Подключение электродвигателя 380в на 220в через конденсатор: Подключение электродвигателя 380В на 220В

Содержание

схемы и способы подключения электродвигателя с фото и видео

В домашнем станкостроении и самоделках часто приходится возиться с трехфазными движками. Просто подключить их к розетке нельзя. Во-первых, у них другая вилка, а во-вторых — это грозит взрывом обмотки. Как же поступить в этой ситуации? Детально про подключение электродвигателя с тремя фазами вы можете прочитать в этой статье.

Определение схемы подключения

В независимости от того, какой у вас 3х фазный двигатель и на сколько он ватт, будет использоваться одна из двух схем подключения.

Первая называется «Звезда». При таком подключении, все выходные контакты обмоток сводятся в точку, а входные по фазам. Визуально соединение напоминает звездочку, а символически изображается игреком — «Y».

Плюс у такого соединения в том, что на движок не давят «сумасшедшие» пусковые токи и он запускается плавно. Рабочие токи будут также невысокими, поэтому на всю мощность его использовать не получится.

Вторая называется «Треугольник». В этом случае вход каждой обмотки соединяется с выходом предыдущей, поэтому схема напоминает треугольник. Пульсации в этом случае растут, но зато мощность будет повыше. А любые скачки на старте можно убрать, если подключить двигатель через конденсатор.

А как же определить схему подключения? До того, как подключить трехфазный двигатель на 220, стоит изучить инструкцию, если она есть. Также данные могут находиться под крышкой электроблока или на корпусе в виде таблицы.

Способы подключения

Теперь стоит рассмотреть способы подключения асинхронного двигателя к бытовой сети. Всего 4 и их можно комбинировать!

С конденсатором

Схема подключения электродвигателя на 220в через конденсатор самая популярная, ведь так гасятся поступающие пульсации и токи. Получается тот самый плавный пуск, который не дает движку быстро «умереть».

Для сборки понадобится:

  1. Пускатель – очень желательно.
    С ним работать будет комфортнее и безопаснее.
  2. Рабочий конденсатор.
  3. Пусковой конденсатор.

Сама схема выглядит вот так:

В пускатель идет сетевой ток 220. Затем он идет в тумблер (нужен, как доп.защита от случайного пуска + экстренное выключение).

Параллельно подключается 2 конденсатора: рабочий и пусковой. Емкость первого рассчитывается по этой формуле.

Пусковой же должен быть в 1,5-2 раза мощнее, а в идеале – в 3!

Схема подключения двигателя 380в на 220в через конденсатор выглядит так.

С реверсом

Подключение двигателя с реверсом пригодится, если вы собираете, например, токарный станок по дереву. Сделать обратный ход не сложно, нужно лишь поменять местами пары «фаза-сеть» и «фаза-конденсатор».

 

Справится с этим переключатель-пакетник однополюсного типа.

Без конденсатора

Если не планируется подключение конденсатора к двигателю или его нет, то можно обойтись и так. Для этого понадобится транзисторный ключ.

Схема без конденсатора для электродвигателя выглядит так как на фото выше, а работает следующим образом:

  1. Напряжение из сети подается на 2 входные точки.
  2. На третий вход напряжение идет из связки конденсатор-резистор (R-C), что задает время.
  3. Между 2 резисторами R устанавливается переключатель, чтобы регулировать сдвиг фазы.
  4. Транзистор VS1, при наполнении конденсатора, открывает ключ VS2. Получается, что ток двигается плавно и не происходит пульсаций.

При подключении электродвигателя 380 на 220 через ключи могут возникнуть проблемы с поиском этих самых транзисторов. Поэтому конденсатор все еще остается самым удобным вариантом.

«Звезда треугольник»

Как было сказано, «инвертировать» напряжение из 380 на 220 можно двумя разными схемами. Иногда может понадобится переключатель между треугольником и звездой, если хочется сохранить плавность работы, не теряя мощности.

В целом, схема сложная, ведь используется 3 пускателя! Но иногда без нее никуда, поэтому вот инструкция:

  1. На первый пускатель кидают сетевое напряжение.
  2. Ко второму подключается обмотка.
  3. Оставшиеся контакты соединяются с первыми двумя пускателями.
  4. После этого обмотка со второго пускателя соединяется со всеми фазными контактами через треугольник.
  5. Если включить в работу третий пускатель, выводы расцепляются и получается звезда.

О том, как из звезды переходить на треугольник, можно посмотреть в этом видео:

Включаемся в однофазную сеть

Итак, осталось только глубинно рассмотреть, как подключить контактор по выше указанным схемам.

Начать стоит с треугольника. Вот самая простая схема подключения:

На ней видно, что один провод от сети идет на конденсатор. Его можно припаять прямо к выходу. От этого же контакта провод идет на средний вход коробки подключения мотора.

Второй провод от сети идет на крайний левый контакт. Обратите внимание, что разницы нет, какой провод вести на конденсатор, а какой на двигатель, ведь в розетках переменное напряжение. Оставшийся выход на конденсаторе необходимо соединить с оставшимся входом на двигателе.

Теперь в электрической коробке необходимо замкнуть выходные и входные контакты. Делается это просто: шиной или проводом. На схеме их соединение закрашены черным цветом.

Со звездой ситуация обстоит еще проще. Строится схема вот так:

Перед тем, как подключить конденсатор к электродвигателю 220в, лучше поставить хороший пакетник. «звезда» может отключать электричество, если двигатель сильно нагрузить.

Для начала нужно найти фазу и ноль – здесь это важно. Понадобится мультиметр, который необходимо включить в положение «переменное напряжение 220». Теперь вставьте красный щуп в отверстие на розетке, а второй прислоните к стене или заземлительному контакту. Если показывает «220» – значит тот провод, которого касаются щуп, фазный. Если на экране «-220» — вы нащупали ноль.

Фаза идет в пакетник, где разделяется. Один проводок нужно пустить на Н1, а второй на блок конденсаторов. Ноль сразу идет на Н3. Конденсаторы через переключатель соединяются последовательно.

Оставшийся контакт идет на Н2. На этом подключение двигателя 380 на 220 можно считать завершенным.

 

принцип работы, инструкция по запуску, выбор значений

Рассмотрим вначале, почему считается, что двигатель питается напряжением 380 вольт. Имеют счастье быть три фазы по 220 вольт. Простейшие вопросы заставляют уплывать новичков, отсутствие знания теории порождает возникновение ошибок практических. Искренне благодарим энтузиастов, забросавших Ютуб обучающими роликами, без столь богатого материала сложно дать дельные советы планирующим осуществить подключение электродвигателя 380 на 220 вольт с конденсатором. Приступим к реализации теории на практике.

Работа двигателя 380 вольт

Подобные двигатели называются трехфазными. Отличаются кучей преимуществ перед типичными бытовыми, широко используются промышленностью. Достоинства касаются большой мощности, КПД. Именно в трехфазных двигателях удаётся обойтись без пусковых обмоток, конденсаторов при наличии соответствующего питания. Конструкции удается исключить лишние элементы. Пускозащитное реле холодильника, четко следящее за целостностью, временем работы пусковой обмотки. Трехфазным двигателям доморощенные ухищрения не нужны.

Простой пример работы трех фаз

Почему так происходит? Наличием трех фаз удается создать внутри статора вращающееся электромагнитное поле без дополнительных ухищрений. Давайте посмотрим рисунок. Простоты ради, показан ротор, снабженный двумя полюсами, статор содержит по катушке на фазу переменного тока. Конфигурации типичных двигателей 380 вольт более сложная, упрощение не помешает пояснить суть процессов, протекающих внутри.

Рисунок синим показывает отрицательно заряженные поля, красным – положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении изготовлен из постоянных магнитов, окрашен и пребывает в произвольном положении. Полюса всего два. Далее двигаемся согласно эпюрам:

  1. Первая картинка наградила фазу В отрицательным знаком, две другие заряжены слегка положительно (приблизительно треть амплитуды), схематично показано бледным розовым цветом. Положительный полюс ротора сместился к катушке В. Слабое положительное поле А-С притянуло южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса – ровно посередине.
  2. В следующий момент времени (спустя 60 градусов, 3,3 мс) южный полюс появляется на фазе А статора. Ротор проворачивается на 60 градусов вдоль часовой стрелки. Слабые отрицательные поля фаз В, С удерживают между собой положительный полюс ротора.
  3. В данный момент времени северный полюс статора располагается на фазе С, ротор продолжает вращение еще на 60 градусов. Дальнейшая картина должна быть понятна.

Трехфазный электродвигатель

В результате правильного распределения трех фаз поле статора вращается, увлекая ротор. Частота оборотов не совпадает с сетевыми 50 Гц. Обмоток статоре больше, количество полюсов ротора иное. В придачу имеется явление проскальзывания в зависимости от амплитуды напряжения, многих других факторов. Нюансы используются регулировать скорости вращения вала двигателя. Вплотную достигли разгадки вопроса напряжения 380 вольт. Сформировано тремя фазами с действующим значением напряжения 220 вольт (как в розетке). Взять разницу меж любыми двумя в произвольный момент времени, величина превышает указанное значение.

Получается 380 вольт. Двигатель с тремя фазами использует для работы три напряжения с действующим значением 220 вольт, сдвиг меж любыми составляет 120 градусов. Можно легко проследить из графика на нашем рисунке. Вот почему многих снедает соблазн использовать оборудование в домашних условиях, запустить, используя одну фазу, поставляемую розеткой. Напрямую снделать невозможно, как должно быть понятно, приходится изобретать ухищрения. Простейшим назовем применение конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов. Разница меньше 120, которые хотели получить в идеале.

На практике подключение электродвигателя через конденсатор отлично работает. Правда для осуществления задумки придется немного повозиться.

Запуск трехфазного двигателя 380 В от домашней сети

Во-первых, нужно знать, как производится электрическая коммутация обмоток. Обычно корпус двигателя снабжен защитным кожухом, скрывающим электрическую разводку. Нужно снять щит, приступить к изучению схемы. Чаще рядом показана схема электрических соединений. Чтобы запуск произвести трехфазной сетью, применяется коммутация типа “звезда”. Концы трех обмоток имеют одну общую точку, называемую нейтралью, противоположная сторона снабжается фазами. Одна на каждую обмотку. Получается распределение поля, рассмотренное выше.

Объединение обмотки двигателя треугольником

Подключая асинхронный двигатель 380 на 220 Вольт, потрудитесь коммутацию изменить. Пригодится электрическая схема, приводимая шильдиком корпуса. Согласно рисунку, обмотки двигателя объединяются треугольником. Каждая на обоих концах объединяется с другой. Давайте посмотрим, что получается. Чем отличается методика от штатного использования оборудования. Для простоты на рисунке показываем схему включения конденсатора. Выглядит так:

  • Напряжение сети 220 В приложено к обмотке С.
  • На обмотку А напряжение приходит через рабочий конденсатор в состоянии сдвига фаз на 90 градусов.
  • На обмотке В действует разница меж указанными напряжениями.

Посмотрим эпюры: как будет выглядеть практически. Сдвиг фаз неравномерный. Меж пиками, по которым построены эпюры, отложено 90 и 45 градусов. Вследствие этого вращение в принципе лишено возможностей быть равномерным. Форма фазы обмотки В отличается от синусоидальной. Запуск трехфазного двигателя сетью 220 вольт сопровождается наличием потерь энергии. Процесс возможен. Происходит часто явление, называемое залипанием. Неправильная форма поля внутри статора бессильна раскрутить статор.

Схема подключения двигателя несколько упрощена, отличается от норм исполнения чертежей проектной документации. Наглядность рисунка очевидна. Конденсатор схемы рабочий, встречается пусковой. Нужен усилить вращающий момент на начальном этапе. Любой асинхронный двигатель при старте потребляет больше тока, на первое движение тратится много энергии. Конденсатор обычно присоединяется параллельно рабочему, включается в цепь нажатием специальной кнопки. Например, предлагается пометить, как Ускорение.

Когда вал наберет обороты, емкость пусковая становится ненужной, снижается сопротивление движению вала. Отпуская кнопку Ускорение, исключаем элемент из сети. Чтобы пусковая емкость разрядилась (вольтаж способен достигать 300 В), закоротим на значительной величины сопротивление, через которое в рабочем состоянии ток не пойдет. Постепенно электроны компенсируются, опасность поражения исчезнет. Возникает простой вопрос – как подобрать рабочую, пусковую емкости? Подключение электродвигателя 380 В на 220 В непростая задача. Давайте рассмотрим ответ.

Выбор значений рабочей, пусковой емкостей для подключения трехфазного двигателя на 220 В

Первым делом обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинал 220 В. Подключение двигателя 380 на 220 вольт сопровождается возникновением гораздо более весомых значений вольтажа. Среди пусковых и рабочих конденсаторов исключите элементы рабочим напряжением ниже 400 вольт. Практика накладывает коррективы, придется обойтись попавшимся под руку. Обратите внимание на провода. Токи по технической документации даны относительно напряжения 220 В. Рассматриваемая схема задействует другие значения. Возможно, придется пересчитать размеры токов.

На практике если емкость рабочая слишком мала, вал «залипает». Двигатель стал бы работать, если придать начальное ускорение, если зверь мощностью 4 кВт поотрывает пальцы, винить некого. Оказывается, номинал рабочей емкости определен минимум двумя параметрами:

Наладка двигателя

  1. Мощнее двигатель, больший номинал конденсаторов нужно применить. На 250 Вт хватает значения десятков мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролитические без специальных мер применять запрещено, предназначены работать в сетях постоянного тока. При подключении переменного напряжения 220 В могут попросту взорваться.
  2. Выше обороты двигателя, больший номинал пускового конденсатора потребуется. Достигнув разницы в несколько раз, значение емкости повышаем на порядок (10 раз). Для пуска двигателя мощностью 2,2 кВт, оборотами 3000 в минуту постарайтесь запастись батареей на 200–250 мкФ. Очень большое значение. Емкость Земного шара составляет доли мФ.

Сильно емкость пускового конденсатора зависит от приложенной нагрузки. Мотор, работающий на шкив, потребляет много энергии, объем батареи возрастает. Попытаемся выбрать номиналы. Практиками замечено: стабильнее двигатель 380 В работает, питаемый однофазной сетью, когда напряжения в плечах конденсатора равны. Обмотку, работающую непосредственно от сети, избегаем трогать, измеряем потенциал двух других. Каким образом получается, величина емкости определяет напряжение?

Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется делитель. Красиво рисовали эпюры, на практике форма фаз способна сильно отличаться. Определяется реактивное сопротивление перечисленным выше набором параметров. Конструкция двигателя, обуславливающая размер мощности, скорость оборотов, нагрузка вала. Ряд параметров, учесть которые теоретическими путями в рамках обзора попросту не представляется возможным. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, затем плавно увеличивать номинал, пока напряжения обмоток не станут равными.

После раскрутки двигателя порой оказывается: равенство нарушилось. Сопротивление движению вала упало. Перед тем, как подключить электродвигатель с 380 на 220 окончательно, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.

Обратите внимание: действующее значение способно превышать 220 вольт. Значение напряжения составит 270 В. Перед тем, как подключить электродвигатель через конденсатор, побеспокойтесь о контактах. Обеспечьте надежную стыковку во избежание потерь, перегрева в местах прохождения тока. Коммутацию лучше вести на специальные клеммы, затягивая болтами. После окончательной подборки параметров электрическую часть следует закрыть кожухом, провода пропустить через резиновый уплотнитель боковой стенки отсека.

Как подключить трехфазный электродвигатель к однофазной сети 220 Вольт: tvin270584 — LiveJournal

Нельзя просто так взять и подключить трехфазный электродвигатель к однофазной сети 220 Вольт. Сначала нужно обеспечить смещение фазы. В противном случае двигатель не станет вращаться. В статье

мастер сантехник расскажет, как подключить трехфазный электродвигатель к однофазной сети 220 Вольт.

Схемы подключения к сети

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 380 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Схема соединения электролитических конденсаторов

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером и лишь затем подать на схему напряжение и кратковременно нажать на кнопку.

Подключение трехфазного двигателя к однофазной сети по схеме «Звезда»

Схема подключения звезды показана на картинке.

Схема подключения трехфазного электродвигателя 380 В на 220 В через конденсатор по схеме «Звезда»

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Подключение трехфазного двигателя к однофазной сети по схеме «Треугольник»

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

Схема подключения трехфазного электродвигателя 380 В на 220 В через конденсатор по схеме «Треугольник»

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Емкости фазосдвигающего и пускового конденсаторов

Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:

  • С1 = 2800/(I/U) — для включения по схеме «Звезда»;
  • С1 = 4800/(I/U) — для включения по схеме «Треугольник».

Здесь:

  • С1 — емкость фазосдвигающего конденсатора, мкФ;
  • I — номинальный ток одной обмотки двигателя, А;
  • U — напряжение однофазной сети, В.

Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства.

Для расчета воспользуемся формулой:

I = P/1,73*U*n*cosф

Где:

  • I — потребляемый ток, А;
  • U — напряжение сети, В;
  • n — КПД;
  • cosф — коэффициент мощности.

Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.

Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.

Эффективность работы

К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%.

При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — т. е. всего 8,325% каждая.

Произведем несложный подсчет и рассчитаем общую мощность:

33,3 + 8,325 + 8,325 = 49.95%

Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.

Видео

В сюжете — Как подключить электродвигатель на 220 вольт

В сюжете — Как подключить трёхфазный двигатель в одну фазу

В сюжете — «Ламповый» метод подключения трехфазного двигателя к сети 220 вольт

В продолжение темы посмотрите также наш обзор Как сделать сверлильный станок из двигателя от стиральной машины и домкрата

Источник

https://santekhnik-moskva.blogspot.com/2021/06/Kak-podklyuchit-trekhfaznyy-elektrodvigatel-k-odnofaznoy-seti-220-Volt.html

Как подключить конденсатор к электродвигателю 220в — советы электрика

Как подключить трехфазный электродвигатель в сеть 220в

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт.

Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку.

Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Подключение промышленного двигателя к однофазной сети

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены «звездой». Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение «треугольник». При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются «треугольником».

Светодиодная лента 220в: подключение к сети

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение «звезда». К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Подключение звездой и треугольником

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Трёхфазный счётчик: выбор, монтаж, подключение

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Соединение выводов на клеммнике звездой и треугольником

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен.

Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В.

Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии «Пуск» замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку «Стоп» отключает зафиксированные контакты.

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Реверс конденсаторного двигателя

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

Источник: https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v.html

Как подключить конденсатор к электродвигателю 220в

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона.

Обратите внимание

Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки.

Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные.

Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.

После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток.

Важно

Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле.

В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно).

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.

Совет

Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики.

Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего.

Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится».

Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Схемы и рекомендации по подключению электродвигателя через конденсатор на 220В

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключение электродвигателя 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

  • Разница между однофазными и трехфазными агрегатами
  • Особенности и способы подключения к однофазной сети
  • Общие схемы подключения двигателей с 380В на 220В через конденсатор

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

  • что собой представляют двигатели обоих классов;
  • как они работают;
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º.

Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться.

На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку.

По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи.

При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Источник: http://sovetskyfilm.ru/all-1770/

Подключение пусковых конденсаторов к электродвигателю

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы  3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов  по амперметру .

Спасибо Вам мои читатели за  множество отзывов и благодарностей, ведь если бы не Вы  уже давно бы забросил это дело.  В одном из писем  присланных мне на почту были вопросы: « Почему  не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано».

  А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под  нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их подобрать правильно мы сейчас поговорим.

https://www.youtube.com/watch?v=ukl8nctMpTI

И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 – 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ.

При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?».

Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов  нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Обратите внимание

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов.

  Но если нам нужно довольно таки  большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики).

  Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте.

  Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start», «Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет  свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних –   с фиксацией и один посередине – без фиксации.

Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп».

Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током.

Важно

 Что бы этого не случилось, по окончанию работы  отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки. Второй же провод мы подключаем к одному из контактов пускового конденсатора «Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС.

Ко второму и третьему проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср».  С другой стороны кнопки два крайних контакта подключаем к сети, а к среднему подключаем «перемычку» к контакту, к которому подключен рабочий конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:

Удачи Вам в ваших экспериментах.

Источник: http://shenrok.blogspot.com/p/blog-page_91.html

Подключение электродвигателя к сети 220В

Электродвигатель – это агрегат, который при нормальных условиях эксплуатации (отсутствие перегрузок на валу, короткого замыкания питающей сети, перекоса фаз) способен работать вечно.

Поэтому в руки домашних мастеров нередко попадают вполне работоспособные экземпляры от давно выкинутых на свалку бытовых или промышленных приборов, станков. Их дальнейшее использование позволяет создавать средства малой домашней механизации без дополнительных затрат.

Наибольшее число вопросов при этом вызывает подключение трехфазного электродвигателя к бытовой сети 220 вольт. В этой статье рассмотрено несколько способов решения проблемы.

Запуск однофазного «асинхронника»

Знание того, как устроен и работает однофазный двигатель, поможет вам правильно подключить к бытовой сети промышленный трехфазный.

На его статоре устраивают две обмотки, расположенные в пространстве так, что они смещены по окружности друг относительно друга на угол 90 градусов. Однако одного их физического позиционирования для создания вращающегося магнитного поля недостаточно. Поэтому производят электрический сдвиг фаз тока, проходящего по ним. Это делают одним из двух способов:

  1. Введением в цепь одной из обмоток активного сопротивления, смещающего ток в ней на 30 градусов назад. Такие двигатели обозначаются термином «с расщепленной фазой».
  2. Последовательным включением в цепь одной обмотки так называемого бумажного конденсатора, сдвиг фазы в котором 90 градусов вперед. Наиболее часто применяемая конструкция.

Переменный ток вызывает в обмотке статора пульсирующее магнитное поле, которое взаимодействует с короткозамкнутым ротором и приводит его в состояние шаткого равновесия. Поэтому заставить вращаться ротор можно, приложив к нему определенное усилие, даже не имея сдвига фаз тока.

На практике это свойство используется следующим образом: одна из обмоток делается с меньшим числом витков. Она подключается на время пуска, а потом обесточивается. Преимуществом способа является то, что из-за отсутствия перекоса фаз двигатель меньше греется.

Недостатком – меньший вращающий момент на валу и необходимость включения в схему элементов автоматики. Например, теплового реле.

Если электродвигатель мощный – более киловатта, или большое усилие на валу возникает сразу после пуска, то конденсаторную батарею разбивают на две секции.

В момент набора оборотов они работают обе, а после выхода на номинальные значения одна из них отключается. Это позволяет избежать сильного перекоса фаз и перегрева электрической машины.

Схема подключения однофазного электродвигателя с двумя конденсаторами – пусковым и рабочим – приведена на рисунке ниже.

Адаптация трехфазной машины

Подключение двигателя 380 вольт к однофазной сети производится путем изменения способа коммутации выводов обмоток в клеммной коробке и не затрагивает его конструкции. Это делается двумя способами:

  1. С сохранением электрической связи обмоток по схеме «звезда» или «треугольник». Используется наиболее часто.
  2. Созданием двух независимых обмоток: пусковой и рабочей.

Обмотки асинхронного трехфазного двигателя расположены на статоре под физическим углом в 120 градусов. Если две из них объединить, то третья окажется почти перпендикулярной им – отклонение 30 градусов. Поэтому остается лишь правильно подобрать номинал и подключить конденсатор.

Большинство промышленных электродвигателей имеют возможность перехода с 380 В на 220 В и даже 127 В (устаревшие варианты). Для этого производится изменение способа соединения обмоток: со «звезды» на «треугольник».

Поскольку в последнем случае обмотки запитаны напряжением 220 вольт, потеря мощности при подключении к однофазной сети составит 30 процентов.

Совет

Если конструкция такова, что общая точка обмоток находится где-то в глубине статора (только три болта в клеммной коробке), то придется смириться с потерей половины мощности.

Схемы подключения трехфазного двигателя по принципу «звезда» и «треугольник» к бытовой сети 220 вольт приведена ниже.

Технология коммутации обмоток такая: выводы в клеммной коробке соединяются тремя параллельными перемычками (схема «треугольник»). К любым двум парам питающее напряжение подводится напрямую, а к третьей – через конденсатор, который из-за своих габаритов обычно устанавливается отдельно, снаружи.

Создание независимой пусковой обмотки выгодно тем, что мотор будет меньше греться. Для этого надо определить начало и конец каждой катушки. Обычно в клеммной коробке они соответствуют болтам, обозначенным литерами С1 – С4, С2 – С5, С3 – С6.

Если вы не уверены, что это именно так, то используйте для прозвонки универсальный тестер в режиме звуковой сигнализации. Любые две катушки соединяются последовательно. Они становятся рабочей обмоткой. К ним питающее напряжение подводится напрямую.

В цепь пусковой включается конденсаторная батарея, а также ручной или автоматический коммутатор.

Подбор конденсатора

Переделка схемы питания трехфазной электрической машины не принесет плодов, если неправильно подобрать емкости конденсатора.

Если на шильдике мотора читаются все характеристики, то можно все сделать по науке.

Сраб = 2800 x Iном / Uсети . Эта формула верна для способа подключения «звезда».

Сраб = 4800 x Iном / Uсети . Если обмотки соединены «треугольником». Результат в мкФ.

Обратите внимание

Когда табличка утеряна или нечитаемая, то емкость рабочего конденсатора определяется умножением мощности двигателя на 66: Сраб = Р х 66. Если сомневаетесь – взвесьте мотор. Каждые 10 килограмм – это один киловатт (в современном силуминовом корпусе).

Пусковая емкость должна быть в два с половиной или даже три раза больше рабочей.

Конденсатор должен быть «бумажным», для работы в сети переменного тока. Если на его корпусе есть знаки + и –, то – это электролитическая модель, при включении в бытовую сеть она может эффектно взорваться.

Способы реверсирования

Для изменения направления вращения трехфазных асинхронных двигателей, включенных в бытовую сеть 220 вольт 50 Герц, применяется тот же принцип, что и у не подвергшихся переделке. При соединении обмоток звездой или треугольником надо изменить одну точку подключения конденсатора, а у независимой пусковой обмотки меняются местами обе точки соединения ее выводов.

Несмотря на то, что изменение типа питания трехфазного асинхронного двигателя не является процессом противоречащим законам электротехники и не нарушает правил электробезопасности, его нельзя считать вполне нормальным и общепринятым. Если есть возможность, лучше пользоваться техникой, элементы конструкции которой соответствуют друг другу и не являются результатом «танцев с бубном».

Источник: https://electriktop.ru/baza-znaniy/podklyuchenie-elektrodvigatelya-k-seti-220v.html

Подключение электродвигателя 380 вольт на 220 вольт

Домашнее хозяйство часто нуждается в средствах механизации. Самодельный станок, насос для воды, оборудование для малого бизнеса… да мало ли для чего может понадобиться хороший электродвигатель! Однако проблема в том, что промышленные электродвигатели рассчитаны на работу в трехфазной сети (380 В).

В то время как в жилых домах и квартирах сеть однофазная, или 220 В. Но решение есть! Давайте рассмотрим, как заставить работать промышленный двигатель от бытовой сети.

Отличия однофазного двигателя от трехфазного

В трехфазном двигателе вращение ротора вызывает магнитное поле, которое наводится в статоре переменным напряжением каждой из трех фаз относительно друг друга. Это обеспечивает эффективность работы двигателя. Частота вращения двигателя остается одинаковой при однофазном и трехфазном подключении, а вот мощность при однофазном значительно уменьшается.

В этом случае мы получим от двигателя не больше 70% от номинальной мощности. Чтобы достичь максимально возможного результата, обмотки двигателя необходимо соединить «треугольником».

Если подключение выполнено «звездой», то максимальная мощность (даже теоретически) составит не более 50% от номинальной.

Чтобы уточнить методику соединения обмоток (если вы затрудняетесь отличить «звезду» от «треугольника»), рекомендуется просмотреть дополнительную информацию.

Так как в трехфазном двигателе имеется три выхода, на два из них подключается нулевой и фазный провода, а третий соединяется через конденсатор. При этом направление вращения будет зависеть от того, как будет подключен конденсатор — к нулевому или фазовому выводам.

Схемы подключения трехфазных двигателей на 220 вольт

Если двигатель маломощный (менее 1,5 кВт), и подключение происходит без нагрузки, то для успешной работы достаточно просто подключить к схеме конденсатор.

Например, один вывод припаять к входу нулевого провода, а другой — к свободному концу обмотки, или третьему выводу треугольника.

Если направление вращения не устраивает, то нужно просто прикрепить второй вывод конденсатора к входу фазного провода.

Важно

Для запуска нагруженного или мощного двигателя необходим более мощный «толчок», который может обеспечить дополнительный (пусковой) конденсатор.

Он впаивается в схему параллельно основному, однако работает не постоянно, а только несколько секунд, на время старта двигателя. Обычно его подключают через кнопку или двухпозиционный тумблер.

Для запуска требуется нажать кнопку (включить тумблер) на то время, пока двигатель запустится и наберет обороты. Затем кнопку отпускают, разрывая сеть и отключая емкость.

Двигатель можно заставить работать в прямом и реверсивном режимах. Для этого в схеме подключения добавляется тумблер, который в одном положении подключает конденсатор к нулевому, а в другом — к фазовому проводу.

В реверсивной схеме, если двигатель медленно запускается или не стартует вообще, также может быть добавлен пусковой конденсатор. Он точно так же подключается параллельно основному и включается кнопкой «Пуск».

Часто можно услышать вопрос, а можно ли в принципе запустить трехфазный двигатель без конденсатора? К сожалению, этого сделать нельзя. Так можно запустить только мотор, изначально предназначенный для работы с однофазной сетью 220 В.

Подбор емкости конденсатора

Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.

Для расчета необходимой емкости следует воспользоваться формулой:

  • для подключения «треугольником» С = (I/U)x4800;
  • для подключения «звездой» С = (I/U)x2800.

Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.

Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.

Приведем пример расчета

Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.

Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.

Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.

Дополнительные замечания и предостережения:
  • Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
  • Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
  • Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.

Источник: http://elektro-enot.ru/kak-podklyuchit-elektrodvigatel-na-380-volt-k-seti-na-220-volt/

Как запустить трёхфазный двигатель от 220 вольт

Основным применением трёхфазных электродвигателей считается промышленное производство. 

Но иногда возникает необходимость использовать такой двигатель в подсобном хозяйстве. Для этого нужно произвести простой расчёт и выполнить несложный электромонтаж.

Как правило, для подключения трёхфазного электродвигателя используют три провода и напряжение питания 380 вольт. В сети 220 вольт только два провода, поэтому, чтобы двигатель заработал, на третий провод тоже нужно подать напряжение. Для этого используют конденсатор, который называют рабочим конденсатором.Емкость конденсатора зависит от мощности двигателя и рассчитывается по формуле: C=66*P, где С – ёмкость конденсатора, мкФ, P – мощность электродвигателя, кВт. То есть, на каждые 100 Вт мощности двигателя необходимо подобрать около 7 мкФ ёмкости. Таким образом, для двигателя мощностью 500 ватт нужен конденсатор ёмкостью 35 мкФ. Необходимую ёмкость можно собрать из нескольких конденсаторов меньшей ёмкости, соединив их параллельно. Тогда общую ёмкость считают по формуле: Cобщ = C1+C2+C3+…..+Cn

 Важно помнить о том, что рабочее напряжение конденсатора должно быть в 1,5 раза больше питания электродвигателя. Следовательно, при напряжении питания 220 вольт конденсатор должен быть на 400 вольт. Конденсаторы можно использовать следующего типа КБГ, МБГЧ, БГТ.

Для подключения двигателя используют две схемы подключения – это «треугольник» и «звезда».

Совет

Если в трёхфазной сети двигатель был подключен по схеме «треугольник», тогда и к однофазной сети подключаем по этой же схеме с добавлением конденсатора.

Подключение двигателя «звездой» выполняют по следующей схеме.

Для работы электродвигателей мощность до 1,5 кВт достаточно ёмкости рабочего конденсатора. Если подключить двигатель большей мощности, то такой двигатель будет очень медленно разгоняться.

Поэтому необходимо использовать пусковой конденсатор. Он подключается параллельно рабочему конденсатору и используется только во время разгона двигателя. Потом конденсатор отключается.

Ёмкость конденсатора для запуска двигателя должна быть в 2-3 раза больше ёмкости рабочего.

После запуска двигателя определите направление вращения. Обычно необходимо, чтобы двигатель вращался по часовой стрелке. Если вращение происходит в нужном направлении ничего делать не нужно. Чтобы сменить направление, необходимо сделать перемонтаж двигателя. Отключите два любых провода, поменяйте их местами и снова подключите. Направление вращения сменится на противоположное.

При выполнении электромонтажных работ соблюдайте правила техники безопасности и используйте индивидуальные средства защиты от поражения электрическим током.

Первая публикация была на этом сайте www.kakprosto.ru

На главную СТРАНИЦУ.

Интересные статьи.

Заработок в пирамиде – миф или реальность

Как надёжно спрятать деньги

Как сохранить деньги в 2014 году

Рубль падает, что делать?

Как получать много денег и не работать

Как начать копить деньги с нуля

Как получить максимальный доход от вклада

5 лучших советов начинающему инвестору

Как избежать обмана в автосалонах

Источник: http://smartremont.blogspot.com/2014/12/kak-zapustit-trehfaznyy-dvigatel-ot-220-volt.html

✔ Подключение электродвигателя в однофазную сеть на 220 вольт.

В статье рассказывается и наглядно демонстрируется, как осуществляется подключение промышленного трехфазного электромотора, рассчитанного на 380 В, в однофазную бытовую сеть 220 вольт.

Для решения задачи необходим конденсатор. Основная рабочая характеристика прибора — емкость, которая выражается в микрофарадах. Она сокращенно обозначается МКФ и для каждого агрегата рассчитывается отдельно с учетом его мощности. Среднее значение — 7 МКФ на 0,1 кВт, соответственно, для мотора 0,37 кВт нужен конденсатор емкостью 25,9 МКФ.

Однако устройств с таким показателем не выпускают. На рынке представлены конденсаторы 18, 20, 30 МКФ и т. д., поэтому необходимо подобрать изделие с наиболее приближенной емкостью. Для 25,9 МКФ подойдут устройства 20–30 МКФ, однако при подключении электродвигателя на 220 вольт необходимо произвести пробный запуск. Это обусловлено тем, что у агрегатов от разных производителей имеются специфические особенности. Это касается технологии сборки, сплава металла, количества обмоток и пр.

Известны примеры, когда моторы от разных заводов-изготовителей при прочих равных условиях запускались по-разному, а некоторые из них отказывались работать. Если возникли проблемы с пуском, рекомендуется установить конденсатор с большей емкостью. Если же работающий агрегат чрезмерно шумит и вибрирует, а также стремительно нагревается, емкость конденсатора следует снизить. Помните: мотор должен функционировать тихо и без вибраций.

Для достижения оптимальных эксплуатационных характеристик подключение электродвигателя на 220 вольт рекомендуется производить по схеме «треугольник».

Схема подключения однофазного электродвигателя:

Для подключения треугольником — необходимо поставить перемычки и сделать три разные последовательные соединения. После чего подключать к 3 независимо последовательным соединениям провода.

Видеоматериал

220В или 380В? — подключение электродвигателя к сети

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

 

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

 

 

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Подключаем трехфазный двигатель 380 к сети 220 вольт | Электрика

Нередко в доме или в гараже приходится использовать агрегаты с приводами от двигателей на 380 вольт, предназначенных для использования в трехфазных сетях. Использовать трехфазную сеть в этих условиях невозможно (исключения бывают, но редко). Тогда остается запитать трехфазный двигатель от бытовой сети.

При подключении обмоток асинхронного двигателя к трем фазам по каждой его обмотке ток течет в разное время. Это создает магнитное поле, обеспечивающее вращение ротора электродвигателя. Питание трехфазного двигателя от двух фаз снижает мощность и эффективность двигателя. Поэтому подключать двигатель на 380 вольт к двум фазам стоит, если другого выхода не остается.

Особенности подключения

Если обмотки двигателя приходится подключать к однофазной сети, две обмотки подключаются напрямую к двум проводам, а третья – через конденсатор, сдвигающий фазу напряжения. Частота вращения в данном случае не меняется, но мощность существенно падает. Величину падения предварительно рассчитать трудно. В зависимости от особенностей двигателя и схемы подключения она может составлять 30-50%. Не все модели трехфазных двигателей могут работать в бытовой сети. Хорошо подходят для этого асинхронные двигатели, имеющие короткозамкнутый ротор.

Подключать асинхронный двигатель, рассчитанные для работы в сети 380 и 220 вольт, к однофазному источнику напряжения можно с соединением обмоток «звезда» или треугольник». Лучше это делать по схеме «треугольника» — так двигатель меньше потеряет мощность. Если же возможности переключить обмотки в «треугольник» нет, приходится использовать «звезду».

Для подключения двигателя выводы его фазных обмоток выводятся на колодку или клеммник, а соединение производится перемычками. Это позволяет реализовать одну из схем без перекрещивания проводов. Такие клеммники называются «борно», на них выводится до 6 фазных обмоток. На двигатель они крепятся сверху или сбоку.

Важно: если двигатель предназначен для работы в сети 220/127 вольт, то обмотки можно подключить к однофазной сети «звездой». При подключении «треугольником» обмотки попросту сгорят.

Соединение «треугольником»

Для получения большей мощности при подключении к бытовой сети схема «треугольник» более предпочтительна. В этом случае можно добиться получения 70% мощности от номинальной. Для этого концы обмоток последовательно соединяются с началом следующих:

  • конец обмотки фазы «А» с началом обмотки «В»;
  • конец «В» — с началом «С»;
  • конец «С» — с началом «А».

Соединения двух пар обмоток подключаются к проводам сети напрямую, а третьей – через рабочий конденсатор, подключенный к одному из двух контактов питания.

Запуск двигателя, подключенного таким образом, производится через рабочий конденсатор. Однако при наличии нагрузки на двигатель он не сможет запуститься или будет крайне медленно набирать обороты. Поэтому необходимо использование дополнительных пусковых конденсаторов. Они включаются в момент пуска двигателя на 2-3 секунды, пока обороты составят хотя бы 70% от номинальных. После чего конденсатор отключается.

Для использования пусковых конденсаторов удобно использовать специальную пусковую кнопку. Она имеет две пары контактов, первая остается замкнутой только в момент удержания кнопки, а вторая размыкается лишь при выключении.

Направление вращение зависит от контакта, к которому подключена третья обмотка (подключаемая через конденсатор). Поэтому для управления вращением можно подключить ее через двухпозиционный переключатель, соединенный с одной и другой обмотками. Таким образом двигатель будет вращаться в разные стороны при переключении тумблера переключателя.

Подключение «звездой»

По причине больших потерь мощности данная схема стоит применять лишь при включении в однофазную сеть двигателя с рабочим напряжением 220/127 вольт. Бывают случаи, когда обмотки двигателя 380/220 вольт изначально подключены по схеме «звезда» и изменить схему невозможно.

Подключение обмоток «звездой» означает соединение концов трех обмоток в одну точку, а к началу каждой подводится питание от одной из трех фаз. В однофазной сети подключение происходит как в случае «треугольника» – две обмотки к «фазе» и «нолю» напрямую, а третью через конденсатор к одному из двух проводов.

Подбор рабочих конденсаторов

На емкость конденсаторов, обеспечивающих питание третьей обмотки, влияет схема подключения, мощность двигателя и другие параметры.

Требуемую емкость можно рассчитать по формулам:

Ср=2800*I/U (соединение «звездой»)

Ср=4800*I/U (соединение «треугольником»)

где Ср – емкость рабочего конденсатора, мкФ; I – ток, А; U -напряжение, В.

Тока рассчитывается по формуле:

I=P(1.73*U*n*cosф,

где Р – мощность двигателя, кВт; n – КПД; cosф – коэффициент мощности. Эти данные указаны в паспорте двигателя, их значения равны примерно 0,8-0,9.

На практике можно упростить расчеты, определив требуемую емкость рабочего конденсатора как 7 мкФ на 100 Вт мощности двигателя.

В ходе испытаний двигателя можно проверить правильность расчетов емкости рабочих конденсаторов. Если наблюдается перегрев двигателя, емкость завышена. При недостаточной емкости будет наблюдаться сильное падение мощности двигателя. Лучше начать подбор емкости рабочего конденсатора с небольшого значения, постепенно наращивая ее до оптимальной. Это можно сделать путем подключения параллельных конденсаторов или замены конденсатора на более емкий. Лучше осуществлять подбор, измеряя токи обмоток при работе двигателя. При идеальном подборе конденсатора ток обмотки, подключенной через рабочий конденсатор, должен совпадать с током, потребляемым обмотками, подключенными к «фазе» и «нолю».

Емкость пускового конденсатора (блока конденсаторов) зависит от требуемого для запуска пускового момента.

Важно: пусковая емкость – не является емкостью пускового конденсатора. Это сумма емкостей рабочего и пускового конденсаторов.

Если двигатель запускается «вхолостую» (без нагрузки), пусковая емкость может быть равна рабочей (пусковой конденсатор не устанавливается). Это удешевляет и упрощает схему подключения. Для этого может специально организовываться система отключения нагрузки. Для чего устанавливается прижимной ролик или механизм, ослабляющий натяжение ремня ременной передачи.

Если пуск без нагрузки невозможен, необходима повышенная мощность пускового конденсатора. Его емкость в 2-3 раза больше рабочего. Например, если емкость рабочего конденсатора 50 мкФ, необходим пусковой конденсатор емкостью 50-100 мкФ. Это даст пусковую емкость 100-150 мкФ.

Пусковой конденсатор работает лишь несколько секунд при запуске двигателя, поэтому для этой цели допускается использовать дешевые электролитические конденсаторы.

При подборе рабочего и пускового конденсаторов лучше использовать несколько конденсаторов малой емкости чем один большой. Это позволит легче подбирать необходимую емкость, подключая и отключая конденсаторы. Соединяются конденсаторы параллельно, а их суммарная емкость равна сумме емкостей каждого.

Подключение двигателя 380В к сети 220В с помощью конденсаторов и преобразователей частоты

Очень часто требуется подключение электродвигателя 380В к сети 220В. В промышленности в основном используются асинхронные двигатели, но они питаются от трехфазной сети. В быту таких условий нет, в любом доме только одна фаза и ноль. Но только мощность однофазных двигателей не удовлетворяет пользователей, гораздо эффективнее использовать трехфазные асинхронные.Однако при питании от однофазной цепи пропадает мощность (но она все равно больше, чем для однофазных цепей).

Как подключить двигатель к сети 380В

Доступны всего два варианта подключения обмоток асинхронных двигателей:

  1. По схеме «звезда».
  2. По схеме «треугольник».

Последняя схема соединения обмоток характеризует большую мощность, отдаваемую приводом. Однако при включении двигателя индуцируется высокий пусковой ток, что очень опасно для любого бытового прибора.Если подключать по схеме «звезда», можно добиться наиболее плавного пуска двигателя, т. К. Ток небольшой. Вы не можете получить от привода большой мощности.

Схема подключения двигателя 380В к сети 220В выполнена «треугольником» для достижения максимальной мощности. При питании от 380В обмотки соединяются «звездой». В противном случае высокое напряжение при запуске увеличивает пусковой ток. Это может повредить электропривод. При нехватке мощности можно запустить двигатель с соединенными звездой обмотками, а после перехода в рабочий режим произвести коммутацию и включить обмотки треугольником.

Особенности схем подключения

На статоре любого асинхронного двигателя имеется три обмотки, каждая из которых имеет два вывода. Провода подключаются к контактам под крышкой. Чтобы соединить все шесть контактов (три начала обмотки и столько же концов), необходимо правильно поставить перемычки. Соединить звездой очень просто:

  1. С помощью перемычек соединяются все начала обмоток.
  2. Электропитание подводится к концам обмоток.

Соединение треугольника выполняется следующим образом: каждое начало обмотки соединяется с концом следующей. Вы можете выбирать порядок намотки произвольно. Если контакты правильно установлены в коробке, то перемычку необходимо установить таким образом:

Питание от одной фазы

Подключение двигателя 380В к сети 220 В без конденсаторов может производиться только двумя способами:

  1. Используйте преобразователь частоты. Стоят такие устройства довольно дорого — самые простые стоят от 5000 рублей и выше.Но с их помощью можно осуществлять плавный пуск и остановку мотора, регулировать скорость вращения. Самое главное, чтобы мощность двигателя была сохранена. Это достигается за счет того, что преобразователь частоты включен в однофазную сеть 220 В. А на выходе устройства путем многочисленных преобразований появляются три фазы.
  2. Применяется более массивная конструкция, допускающая фазовый сдвиг. Он сделан из обмотки статора старого асинхронного двигателя.Недостаток — большие габариты конструкции и значительные потери мощности.

Если не хочется усложнять конструкцию, для питания двигателя проще использовать конденсаторы.

Использование конденсаторов с маломощными двигателями

При подключении электродвигателя к трехфазной сети, то на каждый начальный вывод обмоток подается фаза, а на конце каждой обмотки — ноль (при соединении звездой ). Подключение электродвигателя 380 В к сети 220 В через стартер повысит удобство использования.В бытовой сети только одна фаза и ноль. При включении мотора обмотки необходимо соединить треугольником, чтобы можно было добиться максимальной мощности.

Для запуска двигателей малой мощности используйте только один конденсатор. С этим элементом происходит фазовый сдвиг. В трехфазной сети все фазы сдвинуты друг относительно друга на 180 градусов. Сделать подключение к сети 220В, нужно соединить обмотки треугольником, одну вершину направить в ноль, на вторую фазу, третью подключить к выводу конденсатора.Причем второй вывод конденсатора должен быть подключен к нулю или фазе (в зависимости от того, какое направление вращения ротора необходимо).

Подключение мощных двигателей

Для запуска мощного асинхронного двигателя необходимо использовать два конденсатора — пусковой и рабочий. Они соединены параллельно, но пуск переключается с помощью переключателя. Этот конденсатор предназначен для увеличения пускового момента, для перевода двигателя в установившийся режим.

Для запуска пускового конденсатора используйте пакетный переключатель. При полном нажатии кнопки пуска включаются силовой и вспомогательный контакты. При отпускании кнопки открываются дополнительные, пусковой конденсатор исключается из схемы. Происходит только подача напряжения на обмотки электродвигателя (и рабочий конденсатор). Такие схемы хорошо зарекомендовали себя в конструкциях различных фрез, фрез, сверлильных станков.

(PDF) ПРЕОБРАЗОВАНИЕ ТРЕХФАЗНОГО ИНДУКЦИОННОГО ДВИГАТЕЛЯ НА ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ГЕНЕРАТОР С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРОВ

Journal of Engineering and Development Vol.04, No. 01, июнь 2011 www.jead.org (ISSN 1813-7822)

165

Vout, и это напряжение выше, чем напряжение, генерируемое магнетизмом, что делает ток

, проходящий в конденсаторах, высоким, который питает Xm до тех пор, пока напряжение генератора

не станет 380 В, а частота 50 Гц, а значение этой частоты зависит от скорости

механического двигателя, который запускает IG, в котором скорость напрямую зависит от частоты.

Генерируемое напряжение и частота в генераторе будут указаны в номере катушки

статора и скорости вращения ротора и нагрузки, подключенной к генератору

[4]. изолированные от сети, преодолеваются нагрузками

, которые не имеют большого влияния на изменение частоты, например, отопление, орошение или средства защиты от огня

. Применение энергии ветра подходит для IG (либо оно изолировано или подключено к сети

), потому что частота может изменяться из-за изменения скорости

, и это сделает IG эквивалентным синхронному генератору в этот случай

.IG отличается двумя характеристиками: простая конструкция и высокая гибкость

для согласования с характеристиками воздушных турбин [5]. Величина генерируемого усилия

зависит от того же прошлого фактора в дополнение к емкости конденсаторов, а частота

в этом случае будет зависеть от числа полюсов генератора и скорости вращения

. Предыдущие исследования и исследования [6] показывают возможность запуска любого типа однофазного однофазного электродвигателя

в качестве однофазного электродвигателя переменного тока путем поворота ротора механическими машинами

, поскольку однофазные электродвигатели переменного тока работали как , водяной насос, воздухоохладитель, стиральная машина

и другие двигатели небольших корпусов с использованием конденсаторов, подключенных

параллельно катушке двигателя, чтобы обеспечить необходимое напряжение для увеличения магнитного поля

, в котором вращающееся напряжение генерируется для питания нагрузок освещения, вентиляторов и некоторого оборудования

, имеющего небольшую мощность.Прошлые исследования [7] показали невозможность работы электродвигателей

в качестве нагрузки этих генераторов из-за низкой мощности

для этих генераторов, не превышающей 500 Вт, которые разработаны и

много опыта и исследования были проведены на генераторах, что его мощность составляет около 2000

Вт. Направление вращения должно быть в правильном направлении IG с однофазным порядком

, генерация должна быть выполнена, и если генератор отключился в обратном направлении поколение

не будет.Если IG оставался в течение длительного времени без работы или если его

подвергали ударам или нагреванию, он потеряет остаточный магнетизм, который приведет к тому, что

не будет генерировать электроэнергию, и в этом случае IG должен работать как IM без подключения

конденсаторов на короткое время или кратковременного возбуждения от источника постоянного тока, а затем

необходимо использовать для выработки электроэнергии. Такой генератор должен быть полностью нагружен

, когда его напряжение достигнет номинального напряжения (380 VL-L).Генератор

разрушается, если он работает с высокой скоростью без нагрузки, потому что конденсаторы используются как полная емкостная нагрузка

, что приводит к тому, что они потребляют более высокий ток и разрушают катушки статора.

2. Как выбрать конденсаторы

Существует несколько математических уравнений, используемых для расчета номинальной емкости конденсаторов, так как

:

1-Значение конденсаторов, когда ток I, напряжение V и частота f равны известный.

Подключение электродвигателя 220 / 380В

Трехфазные электродвигатели асинхронного типа с короткозамкнутым ротором по применению преобладают над однофазными и двухфазными аналогами, поскольку имеют более высокий КПД, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию бытовые электродвигатели делятся на два типа: на напряжение 220/380 и 127/220 Вольт. Последний тип электродвигателей малой мощности используется гораздо реже.

Паспортная табличка, расположенная на корпусе двигателя, указывает необходимую информацию — напряжение питания, мощность, потребляемый ток, КПД, возможные варианты переключения и коэффициент мощности, количество оборотов.

Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

Производители предлагают трехфазные электродвигатели с возможностью изменения схемы подключения или без нее.

Раннее обозначение выводов обмоток C1 — C6 соответствует современным U1 — U2, W1 — W2 и V1 — V2.В распределении Коробка содержит три провода (по умолчанию производитель реализовал схему подключения * звезда *) или шесть (двигатель может подключаться к трехфазной сети как в звезду, так и в треугольник). В первом случае необходимо в одной точке соединить начало обмоток (W2, U2, V2), три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2 , L3).

Достоинством звездообразного метода является плавный пуск двигателя и плавный режим работы (благодаря щадящему режиму и благотворно влияющему на срок службы агрегата), а также меньший пусковой ток.Недостатком является потеря мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования со свободно вращающейся нагрузкой на валу — вентиляторов, центробежных насосов, валов станков, центрифуг и другого оборудования, не требующего крутящего момента. Схема треугольника используется для электродвигателей, которые изначально имеют на валу неинерционную нагрузку, такую ​​как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока выполняют комбинированного типа включения (применимо для электродвигателей мощностью 5 кВт) — совмещение преимуществ первых двух схем — пуск происходит по схеме звезды, а после электродвигателя. переходит в рабочее состояние, происходит автоматическое (реле времени) или ручное переключение (пакетное) — мощность увеличивается до номинальной.

Включение трехфазного двигателя в однофазную сеть через конденсатор (380 на 220)


На практике часто бывает необходимо подключить трехфазный двигатель к сети 220 вольт; хотя КПД падает до 50% (в лучшем случае до 70%), такая переделка оправдана. Фактически двигатель начинает работать как двухфазный, используя фазосдвигающий элемент.
Конденсатор подбирается исходя из мощности двигателя — на каждые 100Вт требуется емкость 6,5 мкФ , рабочее напряжение должно быть не менее 1.В 5 раз выше напряжения питания, иначе могут выйти из строя от скачков напряжения в момент включения и выключения; тип — МБГО, МБГ4, К78-17, МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо зарекомендовали себя металлизированные полипропиленовые конденсаторы типа SVV5, SVV60, SVV61. В случае использования конденсатора большего размера двигатель перегреется, меньшего — будет работать в недогруженном режиме или вообще не запуститься. В схеме ниже Cn — стартовый, Cp — рабочий конденсатор.

Пусковой конденсатор при нагрузке на вал двигателя

В случае, если на валу есть нагрузка или мощность превышает 1.5 кВт двигатель может не заводиться или медленно набирать обороты. * Правильно * это можно сделать, используя рабочий и пусковой конденсаторы, которые используются для сдвига фаз и ускорения. Кнопку ускорения необходимо удерживать, пока скорость не достигнет примерно 70% от номинальной (2–3 секунды), а затем отпустить.

Емкость пускового конденсатора должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если получить вышеуказанные конденсаторы необходимой емкости проблематично, можно использовать электролитические, впаянные по специальной схеме с диодами.Однако при эксплуатации мощных машин такой замены следует избегать и рекомендовать только для временного включения.

Важно!

Электродвигатель мощностью более 3 кВт не рекомендуется подключать к домашней сети из-за его малой нагрузочной способности.
Автоматический выключатель в цепи питания электродвигателя должен иметь время-токовую характеристику C или D из-за значительного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
Если трехфазный электродвигатель долгое время проработает без нагрузки от однофазной сети, он сгорит!
При выборе правильного подключения или переключения необходимо учитывать характеристики электрической сети, выходную мощность электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Стоимость подключения электродвигателя специалистом —

Удары по плавающей нейтрали в распределителе питания

Обрыв (ослабленная) нейтраль

Если нейтральный проводник разомкнут, сломан или потерян на одной из сторон источника (распределительный трансформатор, генератор или на стороне нагрузки — распределительный щит потребителя), распределение нейтральный провод системы будет « плавать » или потеряет свою контрольную точку заземления.

Удары плавающей нейтрали в распределителе мощности (фото Mardix Limited; Fickr)

Состояние плавающей нейтрали может привести к тому, что напряжения могут достигать максимального значения, равного среднеквадратичному значению фазового напряжения относительно земли, в зависимости от состояния несимметричной нагрузки.Состояние плавающей нейтрали в электросети имеет разное влияние в зависимости от типа источника питания, типа установки и балансировки нагрузки в распределительной сети.

Обрыв нейтрали или Ослабленная нейтраль может повредить подключенную нагрузку или создать опасное напряжение прикосновения на корпусе оборудования.

Здесь мы пытаемся понять состояние плавающей нейтрали в системе распределения T-T.


Что такое плавающая нейтраль?

Если точка звезды несбалансированной нагрузки не соединена с точкой звезды ее источника питания (распределительного трансформатора или генератора), то фазное напряжение не остается одинаковым для каждой фазы, а изменяется в зависимости от несимметричной нагрузки.

Поскольку потенциал такой изолированной точки звезды или нейтральной точки всегда меняется и не фиксируется, он называется Floating Neutral .


Нормальное состояние электропитания и состояние плавающей нейтрали

Нормальное состояние электропитания

В трехфазных системах точка звезды и фазы имеют тенденцию стремиться к « уравновешивают » в зависимости от коэффициента утечки для каждой из них. Фаза к Земле. Точка звезды будет оставаться близкой к 0 В в зависимости от распределения нагрузки и последующей утечки (более высокая нагрузка на фазе обычно означает более высокую утечку).

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные устройства с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Схема здоровой энергосистемы
3-фазная 3-проводная система

Три фазы имеют свойства, которые делают очень востребованными в электроэнергетических системах.

Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга (суммирование до нуля в случае линейной сбалансированной нагрузки). Это позволяет исключить нейтральный провод на некоторых линиях. Во-вторых, передача мощности в линейную сбалансированную нагрузку постоянна.


3-фазная 4-проводная система для смешанной нагрузки

Большинство бытовых нагрузок являются однофазными. Обычно трехфазное питание либо не поступает в жилые дома, либо разделяется на главном распределительном щите.

Текущий закон Кирхгофа гласит, что сумма со знаком токов, входящих в узел, равна ноль .Если нейтральная точка является узлом, то в сбалансированной системе одна фаза совпадает с двумя другими фазами, в результате чего ток через нейтраль отсутствует. Любой дисбаланс нагрузки приведет к протеканию тока по нейтрали, так что сумма будет равна нулю.

Например, в сбалансированной системе ток, входящий в нейтральный узел с одной стороны фазы, считается положительным, а ток, входящий (фактически выходящий) из нейтрального узла с другой стороны, считается отрицательным.

Это усложняется с трехфазным питанием, потому что теперь мы должны учитывать фазовый угол, но концепция в точности та же.Если мы соединены звездой с нейтралью, то нейтральный проводник будет иметь нулевой ток на нем только в том случае, если три фазы имеют одинаковый ток на каждой. Если мы проведем векторный анализ этого, сложив sin (x) , sin (x + 120) и sin (x + 240) , мы получим ноль .

То же самое происходит, когда мы соединены треугольником без нейтрали, но затем возникает дисбаланс в распределительной системе, за пределами сервисных трансформаторов, потому что распределительная система обычно соединяется звездой.

Нейтраль никогда не должна быть подключена к заземлению, кроме той точки обслуживания, где нейтраль изначально заземлена (на распределительном трансформаторе). Это может настроить землю в качестве пути, по которому ток возвращается обратно в службу. Любой разрыв цепи заземления может привести к возникновению потенциала напряжения.

Заземление нейтрали в трехфазной системе помогает стабилизировать фазные напряжения. Незаземленная нейтраль иногда называется «плавающей нейтралью » и имеет несколько ограниченных применений.


Состояние плавающей нейтрали

Электроэнергия входит и выходит из помещения клиентов из распределительной сети, поступая через фазу и покидая нейтраль. В случае обрыва нейтрального обратного пути электричество может двигаться по другому пути. Поток мощности, поступающий в одну фазу, возвращается через оставшиеся две фазы. Нейтральная точка не находится на уровне земли, но находится на уровне напряжения сети.

Эта ситуация может быть очень опасной, и клиенты могут серьезно пострадать от поражения электрическим током, если они коснутся чего-либо, где присутствует электричество.

Состояние плавающей нейтрали

Обрыв нейтрали может быть трудно обнаружить, а в некоторых случаях может быть нелегко идентифицировать. Иногда на сломанные нейтрали могут указывать мерцающие огни или покалывание.

Если у вас в доме мерцает свет или постукивает постукивание, вы можете получить серьезные травмы или даже смерть.


Измерение напряжения между нейтралью и землей

Практическое правило , используемое многими в промышленности, гласит, что напряжение между нейтралью и землей 2 В или менее на розетке нормально, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.


Низкое показание

Если напряжение между нейтралью и землей низкое в розетке, значит, система исправна. Если оно высокое, вам все равно необходимо определить, связана ли проблема в основном на уровне ответвленной цепи или в основном на уровне панели. .

Напряжение нейтрали относительно земли существует из-за падения IR тока, проходящего через нейтраль обратно в соединение нейтрали с землей. Если система подключена правильно, не должно быть заземления нейтрали, за исключением трансформатора источника (в том, что NEC называет источником раздельно производной системы или SDS, который обычно является трансформатором).

В этой ситуации заземляющий провод не должен иметь тока и, следовательно, на нем не должно быть падения IR . Фактически, заземляющий провод используется в качестве длинного тестового провода, ведущего назад к заземлению нейтрали.


Высокое показание

Высокое показание может указывать на совместно используемую нейтраль ответвления , то есть нейтраль, совместно используемую более чем одной ответвленной цепью. Эта общая нейтраль просто увеличивает возможности для перегрузки, а также для воздействия одной цепи на другую.


Нулевое показание

Определенное напряжение между нейтралью и землей является нормальным для нагруженной цепи. Если показание стабильно близко к 0В. Есть подозрение на незаконное соединение нейтрали с землей в розетке (часто из-за потери жилы нейтрали, касающейся какой-либо точки заземления) или на субпанели.

Любые соединения нейтрали с землей, кроме тех, которые находятся у источника трансформатора (и / или главной панели), должны быть удалены, чтобы предотвратить обратные токи, протекающие через заземляющие проводники.


Различные факторы, вызывающие плавающее положение нейтрали

Существует несколько факторов, которые определяют как причину плавающего положения нейтрали. Воздействие плавающей нейтрали зависит от положения, в котором нейтраль нарушена:

1) На трехфазном распределительном трансформаторе

Неисправность нейтрали в трансформаторе в основном связана с выходом из строя проходного изолятора нейтрали.

Использование ответвителя на вводе трансформатора определено как основная причина выхода из строя нейтрального провода на вводе трансформатора.Гайка на линии со временем ослабляется из-за вибрации и разницы температур, что приводит к горячему соединению. Проводник начал плавиться и в результате оборвался нейтраль.

Плохая работа монтажников и технического персонала также одна из причин отказа нейтрали.

Обрыв нейтрали на трех фазах трансформатора приведет к скачку напряжения до линейного напряжения в зависимости от балансировки нагрузки в системе. Этот тип нейтрального положения может повредить оборудование клиента, подключенное к источнику питания.

В нормальных условиях ток течет от фазы к нагрузке к нагрузке обратно к источнику (распределительный трансформатор). При обрыве нейтрали ток из красной фазы вернется в синюю или желтую фазу, в результате чего между нагрузками будет напряжение между линиями.

У некоторых клиентов будет повышенное напряжение, а у других — низкое.


2) Обрыв провода нейтрали в линии низкого напряжения

Воздействие обрыва провода нейтрали на воздушном распределении низкого напряжения будет таким же, как и при обрыве провода на трансформаторе .Напряжение питания увеличивается до линейного напряжения вместо фазного. Этот тип неисправности может привести к повреждению оборудования клиента, подключенного к источнику питания.


3) Обрыв провода нейтрали обслуживания

Обрыв провода нейтрали обслуживания приведет только к потере питания в точке обслуживания. Никаких повреждений оборудования заказчика.


4) Высокое сопротивление заземления нейтрали на распределительном трансформаторе:

Хорошее сопротивление заземления Яма нейтрали обеспечивает путь с низким сопротивлением для тока нейтрали к утечке в землю.Высокое сопротивление заземления может обеспечить путь высокого сопротивления для заземления нейтрали на распределительном трансформаторе.

Предельное сопротивление заземления должно быть достаточно низким, чтобы обеспечить достаточный ток короткого замыкания для срабатывания защитных устройств во времени и уменьшить смещение нейтрали.


5) Перегрузка и разбалансировка нагрузки

Распределительная сеть Перегрузка в сочетании с плохим распределением нагрузки является одной из основных причин отказа нейтрали. Нейтраль должна быть правильно спроектирована так, чтобы минимальный ток проходил через нейтральный проводник.Теоретически предполагается, что ток в нейтрали равен нулю из-за отмены из-за сдвига фаз фазового тока на 120 градусов.

IN = IR <0 + IY <120 + IB <-120

В перегруженной несбалансированной сети много тока будет протекать в нейтрали, которая разрывает нейтраль в самом слабом месте.


6) Общие нейтрали

В некоторых зданиях разводка проводов так, что две или три фазы совместно используют одну нейтраль. Первоначальная идея заключалась в том, чтобы продублировать на уровне ответвления четырехпроводную (три фазы и нейтраль) разводку панелей управления.Теоретически на нейтраль вернется только несимметричный ток. Это позволяет одной нейтрали выполнять работу для трех фаз. Этот способ подключения быстро зашел в тупик с ростом однофазных нелинейных нагрузок. Проблема в том, что ток нулевой последовательности

от нелинейных нагрузок, в первую очередь третьей гармоники, будет арифметически складываться и возвращаться на нейтраль. Помимо потенциальной проблемы безопасности из-за перегрева нейтрали меньшего размера, дополнительный ток нейтрали создает более высокое напряжение нейтрали относительно земли.

Это напряжение нейтрали относительно земли вычитается из напряжения линии на нейтраль, доступного для нагрузки. Если вы начинаете чувствовать, что общие нейтралы — одна из худших идей, когда-либо воплощенных в меди.


7) Плохое качество изготовления и обслуживания

Обычно обслуживающий персонал не уделяет внимания сетям низкого напряжения. Ослабление или Неадекватная затяжка нейтрального проводника повлияет на непрерывность нейтрали, что может привести к смещению нейтрали.

Как определить состояние плавающей нейтрали в панели?

Давайте возьмем один пример, чтобы понять состояние плавающего положения нейтрали . У нас есть трансформатор, вторичная обмотка которого соединена звездой, фаза-нейтраль = 240 В, и фаза-фаза = 440 В, .


Условие (1) — нейтраль не плавает

Независимо от того, заземлена ли нейтраль, напряжения остаются неизменными: 240 В между фазой и нейтралью и 440 В между фазами. Нейтраль не плавает.


Условие (2) — Нейтраль — плавающая

Все устройства подключены: Если нейтральный провод цепи отсоединяется от основной панели электропитания дома, в то время как фазный провод цепи все еще остается подключенным к панели и в цепи есть электроприборы, включенные в розетки. В этой ситуации, если вы поместите тестер напряжения с неоновой лампой на нейтральный провод, он будет светиться так же, как если бы он был под напряжением, потому что на него подается очень небольшой ток, идущий от фазового источника через подключенное устройство ( s) к нейтральному проводу.

Все устройства отключены: Если вы отключите все приборы, освещение и все остальное, что может быть подключено к цепи, нейтраль больше не будет казаться находящейся под напряжением, потому что от нее больше нет пути к фазовому питанию.

  • Междуфазное напряжение: Измеритель показывает 440 В переменного тока. (Не влияет на 3-фазную нагрузку)
  • Напряжение между фазой и нейтралью: Измеритель показывает от 110 В до 330 В переменного тока.
  • Напряжение нейтрали относительно земли: Измеритель показывает 110 В.
  • Напряжение между фазой и землей: Измеритель показывает 120 В.

Это связано с тем, что нейтраль «плавает» над потенциалом земли (110 В + 120 В = 230 В переменного тока) . В результате выход изолирован от системного заземления, и полный выход 230 В устанавливается между линией и нейтралью без заземления.

Если внезапно отключить нейтраль от нейтрали трансформатора, но оставить цепи нагрузки такими, какие они есть, тогда нейтраль на стороне нагрузки станет плавающей, поскольку оборудование, подключенное между фазой и нейтралью, станет между фазой и фазой (R — Y, Y — B). ), и поскольку они не имеют одинаковых номиналов, полученная в результате искусственная нейтраль будет плавающей, так что напряжения, присутствующие на различном оборудовании, больше не будут составлять 240 В, а будут где-то между 0 (не точно) и 440 В (также не совсем точно). ).

Это означает, что на одной линии от фазы к фазе у некоторых будет меньше 240 В, а у других — почти до 415 В. Все зависит от импеданса каждого подключенного элемента.

В системе с дисбалансом, если нейтраль отключена от источника, нейтраль становится плавающей нейтралью и смещается в такое положение, чтобы она была ближе к фазе с более высокими нагрузками и от фазы с меньшей нагрузкой. Предположим, что несимметричная трехфазная система имеет нагрузку 3 кВт в фазе R, нагрузку 2 кВт в фазе Y и нагрузку 1 кВт в фазе B.Если нейтраль этой системы отключена от сети, плавающая нейтраль будет ближе к R-фазе и дальше от B-фазы.

Таким образом, нагрузки с фазой B будут испытывать большее напряжение, чем обычно, в то время как нагрузки с фазой R будут испытывать меньшее напряжение. Нагрузки в фазе Y будут испытывать почти одинаковое напряжение. Выключатель нейтрали для несбалансированной системы опасен для нагрузок. Из-за более высокого или более низкого напряжения наиболее вероятно повреждение оборудования.

Здесь мы видим, что состояние нейтрального плавающего положения не влияет на трехфазную нагрузку, а влияет только на однофазную нагрузку.

Как устранить нейтральное плавающее положение?

Есть некоторые моменты, которые необходимо учитывать, чтобы предотвратить нейтральное смещение.


a) Используйте 4-полюсный выключатель / ELCB / RCBO в распределительном щите

Плавающая нейтраль может стать серьезной проблемой. Предположим, у нас есть панель выключателя с трехполюсным выключателем для трех фаз и шиной для нейтрали для трехфазных входов и нейтрали (здесь мы не использовали четырехполюсный выключатель). Напряжение между каждой фазой — 440, а напряжение между каждой фазой и нейтралью — 230. У нас есть одиночные выключатели, питающие нагрузки, требующие 230 вольт. Эти нагрузки 230 В имеют одну линию, питаемую от выключателя и нейтраль.

Теперь предположим, что нейтраль ослабла, окислилась или каким-то образом отсоединилась в панели или, возможно, даже отключилась от источника питания. Нагрузки 440 В не будут затронуты, однако нагрузки 230 В могут иметь серьезные проблемы. В этом состоянии «плавающая нейтраль» вы обнаружите, что одна из двух линий упадет с 230 вольт до 340 или 350, а другая линия упадет до 110 или 120 вольт. Половина вашего оборудования на 230 В будет повышена из-за перенапряжения, а другая половина не будет работать из-за низкого напряжения.Так что будьте осторожны с плавающими нейтралами.

Просто используйте ELCB, RCBO или 4-полюсный автоматический выключатель в качестве источника питания в 3-фазной системе питания, поскольку при размыкании нейтрали отключится все питание без повреждения системы.


b) Использование стабилизатора напряжения

Каждый раз, когда нейтраль выходит из строя в трехфазной системе, подключенные нагрузки будут подключаться между фазами из-за плавающей нейтрали. Следовательно, в зависимости от сопротивления нагрузки на этих фазах, напряжение продолжает колебаться от 230 В до 400 В.

Подходящий сервостабилизатор с широким диапазоном входного напряжения с высокой и низкой отсечкой может помочь в защите оборудования.


c) Хорошее качество изготовления и техническое обслуживание

Дайте более высокий приоритет техническому обслуживанию сети низкого напряжения. Затяните или примените соответствующий крутящий момент для затяжки нейтрального проводника в системе низкого напряжения

Заключение

Состояние неисправности «плавающая нейтраль» (отключенная нейтраль) — ОЧЕНЬ НЕ БЕЗОПАСНО , потому что, если устройство не работает, и кто-то, кто не знает о нейтральном положении, может легко прикоснитесь к нейтральному проводу, чтобы узнать, почему приборы не работают, когда они подключены к цепи и получают сильный ток.Однофазные устройства рассчитаны на работу с нормальным фазным напряжением, когда они получают линейное напряжение. Устройства могут быть повреждены.

Неисправность нейтрали отключена — это очень опасное состояние, и ее следует устранить как можно раньше путем поиска неисправностей именно тех проводов, которые необходимо проверить, а затем правильно подключить.

Опубликовано в Примечания и статьи по электрике

Асинхронные двигатели — Руководство по электрическому монтажу

Номинальная мощность двигателя в кВт (Pn) указывает на его номинальную эквивалентную выходную механическую мощность.{3}} {U \ times \ eta \ times cos \ varphi}}}

где

In = номинальная потребляемая мощность (в амперах)
Pn = номинальная мощность (в кВт)
U = напряжение между фазами для трехфазных двигателей и напряжение между клеммами для однофазных двигателей (в вольтах) . Однофазный двигатель может быть подключен по схеме «фаза-нейтраль» или «фаза-фаза».
η = КПД на единицу, т. Е. Выходная мощность кВт / потребляемая мощность, кВт
cos φ = коэффициент мощности, т.е. потребляемая мощность в кВт / кВА потребляемая мощность

Допустимый ток и уставка защиты

  • Пиковое значение непереходного тока может быть очень высоким; Типичное значение примерно в 12–15 раз больше номинального действующего значения In.Иногда это значение может достигать 25 раз.
  • Автоматические выключатели, контакторы и тепловые реле Schneider Electric спроектированы так, чтобы выдерживать пуск двигателя с очень высоким непереходным током (субпереходное пиковое значение может до 19 раз превышать номинальное действующее значение In).
  • Если во время пуска происходит непредвиденное срабатывание защиты от сверхтока, это означает, что пусковой ток превышает нормальные пределы. В результате может быть достигнута некоторая максимальная устойчивость распределительного устройства, может быть сокращен срок службы и даже некоторые устройства могут быть разрушены.Чтобы избежать такой ситуации, следует рассмотреть возможность увеличения размера распределительного устройства.
  • Распределительные устройства
  • Schneider Electric предназначены для защиты пускателей двигателей от коротких замыканий. В соответствии с риском в таблицах показано сочетание автоматического выключателя, контактора и теплового реле для получения координации типа 1 или типа 2 (см. Главу Характеристики конкретных источников и нагрузок).

Пусковой ток двигателя

Хотя на рынке можно найти высокоэффективные двигатели, на практике их пусковые токи примерно такие же, как у некоторых стандартных двигателей.Использование пускателя по схеме треугольник, устройства статического плавного пуска или привода с регулируемой скоростью позволяет снизить значение пускового тока (пример: 4 In вместо 7,5 In).

См. Также «Асинхронные двигатели» для получения дополнительной информации.

Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели

Как правило, по техническим и финансовым причинам целесообразно снизить ток, подаваемый на асинхронные двигатели. Этого можно добиться за счет использования конденсаторов, не влияя на выходную мощность двигателей.

Применение этого принципа к работе асинхронных двигателей обычно называется «улучшением коэффициента мощности» или «коррекцией коэффициента мощности». Как обсуждалось в главе «Коррекция коэффициента мощности», полная мощность (кВА), подаваемая на асинхронный двигатель, может быть значительно снижена за счет использования конденсаторов с параллельным подключением. Снижение входной кВА означает соответствующее уменьшение входного тока (поскольку напряжение остается постоянным).

Компенсация реактивной мощности особенно рекомендуется для двигателей, которые длительное время работают на пониженной мощности.{‘}}}}

, где cos φ — коэффициент мощности до компенсации, а cos φ — коэффициент мощности после компенсации, In — исходный ток.

На рисунке A4 ниже показаны в зависимости от номинальной мощности двигателя стандартные значения тока двигателя для нескольких источников напряжения (IEC 60947-4-1, приложение G).

Рис. A4 — Номинальная рабочая мощность и токи

кВт лс 230 В 380 — 415 В 400 В 440-480 В 500 В 690В
А А А А А А
0.18
0,25
0,37


1,0
1,5
1,9


0,6
0,85
1,1


0,48
0,68
0,88
0,35
0,49
0,64

0,55
1/2

3/4

2,6
1,3

1,8

1,5
1,1

1.6

1,2

0,87

0,75
1,1
1


3,3
4,7
2,3


1,9
2,7
2,1


1,5
2,2

1,1
1,6


1,5
1-1 / 2
2


6,3
3.3
4,3


3,6
3,0
3,4


2,9


2,1
2,2

3,0

3
8,5

11,3

6,1
4,9

6,5

4,8
3,9

5,2
2,8

3,8
4

5.5

5
15

20
9,7
9,7
8,5

11,5
7,6
7,6
6,8

9,2
4,9

6,7


7,5
7-1 / 2
10


27
14,0
18,0


15,5
11,0
14,0


12.4


8,9
11


15
20
38,0


27,0
34,0
22,0


21,0
27,0
17,6

12,8

15
18,5


25
51
61


44
39
35


34
23
28
17
21
22


30
40
72


51
66
41


40
52
33

24

30
37


50
96
115


83
55
66


65
44
53
32
39

45
55
60


140
169
103


80
97
77


64
78

47
57


75
75
100


230
128
165


132
96
124


106


77
90

110

125
278

340

208
160

195

156
128

156
93

113

132
150

200

400
240

320

230
180

240

184

134
150
160
185



487



280



224

162

200
220
250


609
403


350
302


280

203

250
280
300


748
482


430
361


344

250


300
350
400


560
636


414
474




315

335

450
940



540


515
432

313 ​​

355

375

500
1061


786
610


590
488

354

400
425
450


1200



690



552

400

475
500
530



1478



850



680

493
560
600
630


1652

1844


950

1060


760

848
551

615
670
710
750



2070



1190



952

690
800
850
900


2340

2640


1346

1518


1076

1214
780

880
950
1000


2910


1673


1339

970

Что такое воздушный конденсатор? — AnswersToAll

Что такое воздушный конденсатор?

Воздушные конденсаторы — это конденсаторы, в которых в качестве диэлектрика используется воздух.Простейшие воздушные конденсаторы состоят из двух токопроводящих пластин, разделенных воздушным зазором. Воздушные конденсаторы могут быть выполнены с переменной или постоянной емкостью. Переменные воздушные конденсаторы используются чаще из-за их простой конструкции.

Конденсатор какого типа используется в помещениях?

Конденсаторы мокрые танталовые

Как проверить 3-фазный конденсатор мультиметром?

Проверка конденсатора аналоговым мультиметром

  1. Убедитесь, что подозреваемый конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Обратите внимание на показания и сравните со следующими результатами.

Какой символ конденсатора на мультиметре?

Метод 2 из 2: Измерение. Настройте мультиметр на измерение емкости. В большинстве цифровых мультиметров используется символ, похожий на — | (- для обозначения емкости.

Как рассчитать ток трехфазного конденсатора?

Постоянный ток конденсатора Линейное напряжение системы составляет 12 470 В.Чистый рейтинг банка — 400 * 3 = 1,200кВАр. Чтобы рассчитать ток полной нагрузки, введите 1,200 кВАр в качестве номинала и напряжения 12 470 В в трехфазном калькуляторе выше.

Сколько тока в конденсаторе?

По мере заряда конденсатора этот ток уменьшается экспоненциально, пока конденсатор не достигнет максимального заряда Q. Где Vb — напряжение источника, R — сопротивление, t — время, а RC — постоянная времени (произведение сопротивления и емкости). Сейчас ток ~ 1 А.

Какой коэффициент мощности для 3 фаз?

Формула трехфазной мощности Здесь просто указано, что мощность является квадратным корнем из трех (около 1.732), умноженный на коэффициент мощности (обычно от 0,85 до 1, см. Ресурсы), ток и напряжение.

Может ли коэффициент мощности быть больше 1?

Истинная мощность может быть равна полной мощности, но не может превышать. Поэтому коэффициент мощности не может быть больше единицы. Коэффициент мощности определяется углом косинуса между напряжением и током, но максимальное значение косинуса равно 1, а минимальное — -1. Таким образом, коэффициент мощности выше 1 невозможен.

Что такое 3 фазы 440 В?

Таким образом, «440 В» означает 480 В переменного тока, всегда предлагается в трехфазном режиме, треугольник или звезда (277 В от пика до центральной нейтрали).«220 В» означает 240 В переменного тока, предлагаемый как однофазный центральный ответвитель 120/240 В, так и трехфазный.

Может ли 220 В быть трехфазным?

Как и в случае с однофазным напряжением, в Латинской Америке обычно встречаются трехфазные напряжения в диапазоне от 208 В, 220 В, 380 В и других. На такое оборудование, как электродвигатели, большие насосные системы, лифты, большие компрессоры, подается трехфазное напряжение.

Можно ли получить 240 В от 3 фаз?

В США питание 240 В подается в небольшие здания с большими нагрузками в виде трехфазного разомкнутого треугольника 240 В.Это похоже на 120/240 В, но также обеспечивает трехфазное напряжение 240 В для больших нагрузок (машины и т. Д.). Его часто называют «дикой ногой» дельты «высокой ноги», потому что одна нога (фаза B) отличается.

Можно ли получить 240 В от 480 В?

Конвертер не требуется. Вам просто понадобится трансформатор соответствующего размера от 480 до 240 В (или от 480 до 120/240, если вам нужна нейтраль). Этот трансформатор будет подключен между любыми двумя линиями 480 В.

В чем разница между 220 В, 230 В и 240 В?

В Северной Америке термины 220 В, 230 В и 240 В относятся к одному и тому же уровню напряжения системы.Однако 208 В относится к другому уровню напряжения системы. При электрических нагрузках напряжение будет падать, поэтому обычно используются напряжения ниже 120 и 240, например 110, 115, 220 и 230.

Все ли 480 В 3 фазы?

Цепи

480В можно разделить на одно- и трехфазные. Трехфазные цепи на 480 В являются наиболее распространенными энергосистемами, используемыми на промышленных предприятиях США, и считаются низковольтными энергосистемами.

Можно ли получить в доме трехфазное питание?

Хотя вы можете использовать 3-фазную систему в 3-фазном двигателе дома.Да, ваша компания по распределению электроэнергии должна иметь возможность обеспечить трехфазное питание в вашем доме, если у вас более высокая нагрузка. Не требует серьезных изменений в домашней электропроводке вашего дома.

В чем преимущество трехфазного питания?

Трехфазная цепь обеспечивает большую удельную мощность, чем однофазная, при той же силе тока, что позволяет уменьшить размер проводки и снизить затраты. Кроме того, трехфазное питание упрощает балансировку нагрузок, сводит к минимуму токи гармоник и необходимость в больших нейтральных проводах.

Можно ли перейти с однофазного на трехфазный?

Фазовое преобразование — это процесс преобразования однофазной мощности в трехфазную. «Фазовый преобразователь» создает третью линию напряжения (третью синусоидальную волну), позволяя использовать трехфазное питание в однофазной среде.

Как выглядит трехфазная вилка?

Трехфазное питание — это как если бы трое равных по силе мужчин толкали одну и ту же машину на один холм. Три провода под напряжением в трехфазной цепи окрашены в черный, синий и красный цвета; белый провод — нейтраль, а зеленый провод — заземление.

Реверсирование и ремонт электродвигателей

Реверсирование и ремонт электродвигателей

Подбор, подключение, реверсирование и ремонт электродвигателей

Роберт В. Лэмпартер


Перепечатка только в формате ASCII с разрешения «Home Shop Machinist»
Июль / август 1987 г. 6 шт. 4
Представлено и введены данные Грантом Эрвином

Выбор двигателя и подключение электрооборудования — это первое. проблемы, возникшие после покупки этого давно желанного станка.В текущем производстве имеется несколько типов однофазных двигателей переменного тока. в США, но обычно используются только два типа для питания наших оборудование.

ВИДЫ ДВИГАТЕЛЕЙ

Для наглядности опишу особенности обычных типы двигателей дробной мощности.

Универсальные или серийные двигатели — это двигатели со щетками и с фазным ротором. Примером этого типа является портативная дрель или дрель Dremel. орудие труда.Еще они отличаются своей шумностью.

Индукционные двигатели или двигатели с экранированными полюсами обычно продаются в витринах. фанаты. Они имеют твердый (квадратный сепаратор) ротор и запускаются медленно, постепенно набирая скорость.

По моему опыту, отталкивающие двигатели старые и необычные, но они могут встретиться на дворовой распродаже или барахолке. Будучи старыми, они склонны быть на большом размере. У них есть намотанный ротор и электрические щетки. соединены друг с другом, но не с обмотками статора.Большой мотор щетками (при условии, что на паспортной табличке не указан двигатель постоянного тока или генератор) является признаком того, что вы, вероятно, исследуете отталкивание мотор. Этот тип двигателя можно изменить, изменив положение кисти. Увидев, что один из них приводит в действие большой сверлильный станок в местную кузницу, вкладывать деньги в отталкиваю я бы не советовал двигатель, поскольку остальные типы двигателей, которые будут описаны, будут выполнять работа намного лучше.

Последние три типа двигателей являются наиболее подходящими для питания. бытовое торговое оборудование: электродвигатель с расщепленной фазой (запуск с расщепленной фазой — индукционный запуск), конденсаторный пуск двигателя (конденсаторный пуск — индукционный пуск) и конденсаторный пуск — конденсаторный запуск двигателя.Все отличаются твердым ротор с короткозамкнутым ротором и слышимый щелчок при вращении мотора выключен и замедляется. Двигатель с расщепленной фазой не имеет цилиндрического выступа. снаружи для конденсатора; два других типа, очевидно, делают. В конденсаторный пусковой конденсаторный двигатель будет иметь либо два конденсатора горбов или будет иметь конденсатор с тремя отдельными электрическими соединения. В процессе исключения должно казаться очевидным, что у конденсаторного пускового двигателя будет один конденсатор, у которого есть только два электрические соединения.

Все описанные двигатели работают от бытового тока, который является однократным. фаза. Трехфазные двигатели обычно используются на промышленных предприятиях. станки и не будут работать от бытового тока без дорогостоящего роторного фазовый преобразователь. Твердотельные фазовые преобразователи дешевле, но наши местный перемотчик электродвигателя намекает, что они склонны к горению из. Возможно, еще один читатель с личным опытом работы с твердотельными фазовые преобразователи могут нас просветить.Из-за отсутствия опыта при трехфазном питании я решил, что лучше избегать этих двигателей. В Табличка производителя с электрической информацией указывает, однофазный или трехфазный.

РЕКОМЕНДАЦИИ ПО ТИПУ И РАЗМЕРУ ДВИГАТЕЛЯ

Конденсаторные двигатели имеют гораздо больший пусковой крутящий момент, чем расщепленные фазы. моторы. Я предпочитаю использовать конденсаторные пусковые двигатели на всех инструментах, кроме настольные шлифовальные машины. При большой пусковой нагрузке двигатель с расщепленной фазой потребуется много времени, чтобы набрать скорость.Есть две проблемы с это. Одна из них заключается в том, что потребляется большой ток, в результате чего магазин свет погаснет. Во-вторых, пусковые обмотки легче. калибровочная проволока; с повторяющимися двух- или трехсекундными стартовыми периодами обмотки стартера со временем сгорят.

Двигатели с расщепленной фазой считаются подходящими для легкого запуска. инструменты, такие как шлифовальные станки, сверлильные станки, лобзики и тому подобное. у меня есть обнаружил, что двигатель с разделенной фазой на 1/3 л.с. на моем старом сверлильном станке Delta подходит для всех, кроме более высоких скоростей.Планирую заменить на 1/2 конденсаторный двигатель л.с., когда я нахожу его на дворовой распродаже. Если бы у меня был промышленный сверлильный станок с конусом Морзе № 2 или № 3, я бы хотел мотор 3/4 или 1 л.с. Уважаемый мастер своего дела вполне доволен двигателем с разделенной фазой мощностью 1/3 л.с. на своем 9-дюймовом токарном станке South Bend но признает, что делает только легкие повороты. Я верю производителю рекомендует конденсаторный двигатель мощностью 1/2 л.с. У меня был конденсаторный двигатель мощностью 1/2 л.с. мой 12-дюймовый токарный станок Клаузинга. Кажется, он никогда не замедлялся даже при тяжелых разрезает, но в итоге перегорела обмотка.Из этого опыта я сделать вывод, что для токарный станок 12 дюймов. Подозреваю, что хватило бы мотора на 3/4 л.с., но мотор 1,5 л.с. был единственным использованным мотором, доступным, когда старый сгореть.

СООТВЕТСТВИЕ МАГАЗИНУ ЭЛЕКТРОПРОВОДКИ И ДОСТОИНСТВА ЭКСПЛУАТАЦИИ 220 Вольт

Далее следует электромонтаж двигателя. Первый взгляд на двигатель информационная табличка с указанием рабочей силы тока и определить, есть ли в магазине проводка и предохранители в порядке.Согласно Sears and Roebuck’s «Упрощенная электрическая разводка», пусковые токи двигателей равны примерно в три раза превышающий указанный рабочий ток. Для практических целей, если время пуска двигателя не продлевается из-за тяжелого нагрузки, рабочий ток двигателя будет определять, собирается в поездку. Например, при 110 В обычный двигатель мощностью 1/2 л.с. работают от 7 ампер или меньше, но при запуске потребляют 22 ампера. В моем старый дом, в котором были выключатели на 15 ампер, я никогда не перегружал схему с мотором на 1/2 л.с.

Если вы приобретаете оборудование (путем покупки или аренды оборудования), которое превышает электрическую мощность вашего магазина. емкость, вам придется сделать некоторые проводки. Покупка моего воздушный компрессор представил мне эту проблему. При 110 В его рабочий ток был 17,8 ампер, и выключатель на 15 ампер скорее сработал бы. часто. В то время я не знал, насколько легко было добавить выключатель и проложил линию 220 В, поэтому я подключился к одному из 20-амперные цепи в доме и провод 12-го калибра для запуска нового 110-вольтового контура. очередь в магазин.

Несколько лет спустя мой друг-машинист познакомил меня с концепция использования тока 220В для машин. Я всегда предполагал что тяжелые провода, такие как те, что используются в сушилках и плитах, были необходимы для 220в работа. Не так! Эти провода тяжелые, потому что сушилки и плиты токи тяги в диапазоне 30 и 50 ампер соответственно. На самом деле, уменьшение толщины провода может быть обеспечено за счет запуска двигателя на 220в. Когда двигатель переключается на работу при 220 В, его рабочий ток делится вдвое.Таким образом, компрессор, который тянул 17,8 А только при 110 В потянул 8,9 ампер при 220в. Когда я наконец привел свою линию 220 В в магазин, я использовал прерыватель на 15 ампер и провод 14 калибра. Какая разница в как быстро запустился компрессор. Я использовал ту же розетку, что и был используется для 110 В, но нарисовал знак на розетке, помеченный как 220в. Я сомневаюсь, что эта розетка соответствует электрическим нормам, так как специальные розетки на 220 В физически не позволяют устройству на 110 В подключен к сети; однако я считаю, что такая практика приемлема в домашний магазин.На двигателях, которые будут работать от 110 В или 220 В, я предпочитаю запускать их на 220В, так как яркость загорается и запускается намного быстрее при таком напряжении.

На будущее помните, что предохранители и автоматические выключатели защищают проводка дома от перегрева и горения при нахождении внутри стены и, следовательно, имеют размер, совместимый с проводкой в ​​доме они защищают, а не подключенную к нему машину. Вот почему это опасно просто поставить больший предохранитель или прерыватель на цепь вашего магазин без улучшения проводки.Провод 12-го калибра выдержит ток 20 ампер, Провод 14-го калибра 15 ампер и провод 16-го калибра 10 ампер. Домашняя проводка достаточно прямолинейно, но детали выходят за рамки цели этого статья. Снова отсылаю читателя к уже упомянутому буклету. продан Sears and Roebuck за расширенное описание процедура.

СОЕДИНЕНИЯ ВНУТРЕННЕЙ ПРОВОДКИ: ИЗМЕНЕНИЕ РАБОТЫ С 110 В НА 220 В

Теперь обратим внимание на внутреннюю проводку двухфазные и конденсаторные двигатели.Они почти идентичны, за исключением Конденсаторный пусковой двигатель имеет конденсатор. Оба мотора имеют два типа обмотки — обмотки пускателя и обмотки ходовые. Обмотки стартера определить направление вращения. Они из лёгкого провода. так как они используются только на короткое время для запуска, а затем отключается от цепи центробежным выключателем, когда двигатель почти до скорости. Щелчок слышен, когда двигатель замедляется до остановка — центробежный выключатель, щелкнув пусковые обмотки назад в цепь.Нумерация выводов, представленная на схемах, рисунках С 1 по 4, используется в трех двигателях в моем магазине, все из которых различное производство. Один из них британский по происхождению. Я предполагаю система нумерации универсальна, но я не могу быть уверен в этом, так как я не нашел этих диаграмм в печати. Если есть электрическая схема на ваш мотор, тем лучше; я тебе не нужен. Если нет, я дам столько уловок для определения потенциальных клиентов, сколько я могу:

Ведущий №8 обычно присоединяется к конденсатору или центробежному выключатель. Выводы № 6 и 7 обычно закапываются где-то в двигателе. и не видны. Если три провода скручены вместе, они, вероятно, представляют собой два вывода ходовой обмотки и вывод пусковой обмотки. Согласно статье в «Model Engineer» (том 145, номер 3620, стр. Ноябрь 1979 г., стр. 1262) пусковые обмотки имеют немного более высокую сопротивление, чем бегущие обмотки. На моем 1,5-сильном моторе Brooks пусковые обмотки имеют сопротивление 2.2 Ом и ходовые обмотки имеют сопротивление 1,2 Ом. Будьте предельно осторожны при изготовлении этих измерения, так как грязный контакт изменит результат измерения. Если только четыре вывода подходят к клеммной колодке, два, вероятно, работают выводы обмотки и два, вероятно, являются выводами пусковой обмотки № 5. и 8. Я не могу охватить все возможности, но это должно вам помочь. в начале работы.

На рисунках 1 и 3 показано сравнение двигателя, настроенного для работы на 220 В по сравнению с одним проводным для работы от 110 В.Обратите внимание, что пусковые обмотки соединены последовательно с одной из бегущих обмоток, когда мотор подключен к сети 220в. Несколько лет назад, когда я купил подержанный Мотор на 3/4 л.с. на замену трехфазному, который стоял в моем Hardinge мельницу, менее внимательный сотрудник мотоперемотки проинструктировал мне подключить выводы пусковой обмотки № 5 и 8 к ходовой обмотке. выводы №1 и 4 — по сути, на полный вход 220в. Мотор работал штраф в течение двух месяцев, а затем один раз при запуске, он закурил, сделал ужасно громкий вибрирующий шум, и вращался только на части своего нормальная скорость.К счастью, вышел из строя только конденсатор. Когда я купил новый конденсатор, поинтересовался подключением проводки на этот мотор так как он отличался от двух других в моем магазине. В владелец перемоточного цеха поручил мне разместить стартовый обмотки последовательно с бегущими обмотками так, чтобы они поглощали часть тока идет на пусковые обмотки и конденсатор, продление их продолжительности жизни.

Переоборудовав мотор для работы на 220в, стоит его протестировать. сначала на 110в.При правильном подключении он будет работать несколько медленнее. чем нормальная скорость.

R = ходовая обмотка
S = пусковая обмотка

 |
___ = конденсатор
---
 |

 |
 о
  \
   \ = центробежный переключатель
    V
 о
 |
 
 + ---------- + ----------------------- строка 1
   1 | 8 |
     | | + ----------- строка 2
     | ___ 4 |
     | --- |
    (| (
     ) о)
    (\ (
     ) \)
    (V (
     ) o) 220 В переменного тока
    (| (Прямое соединение
R1) () R2
    () S1 (_
     ) ()..
    (7 | (..
     ) +). .
    (6 | (<
     | (|
     | ) S2 | Рисунок 1
     | (|
   2 | 5 | 3 |
     + ---------- + ----------- +
 
 + ---------- + ----------------------- строка 1
   1 | 5 |
     | | + ----------- строка 2
     | (4 |
     | ) S2 |
    (((
     ) 6 | )
    (+ (
     ) 7 | )
    (((
     )) S1) 220 В перем.
    (((Обратное подключение
R1) | ) R2
    (о (_
     ) \)..
    (\ (..
     ) V). .
    (о (>
     | | |
     | ___ | фигура 2
     | --- |
   2 | 8 | 3 |
     + ---------- + ----------- +
 
 + ---------- + ----------- + ----------- строка 1
   1 | 8 | 4 |
     | | |
     | ___ |
     | --- |
    (| (
     ) о)
    (\ (
     ) \)
    (V (
     ) o) 110 В переменного тока
    (| (Прямое соединение
R1) () R2
    () S1 (_
     ) ()..
    (7 | (..
     ) +). .
    (6 | (<
     | (|
     | ) S2 | Рисунок 3
     | (|
   2 | 5 | 3 |
     + ---------- + ----------- + ----------- строка 2
 
 + ---------- + ----------- + ----------- строка 1
   1 | 5 | 4 |
     | | |
     | (|
     | ) S2 |
    (((
     ) 6 | )
    (+ (
     ) 7 | )
    (((
     )) S1) 110 В перем.
    (((Обратное подключение
R1) | ) R2
    (о (_
     ) \)..
    (\ (..
     ) V). .
    (о (>
     | | |
     | ___ | Рисунок 4
     | --- |
   2 | 8 | 3 |
     + ---------- + ----------- + ----------- строка 2
 

ПЕРЕКЛЮЧАТЕЛИ ВРАЩЕНИЯ И ПОДКЛЮЧЕНИЯ БАРАБАНА

Часто желательно изменить направление вращения двигателя.Из рисунков 1 через 4, очевидно, что поменяв местами соединения Все, что необходимо, - это выводы 5 и 8 пусковой обмотки. В На рисунках 5 и 6 показаны схемы подключения клемм в барабане. переключатель, управляющий двигателем 220 В. На рисунках 7 и 8 показан один и тот же переключатель. разводка для мотора 110в. Обратите внимание, что единственная разница во внутреннем проводка барабанного переключателя между 110 В и 220 В является связующим звеном между терминалы в нижнем левом углу. Обратите внимание на то, что на рисунках 7 и 8 Линия 2 - это провод под напряжением или под напряжением.

(ПРИМЕЧАНИЕ ИСПОЛНИТЕЛЯ ПИСАТЕЛЯ. Потерпите меня. передавать графическую информацию через ASCII. Следующая легенда помогите страдающему читателю следовать искусству пишущей машинки.)

ОБОЗНАЧЕНИЕ ПЕРЕКЛЮЧАТЕЛЯ БАРАБАНА: изображены 9 точек подключения. В центральные 3 точки соединяются либо с правыми 3 точками, как показано сначала или слева 3 точки, как показано вторым. На рисунках 5 через 8 некоторые из этих точек соединены вместе, а некоторые подключен к точкам проводки в двигателе.Эти точки подключения двигателя пронумерованы так же, как они были выше на рисунках с 1 по 4.

 (о) ---------------- В
              (о) (о)


                                  (o) ---------------- V
              (о) (о)



                                  (o) ---------------- V
              (о) (о)
                     Барабанный переключатель: соединение 1


               V ------------------ (o)
              (о) (о)


              (о) (о)
               ^ ------------------ (о)



               V ------------------ (o)
              (о) (о)
                     Барабанный переключатель: соединение 2
 
строка 1 (5) ---------------- V
-------------- (1) --__ + ------------------------ (*)
                     --__ /
                         / __
                        / --__ (8) ---------------- V
             (2 и 3) ----- + ------------------- (*)



строка 2 (4) ---------------- V
-------------- (*) --------------------------------- - (*)
                     Вперед (220в)
                    Рисунок 5. ------------------ (8)
              |
              |
строка 2 | (4) ----------------- V
------------- (*) ---------------------------------- - (*)
(горячий) Реверс (110В)
                    Рисунок 8
 
Несколько лет назад, когда упоминавшийся ранее мотор мощностью 1/2 л.с. в моем сгорел токарный станок, реверсивного переключателя у меня не было, а только стандартный однополюсный настенный выключатель, контролирующий ток.Я бездумно подключил этот переключатель к нейтральному (белому) привести. Когда мотор начал шипеть и дымить, я быстро перевернул выключить. К моему большому беспокойству, мотор продолжал шипеть, дымить и запустить! При сгорании обмотки произошло замыкание на корпус двигателя и замкнута цепь от горячего провода через оставшиеся обмотки к заземляющему проводу. Мне пришлось броситься к выключателю, чтобы выключить токарный станок. (Слава богу, я никогда не пытался сэкономить несколько центов, покупая электрический шнур без заземляющего провода или, в этом случае, я мог бы * был * заземляющий провод.)

Такой же поток возникает в проводке барабанного переключателя на 220 В, поскольку обе линии горячие (под напряжением), а линия 1 напрямую подключена к двигатель без промежуточного выключателя. В собственном магазине я решил эту проблема с магнитным пускателем; подробнее об этом позже. На рисунке 9 показано альтернативный тип конфигурации барабанного переключателя, который может быть столкнулся. К настоящему времени вы должны иметь некоторое представление о том, как расположить связи, поэтому я не буду их иллюстрировать. Если ты все еще в своем салатные дни и не можете позволить себе барабанный переключатель, альтернатива - используйте четырехпозиционный переключатель, который используется в бытовой электропроводке, когда три или более переключателя управляют одной и той же цепью.Электрический соединения показаны на рисунках с 9 по 13.

Есть два типа четырехпозиционных переключателей - крестового и проходного типа. - и вам нужно будет определить, какой у вас тип с помощью омметра или контрольная лампа. Я проиллюстрировал соединения только для двигателя 110 В, но нет причин, по которым ту же настройку нельзя использовать для 220В операция. С четырехпозиционным переключателем вам понадобится отдельный переключатель для включить и выключить мотор.

Пока мы говорим о том, что делать, я передам еще одну жемчужину.Люверсы для обуви служат прекрасными электрическими разъемами. Просто оберните оголенный провод вокруг столба и обжима. Иногда рэп в дырку с центром перфоратор необходим, чтобы расширить его, чтобы он поместился на винт Терминал. Далее вам понадобится четырех- или пятижильный «кабель» для подключения к переключиться на мотор. Поскольку в моем городке нет кабеля, Я сделал свой собственный, используя прозрачную пластиковую трубку с внутренним диаметром 5/8 дюйма и другой цвета 14- или 16-го калибра * многожильный * провод. Если кабель не слишком длинный, можно использовать плечики, чтобы протянуть провода.

(*) ---- (*) (*) (*) (*) (*)
                                                     | |
                                                     | |
(*) ---- (*) (*) (*) (*) (*)


(*) ---- (*) (*) (*) (*) ---- (*)
 Вперед Выкл Назад
Рисунок 9
 
 (1 и 4) ---- (8) (1 и 4) (8)
                       Сквозной | |
                       4-позиционный переключатель | |
                         110 v | |
 (5) ---- (2 и 3) (5) (2 и 3)
  Вперед Назад
Рисунок 10 Рисунок 11
 
 (1 и 4) (2 и 3) (1 и 4) (2 и 3)
  | | Крестообразный \ /
  | | 4-позиционный переключатель \
  | | 110 в / \
 (8) (5) (5) - - (8)
  Вперед Назад
Рисунок 12 Рисунок 13
 

ЗАЩИТА ДВИГАТЕЛЯ И МАГНИТНЫЕ СТАРТЕРЫ

Зачастую защитой двигателя пренебрегают.Fusebox или автоматический выключатель ничего не делает для защиты двигателя в случае перегрузки. Они просто защитите электропроводку дома, чтобы она не начала гореть, пока она спрятана в стена.

Dayton продает однополюсный ручной стартер двигателя с дробной мощностью, акция № 5X269, в которой перечислены (используемые для листинга) за 22 доллара. Их двухполюсные модель № 5X270 должна использоваться для подключений 220В и списков (используется для list) за 26 долларов. Нагревательный элемент, рассчитанный на рабочую силу тока мотор нужно покупать отдельно и перечислять (использованные для перечисления) за 4 доллара.

Многие бывшие в употреблении машины все еще поставляются с устройством защиты двигателя. прикрепил. В некоторых случаях это ручные устройства, а в других - магнитные пускатели. Почти всегда эти устройства настроены на трехфазный режим, поэтому вам нужно будет следовать инструкциям внутри крышки для перехода на однофазный режим и правильное напряжение. Вам нужно будет купить один или два нагревательных элемента, чтобы соответствовать рабочей силе тока защищаемого двигателя.Список номера деталей для нагревательных элементов обычно печатаются внутри крышку с инструкциями по подключению. Они стоят около 7 долларов за штуку. На магнитных пускателях также посмотрите на этикетку на магнитной катушке, чтобы убедитесь, что он соответствует напряжению, которое вы собираетесь использовать. В устройство защиты размещено в цепи между вилкой и барабанный переключатель. Таким образом, последовательность такова: вилка и шнур, ведущий в защитное устройство, затем барабанный переключатель, а затем двигатель.Некоторые двигатели имеют встроенные устройства защиты от тепловой перегрузки. Я полагаю, они работают, но я не доверял им с тех пор, как единственный мотор в моем Магазин, чтобы иметь один, был перегорел мотор токарного станка. Я признаюсь что защищены только более дорогие моторы в моем магазине.

Прежде чем перейти к следующей теме, последнее напоминание - всегда включайте заземляющий провод во всех ваших цепях, чтобы в случае короткого замыкания вы не земля.

УСТРАНЕНИЕ НЕПОЛАДОК

Есть только ограниченное количество вещей, которые могут пойти не так электрически с разделенными фазами и конденсаторными двигателями.Перечисление того, что может пойти не так легко. Объяснение того, как изолировать цепи для тестирования может быть трудным, и вам придется использовать свою изобретательность плюс схемы проводки я вам дал. Вам понадобится омметр или контрольная лампа. провести тестирование.

Если мотор даже не гудит, когда вы его подключаете, значит, это тоже не так. есть какое-либо питание или в одной из цепей произошел обрыв внутри мотора. Посмотрите на обмотки. Если один или несколько выглядят потемневшими и пахнет гари, наверное, сгорело.Это не кажется выгодным для ремонтников, чтобы перемотать небольшие однофазные двигатели, поэтому, если у вас сгорела обмотка, вероятно, придется заменить мотор.

Если мотор гудит, но не крутится, есть несколько вариантов, все имея дело с пусковыми обмотками. Убедитесь, что все связи находятся в нужном месте. Ищите перегоревшие обмотки. Исследовать конденсатор. Если из него вытекло несколько капель масла, ничего хорошего.

Снимите провода с конденсатора и проверьте его с помощью омметра, установленного на шкала 100x или 1000x.Игла должна ненадолго повернуться к 0 Ом. а затем вернитесь к верхнему пределу шкалы. Если не качается в сторону 0 Ом, закоротите конденсатор отверткой и попробуйте проверить опять таки; конденсатор мог иметь небольшой заряд, который мешал с этим тестом.

Центробежный переключатель обычно замкнут и пропускает ток, когда двигатель остановлен. Если этого не произошло, снимите концы раструба с двигателя. рамку и посмотрите на контакты центробежного переключателя.Нажать контакты вместе и проверьте их с помощью омметра, чтобы убедиться, что они не передавать ток. Масло или смазка из подшипников могут предотвратить контакты от замыкания. Посмотрите на контактные поверхности на предмет точечной коррозии или жжение. Если им это нужно, осветлите их точечным напильником или наждаком. бумагу, следя за тем, чтобы на подшипник не попала наждачная пыль.

Если вы не слышите щелчка при замедлении двигателя, значит, центробежный переключатель не работает.Снимите концы рамы с рамы и посмотрите на центробежный выключатель. Гири должны быть подвижными хотя и жесткий из-за натяжения пружины. Если подшипники сильно изношен, ротор может коснуться рамы и помешать двигателю от операционной. Я никогда такого не видел, но ожидал найти много люфт в валу двигателя и наличие ярких или прожженных пятен внутри рама, на которой трулся мотор.

Если двигатель запускается, но кажется, что он не обладает такой мощностью, как он следует, посмотрите, не сгорела ли одна из обмоток.Проверить, чтобы увидеть что все электрические соединения правильные и чистые. Убедись у вас нет двигателя, подключенного для работы от 220 В, когда вы используете только 110в.

Ряд публикаций послужил ссылками на то, что самопроизвольно вытекла из-под моего пера, и читатель может найти полезны следующие ссылки: "Simplified Electrical Wiring", Sears, Робак и компания; «Проверка и ремонт электродвигателей» от TAB Books, Inc.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *