной безопасности эксплуатации электрических приборов и техники не представляется возможным. Давайте рассмотрим более подробно, в чем заключается важность осуществления корректного расчета.

Для чего учиться делать расчеты?

Прежде всего, осуществление таких математических действий требуется для обеспечения безопасности помещения. Любой кабель или провод являются основными средствами для передачи и распределения тока, подводящего к электрическим приборам.

Практически каждый день, электрику необходимо подключить где-то электрическую кухонную плиту, починить розетку, установить новый светильник. Одним словом, необходимость произвести расчет сечения провода обусловлено обеспечением постоянного притока электроэнергии и избежание различных неприятных ситуаций, которые включают в себя некоторые повреждения в самой электрической проводке.

Если осуществить подключение прибора по кабелю и сечение выбранных проводов будет небольшим, неспособным в нужных объемах обеспечивать нормальное функционирование прибора, в таком случае сам кабель будет перегреваться, что, в свою очередь, приводит к медленному разрушению изоляции. Как следствие возможного возникновения короткого замыкания. В результате снижения надежности и срока службы эксплуатации электропроводки в помещении резко упадет или, более того, исчезнет, то есть сгорит.

Следует отметить, что правильный выбор сечения провода обеспечивает пожаробезопасность и электробезопасность в помещении.

Наиболее распространенной бытовой ситуацией, на сегодняшний день, является попытка сэкономить на стоимости провода, что неизбежно приводит к возникновению коротких замыканий или пожаров.

Именно по этой причине, перед тем как осуществлять электрическую проводку кабеля, выбрать сечение используемых проводов по всей квартире необходимо определить:

  • количество бытовых приборов, которые будут находиться в квартире;
  • суммарную мощность и потребляемую нагрузку приборов с учетом небольшого запаса;
  • осуществить математические расчеты;
  • определить тип и сечение необходимых проводов.
к содержанию ↑

Какие факторы оказывают влияние на нагрев проводов?

  1. Площадь сечения жилы. Для более доступного представления простого человека следует отметить, что чем больше площадь сечения выбранного провода по своим размерам, тем больший ток оно может безопасно провести. Сечение используемых проводов можно определить 2 способами: по марке, измерить штангенциркулем.
  2. Материал производства. Следует учесть, что медные провода обладают меньшим сопротивлением. Из чего следует, что нагревание будет осуществляться медленнее, нежели по алюминиевому.

  1. Вариант исполнения проводки. Одиночный провод всегда может пропускать более высокий ток, чем по проводу, проложенному вместе с иными.
  2. Исполнение прокладки. Сечение проложенных проводов в трубе всегда будет нагреваться быстрее, чем в открытой проводке, так как она обеспечивает хорошее охлаждение.
  3. Изоляции. Качество и материал изоляции напрямую оказывают влияние на температурный диапазон, который может пропустить сечение выбранных проводов.
к содержанию ↑

Как делается приблизительный расчет потребляемой мощности?

Для того что бы узнать как определить сечение провода по мощности необходимо выполнить ряд последовательных действий:

  1. Делаем полный список используемых электрических приборов в данном помещении.
  2. Определить общую потребляемую мощность всего оборудования, которое находится в помещении. Для этого берем лист, на котором отмечен весь список приборов и помечаем напротив каждого его потребляемую мощность. Определить это значение возможно, сняв показания с этикетки на каждом приборе или изучить листок-вкладыш от техники.
  3. Суммируем все полученные значения.

  1. Определяем какие приборы будут находиться в непрерывной работе, сколько единиц в периодичной и число редко используемых. Такие мероприятия необходимы для расчета более точного значения сечение всех проводов.
  2. Суммируем мощность постоянно работающих приборов и периодически включающих. Определяем приблизительное время работы проводки с такой нагрузкой (если коэффициент работы составляет 70%, то при дальнейших расчетах необходимо брать значение 0,7).
  3. Делаем расчет сечения кабеля по мощности. Для этого общую мощность потребляемой энергии делим на коэффициент работы сети и получаем требуемое значение мощности провода. Используя специальную таблицу проводов, определяем сечение жил.
к содержанию ↑

Как определить точное значение потребляемой мощности в сети?

Чтоб определить точный расчет сечения кабеля по мощности в сети необходимо использовать данные о потреблении приборами тока с усредненного подсчета. Однако, следует учесть, что данные на приборах зачатую проставляются среднего значения. Поэтому к этой цифре следует сразу добавить 5 % от полного значения.

Некоторые электрики полагают, что для проведения проводов освещения точечных светильников вполне достаточно сечение кабеля 0, 5 мм², для люстр – 1,5 мм², розеток – 2,5 мм².

Только нерадивый специалист станет утверждать, что реализация такой электрической схемы и сечения купленных проводов смотрятся вполне приемлемыми для использования в бытовых целях. Однако, как же вам быть, если, к примеру, на кухне включили одновременно холодильник, чайник электрический, телевизор и микроволновку?

Такая же неприятная ситуация произойдет с вами если в одну розетку включите одновременно кофеварку, стиральную машину и мультиварку.

к содержанию ↑

Какие особенности расчета скрытой проводки?

Для использования провода в скрытой проводке необходимо остановить свой выбор на кабеле, в котором сечение будущих проводов необходимо рассчитать на 20–30% больше от полученного значения. В скрытой проводке опасность возгорания может увеличиться в результате быстрого нагрева. В случае, если по каналу проходит более одной токоведущей линии, то следует увеличить сечение используемых проводов на 35-40%.

Следует отметить, что значения потребляемой нагрузки тока является более важным показателем, и настоящие профессионалы именно по нему могут корректно осуществить сечение кабеля.

к содержанию ↑

Как осуществить правильный выбор сечения проводника?

Для точного определения максимальной мощности следует знать потребляемый ток и вид фазы (одно- или трехфазная сеть).

Для однофазной сети суммарная мощность будет равна Р= 220*I*1,3, где I— это потребляемый суммарный ток.

Для трехфазной сети расчет осуществляется немного по-иному: Р= √3*380* I*1,3.

Однако, необходимо учесть, что сечение используемых проводов должно соответствовать критериям:

  • длину токоведущей линии;
  • способ реализации электропроводки;
  • общие характеристики автомата.

Правильно подобранное сечение используемых проводов – это самый важный критерий для осуществления и прокладки надежной проводки в помещении. Всем известно, что только скупой платит дважды, и не только за кабель, но и за весь ремонт в целом.

Расчет сечения кабеля по мощности: диаметр и нагрузка

зачем он необходим и как правильно выполнить. Как рассчитать сечение провода по мощности нагрузки

Различие между кабелем и проводом

Вопрос, между прочим, не простой. В частности, в соответствии со СН еще с времен СССР и до настоящего времени работы с кабелем дорогостоящие, нежели с проводом. Однако весьма отчетливой классификации в этом плане не имелось ни в прошлые времена, ни сегодня. Различные источники предоставляют разнообразные точки зрения. Практически, характеристика «кабель» или «провод» присваивается ГОСТом/ ТУ на выпуск конкретной марки. В частности, кабель марки ВВП от ОАО «Одескабель» разнится от провода марки ПВС лишь конфигурацией оболочки: кабель ВВП- плоский, а провод ПВС — круглый. И ни в каком справочнике о кабелях форма оболочки кабеля/провода не указывается как малозначимый фактор. Поэтому смотреть надо в сертификат — там непременно будет заявлено: это кабель или провод.

Самые известные марки кабеля

  1. провод ППВ (медь), АППВ (алюминий) в одинарной изоляции — для протягивания внутри стен;
  2. кабель ПВС (медь), ВВП (медь) в двойной изоляции — для протягивания внутри зданий;
  3. кабеля термостойкие РКГМ (медь) — до 180°С, БПВЛ (луженая медь)- до 250°С;
  4. кабель ВВГ (медь), АВВГ (алюминий) — для протягивания по стенам домов и в земле;
  5. кабель ВПП (медь) водопогружной — для протягивания в воде;
  6. кабель ТПП (медь) телефонный парный — для протягивания в земле;
  7. провод ТРП (медь) телефонный распределительный для абонентской связи (включение ТА)
  8. кабель «витая пара» UTP, FTP — для организации компьютерных сетей, включение домофонов и др.;
  9. провод сигнальный «Alarm» для подсоединения домофонов, охранно-пожарной сигнализации и др. ;
  10. кабель коаксиальный RG-6 для подсоединения телевизоров, антенн, камер видеонаблюдения.

Интернет кабель

Понятие «интернет-кабель» обобщающее многие виды кабельных изделий. Для трансляции информации используются разнообразные информационные кабеля. Если имеется в виду подключение к Интернету, то нужно уточнить у оператора — какой именно кабель надо протягивать по стенам. При этом надо выяснить и марку кабеля и производителя, чтобы точно определить совместимые кабельные изделия.

К примеру, для Интернета используют обычный телевизионный кабель ТМ Finmark, кабель «витая пара» или имеющийся абонентский кабель (так называемая «лапша»), к которому подсоединен телефон.

На выделенных интернет -линиях могут прокладывать оптический кабель.

Компьютерный кабель

Термин также обобщающий.

Как правило, для связи ПК между собой и с сервером используют кабель «витая пара», однако могут употребляться и прочие информационные кабеля.

Технология свивать две жилы в пару употребляется в телефонии еще с прошлого столетия. За счет правильно рассчитанного шага витья и качества материала была достигнута максимальная скорость передачи информации, нежели у стандартного парного телефонного кабеля. Имеется довольно много видов кабеля «витая пара» в зависимости от числа жил, диаметра каждой жилы, мест прокладки и т.д. Смотря на то, какая скорость передачи данных, кабель «витая пара» делят на группы:

  • 3-я категория (стандартный телефонный кабель),
  • 5-я категория (офисные сети),
  • 6-я категория (кабель нового поколения для смены 5-й категории).

«Витая пара», приобретшая в наше время наибольшую популярность — это кабель категории 5 из 8 попарно скрученных жил, диаметр жилы составляет минимум 0,45мм и максимум 0,51мм.

Телевизионный кабель

Это бытовое наименование коаксиального кабеля с сопротивлением 75 Ом.

А также «спутниковый кабель» является коаксиальным кабелем. Всякий коаксиальный кабель на 75 Ом можно применять для подсоединения спутниковой и всякой иной антенны, и для подключения к кабельному телевидению. Имеет значение только одно — хороший ли это кабель или не очень.

Важными характеристиками коаксиального кабеля являются затухание сигнала и помехоустойчивость.

Все прочие характеристики кабеля устремлены на усовершенствование собственно данных 2 показателей и обладают второстепенным значением. В частности, наш кабель марки РК делают лишь из медной проволоки (порой даже посеребренной), однако затухание кабеля РК будет почти в четыре раза хуже, нежели у всякого нынешнего кабеля марки RG, произведенного из недорогих материалов: стали и алюминия. Это достигается за счет специальной технологии производства кабеля.

Выбор кабеля

Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.

Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.

Одножильный или многожильный

При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.

Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то предпочтительно использовать моножилу.

Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.

В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.

Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Медь или алюминий

В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.

Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.

Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».

Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.

Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.

Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Что такое сечение провода и как его определить

Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.

Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.

Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.

Как правильно определить сечение провода

С теорией закончили. Пора переходить к основному вопросу темы – как же определить требуемое сечение токонесущей жилы для различных условий эксплуатации электропроводки.

Здесь возможны несколько вариантов поиска нужного результата.

Выбрать можно тот, который покажется наиболее удобным или подходящим к конкретному случаю.

Расчет через допустимую плотность тока

Изо всего изложенного выше уже должно быть понятно, что главным ограничителем при выборе требуемого сечения является резистивный нагрев проводников, способный привести к плавлению изоляции, к коротким замыканиям, к перегреву окружающих материалов вплоть до вероятности самовозгорания.

То есть выбираемое сечение провода должно исключать подобные явления.

Проведение точных теплотехнических расчетов – дело очень непростое. Но специалисты уже многое сделали в этом плане, так что можно воспользоваться их наработками.

В частности, ими просчитана безопасная плотность тока, которая не вызывает опасного нагрева проводника до температур, способных вызвать плавление наиболее распространенной в наше время ПВХ или ПЭ изоляции.

Так, для проводников, находящихся в условиях условной комнатной температуры (+20℃), эта плотность тока составляет:

Материал проводовОптимальная плотность тока, А/мм²
Расположение проводки Открытая Закрытая
Алюминий 3.5 3
Медь 5 4

Сразу оговорим разницу между открытой и закрытой проводками.

  • Открытая встречается не столь часто. Она прокладывается по стенам или потолкам на хомутах или изоляторах, может быть воздушной — самонесущей или же удерживаться несущим тросом. К открытым проводкам можно отнести и сетевые шнуры, удлинители, если, конечно, они не намотаны на катушки, бобины и т.п.
  • Все остальное, по сути – это закрытая проводка: расположенная к кабель-каналах, коробах или гофротрубах, вмурованная в стены, проложенная в грунте и т. п. Иными словами, в любых условиях, где отсутствует нормальный теплоотвод. С опорой на этот критерий к закрытой проводке следует отнести и те участки, которые располагаются в распределительных щитах и монтажных коробках – нормального теплообмена здесь тоже нет.

Выше не зря было оговорено, что указанные показатели справедливы для комнатной температуры. Случается, что проводку приходится прокладывать в помещениях с особым температурным режимом, то есть в которых поддерживается нагрев выше обычного (предбанники, сушилки, оранжереи и т.п.) В таком случае в значение допустимой плотности тока вносятся коррективы – применяется коэффициент 0,9 на каждые 10 градусов температуры свыше + 20 ℃.

Например, на какую плотность тока следует ориентироваться, если планируется проложить медную проводку в кабель-канале для подключения ТЭНа в сушилке, в которой будет поддерживаться температура +50 ℃?

По таблице плотность тока G для закрытой медной проводки равна 4 А/мм².

Разница между нормой температуры и планируемым режимом равна

50 – 20 = 30 ℃.

То есть понижающий коэффициент должен быть учтен трижды. Но столько это означает не 0,9 × 3, а 0,9³:

G = 4 × 0,9 × 0,9 × 0,9 = 4 × 0,9³ = 4 × 0,729 = 2,92 А/мм²

На этот показатель плотности и придется ориентироваться для создания безопасной в данных условиях проводки.

Еще один пример.  Скажем, в уже рассмотренных условиях проводка прокладывается для подключения двух обогревателей мощностью по 750 ватт каждый.

Суммарная нагрузка по мощности на линию получается:

Р = 750 + 750 = 1500 Вт

Пересчитаем ее в необходимый ток при напряжении 220 вольт:

I = P / U = 1500 / 220 = 6.8 А

Нормальная плотность тока для таких условий эксплуатации была нами подсчитана – 2,92 А/мм². То есть ничего уже не стоит подсчитать то сечение медной жилы, которое обеспечит безопасную плотность:

S = I / G = 6. 8 / 2.92 = 2.33 мм²

Естественно, полученное значение приводится к ближайшему с округлением в большую сторону. То есть для прокладки проводки в указанных условиях подойдет медный провод сечением 2.5 мм².

В принципе, по такому же принципу можно проводить расчеты и для любых других помещений. В том числе для линий, к которым планируется подключить несколько электрических приборов различной мощности.

При этом суммарную мощность линии можно подсчитать так:

ΣP = (P₁ + Р₂ + … + Рₙ) × Кс × Кз

В скобках — мощности подключаемых к линии электроприборов, от 1 до n.

Кс – так называемый коэффициент спроса. Вряд ли все подключенные в линии приборы будут работать одновременно. То есть этот коэффициент учитывает вероятность их одновременного включения.

Расчет этого коэффициента – задача непростая, так как учитывает немало нюансов. Но так как наша публикация предназначена для электриков-любителей, которые в своей работе наверняка ограничиваются своими небольшими жилыми владениями, можно задачу упростить. А конкретно: при двух приборах коэффициент оставляем равным единице. При трех ÷ четырех – 0,8. Пять ÷ шесть – 0,75. Большего количества потребителей на линии в условиях дома или квартиры вряд ли встретится, но на всякий случай, если вдруг… – коэффициент 0,7.

Кз – коэффициент запаса. Величина необязательная. Но рачительный хозяин может подумать и наперед, что, возможно, через год-другой к этой же линии придется подключать и дополнительную нагрузку, о которой пока можно только догадываться. Так что имеет смысл сразу заложить резерв, приняв коэффициент, например, от 1,5 до 2,0. Но, повторимся, дело – добровольное, и этот коэффициент можно вообще исключить из расчетов.

Еще один важный нюанс. Реальная мощность электрического прибора может оказаться выше номинальной, указанной в паспорте. Это связано с понятиями активной и реактивной мощностей.

Не будем вдаваться особо в физику этого явления, скажем лишь, что полная мощность для некоторых типов нагрузки рассчитывается по формуле:

Pп = Pn / cos φ

Pп — полная мощность;

Pn — указанная в паспорте номинальная мощность;

cos φ — коэффициент мощности, равный косинусу угла φ — смещения фаз тока и напряжения.

Такое смещение свойственно приборам с мощным электроприводом, с высокой индуктивной нагрузкой (трансформаторами, дросселями). Значение cos φ для такой техники также указывается в паспорте изделия.

Значения номинальной мощности и cos φ на шильдике асинхронного двигателя

В бытовых условиях подобные приборы встречаются нечасто, но все же если линия проводится, скажем, для питания мощного насоса, компрессора, электродвигателя, для сварочного поста – лучше этим показателем не манкировать.

А теперь можно попробовать произвести полный расчет с учетом всего сказанного выше. Для этого читателю предлагается онлайн-калькулятор.

В поля ввода программы необходимо ввести запрашиваемые данные:

  • Какая проводка будет использоваться: медная или алюминиевая, расположенная открыто или закрытая.
  • Напряжение в планируемой линии.
  • Если в помещении предполагается какой-то специфический температурный режим, то это следует указать – выбрать из предлагаемых вариантов. Температура в комнате ниже +25℃ будет считаться нормальной – она стоит в перечне первой и учитывается по умолчанию.
  • Далее, указывается мощность планируемой к подключению нагрузки. Предусмотрено до 6 разных единиц – для бытовых условий этого обычно достаточно. При этом если поле не заполняется, то мощность считается равной нулю, то есть поле в расчет не принимается.

Два последних поля позволяют учесть нагрузку с реактивной составляющей мощности, если таковая есть. Для этого помимо номинала необходимо указать и значение cos φ. По умолчанию cos φ = 0, то есть как для обычной активной нагрузки.

  • В зависимости от количества подключаемых к линии приборов в алгоритме автоматически учитывается коэффициент спроса.
  • Наконец, пользователь может заложить резерв мощности, повысив коэффициент запаса, от 1 до 2 с шагом 0,1.

Результат расчета будет выдан в квадратных миллиметрах сечения жилы провода (кабеля) с точностью до сотой. Естественно, после этого придется сделать округление до ближайшего стандартного размера в большую сторону.

Поиск нужного сечения кабеля с помощью таблиц

Не все и не всегда любят заниматься самостоятельными расчетами. Таким пользователям можно порекомендовать воспользоваться таблицами.

По сути, это те же расчеты, выполненные специалистами по приведённым формулам. Но только для удобства их результаты сведены в табличное представление.

Например, таблица для определения допустимого сечения (и соответствующего диаметра) жилы исходя из мощности нагрузки и (или) значения силы тока для переменного напряжения 220 вольт (ОП и ЗП — открытая и закрытая проводка соответственно):

Мощность нагрузки, ВтТок, АМЕДЬАЛЮМИНИЙ
ОП ЗП ОП ЗП
S, мм ² d, мм S, мм ² d, мм S, мм ² d, мм S, мм ² d, мм
100 0,43 0,09 0,33 0,11 0,37 0,12 0,40 0,14 0,43
200 0. 87 0,17 0,47 0,22 0,53 0,25 0,56 0.29 0,61
300 1,30 0,26 0,58 0,33 0,64 0,37 0,69 0,43 0,74
400 1,74 0,35 0,67 0,43 0,74 0,50 0,80 0,58 0,86
500 2.17 0,43 0,74 0,54 0,83 0,62 0,89 0.72 0,96
750 3,26 0,65 0,91 0,82 1,02 0,93 1,09 1,09 1,18
1000 4,35 0,87 1,05 1,09 1,18 1,24 1,26 1,45 1,36
1500 6,52 1,30 1,29 1,63 1,44 1,86 1,54 2,17 1,66
2000 8,70 1,74 1,49 2,17 1,66 2,48 1,78 2,90 1,92
2500 10,87 2,17 1,66 2,72 1,86 3,11 1,99 3. 62 2,15
3000 13.04 2,61 1,82 3,26 2,04 3,73 2.18 4,35 2,35
3500 15,22 3,04 1,97 3,80 2,20 4,35 2,35 5.07 2,54
4000 17.39 3,48 2,10 4,35 2,35 4.97 2.52 5,80 2.72
4500 19,57 3,91 2,23 4,89 2,50 5,59 2,67 6,52 2,88
5000 21,74 4,35 2,35 5,43 2,63_ 6,21 2,81 7.25 3,04
6000 26.09 5,22 2,58 6,52 2,88 7,45 3,08 8,70 3,33
]000 30,43 6,09 2,78 7,61 3,11 8,70 3,33 10,14 3,59
8000 34. 78 6,96 2,98 8,70 3,33 9,94 3,56 11,59 3,84
9000 39.13 7,83 3,16 9,78 3,53 11,18 3,77 13,04 4,08
10000 43,48 8,70 3,33 10,87 3,72 12,42 3,98 14.49 4,30

Чаще встречаются несколько иные таблицы. В них приведены стандартные сечения выпускаемой кабельной продукции, и соответствующие им допустимые значения силы тока и мощности нагрузки.

Вот такая таблица для кабелей с медными жилами:

Сечение токонесущей жилы, мм ²Напряжение 220 ВНапряжение 380 В
I, A P, кВт I, A P, кВт
1.5 19 4.1 16 10. 5
2.5 27 5.9 25 16.5
4 38 8.3 30 19.8
6 46 10.1 40 26.4
10 70 15.4 50 33
16 85 18.7 75 49.5
25 115 25.3 90 59.4
35 135 29.7 115 75.9
50 175 38.5 145 95.7
70 215 47.3 180 118.8
95 260 57.2 220 145.2
120 300 66 260 171.6

Аналогичная таблица – для кабелей с алюминиевыми проводниками:

Сечение токонесущей жилы, мм ²Напряжение 220 ВНапряжение 380 В
I, A P, кВт I, A P, кВт
2. 5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,2

Есть таблицы, которые сразу учитывают количество токонесущих жил в одном кабель-канале (коробе, трубе и т.п.). То есть принимается в расчет взаимное тепловое влияние в условиях ограниченности теплоотвода.

Такая таблица для медных кабелей показана ниже.

(Сокращения: ОЖ – одножильный, ДЖ – двужильный, ТЖ – трехжильный).

Сечение токонесущей жилы, мм²Ток, А, для проводов, проложенных
открыто в одном кабель-канале
2×ОЖ 3×ОЖ 4×ОЖ 1×ДЖ 1×ТЖ
0.5 11
0.75 15
1 17 16 15 14 15 14
1.2 20 18 16 15 16 14.5
1.5 23 19 17 16 18 15
2 26 24 22 20 23 19
2. 5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250

Аналогичная таблица – для кабелей с алюминиевыми проводами:

Сечение токонесущей жилы, мм²Ток, А, для проводов, проложенных
открыто в одном кабель-канале
2×ОЖ 3×ОЖ 4×ОЖ 1×ДЖ 1×ТЖ
2 21 19 18 15 17 14
2.5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190

При желании можно отыскать таблицы более узкой специализации, например, для воздушной прокладки проводов или для подземной, причем — еще и с учетом теплоотводных качеств того или иного грунта. Но не станем ими перегружать настоящую публикацию – она рассчитана все же на начинающих электриков, которые в своем дебюте выполняют задачи попроще.

Некоторые мастера и вовсе рекомендуют брать во внимание упрощенный вариант таблицы сечений проводов и кабелей, используемых для домашней проводки. Вот такой:

Сечение жилы медного провода, мм ² (в скобках – алюминиевого)Максимальный ток при длительной нагрузке, АМаксимальная мощность нагрузки. кВтНоминальный ток защиты автомата, АПредельный ток защиты автомата, АСфера применения в условиях дома (квартиры)
1,5 (2,5) 19 4.1 10 16 приборы освещения, сигнализации
2,5 (4,0) 27 5.9 16 25 розеточные блоки, системы подогрева полов
4,0 (6,0) 38 8.3 25 32 мощное климатическое обрудование, водонагреватели, стиральные и посудомоечные машины
6,0 (10,0) 46 10.1 32 40 электроплиты и электродуховки
10,0 (16,0) 70 15.4 50 63 входные линии электропитания

По большому счету, так оно обычно и получается.
Но напоследок рассмотрим еще один важный нюанс.

Возможная поправка сечения жилы на сопротивление линии

Любой проводник обладает собственным сопротивлением – об этом мы говорили в самом начале статьи, когда приводили значения удельного сопротивления материалов, меди и алюминия.

Оба этих металла обладают весьма достойной проводимостью, и на участках небольшой протяженности собственное сопротивление линии не оказывает сколь-нибудь значимого влияния на общие параметры цепи. Но если планируется прокладка линии большой протяженности, или, например, изготавливается удлинитель-переноска большой длины для работы на значительном удалении от дома, то собственное сопротивление желательно просчитать, и сравнить вызываемое им падение напряжения с напряжением питания. Если падение напряжения получается более 5% от номинала напряжения в цепи, правила эксплуатации электроустановок предписывают брать кабель с жилами большего сечения.

Например, изготавливается переноска для сварочного инвертора. Если сопротивление самого кабеля будет чрезмерным, провода под нагрузкой будут сильно перегреваться, а напряжения и вовсе может оказаться недостаточно для корректной работы аппарата.

Собственное сопротивление кабеля можно вычислить по формуле:

Rk = 2 × ρ × L / S

Rk — собственное сопротивление кабеля (линии), Ом;

2 — длина кабеля удваивается, так как учитывается весь путь прохождения тока, то есть «туда и обратно»;

ρ — удельное сопротивление материала жил кабеля;

L — длина кабеля, м;

S — площадь поперечного сечения жилы, мм².

Предполагается, что нам уже известно, с каким током придется иметь дело при подключении нагрузки — об этом уже не раз рассказывалось в настоящей статье.

Зная силу тока, несложно по закону Ома вычислить падение напряжения, а затем сравнить его с номиналом.

Ur = Rk × I

ΔU (%) = (Ur / Uном) × 100

Если проверочный результат получается более 5%, то следует увеличить сечение жил кабеля на один шаг.

Быстро провести такую проверку поможет еще один онлайн-калькулятор. Дополнительных пояснений он, думается, не потребует.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

R = ρ · L/S (2),

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Выбираем сечение по мощности

Выбор сечения провода в зависимости от мощности тока начинается с проведения небольших расчётов. Для этого следует сложить общую мощность электрических устройств, которые будут одновременно включаться в квартире. На каждом приборе обычно указывается его мощность в ваттах или киловаттах. В будущем возможно приобретение новых бытовых электроприборов, поэтому к полученной суммарной мощности нужно прибавить ещё 1-2 киловатта.

Для устройства внутридомовой электропроводки рекомендуется использовать медные кабели. Они, хотя и стоят дороже алюминиевых, но обладают большей гибкостью, долговечностью и лучшей электропроводностью. Ниже представлены таблицы выбора сечения кабеля по мощности и силе тока для медной проводки.

Таблица 1. Вычисление мощности медной однофазной проводки напряжением в 220 вольт:

Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
4,1 19 1,5
5,9 27 2,5
8,3 38 4
10,1 46 6
15,4 70 10
18,7 85 16
25,3 115 25
29,7 135 35
38,5 175 50
47,3 215 70
57,2 260 95
66 300 120

Таблица 2. Подбор сечения кабеля для медной трёхфазной проводки напряжением в 380 вольт.

Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
10,5 16 1,5
16,5 25 2,5
19,8 30 4
26,4 40 6
33 50 10
49,5 75 16
59,4 90 25
75,9 115 35
95,7 145 50
118,8 180 70
145,2 220 95
171,6 260 120

Таблица сечения проводки в зависимости от силы и мощности тока для алюминиевых проводов выглядит иначе. В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

Ниже показаны соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 3. Подбор сечения кабеля по мощности для алюминиевой однофазной проводки напряжением в 220 вольт.

Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
4,4 20 2,5
6,1 28 4
7,9 36 6
11 50 10
13,2 60 16
18,7 85 25
22 100 35
29,7 135 50
36,3 165 70
44 200 95
50,6 230 120

Таблица 4. Подбор сечения кабеля для алюминиевой трёхфазной проводки напряжением 380 вольт.

Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
12,5 19 2,5
15,1 23 4
19,8 30 6
25,7 39 10
36,3 55 16
46,2 70 25
56,1 85 35
72,6 110 50
92,4 140 70
112,2 170 95
132,2 200 120

Расчет сечения по току

Расчеты необходимого сечения по току и мощности кабелей и проводов представят более точные результаты. Такие вычисления позволяют оценить общее влияние различных факторов на проводники, в числе которых тепловая нагрузка, марка проводов, тип прокладки, условия эксплуатации т.д.

Весь расчет проводится в ходе следующих этапов:

  • выбор мощности всех потребителей;
  • расчет токов, проходящих по проводнику;
  • выбор подходящего поперечного сечения по таблицам.

Для этого варианта расчёта мощность потребителей по току с напряжением берется без учета поправочных коэффициентов. Они будут учтены при суммировании силы тока.

Этап #1 — расчет силы тока по формулам

Тем, кто подзабыл школьный курс физики, предлагаем основные формулы в форме графической схемы в качестве наглядной шпаргалки:


«Классическое колесо» наглядно демонстрирует взаимосвязь формул и взаимозависимость характеристик электрического тока (I — сила тока, P — мощность, U — напряжение, R — радиус жилы)

Выпишем зависимость силы тока I от мощности P и линейного напряжения U:

I = P/Uл,

Где:

  • I — cила тока, принимается в амперах;
  • P — мощность в ваттах;
  • — линейное напряжение в вольтах.

Линейное напряжение в общем случае зависит от источника электроснабжения, бывает одно- и трехфазным.

Взаимосвязь линейного и фазного напряжения:

  1. Uл = U*cosφ в случае однофазного напряжения.
  2. Uл = U*√3*cosφ в случае трехфазного напряжения.

Для бытовых электрических потребителей принимают cosφ=1, поэтому линейное напряжение можно переписать:

  1. Uл = 220 В для однофазного напряжения.
  2. Uл = 380 В для трехфазного напряжения.

Далее суммируем все потребляемые токи по формуле:

I = (I1+I2+…IN)*K*J,

Где:

  • I – суммарная сила тока в амперах;
  • I1..IN – сила тока каждого потребителя в амперах;
  • K – коэффициент одновременности;
  • J – коэффициент запаса.

Коэффициенты K и J имеют те же значения, что были применены при расчете полной мощности.

Может быть случай, когда в трехфазной сети через разные фазные проводники течет ток неравнозначной силы.

Такое происходит, когда к трехфазному кабелю подключены одновременно однофазные потребители и трехфазные. Например, запитан трехфазный станок и однофазное освещение.

Возникает естественный вопрос: как в таких случаях рассчитывают сечение многожильного провода? Ответ прост — вычисления производят по наиболее нагруженной жиле.

Этап #2 — выбор подходящего сечения по таблицам

В правилах эксплуатации электроустановок (ПЭУ) приведен ряд таблиц для выбора требуемого сечения жилы кабеля.

Проводимость проводника зависит от температуры. Для металлических проводников с повышением температуры повышается сопротивление.

При превышении определенного порога процесс становится автоподдерживающимся: чем выше сопротивление, тем выше температура, тем выше сопротивление и т.д. пока проводник не перегорает или вызывает короткое замыкание.

Следующие две таблицы (3 и 4) показывают сечение проводников в зависимости от токов и способа укладки.


Таблица 3. Первое, необходимо выбрать способ укладки проводов, от этого зависит, на сколько эффективно происходит охлаждение (+)

Кабель отличается от провода тем, что у кабеля все жилы, оснащенные собственной изоляцией, скручены в пучок и заключены в общую изоляционную оболочку. Более подробно о различиях и видах кабельных изделий написано в этой статье.


Таблица 4. Открытый способ указан для всех значений сечения проводников, однако на практике сечения ниже 3 мм2 открыто не прокладывают по соображениям механической прочности (+)

При использовании таблиц к допустимому длительному току применяются коэффициенты:

  • 0,68 если 5-6 жил;
  • 0,63 если 7-9 жил;
  • 0,6 если 10-12 жил.

Понижающие коэффициенты применяются к значениям токов из столбца «открыто».

Нулевая и заземляющая жилы в количество жил не входят.

По нормативам ПЭУ выбор сечения нулевой жилы по допустимому длительному току, производится как не менее 50% от фазной жилы.

Следующие две таблицы (5 и 6) показывают зависимость допустимого длительного тока при прокладке его в земле.


Таблица 5. Зависимости допустимого длительного тока для медных кабелей при прокладке в воздухе или земле

Токовая нагрузка при прокладке открыто и при углублении в землю различаются. Их принимают равными, если прокладка в земле проводится с применением лотков.


Таблица 6. Зависимости допустимого длительного тока для алюминиевых кабелей при прокладке в воздухе или земле

Для устройства временных линий снабжения электроэнергией (переноски, если для частного пользования) применяется следующая таблица (7).


Таблица 7. Допустимый длительный ток при использовании переносных шланговых шнуров, переносных шланговых и шахтных кабелей, прожекторных кабелей, гибких переносных проводов. Применяется только медных проводников

Когда прокладка кабелей производится в грунте помимо теплоотводных свойств необходимо учитывать удельное сопротивление, что отражено в следующей таблице (8):


Таблица 8. Поправочный коэффициент в зависимости от типа и удельного сопротивления грунта на допустимый длительный ток, при расчете сечения кабелей (+)

Расчет и выбор медных жил до 6 мм2 или алюминиевых до 10 мм2 ведется как для длительного тока.

В случае больших сечений возможно применить понижающий коэффициент:

0,875 * √Тпв

где Tпв — отношение продолжительности включения к продолжительности цикла.

Продолжительность включения берется из расчета не более 4 минут. При этом цикл не должен превышать 10 минут.

При выборе кабеля для разводки электричества в деревянном доме особое внимание уделяют его огнестойкости.

Этап #3 — расчет сечения проводника по току на примере

Задача: рассчитать необходимое сечение медного кабеля для подключения:

  • трехфазного деревообрабатывающего станка мощностью 4000 Вт;
  • трехфазного сварочного аппарата мощностью 6000 Вт;
  • бытовой техники в доме общей мощностью 25000 Вт;

Подключение будет произведено пятижильным кабелем (три жилы фазные, одна нулевая и одна заземление), проложенным в земле.


Изоляция кабельно-проводниковой продукции рассчитывается на конкретное значение рабочего напряжения. Следует учитывать, что указанное производителем рабочее напряжение его изделия должно быть выше напряжения в сети

Решение.

Шаг # 1. Рассчитываем линейное напряжение трехфазного подключения:

Uл = 220 * √3 = 380 В

Шаг # 2. Бытовая техника, станок и сварочный аппарат имеют реактивную мощность, поэтому мощность техники и оборудования составит:

Pтех = 25000 / 0,7 = 35700 Вт

Pобор = 10000 / 0,7 = 14300 Вт

Шаг # 3. Ток, необходимый для подключения бытовой техники:

Iтех = 35700 / 220 = 162 А

Шаг # 4. Ток, необходимый для подключения оборудования:

Iобор = 14300 / 380 = 38 А

Шаг # 5. Необходимый ток для подключения бытовой техники посчитан из расчета одной фазы. По условию задачи имеется три фазы. Следовательно, ток можно распределить по фазам. Для простоты предположим равномерное распределение:

Iтех = 162 / 3 = 54 А

Шаг # 6. Ток приходящийся на каждую фазу:

Iф = 38 + 54 = 92 А

Шаг # 7. Оборудование и бытовая техника работать одновременно не будут, кроме этого заложим запас равный 1,5. После применения поправочных коэффициентов:

Iф = 92 * 1,5 * 0,8 = 110 А

Шаг # 8. Хотя в составе кабеля имеется 5 жил, в расчет берется только три фазные жилы. По таблице 8 в столбце трехжильный кабель в земле находим, что току в 115 А соответствует сечение жилы 16 мм2.

Шаг # 9. По таблице 8 применяем поправочный коэффициент в зависимости от характеристики земли. Для нормального типа земли коэффициент равен 1.

Шаг # 10. Не обязательный, рассчитываем диаметр жилы:

D = √(4*16 / 3,14) = 4,5 мм

Если бы расчет производился только по мощности, без учета особенностей прокладки кабеля, то сечение жилы составит 25 мм2. Расчет по силе тока сложнее, но иногда позволяет экономить значительные денежные средства, особенно когда речь идет о многожильных силовых кабелях.

О взаимосвязях значений напряжения и силы тока подробнее можно прочесть тут.

Как разобраться в сечениях медных и алюминиевых кабелей, для прокладки проводки?

Данная статья предназначена научить вас как рассчитать сечение провода. Это как чем больше воды вы хотите подать, тем большего диаметра труба вам нужна. Так и здесь, чем больше потребление электрического тока, тем больше должно быть сечение кабелей и проводов. Вкратце опишу что это такое: если вы перекусите кабель или провод, и посмотреть на него с торца, то вы как раз и увидите его сечение, то есть толщину провода, которая определяет мощность которую данный провод способен пропустить, разогреваясь до допустимой температуры.

Для того чтобы правильно подобрать сечение силового провода нам нужно учитывать максимальную величину потребляемой нагрузки тока. Определить значения токов можно, зная паспортную мощность потребителя, определяется по такой формуле: I=P/220, где P — это мощность потребителя тока, а 220 — это количество вольт в вашей розетке. Соответственно если розетка на 110 или 380 вольт, то подставляем данное значение.

Важно знать, что расчет значения для однофазных, и трехфазных сетей различается. Для того чтобы узнать на сколько фаз сеть вам нужно, требуется подсчитать общую сумму потребления тока в вашем жилище. Приведем пример среднестатистического набора техники, которая может быть у вас дома.

Простой пример расчета сечения кабеля по потребляемому току, сейчас мы вычислим сумму мощностей подключаемых электроприборов. Основными потребителями в среднестатистической квартире являются такие приборы:

  • Телевизор — 160 Вт
  • Холодильник — 300 Вт
  • Освещение — 500 Вт
  • Персональный компьютер — 550 Вт
  • Пылесос — 600 Вт
  • СВЧ-печь — 700 Вт
  • Электрочайник — 1150 Вт
  • Утюг — 1750 Вт
  • Бойлер (водонагреватель) — 1950 Вт
  • Стиральная машина — 2650 Вт
  • Всего 10310 Вт = 10,3 кВт.

Когда мы узнали общее потребление электричества, мы можем по формуле рассчитать сечение провода, для нормального функционирования проводки. Важно помнить что для однофазных и трехфазных сетей формулы будут разные.

Расчет сечения провода для сети с одной фазой (однофазной)

Расчет сечения провода осуществляется с помощью следующей формулы:

I = (P × K и ) / (U × cos(φ) )

где:

  • I — сила тока;

  • P — мощность всех потребителей энергии в сумме
  • K и — коэффициент одновременности, как правило, для расчетов принимается общепринятое значение 0,75
  • U — фазное напряжение, которое составляет 220V но может колебаться в пределах от 210V до 240V.
  • cos(φ) — для бытовых однофазных приборов эта величина сталая, и равняется 1.

Если есть необходимость рассчитать ток быстрее, то можно опустить значение cos(φ) и значение K и . Результат в таком случае отличается в меньшую сторону на 15%, если мы применим формулу:

I = P / U

Когда мы нашли мощность потребления тока по формуле, можно начать выбирать кабель, который подходит нам по мощности. Вернее, его площади сечения. Ниже приведена специальная таблица в которой предоставлены данные, где сопоставляется величина тока, сечение кабеля и потребляемая мощность.

Данные могут различаться для проводов изготовленных из разных металлов. Сегодня для применения в жилых помещениях, как правило, используется медный, жесткий кабель. Алюминиевый кабель практически не применяется. Но все же во многих старых домах, алюминиевый кабель все еще присутствует.

Таблица расчетной мощности кабеля по току. Выбор сечения медного кабеля, производится по следующим параметрам:

Также приведем таблицу для расчета потребляемого тока алюминиевого кабеля:

Если значение мощности получилось среднее между двумя показателями, то необходимо выбрать значение сечения провода в большую сторону. Так как запас мощности должен присутствовать.

Расчет сечения провода сети с тремя фазами (трехфазной)

А теперь разберем формулу подсчета сечения провода для трехфазных сетей.

Для рассчета сечения питающего кабеля воспользуемся следующей формулой:

I = P / (√3 × U × cos(φ))

Где:

  • I — сила тока, по которой выбирается площадь сечения кабеля
  • U — фазовое напряжение, 220V
  • Cos φ — угол сдвига фаз
  • P — показывает общее потребление всех электроприборов

Cos φ — в приведенной формуле крайне важен, так как самолично влияет на силу тока. Он различается для разного оборудования, с этим параметром чаще всего можно ознакомиться в технической документации, или соответствующей маркировкой на корпусе.

Общая мощность находится очень просто, мы суммируем значение всех показателей мощности, и используем получившееся число в расчетах.

Отличительной особенностью в трехфазной сети, является то, что более тонкий провод способен выдержать большую нагрузку. Подбирается необходимое нам сечение провода, по нижеприведенной таблице.

Расчет сечения провода по потребляемому току применяемый в трехфазной сети, используется с применением такой величины как √3. Это значение нужно для упрощения внешнего вида самой формулы:

U линейное = √3 × U фазное

Данным образом при возникновении необходимости заменяется произведение корня и фазного напряжения на линейное напряжение. Эта величина равняется 380V (U линейное = 380V).

Расчёт сечения кабеля по мощности и длине

Из-за сопротивления материала происходит некоторая потеря напряжения при прохождении тока сквозь проводник. Чем длиннее проводка, тем большая величина этих потерь. Однако, ощутимые потери могут возникнуть на линиях электропередач протяжённостью, измеряемой километрами. Для бытовой проводки они столь несущественны, что ими можно вполне пренебречь.

Рассчитываются основные показатели электротока по следующим формулам:

  • Сила тока: I = Р / (U cos ф), где:
    I – искомая сила тока.
    Р – мощность.
    U – напряжение.
    cos ф – коэффициент, применяемый для бытовой проводки. Обычно принимается за единицу.
  • Сопротивление провода: Rо=р L / S, где:
    Rо – удельное сопротивление проводника.
    р – удельное сопротивление материала, из которого он изготовлен (медь или алюминий).
    L – длина проводки.
    S – площадь сечения провода.

Выбираем сечение кабеля по мощности

Подобрать сечение провода можно по мощности приборов, которые будут подключаться. Эти приборы называются нагрузкой и метод может еще называться «по нагрузке». Суть его от этого не меняется.

Выбор сечения кабеля зависит от мощности и силы тока

Выбор сечения провода по длине

Вы должны знать о том, что длина провода (кабеля) влияет на напряжение. Чем длиннее линия, тем больше потеря напряжения. Чтобы этого избежать нужно увеличивать сечение проводника. Как это все подсчитать?

Пример.

У вас в быту есть некие потребители электроэнергии, в сумме они составляют 5000 Вт или 5 кВт. Длина до этих потребителей от автоматического выключателя равно 25 м. Так как электроэнергия поступает по одному проводу, а возвращается по другому проводу, то длина увеличивается вдвое и равна 50 м.

Дальше нам нужно найти силу тока (I). Как найти вы уже знаете. Нужно мощность разделить на напряжение:

I=P/U

I = 5000/220 = 22,72 А

С помощью силы тока (А) или мощности (Р) в таблице 2 определяем сечение провода. По таблице это 1,5 мм² медного провода.

Так как провод имеет свое сопротивление (R) мы производим расчет с учетом следующих данных по формуле:

R = p × L/S

где:

R – сопротивление проводника, Ом;

p – удельное сопротивление, Ом · мм²/м;

L – длина провода, м;

S – площадь поперечного сечения, мм².

Из формулы: величина (р) это всегда постоянная величина. Для меди она равна 0,0175, а для алюминия – 0,0281.

Вычисляем:

R = 0,0175 × 50/1,5 = 0,583 Ом

Теперь нужно высчитать потери напряжения по формуле:

dU = I·R

где,

dU – потеря напряжения, В;

I– сила тока, А;

R– сопротивление проводника, ОМ.

dU = 22,72 × 0,583 = 13,24 В

После этого расчета нужно узнать процентное соотношение потерь напряжения. Если оно будет выше 5 %, то проводник следует выбрать на одну позицию выше ссылаясь на таблицу 2.

Считаем:

13,24 В / 220 В × 100% = 6,01%

Так как процентное соотношение потерь напряжения выше 5%, то сечение провода (кабеля) вместо 1.5 мм² выбираем 2.5 мм².

Токовые нагрузки в сетях с постоянным током

В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).

Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).

Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:

U = ((p l) / S) I

    где:
  • U — напряжение постоянного тока, В
  • p — удельное сопротивление провода, Ом*мм2/м
  • l — длина провода, м
  • S — площадь поперечного сечения, мм2
  • I — сила тока, А

Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.

Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.

Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.

Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.

Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.

Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.

Расчёт для помещений

Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.

Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.

Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.

Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.

Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!

    Наиболее распространенные марки проводов и кабелей:
  1. ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  2. АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  3. ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
  4. ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
  5. ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
  6. ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).

Что необходимо для расчёта по нагрузке

Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.

Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.

Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:

Для однофазной сети напряжением 220 В:

    Где:
  • Р – это суммарная мощность для всех электроприборов, Вт;
  • U — напряжение сети, В;
  • COSφ — коэффициент мощности.

Для трёхфазной сети напряжением 380 В:

Наименование прибораПримерная мощность, Вт
LCD-телевизор 140-300
Холодильник 300-800
Пылесос 800-2000
Компьютер 300-800
Электрочайник 1000-2000
Кондиционер 1000-3000
Освещение 300-1500
Микроволновая печь 1500-2200

Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.

Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А.

Сечение токо-
проводящих
жил, ммМедные жилы проводов и кабелей
Напряжение 220В Напряжение 380В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.

Сечение токо-
проводящих
жил, ммАлюминиевые жилы проводов и кабелей
Напряжение 220В Напряжение 380В
Ток, А Мощность, кВт Ток, А Мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44 170 112,2
120 230 50,6 200 132

Общепринятые сечения для проводки в квартире

Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.

Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.

Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

Источники

  • https://pue8.ru/kabelnye-linii/264-kak-vybrat-kabel.html
  • https://first-apartment.ru/sechenie-provoda.html
  • https://YDoma.info/ehlektrotekhnika/vybor-podgotovka-montazh-provoda/electricity-vybor-secheniya-provoda.html
  • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html
  • https://www.boncom.by/papers/raschet-secheniya-kabelya
  • https://vodatyt.ru/elektrika/raschet-secheniya-kabelya.html
  • https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html
  • https://elektro.guru/kabel-i-provoda/raschet-secheniya-provodov-i-kabeley-po-potreblyaemoy-moschnosti-tablicy.html
  • https://stroychik.ru/elektrika/vybor-secheniya-kabelya
  • https://electromc.ru/vybor-secheniya-provoda/

[свернуть]

Расчет сечения кабеля по току и мощности

Электричество передаётся конечному потребителю от электростанции или генератора посредством проводников проводов и кабелей. Какая разница между проводниками этих видов?

Кабель – несколько проводов в защитной герметичной оболочке, изолированных друг от друга. Герметичная оболочка в свою очередь покрывается в несколько слоев защитным покровом, оберегающим оболочку от механических повреждений и коррозии.

Провод – изделие, состоящее из одной и более жил, изолированных друг от друга, или одной и более скрученных между собой проволок, покрытое дополнительно в зависимости от условий прокладки оболочкой из металла, проволоки или волокнистого материала.

А сколько средств нужно потратить на изготовление этих проводников? Прямо сказать, немало. Одно дело, когда покупатель электроприбора платит за 1–2 метра, входящего в комплект кабеля, а кто заплатит за сотни километров линий электропередач, если потребитель оплачивает только стоимость использованной электроэнергии?

Вопрос риторический. Следовательно, при электрификации того или иного объекта каждый подрядчик старается сэкономить на тоннах меди или алюминия, желательно, чтобы экономия не отразилась на качестве поставляемой электроэнергии. Оптимальный способ – провести правильный расчёт сечения кабеля по мощности, длине, силе тока и используемому металлу, меди или алюминия. Это позволит осуществить оптимальный выбор кабеля для прокладки к нужному объекту или в своей квартире.

Значение сечения для производителей и потребителей электроэнергии

Какие последствия неправильного выбора сечения? Сечение – площадь поперечного разреза провода. Проводники одинаковой толщины могут иметь разную площадь. Если провод круглый — диаметр жилы делится на 2, радиус поднимается до квадрата и умножается на 3,1415. при других формах жилы кабеля сечение рассчитываются как площадь той геометрической фигуры, поперечный разрез которой имеет жила проводника, входящего в состав кабеля. Измеряется в мм2.

Существует 3 вида подбора сечения кабеля – для прокладки ЛЭП; для производственных цехов тяжёлой промышленности, для бытовых нужд. Остальные виды, так или иначе, связаны с вышеперечисленными, например, при подборе сечения кабеля для электротранспорта, руководствуются тем же принципом, что и для прокладки воздушной линии (далее — ВЛ), в частности, ЛЭП.

Основной критерий, по которому нужно выбирать кабель, это максимальная нагрузка на кабель, при которой он не перегревается. Чем меньше сечение, тем больше сопротивление, соответственно, проводник нагревается, вследствие чего теряется мощность и нарушается целостность изоляции. Если площадь поперечного разреза проводника больше, то повышается безопасность и срок эксплуатации кабеля, но и цена соответственно тоже!

Если прокладывать ЛЭП и другие электрокоммуникации с большим запасом сечения, то такие линии влетят в копеечку электрификатору. Поэтому перед тем как выбрать кабель оптимального сечения, его значение подбирают с таблицы сечения. Но таблицы выбора для того, чтобы определиться какой кабель подойдёт под прокладку в том или ином случае, мало. Перед тем как рассчитать сечение кабеля необходимо учесть все нюансы при укладке для тех или иных потребностей.

Начнём с глобального, чтобы закончить тривиальным

При расчёте сечения учитываются 3 основных параметра – плотность или сила тока, длина кабеля, материал проводника. Мощность – результат умножения силы тока на напряжение, а сопротивление зависит от материала и длины проводника. В некоторых случаях рассчитывать сечение кабеля по мощности не целесообразно. Об этом речь пойдёт ниже.

Расчёт сечения кабеля по длине крайне важен при прокладке ЛЭП. Чем длиннее провод, тем больше его сопротивление, соответственно, на отдалённых участках таких магистралей сила тока падает. Возникает вопрос, как могут функционировать ЛЭП длиной в 50 км и более, если когда рассчитывают сечение кабеля по мощности в таблице, то потеря тока на 50 км может превысить 60%? Остаётся единственный выход – напряжение.

Как известно, электрон, потоком которых и является электрический ток, имеет 2 природы: корпускулярную – двигается как материальное тело с заданной скоростью; волновую – передвигается в пространстве как электромагнитная волна со скоростью около 300000 км/с. То есть, если увеличить напряжение и уменьшить силу тока, то жилы с малым сечением можно прокладывать на любую длину! Казалось бы, что может быть проще. При помощи повышающего трансформатора поднять напряжение до 10 МВ., тогда при силе тока в 10 А можно обеспечить электричеством более 20000 потребителей!

Но на практике все обстоит иначе. Чтобы поднять напряжение до умопомрачительных величин нужно изолировать жилу абсолютным диэлектриком, который не пропускал  электромагнитные колебания, а такими материалами современная наука, увы, не располагает. На практике ЛЭП даже с напряжением в 10 кВ представляют нешуточную опасность для окружающих. Мало того что наводящееся напряжение скапливается на близнаходящихся металлических предметах, да ещё и электромагнитные волны создают помехи в радиусе десятков километров. Так что приходится делать выбор сечения кабеля по току и по длине проводников.

Важно! Чтобы проверить безопасность кабеля при данном сечении, кабель должен выдержывать нагрузку, выше номанальной на 10–15%, 30 минут. При передаче электричества, напряжение неизменно, а сила тока и длина жилы разные. Поэтому при прокладке ЛЭП проводится расчёт сечения кабеля по мощности и длине. А правильность выбора испытывается посредством токовых нагрузок кабелей.

Борцы за экологию, считающие, что воздушные линии электропередач должны отойти в прошлое, скорее всего не дождутся их повсеместного демонтажа. Причина кроется всё в том же сечении. Открытые коммуникации меньше греются, ведь атмосфера – природное охлаждение, да и ремонтировать ВЛ намного проще, чем подземные кабельные линии.

Материал проводника

Что предпочесть – алюминий или медь? По техническим характеристикам медь предпочтительнее, да и сечение медного кабеля при передаче одинаковой мощности меньше, но медь дороже, следовательно, ЛЭП с алюминиевыми проводами экономичнее.

Оборудование в тяжёлой промышленности потребляет большую силу тока, например, электросварочный аппарат, может потреблять ток в 200 и более А. Чтобы обеспечить бесперебойную работу данного оборудования на производственные предприятия прокладывают силовые кабели. Сечение силового кабеля может достигать 120 мм2 и более. Чтобы увеличить пропускную способность кабеля, часто используют многожильные изделия. Такое решение обосновывается таким явлением как скин-эффект – распределением тока в поверхностном слое проводника.

Целесообразно ли подбирать сечение кабеля по диаметру? Диаметр кабеля имеет неодинаковое сечение. Производитель проводниковой продукции указывает площадь поперечного разреза и номинальную нагрузку в амперах.

А теперь к мощности

Вот решили вы немного прибарахлиться и купить несколько мощных электроприборов. У вас в квартире, как говорится, старая проводка. Нужно решать какой кабель и на какую розетку прокладывать. Естественно, о выборе материала речь не идёт, это медь. Рекомендации ПУЭ (Правила Устройства Электроустановок), долгий срок службы и безопасность — основные преимущества меди. По каким показателям рассчитывать сечение для квартиры?

Поскольку длина особого значения не имеет, остаётся мощность и сила тока. Мощность, самый простой вариант расчёта. Открываем таблицу или онлайн калькулятор. Находим или вводим предполагаемое значение суммарной мощности электроприборов, которые будут работать одновременно, находим или рассчитываем сечение исходя из материала проводника. У нас медь. Казалось бы, на этом всё. Осталось вызвать специалистов и заказать или приобрести кабель нужной поперечной площади.

Вот и всё установлено. Осталось только запустить, к примеру, колодезный насос или токарный бытовой станок. И вдруг что-то начинает вонять! Ах да, это изоляция плавится! Дело в том, что в момент пуска электродвигателя, пусковая мощность в 5-7 раза превышает номинальную мощность. Так, что рассчитывать сечение по мощности целесообразно, только если не планируется использовать электродвигатель, номинальной мощностью более 3,5 кВт. Иначе сечение нужно подбирать по силе тока в момент запуска мощного агрегата. Этот параметр указан в руководстве к прибору.

Никогда не нарушайте золотое правило! Лучше выбрать сечение, большее чем нужно, чтобы остался запас для непредвиденных высоких нагрузок, способных повредить изоляцию кабеля.

Практическое руководство по выбору кабеля

% PDF-1.4 % 1 0 obj> поток application / pdfA Практическое руководство по выбору кабеля

  • Примечания по применению
  • Texas Instruments, Incorporated [SNLA164,0]
  • iText 2.1.7, автор 1T3XTSNLA1642011-12-08T04: 24: 47.000Z2011-12-08T04: 24: 47.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Искусство определения правильного сечения проводов низкого напряжения

    Максимальная допустимая нагрузка по току

    Чтобы пояснить в начале этой статьи, определение сечения проводов и кабелей, безусловно, не является самая захватывающая часть электрического дизайна.Есть гораздо более сложные и захватывающие части, чем смотреть на бесконечные столы дирижеров. Однако эта часть должна выполняться профессионально так же, как и все остальные части дизайна. Итак, возьмите очки (если вы их носите), выпейте кофе и приступим.

    Искусство определения правильного поперечного сечения проводов низкого напряжения

    Определение поперечного сечения проводников основано на знании максимальной допустимой токовой нагрузки системы проводки, которая сама определяется на основе проводов и условия их эксплуатации.Стандарт IEC 60364-5-52 определяет значения тока в соответствии с основными принципами работы для установок и безопасности людей. Основные элементы приведены ниже.

    Таблицу допустимых значений тока можно использовать для прямого определения поперечного сечения проводов в соответствии с:

    1. Тип проводника
    2. Эталонный метод (метод установки)
    3. Теоретическая допустимая нагрузка по току Iz (Iz th )

    Iz th рассчитывается путем применения всех поправочных коэффициентов (f) к значению рабочего тока (I B ) .Коэффициенты f определяются в соответствии с методом установки, группировкой, температурой и т. Д.

    I B = Iz th × f , что дает Iz th = I B / f

    Рисунок 1 - Определение поперечного сечения с использованием таблицы пропускной способности по току

    Весь процесс определения правильного поперечного сечения низковольтных проводов объясняется следующими шагами.

    Содержание:

    1. Характеристики проводов
    2. Системы электромонтажа: способы монтажа
      1. Приложение 1 - «Группы монтажа» в зависимости от типа кабеля
    3. Группы цепей
    4. Температура окружающей среды
    5. Риски взрыва
    6. Параллельные проводники
    7. Общий поправочный коэффициент
      1. Пример определения трехфазной цепи
    8. Сечение нейтрального проводника
      1. Примеры: Применение понижающих коэффициентов для гармонических токов

    1.Характеристики жил

    Учитываются следующие данные:

    1. Тип жилы: медь или алюминий.
    2. Тип изоляции, определяющий максимально допустимую температуру во время работы, XLPE или EPR для изоляции, выдерживающей 90 ° C, и ПВХ для изоляции, выдерживающей 70 ° C

    Таблица 1 - Макс. рабочие температуры в зависимости от типа изоляции

    Тип изоляции Максимальная температура (1) ° C
    Поливинилхлорид (ПВХ) Проводник: 70
    Сшитый полиэтилен (XlPE) и этилен-пропиленовый (EPr) проводник Проводник: 90 (1)
    Минеральный (с ПВХ-оболочкой или без нее, доступен) Оболочка: 70
    Минеральная (без оболочки, доступны и не контактируют с горючими материалами) Оболочка: 105 (2)

    (1) Если проводник работает при температуре выше 70 ° C, рекомендуется проверить, что оборудование, подключенное к этому проводу, подходит для конечной температуры соединения.

    (2) Более высокие рабочие температуры могут быть разрешены для определенных типов изоляции, в зависимости от типа кабеля, его концов, условий окружающей среды и других внешних воздействий.

    Вернуться к таблице содержания ↑


    2. Системы электропроводки: методы установки

    Стандарт определяет ряд методов установки, которые представляют различные условия установки. В следующих таблицах они разделены на группы и определены буквами от A до G , которые определяют, как читать таблицу допустимых токовых нагрузок в проводниках (см. Приложение 1)

    Если используются несколько методов монтажа вдоль длина системы электропроводки, необходимо выбрать методы, для которых условия тепловыделения наименее благоприятны .

    В стандарте нет четкого положения об определении поперечного сечения проводников внутри низковольтных распределительных щитов. Однако стандарт IEC 60439-1 определяет токи (используемые для испытаний на превышение температуры) для медных проводников с ПВХ изоляцией.

    Таблица 2 - Группа монтажа в зависимости от типа кабеля

    G) Размещено на открытом воздухе
    Группа монтажа Тип кабеля
    Изолированные жилы Одножильные кабели Многожильные кабели
    ( A1) в теплоизолированной стене
    (A1) в канале в теплоизолированной стене
    (A1-A2) дюймов теплоизолированная стена
    (B1-B2) в трубе на деревянной стене
    (C) На деревянной стене
    (C) , закрепленный на деревянной стене
    (D) в воздуховодах в земле
    (E) на открытом воздухе
    (F) на открытом воздухе

    Подробное описание каждой монтажной группы см. В Приложении 1 ниже.

    Вернуться к таблице содержания ↑


    3. Группы цепей

    Таблицы, в которых представлены методы установки, также относятся к конкретным таблицам, которые используются для определения поправочных коэффициентов, связанных с группой цепей и кабелепроводов.

    Таблица 3 - Коэффициенты уменьшения для групп из более чем одной цепи или из более чем одного многожильного кабеля, которые будут использоваться с допустимой нагрузкой по току

    Таблица 3 - Коэффициенты уменьшения для групп из более чем одной цепи или из более чем один многожильный кабель должен использоваться с допустимой нагрузкой по току

    Эти коэффициенты применимы к одинаковым группам кабелей с одинаковой нагрузкой.Если горизонтальные зазоры между соседними кабелями в два раза превышают их общий диаметр, коэффициент уменьшения не требуется.

    Те же коэффициенты применяются к:

    • Группам из двух или трех одножильных кабелей;
    • Многожильные кабели

    Если система состоит как из двухжильных, так и из трехжильных кабелей, общее количество кабелей принимается как количество цепей, и соответствующий коэффициент применяется к таблицам для двух нагруженных проводников. для двухжильных кабелей и в таблицы для трех нагруженных жил для трехжильных кабелей.

    Если группа состоит из одножильных кабелей n , она может рассматриваться либо как n / 2 цепей из двух нагруженных проводников, либо как n / 3 цепей из трех нагруженных проводников. Приведенные значения усреднены по диапазону размеров проводов и типам установки, включенным в таблицы, общая точность табличных значений находится в пределах 5%.

    Для некоторых установок и других методов, не предусмотренных в приведенной выше таблице, может оказаться целесообразным использовать коэффициенты, рассчитанные для конкретных случаев.

    Таблица 4 - Коэффициенты уменьшения для групп из более чем одной цепи, кабели, проложенные непосредственно в земле, метод прокладки D - одножильные или многожильные кабели

    Таблица 4 - Коэффициенты уменьшения для групп из более чем одной цепи, кабелей проложенный непосредственно в грунте, метод D - одножильные или многожильные кабели

    Приведенные значения относятся к монтажной глубине 0,7 м и тепловому сопротивлению грунта 2,5 км / Вт . Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах.Процесс усреднения вместе с округлением может в некоторых случаях приводить к ошибкам до ± 10% .

    Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287-2-1.

    Рисунок 2 - Группирование цепей вместе приводит к снижению допустимой нагрузки по току (применение поправочного коэффициента)

    Таблица 5 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи, кабели, проложенные в каналах, метод заземления D multi -жильные кабели в односторонних каналах

    Таблица 5 - Многожильные кабели в односторонних каналах Таблица 5 - Одножильные кабели в односторонних каналах

    Приведенные значения относятся к глубине прокладки 0,7 м и тепловому воздействию почвы. удельное сопротивление 2,5 км / Вт.Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах. Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10%.

    Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287.

    Таблица 6 - Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к эталонным номинальным значениям для многожильных кабелей, воздух - метод установки E

    Таблица 6 - Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к эталонным номинальным значениям для многожильных кабелей на открытом воздухе - способ установки E

    (1) Значения даны для вертикальных расстояний между лотками 300 мм и не менее 20 мм между лотками и стеной.Для более близкого расстояния коэффициенты следует уменьшить.

    (2) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную. Для более близкого расстояния коэффициенты должны быть уменьшены

    Таблица 7 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к справочному рейтингу для одной цепи одножильных кабелей на открытом воздухе - метод установки F

    Таблица 7 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе - метод установки Коэффициенты F

    (1) даны для одинарных слоев кабелей (или групп трилистников), как показано в таблице, и не применяются, когда кабели проложены более чем в одном слое, соприкасаясь друг с другом.Значения для таких установок могут быть значительно ниже и должны определяться соответствующим методом.

    (2) Значения даны для вертикального расстояния между лотками 300 мм. для более близкого расстояния коэффициенты следует уменьшить.

    (4) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную друг к другу, и не менее 20 мм между лотком и любой стеной. для более близкого расстояния коэффициенты следует уменьшить.

    (5) для цепей, имеющих более одного параллельного кабеля на фазу, каждый трехфазный набор проводников следует рассматривать как цепь для целей данной таблицы.

    Вернуться к таблице содержания ↑ v


    4. Температура окружающей среды

    Температура окружающей среды напрямую влияет на сечение проводов. Следует учитывать температуру воздуха вокруг кабелей (установка на открытом воздухе) и температуры земли для подземных кабелей.

    Следующие таблицы, взятые из стандарта IEC 60364-5-52, могут использоваться для определения поправочного коэффициента, применяемого для температур от 10 до 80 ° C . Во всех этих таблицах базовая температура воздуха составляет 30 ° C, а температура земли - 20 ° C.

    Не следует путать температуру окружающей среды вокруг кабелей с температурой, принимаемой во внимание для защитных устройств, то есть внутренней температурой распределительного щита, в котором установлены эти защитные устройства.

    Таблица 8 - Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, применяемые к допустимой токовой нагрузке для кабелей в воздухе (1) .

    Таблица 8 - Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе

    При более высоких температурах окружающей среды проконсультируйтесь с производителем.

    Таблица 9 - Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле

    Таблица 9 - Таблица поправочных коэффициентов для температур окружающей среды почвы, отличных от 20 ° C должен применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле

    Таблица 10 - Таблица поправочного коэффициента для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 К.м / Вт, применяемые к допустимой токовой нагрузке для эталонного метода D

    Таблица 10 - Таблица поправочного коэффициента для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 км / Вт, применяемого к допустимой нагрузке по току для эталонного метода D

    Приведенные поправочные коэффициенты были усреднены по диапазону размеров проводов и типам установки, приведенным в таблицах. Общая точность поправочных коэффициентов находится в пределах ± 5% . Поправочные коэффициенты применимы к кабелям, протянутым в заглубленные каналы; для кабелей, проложенных непосредственно в земле, поправочные коэффициенты для теплового сопротивления менее 2,5 К.м / Вт будет выше.

    Если требуются более точные значения, они могут быть рассчитаны методами, указанными в IEC 60287 . Поправочные коэффициенты применимы к каналам, проложенным на глубине до 0,8 м.

    Вернуться к таблице содержания ↑


    5. Риски взрыва

    В установках, где существует риск взрыва (наличие, обработка или хранение материалов, которые являются взрывоопасными или имеют низкую температуру вспышки, включая присутствие взрывчатых веществ). пыль), системы электропроводки должны иметь соответствующую механическую защиту n, а допустимая нагрузка по току будет подвергаться понижающему коэффициенту.

    Описание и правила установки приведены в стандарте IEC 60079.

    Интересное чтиво:

    Почему оборудование подстанции выходит из строя и почему стоит подумать об этом до отказа

    Вернуться к таблице содержимого ↑


    6. Параллельные проводники

    До тех пор, пока расположение проводов соответствует правилам группировки, допустимая нагрузка по току в системе проводки может считаться равной сумме пропускных способностей по току каждого проводника к которому применяются поправочные коэффициенты, связанные с группой проводников.

    Рисунок 3 - Параллельные проводники и кабели (фото: nktphotonics.com)

    Вернуться к таблице содержимого ↑


    7. Общий поправочный коэффициент

    Когда известны все конкретные поправочные коэффициенты, можно определить глобальный поправочный коэффициент (f) , который равен произведению всех конкретных коэффициентов. Затем процедура состоит из расчета теоретической допустимой нагрузки по току Iz th системы электропроводки:

    Iz th = I B / f

    Знание Iz th затем позволяет ссылаться на таблицы на допустимые токи для определения необходимого сечения.

    Считайте данные из столбца, соответствующего типу проводника и эталонному методу. Затем просто выберите в таблице значение допустимой нагрузки по току, которое находится непосредственно над значением Iz , чтобы найти поперечное сечение.

    Обычно допускается отклонение в 5% от значения iz. например, рабочий ток I B 140 A приведет к выбору сечения 35 мм 2 с допустимой нагрузкой по току 169 A .Применение этого допуска позволяет выбрать меньшее поперечное сечение 25 мм 2 , которое может выдерживать ток 145 А (138 + 0,5% = 145 А) .

    Таблица 11 - Максимальный ток в амперах

    Таблица 11 - Максимальный ток в амперах

    Где (1)

    • PVC 2: изоляция из ПВХ, 2 нагруженных проводника
    • PVC 3: PVC изоляция, 3 нагруженных проводника
    • PR 2: изоляция XLPE или EPR, 2 нагруженных проводника
    • PR 3: изоляция XLPE или EPR, 3 нагруженных проводника.

    Используйте PVC 2 или PR 2 для однофазных или двухфазных цепей и PVC 3 или PR 3 для трехфазных цепей.

    Вернуться к таблице содержимого ↑


    7.1 Пример

    Определение трехфазной цепи, образующей связь между главным распределительным щитом и вторичным распределительным щитом.


    Гипотезы
    • Оценка нагрузок позволила рассчитать рабочий ток проводников: I B = 600 A
    • Система электропроводки состоит из одножильных медных кабелей с изоляцией PR
    • Жилы устанавливаются так, чтобы они касались друг друга в перфорированном кабельном канале.
    • Предпочтительно прокладывать кабели параллельно, чтобы ограничить поперечное сечение устройства до 150 мм. в перфорированном кабельном лотке соответствует эталонному методу F

      Таблица 12 - Выдержка из таблицы методов установки

      Если достаточно одного провода на фазу, коррекция не требуется.Если необходимы два проводника на фазу, следует применить понижающий коэффициент 0,88.

      Таблица 13 - Выдержка из таблицы с поправочными коэффициентами для групп

      Следовательно, теоретическое значение Iz th будет определяться следующим образом: Iz th = I B / F = 600 / 0,88 = 682 A , т.е. 341 А на провод .

      Таблица 14 - Считывание из таблицы допустимых значений тока

      Для проводника PR 3 в эталонном методе f и допустимой нагрузке по току 382 A (значение непосредственно выше 341 A) в таблице указано поперечное сечение из 120 мм 2 .

      Вернуться к таблице содержания ↑


      8. Поперечное сечение нейтрального проводника

      В принципе, сечение нейтрали должно совпадать с поперечным сечением фазного проводника во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 (25 мм 2 алюмин.) Поперечное сечение нейтрали можно уменьшить до поперечного сечения / 2.

      Однако это уменьшение не допускается, если:

      • На практике нагрузки не сбалансированы
      • Содержание третьей гармоники превышает 15%.

      Если это содержание больше, чем 33% , поперечное сечение токоведущих проводов многожильных кабелей выбирается путем увеличения тока I B . Стандарт IEC 60364-5-52 дает таблицу, показывающую поправочные коэффициенты в соответствии с THD (полное гармоническое искажение), с последующим примером определения допустимой токовой нагрузки кабеля.

      Таблица 15 - Таблица коэффициентов понижения для токов гармоник в 4- и 5-жильных кабелях

      Таблица 15 - Таблица коэффициентов уменьшения для токов гармоник в четырех- и пятижильных кабелях (IEC 60364-5-52)

      Вернуться к таблице содержимого ↑


      8.1 Примеры

      Применение понижающих коэффициентов для гармонических токов (IEC 60352-5-52)

      Рассмотрим трехфазную цепь с расчетной нагрузкой 39 А , которая должна быть установлена ​​с использованием четырехжильного кабеля с изоляцией из ПВХ, прикрепленного к стене. , способ установки C . Кабель 6 мм 2 с медными жилами имеет допустимую нагрузку по току 41 А, и, следовательно, подходит, если в цепи отсутствуют гармоники.

      Если присутствует 20% третьей гармоники , то применяется понижающий коэффициент 0,86 и расчетная нагрузка становится: 39 / 0,86 = 45 A .Для этой нагрузки необходим кабель 10 мм 2 .

      Если присутствует 40% третьей гармоники , выбор размера кабеля основан на токе нейтрали, который составляет: 39 × 0,4 × 3 = 46,8 A , и применяется понижающий коэффициент 0,86 , что приводит к расчетной нагрузке: 46,8 / 0,86 = 54,4 A . Для этой нагрузки подходит кабель 10 мм 2 .

      Если присутствует 50% третьей гармоники , размер кабеля снова выбирается на основе тока нейтрали, который составляет: 39 × 0,5 × 3 = 58,5 A .В этом случае номинальный коэффициент равен 1 , и требуется кабель 16 мм 2 .

      Выбор всех вышеуказанных кабелей основан на допустимой нагрузке на кабель; падение напряжения и другие аспекты конструкции не учитывались.

      Вернуться к таблице содержимого ↑


      Приложение 1 - «Группы установки» в зависимости от типа кабеля

      Приложение 1 - «Группы установки» в соответствии с типом кабеля

      Вернуться к таблице содержимого ↑

      Источники :

      Как выбрать наиболее экономичный размер и тип кабеля?

      Выбор кабеля заключается в выборе подходящего типа проводника и выборе подходящего размера / площади поперечного сечения / диаметра проводника в соответствии с областью применения.Во-первых, необходимо понять важность определения размеров и выбора кабеля. Затем будут обсуждены критерии выбора с учетом всех факторов снижения номинальных характеристик, которые могут снизить допустимую нагрузку на кабель. Закон, называемый законом Кельвина, играет жизненно важную роль в экономическом определении размеров проводников, поэтому он также будет объяснен здесь. Помимо размера проводника, будут изучены различные типы проводника. Также в конце будет обсуждаться экранирование и изоляция кабеля.

      Размеры кабеля обычно определяются с точки зрения площади поперечного сечения, Kcmil (килограмм круговых милов) или AWG (американский калибр проводов).

      Мы только что запустили нашу серию Power Systems Engineering Vlog и прямо сейчас у нас есть для вас очень много. Первые 50 участников, которые присоединятся к нашему сообществу видеоблогов, получат скидку 75% на . Предложение действительно до 15 мая -го . Чего ты ждешь? Зарегистрируйтесь сейчас. Доступные стандарты для выбора и размера кабеля:
      • IEC (Международная электротехническая комиссия)
      • NEC (Национальный электротехнический кодекс)
      • BS (Британские стандарты)

      Важность выбора правильного размера и типа кабеля:

      Выбор правильного размера и типа кабеля важен по следующим причинам:

      • Если размер кабеля очень маленький, когда ток превышает допустимую нагрузку кабеля, кабель нагревается и повреждается.Таким образом, необходимо выбрать размер кабеля, при котором он способен выдерживать полный ток нагрузки и ток короткого замыкания, который может протекать по кабелю.
      • Увеличение площади поперечного сечения кабеля потребует использования большего количества материала в его конструкции, что приведет к его удорожанию. Следовательно, будет сложно поддерживать хороший баланс между стоимостью кабеля и требованиями к его использованию. Таким образом, диаметр кабеля должен соответствовать требованиям.
      • Необходимо обеспечить нагрузку подходящим напряжением, т.е. с минимальным падением напряжения. Кабель с маленьким диаметром будет иметь более высокое сопротивление. Кроме того, это приведет к большему падению напряжения на кабеле. Поэтому необходимо выбирать такой кабель, который не вызывает падения напряжения или вызывает меньшее падение напряжения.
      • Необходимо выбрать лучший тип кабеля в соответствии с требованиями применения, поскольку каждый тип проводника имеет собственное сопротивление, теплопроводность и т. Д.

      Критерии выбора кабелей:

      Размер кабеля определяется на основе следующих факторов:

      Пропускная способность по току: Определяется путем оценки силы тока, потребляемого оборудованием или нагрузкой, подключенными к принимающему концу кабеля. В нем также предусмотрен запас прочности по току перегрузки.

      Падение напряжения: Из-за сопротивления кабеля возникают потери мощности, в результате чего напряжение падает на определенную величину.В дополнение к этому, падение напряжения также зависит от температуры, поскольку температура влияет на сопротивление. Если нам известны значения сопротивления кабеля и тока, протекающего по кабелю, то мы можем определить падение напряжения на этом кабеле по формуле V = I * R.

      Рейтинг короткого замыкания: Это способность кабеля выдерживать ток короткого замыкания в течение определенного времени повреждения, прежде чем он будет устранен без каких-либо повреждений.

      Коэффициенты снижения номинальных характеристик:

      Существуют некоторые внешние помехи, которые влияют на номинальный ток кабеля i.е. токовая нагрузка кабеля. В таких сценариях текущие рейтинги должны быть улучшены путем применения некоторых подходящих факторов, известных как коэффициенты снижения номинальных характеристик. Поскольку у нас есть несколько типов коэффициентов снижения, поэтому значения всех коэффициентов снижения умножаются, чтобы получить среднее значение. Ниже приведены основные факторы снижения номинальных характеристик, которые следует учитывать при выборе сечения кабеля.

      Температурный коэффициент снижения номинальных характеристик (C T ): Температурный коэффициент снижения номинальных характеристик (CT): Кабели должны быть расположены таким образом, чтобы у них было минимальное пространство для рассеивания тепла в окружающей среде.Этот коэффициент используется в расчетах сечения кабеля, чтобы учесть расположение кабеля для минимизации тепловых потерь, тем самым увеличивая допустимую нагрузку кабеля.

      Коэффициент группирования проводников (C G ): Электромагнитное поле вокруг проводников в группе создается, когда протекает ток, что приводит к снижению допустимой нагрузки кабеля. По этой причине учитывается фактор группировки проводников.

      Термическое сопротивление почвы (C R ): Стандартная температура окружающей кабели составляет 40 ° C.Но если кабели должны быть закопаны в почву, температура вокруг кабелей повышается, и это влияет на допустимую нагрузку кабеля. Поэтому в расчетах учитывается коэффициент термического сопротивления грунта, чтобы компенсировать повышение температуры.

      Коэффициент снижения глубины залегания (C D ): Этот коэффициент зависит от глубины грунта, на которую должен быть заложен проводник. Более глубокое проникновение в заземляющий кабель приведет к увеличению коэффициента снижения мощности.

      Как рассчитать размер кабеля для заданной нагрузки?

      Где,

       P = Активная мощность (кВт)
               S = Полная мощность (кВА)
               В  L  = Напряжение сети
               I  L  = Линейный ток или допустимая нагрузка кабеля 

      С учетом факторов снижения номинальных характеристик:

      Теперь выберите размер кабеля в зависимости от указанного выше тока из стандартных таблиц размеров кабеля e.грамм. «Каталоги МЭК».

      Закон Кельвина для экономичного сечения кабеля:

      Закон Кельвина гласит, что:

      Самый экономичный размер кондуктора - это размер, для которого годовые проценты и амортизация капитальных затрат на него равны годовым эксплуатационным расходам

      Скажем,

       Размер (площадь поперечного сечения) проводника = a
               Годовая процентная и амортизационная стоимость кондуктора =  P 
               Годовые текущие расходы на кондуктора =  P  
      P.

      Поскольку годовые проценты и амортизационная стоимость кондуктора прямо пропорциональны размеру кондуктора (поскольку увеличение размера кондуктора увеличит его капитальные затраты и, следовательно, процентные и амортизационные расходы) i.е.

      P 1 ∝ а

      Итак, P 1 = k 1 .a ------------------------ уравнение (i)

      Кроме того, годовые эксплуатационные расходы на проводник обратно пропорциональны размеру проводника (так как увеличение размера проводника уменьшит потери энергии плюс повреждения из-за нагрева и, следовательно, эксплуатационные расходы), то есть

      Итак, P 2 =

      к 2 к

      ------------------------ уравнение (ii)

      Здесь k 1 и k 2 - постоянные.

      Общая годовая стоимость проводника (скажем, P) может быть получена путем сложения уравнений (i) и (ii):

      Чтобы общая стоимость была минимальной, дифференциал «P» по отношению к «a» должен быть равен нулю:

      дП / да

      знак равно

      д / да (к 1 .а + к 2 / а)

      0 = k 1 + k 2 (- 1 / a 2 )

      0 = к 1 - (к 2 / а 2 )

      к 2 / а 2 = к 1

      k 2 / a = k 1 .a

      P 2 = P 1

      Экономический размер проводника (при котором годовые проценты и амортизационные расходы равны годовым эксплуатационным расходам на проводника) можно рассчитать на основе приведенного выше вывода:

      к 2 / а 2 = к 1

      а = к 1 / к 2

      а = √ (к 1 / к 2 )

      Пример:
      Рассмотрим кабель длиной 1 км с допустимой нагрузкой 150 А в течение года (8760 часов).Стоимость прокладки кабеля составляет 0,1 доллара США за метр, где a - размер жилы в см 2 . Стоимость энергии составляет 0,001 доллара США / кВтч, а 12% составляют проценты и амортизационные отчисления. Удельное сопротивление проводника составляет 1,91 мкОм · см, поэтому определите экономичный размер проводника.

      Автор: EagleRJOCC BY-SA 4.0, ссылка

      Сопротивление проводника =

      ρL / а

      знак равно

      (1,91x10 -6 ) (10 5 ) / Ом

      Потери энергии / год

      знак равно

      2I 2 Rt / 1000 кВтч

      Потери энергии / год

      знак равно

      2x (150) 2 x (0.191 / а) (8760) / 1000

      Потери энергии / год

      знак равно

      75292.2 / а

      ) кВтч Годовые текущие расходы =

      Стоимость / кВтч

      Икс

      Потери энергии / год

      Годовые текущие расходы = 0,1 x (

      75292.2 / а

      ) Годовые текущие расходы = $ (

      75292.2 / а

      ) Капитальные затраты = $

      16a / метр

      Капитальные затраты = 16 долларов США × 1000 = 16000 долларов США

      Ежегодные фиксированные платежи = Проценты и амортизация капитальных затрат

      Ежегодные фиксированные платежи = 12% от 16000 долларов США = 1920 долларов СШАa

      Согласно закону Кельвина,

      Годовые текущие платежи = Ежегодные фиксированные платежи

      7529.22 / а

      = 1920a

      a = 3,92 см 2

      Итак, экономичный размер жилы 3,92 см 2 .

      Ограничения:

      • Не могут быть определены точные проценты и амортизация по капитальным затратам.
      • Некоторые факторы, такие как допустимая нагрузка кабеля, эффект коронного разряда и т. Д., Не рассматриваются в этом законе.
      • По закону Кельвина может иметь место чрезмерное падение напряжения в размере проводника.

      Типы проводников:

      В зависимости от физической структуры проводники могут быть скрученными (несколько тонких проводов) или сплошными (сплошная металлическая проволока). Типы кабелей (жилы), которые используются в линиях электропередачи:

      ACSR (алюминиевый проводник, армированный сталью): Он состоит из стальных нитей, окруженных алюминиевыми нитями. Это наиболее рекомендуемый проводник для линий электропередачи, который используется для более протяженных участков.

      ACAR (алюминиевый проводник, армированный сплавом): Он состоит из алюминиево-магниевого кремниевого сплава, окруженного алюминиевым проводником. Он имеет более высокую механическую прочность и проводимость, чем ACSR, поэтому его можно использовать для распределения и передачи в больших масштабах, но он более дорогой.

      AAC (полностью алюминиевый проводник): Он также известен как ASC (алюминиевый многожильный проводник) и имеет проводимость 61% IACS. Несмотря на то, что он обладает хорошей проводимостью, он все же ограничен в применении из-за низкой прочности.

      AAAC (проводник из алюминиевого сплава): Он состоит из сплава алюминия-магния-кремния и имеет проводимость 52,5% IACS. Из-за большей прочности его можно использовать для распространения, но не рекомендуется для передачи. Подходит для использования в помещениях с повышенным содержанием влаги.

      ⁘ IACS (Международный стандарт отожженной меди) - это стандарт, введенный США.

      Это стандарт, с которым сравнивается проводимость любого проводника.

      Это значение проводимости коммерчески доступной меди.

      Экранирование и изоляция кабеля:

      Существуют различные слои из различных материалов, которые должны быть наложены на проводник, чтобы обеспечить изоляцию и экран кабеля с целью защиты проводника. Каждый слой имеет свою особую функцию, и ее требования зависят от применения кабелей. Например, для воздушных линий нам не нужна изоляция или экранирование, поскольку там используются неизолированные провода, но для подземных кабелей они должны быть изолированы и экранированы.

      Изоляция: Изоляция кабеля выполняется с помощью любого диэлектрика, например ПВХ, чтобы предотвратить утечку тока из проводника.

      Оболочка: Кабель снабжен оболочкой для защиты кабеля от влаги. Это должен быть какой-то немагнитный материал, например свинцовый сплав.

      Подкладка: Предназначение подстилки - защитить оболочку кабеля от повреждений, вызванных броней.

      Армирование: Армирование - это еще один слой оцинкованной стали поверх кабеля, защищающий его от любых механических повреждений.

      Обслуживания: Повышает механическую прочность кабеля. Обеспечивает общую защиту от влаги, пыли и т. Д.

      Подведение итогов:

      Систему передачи электроэнергии можно сделать эффективной и экономичной, если следовать надлежащей методологии определения размеров и выбора кабеля.Критерии выбора, коэффициенты снижения номинальных характеристик, тип проводника, надлежащая изоляция и экранирование и т. Д. Мы должны помнить об этом во время прокладки кабеля. Таким образом мы можем добиться эффективной, безопасной и рентабельной передачи электроэнергии.

      Стандартные сечения кабелей и проводов

      IEC 60228 - международный стандарт Международной электротехнической комиссии по проводам изолированных кабелей. Среди прочего он определяет набор стандартных сечений проводов:

      Размеры проводов, соответствующие международным стандартам (IEC 60228)
      0.5 мм² 0,75 мм² 1 мм² 1,5 мм² 2,5 мм² 4 мм²
      6 мм² 10 мм² 16 мм² 25 мм² 35 мм² 50 мм²
      70 мм² 95 мм² 120 мм² 150 мм² 185 мм² 240 мм²
      300 мм² 400 мм² 500 мм² 630 мм² 800 мм² 1000 мм²

      В США размеры проводов обычно измеряются в американских калибрах проводов (AW).Увеличение AWG приводит к уменьшению площади поперечного сечения (наименьший размер AWG равен 50, а наибольший - 0000).

      Метрическая система преобразования AWG

      Кол-во прядей / диаметр
      за прядь
      Общий примерный
      диаметр
      мм² AWG Circ.Милс дюйм мм дюйм мм
      0,5 987 1 / .032 1 / .813 0,032 0,81
      20 1020 7 /.0121 7 / .307 0,036 0,91
      0,75 1480 1 / .039 1 / .991 0,039 0,99
      18 1620 1 /.0403 1 / 1.02 0,04 1,02
      18 1620 7 / .0152 7 / .386 0,046 1,16
      1 1974 1 /.045 1 / 1,14 0,045 1,14
      1 1974 7 / .017 7 / .432 0,051 1,3
      16 2580 1 /.0508 1 / 1,29 0,051 1,29
      16 2580 7 / .0192 7 / .488 0,058 1,46
      1,5 2960 1 /.055 1 / 1,40 0,055 1,4
      1,5 2960 7 / .021 7 / .533 0,063 1,6
      14 4110 1 /.0641 1 / 1,63 0,064 1,63
      14 4110 7 / .0242 7 / .615 0,073 1,84
      2,5 4934 1 /.071 1 / 1,80 0,071 1,8
      2,5 4934 7 / .027 7 / .686 0,081 2,06
      12 6530 1 /.0808 1 / 2,05 0,081 2,05
      12 6530 7 / .0305 7 / .775 0,092 2,32
      4 7894 1 /.089 1 / 2,26 0,089 2,26
      4 7894 7 / .034 7 / .864 0,102 2,59
      10 10380 1 /.1019 1 / 2,59 0,102 2,59
      10 10380 7 / .0385 7 / .978 0,116 2,93
      6 11840 1 /.109 1 / 2,77 0,109 2,77
      6 11840 7 / .042 7 / 1.07 0,126 3,21
      9 13090 1 /.1144 1 / 2,91 0,1144 2,91
      9 13090 7 / .0432 7 / 1,10 0,13 3,3
      8 16510 1 /.1285 1 / 3,26 0,128 3,26
      8 16510 7 / .0486 7 / 1,23 0,146 3,7
      10 19740 1 /.141 1 / 3,58 0,141 3,58
      10 19740 7 / .054 7 / 1,37 0,162 4,12
      7 20820 1 /.1443 1 / 3,67 0,144 3,67
      7 20820 7 / .0545 7 / 1,38 0,164 4,15
      6 26240 1 /.162 1 / 4,11 0,162 4,11
      6 26240 7 / .0612 7 / 1,55 0,184 4,66
      16 31580 7 /.068 7 / 1,73 0,204 5,18
      5 33090 7 / .0688 7 / 1,75 0,206 5,24
      4 41740 7 /.0772 7 / 1,96 0,232 5,88
      25 49340 7 / .085 7 / 2,16 0,255 6,48
      25 49340 19 /.052 19 / 1,32 0,26 6,6
      3 52620 7 / .0867 7 / 2,20 0,26 6,61
      2 66360 7 /.0974 7 / 2,47 0,292 7,42
      35 69070 7 / .100 7 / 2,54 0,3 7,62
      35 69070 19 /.061 19 / 1,55 0,305 7,75
      1 83690 19 / .0664 19 / 1,69 0,332 9,43
      50 98680 19 /.073 19 / 1,85 0,365 9,27
      1/0 105600 19 / .0745 19 / 1,89 0,373 9,46
      2/0 133100 19 /.0837 19 / 2,13 0,419 10,6
      70 138100 19 / .086 19 / 2,18 0,43 10,9
      3/0 167800 19 /.094 19 / 2,39 0,47 11,9
      3/0 167800 37 / .0673 37 / 1,71 0,471 12
      95 187500 19 /.101 19 / 2,57 0,505 12,8
      95 187500 37 / .072 37 / 1,83 0,504 12,8
      4/0 211600 19 /.1055 19 / 2,68 0,528 13,4
      120 237,8 мкм 37 / .081 37 / 2,06 0,567 14,4
      250 мкм 37 /.0822 37 / 2,09 0,575 14,6
      150 300 мкм 37 / .090 37 / 2,29 0,63 16
      350 мкм 37 /.0973 37 / 2,47 0,681 17,3
      185 365,1 мкм 37 / .100 37 / 2,54 0,7 17,8
      400 мкм 37 /.104 37 / 2,64 0,728 18,5
      240 473,6 мкм 37 / .114 37 / 2,90 0,798 20,3
      240 473,6 мкм 61 /.089 61 / 2,26 0,801 20,3
      500 мкм 37 / .1162 37 / 2,95 0,813 20,7
      500 мкм 61 /.0905 61 / 2.30 0,814 20,7
      300 592,1 мкм 61 / .099 61 / 2,51 0,891 22,6
      600 мкм 61 /.0992 61 / 2,52 0,893 22,7
      700 мкм 61 / .1071 61 / 2,72 0,964 24,5
      750 мкм 61 /.1109 61 / 2,82 0,998 25,4
      750 мкм 91 / .0908 91 / 2.31 0,999 25,4
      400 789,4 мкм 61 /.114 61 / 2,90 1.026 26,1
      800 мкм 61 / .1145 61 / 2,91 1.031 26,2
      800 мкм 61 /.0938 91 / 2,38 1.032 26,2
      500 1000 мкм 61 / .1280 61 / 3,25 1,152 29,3
      1000 мкм 91 /.1048 91 / 2,66 1,153 29,3
      625 1233,7 мкм 91 / .117 91 / 2,97 1,287 32,7
      1250 мкм 91 /.1172 91 / 2,98 1,289 32,7
      1250 мкм 127 / .0992 127 / 2,52 1,29 32,8
      1500 мкм 91 /.1284 91 / 3,26 1,412 35,9
      1500 мкм 127 / .1087 127 / 2,76 1,413 35,9
      800 1578,8 мкм 91 /.132 91 / 3,35 1.452 36,9
      1000 1973,5 мкм 91 / .147 91 / 3,73 1,617 41,1
      2000 мкм 127 /.1255 127 / 3,19 1,632 41,5
      2000 мкм 169 / .1088 169 / 2,76 1,632 41,5

      Определения

      • Circ.Mils - площадь поперечного сечения в круглых милах
      • Awg - Американский калибр проволоки
      • мм² - Метрический размер провода мм²

      См. Также

      Сечение кабеля высокого напряжения

      Какую мощность и напряжение может передавать кабель на фото?

      Это высоковольтный кабель.Судя по толщине изоляции из сшитого полиэтилена (белый материал), она составляет не менее 132 кВ или выше.

      Edit: Согласно Reddit OP, кабель имеет медный провод площадью 1,750 мм². Это огромный кабель . (Все, что превышает 630 мм², является необычным; все, что превышает примерно 1200 мм², является специальным заказом, который кабельная компания обычно не делает.) Такой кабель может выдерживать примерно 1600 ампер. Предположим, что трехфазное напряжение 132 кВ, что составляет 365 МВА или около 292 мегаватт при 0.Коэффициент мощности 80.

      Вот аналогичный кабель, который у меня был на работе (я думаю) на 300кВ. Он будет способен выдерживать не менее 100 ампер (возможно, намного больше) или около 100 МВт - этого достаточно, чтобы самостоятельно запитать весь CBD города .

      Почему он состоит из множества небольших кабелей? Что, если бы диаметр отдельных медных кабелей был немного больше?

      Провод является многожильным, поэтому его можно сгибать при установке. Сплошной медный провод очень трудно согнуть.

      Диаметр жил является компромиссом между стоимостью изготовления (меньшие провода требуют большего производства) и простотой установки. Нет особой причины для точного размера отдельных прядей.

      Как выбрать правильный диаметр для данной комбинации напряжения / мощности?

      Не вдаваясь в подробности расчетов сечения кабелей (существуют целые национальные стандарты по этой теме - см. AS / NZS 3008 «Электрические установки - выбор кабелей» .)

      Сначала , мы решаем, какое напряжение мы используем. В Австралии обычные напряжения для распределения составляют 11, 22, 33 кВ; общие напряжения для передачи 66, 132, 220, 300 кВ. Чем выше напряжение, тем толще требуется изоляция (XLPE).

      Во-вторых, , решаем, какая токонесущая способность нам нужна. После некоторых расчетов мы можем определить, что схема должна выдерживать 100 ампер, чтобы удовлетворить спрос в настоящее время, учесть будущий рост нагрузки и немного увеличить мощность на случай непредвиденных обстоятельств.Чем больше токовая нагрузка нам нужна, тем больше должны быть медные проводники (мм²).

      В-третьих, , мы определяем, в какой среде будет жить кабель. При протекании тока в кабеле выделяется тепло, а допустимая нагрузка по току кабеля ограничивается его температурой. Кабель, установленный в горячей среде, не может пропускать такой большой ток, пока не перегреется, поэтому мы должны использовать кабель большего размера, чем обычно.

      Зная напряжение, допустимую нагрузку по току и условия установки кабеля, теперь мы можем выбрать необходимый размер кабеля.Мы бы сделали это со ссылкой на каталог производителя кабеля, в котором есть такие таблицы:

      Таблица воспроизведена из каталога высоковольтных кабелей Olex Australia, 2009 г.

      В качестве примера я мог бы решить, что мне нужен кабель на 33 кВ, который выдерживает 400 ампер. Он будет установлен в подземных каналах. Я использую таблицу «номинальных значений тока», чтобы выбрать кабель наименьшего диаметра, который может выдерживать ток 400 А - в этом случае потребуется кабель 240 мм².

      Номинальный габаритный диаметр такого кабеля - 45 мм.9мм.

      Обратите внимание, что нас не волнует «диаметр» кабеля как таковой - мы заботимся о площади поперечного сечения проводника (мм²), то есть о том, сколько меди в кабеле. Диаметр имеет значение только тогда, когда вы действительно приходите устанавливать эту вещь.

      Выбор дирижера | IEWC.com

      Даже при проектировании простого изолированного провода необходимо учитывать множество факторов: температуру, напряжение, сопротивление проводника постоянному току, изоляцию, наружный диаметр, требуемую гибкость, физические свойства проводника (прочность на разрыв , падение напряжения , проводимость, вес ) и, при необходимости, конкретные электрические характеристики, такие как диэлектрические свойства изоляционного материала.

      Прежде чем выбрать конкретный изолированный провод, следует учесть множество факторов. К проводнику относятся: размер, скрутка и материал.

      Размер проводника

      РАЗМЕР Определяется с учетом требований к сопротивлению постоянному току, допустимой нагрузке по току и прочности на разрыв.

      ИЗМЕРИТЕЛЬ Наиболее важным фактором при расчете индивидуального размера AWG является минимальная площадь ЦИРКУЛЯРНОЙ зоны MIL, установленная ASTM (Американское общество по испытанию материалов) для соответствия требованиям UL, CSA и военным требованиям, а также SAE (Общество автомобильных инженеров) для большинства автомобильных товаров.

      Калибр

      обозначается как AWG (американский калибр проводов) в США и Канаде. Увеличение номера калибра приводит к уменьшению диаметра проволоки.

      Размер также может быть выражен как CMA (Circular Mil Area). , - термин, используемый для определения площадей поперечного сечения с использованием арифметического сокращения, в котором площадь круглого провода принимается как "диаметр в милах (0,001"). в квадрате.

      MCM = 1000 круговых милов, например: 500 MCM - это 133 нити из.Индивидуальные проволоки размера 0613, каждая из которых имеет 3757 круговых милов, что составляет примерно 500000 круглых милов или 500 x 1000, что равно 500MCM.

      500 MCM = 133 нити из материала диаметром 3757 мил (примерно 14 AWG) или 499,681 всего круглого мил.

      Метрический эквивалент AWG

      AWG мм2
      28 0,08
      26 0.14
      24 0,25
      22 0,34
      21 0,38
      20 0,50
      18 0,75
      17 1,0
      16 1,5
      12 4.0
      10 6,0
      8 10
      6 16
      4 25
      2 35
      1 50
      1/0 55
      2/0 70
      4/0 120
      300MCM 150
      350MCM 185
      500MCM 240
      600MCM 300
      750MCM 400
      1000MCM 500

      Скрутка проводов

      СТАНДАРТНЫЕ ПРОВОДНИКИ Многожильные проводники, разработанные как способ преодоления жесткости сплошных проводников, состоят из проводов меньшего калибра, скрученных в пучки или намотанных вместе, чтобы образовать провод большего размера.Калибровочный размер многожильных проводников часто выражается как комбинация общего размера и размера отдельной жилы.

      ПРИМЕР: 16 AWG 26/30 - 16 представляет собой общий калибр, 26 - количество жил, 30 - калибр каждого из 26 проводов. Это также может быть выражено как 26 / 0,0100 с использованием десятичного размера.

      Многожильные проводники предпочтительнее по нескольким причинам:

      ГИБКОСТЬ ПРОВОДНИКА намного больше у многожильных проводников, что упрощает их установку.

      FLEX LIFE длиннее, чем у одножильных проводов. Многожильные проводники могут выдерживать большую вибрацию и изгиб перед разрывом. Вообще говоря, чем тоньше скрутка, тем гибче будет проводник.

      ПОВРЕЖДЕНИЕ ПОВЕРХНОСТИ многожильного провода, например царапины или надрезы, будет менее серьезным, чем аналогичное повреждение сплошного провода.

      СЧЕТЧИК НИТИ влияет как на гибкость, так и на стоимость проводника. Для проводов любого размера, чем больше жил, тем гибче и дороже становится проводник.

      Материал проводника

      МЕДЬ Медь, как голая, так и луженая, является наиболее часто используемым проводящим металлом.

      Для приложений, в которых медь не подходит, доступно несколько вариантов:

      АЛЮМИНИЙ Этот металл имеет многие свойства, аналогичные свойствам меди; пластичность, пластичность, теплопроводность и электрическая проводимость, а также способность покрывать (выдавливаться) практически любым материалом, подходящим для изоляции меди. В то время как стоимость проводов иногда может быть уменьшена за счет использования алюминия (особенно в больших диаметрах), экономия уменьшается по мере уменьшения размеров.Алюминий редко используется в OEM-приложениях.

      К недостаткам алюминиевых проводников относятся:

      • Алюминий имеет только 61% проводимости меди, поэтому диаметр провода должен быть на 50% больше, чтобы обеспечить эквивалентную пропускную способность по току. Это может привести к значительному увеличению внешнего диаметра проволоки. Срок службы гибкого кабеля также составляет от 1/2 до 1/3 срока службы меди.
      • Основное преимущество использования алюминия - снижение веса; алюминий весит на 1/3 меньше меди.
      • Алюминий трудно паять с другими металлами.
      • Алюминий может вызвать коррозию при контакте с некоторыми металлами.
      • Алюминий требует очистки перед окончательной обработкой, что может занять много времени.
      • Алюминий обычно не тянут в меньших размерах.

      СТАЛЬ С БРОНЗОВЫМ ИЛИ МЕДНЫМ ПОКРЫТИЕМ Если требуется высокая прочность на разрыв, например, коаксиальные кабели или специальные шнуры, лучше всего подойдет сталь с бронзовым или медным покрытием.

      СПЛАВЫ ВЫСОКОЙ ПРОЧНОСТИ Хотя эти проводники из медного сплава и более дорогие, чем стальная проволока с медным или бронзовым покрытием, они позволяют значительно уменьшить размер и / или вес. Высокопрочные сплавы обеспечивают высокую прочность на разрыв и больший срок службы при изгибе при небольшом увеличении сопротивления постоянному току. Чаще всего используются кадмиево-хромовая медь, кадмий-медь, хром-медь и цирконий.

      AURUBIS FOXROD для проводов и кабелей

      Транспортировка электроэнергии

      Провода и кабель являются наиболее заметными и важными частями всей системы электроснабжения.Они транспортируют электричество от источника энергии на электростанции к месту использования, где оно преобразуется в механическое движение, тепло, свет или цифровые сигналы. Провода и кабели бывают самых разных сечений, длин и пропускной способности по току, от подводных высоковольтных кабелей длиной в сотни километров до сверхтонких проводов микронного диапазона, используемых для соединений в передовом электронном оборудовании.

      Потоки постоянного тока (DC) равномерно распределяются по длине кабеля с потерями энергии, обратно пропорциональными его поперечному сечению.Однако переменный ток (AC) течет больше к поверхности поперечного сечения кабеля. Чем выше частота электрического тока, тем сильнее становится скин-эффект. По этой причине в конкретных приложениях обычной практикой является переплетение нескольких проводов меньшего сечения вместо использования одного провода с большим сечением.

      Электрические кабели состоят из различных жил:

      • Два (одна фаза + обратный провод)
      • Три (одна фаза + обратный провод + заземляющий провод)
      • Четыре (три фазы + нейтральный провод)
      • Пять (три фазы + нейтральный провод + заземляющий провод)

      Отдельные проводники и весь кабель окружены электрической изоляцией из соображений безопасности и во избежание коротких замыканий.


      Правильный материал и нужный размер

      Правильный выбор материала кабеля и правильного сечения кабеля важны для обеспечения наилучшей электропроводности.

      При использовании меди с высокой проводимостью вместо меди или алюминия более низкого качества потери энергии в кабеле будут ниже, а проводник будет выделять меньше тепла. Использование такого высокоэффективного электрического проводника также приводит к уменьшению сечения кабеля при той же допустимой нагрузке по току, что позволяет сэкономить место и изоляционный материал.

      В большинстве стран поперечное сечение кабеля измеряется в квадратных миллиметрах. В Северной Америке сечения кабелей меньшего размера измеряются с помощью американского калибра проводов, а сечения кабелей большего диаметра - в круглых милах.

      Идеальное сечение кабеля зависит от используемых критериев. Технические стандарты размеров кабеля основаны на критериях безопасности и определенных аспектах качества электроэнергии, таких как минимизация падения напряжения. Однако с точки зрения расчета стоимости жизненного цикла и учета потерь энергии внутри кабеля оптимальное сечение кабеля будет значительно больше, чем предписано минимальными техническими стандартами.Оптимальное значение для окружающей среды, рассчитанное с помощью анализа жизненного цикла, достигается при еще большем поперечном сечении кабеля.


      Медь с высокой проводимостью
      Чистая медь имеет высокую электропроводность, уступающую только серебру. Медная катанка Aurubis сохраняет это важное качество благодаря своей необычайной степени чистоты. Он производится из собственных медных катодов чистотой 99,998%. В ходе наших современных производственных процессов мы делаем все возможное, чтобы медный материал не подвергался загрязнению.Благодаря такому исключительному уровню чистоты медная катанка Aurubis является идеальным базовым материалом для производства проводов и кабелей. Он показывает значения электропроводности, которые значительно превышают стандарты электропроводности меди ETP. Это дает множество преимуществ для конечных пользователей, связанных с компактностью и низкими потерями энергии.
      Высокая чистота медного прутка Aurubis также является важной характеристикой для производства ультратонкой проволоки. Для волочения проволоки размером порядка микрон любая небольшая примесь может быть фатальной.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *