Как выбрать оптимальный способ подключения ламп. Какие преимущества и недостатки у последовательного и параллельного соединения. Как рассчитать параметры цепи при разных типах подключения. Какие нюансы нужно учитывать при монтаже освещения.
Особенности последовательного соединения ламп
При последовательном подключении лампы соединяются друг за другом в одну цепь. Основные характеристики такой схемы:
- Ток через все лампы одинаковый
- Напряжение распределяется между лампами
- При выходе из строя одной лампы гаснет вся цепь
- Подходит для низковольтных цепей
Последовательное соединение позволяет подключать низковольтные лампы к сети 220В. Однако есть ряд нюансов, которые нужно учитывать:
Что нужно учитывать при последовательном подключении?
- Лампы должны быть рассчитаны на одинаковый ток
- Суммарное напряжение на лампах должно быть равно напряжению питания
- При разной мощности ламп они будут светить с разной яркостью
- Выход из строя одной лампы обесточивает всю цепь
Последовательное соединение чаще используется для декоративной подсветки или гирлянд. Для основного освещения его применяют редко из-за недостатков.
Преимущества параллельного подключения ламп
При параллельном соединении все лампы подключаются к общим проводам питания. Это наиболее распространенный способ подключения освещения. Его основные особенности:
- На всех лампах одинаковое напряжение
- Ток распределяется между лампами
- Выход из строя одной лампы не влияет на работу остальных
- Можно подключать лампы разной мощности
Почему параллельное соединение удобнее?
Параллельное подключение имеет ряд преимуществ по сравнению с последовательным:
- Надежность — перегорание одной лампы не обесточивает всю цепь
- Гибкость — можно легко добавлять и убирать лампы
- Возможность использовать лампы разной мощности
- Равномерное распределение напряжения
Благодаря этим преимуществам параллельное соединение является оптимальным для большинства систем освещения в быту и на производстве.
Расчет параметров цепи при разных схемах подключения
При проектировании системы освещения важно правильно рассчитать параметры электрической цепи. Рассмотрим основные формулы:
Расчет для последовательного соединения:
- Общее напряжение: U = U1 + U2 + … + Un
- Ток через лампы: I = I1 = I2 = … = In
- Общее сопротивление: R = R1 + R2 + … + Rn
Расчет для параллельного соединения:
- Напряжение на лампах: U = U1 = U2 = … = Un
- Общий ток: I = I1 + I2 + … + In
- Общее сопротивление: 1/R = 1/R1 + 1/R2 + … + 1/Rn
Правильный расчет позволит подобрать провода нужного сечения и защитную аппаратуру.
Особенности подключения разных типов ламп
Способ подключения зависит от типа используемых ламп. Рассмотрим особенности для наиболее распространенных видов:
Лампы накаливания
- Можно соединять как последовательно, так и параллельно
- При последовательном соединении напряжение делится между лампами
- Параллельное соединение предпочтительнее для бытового освещения
Светодиодные лампы
- Требуют соблюдения полярности при подключении
- Часто имеют встроенные драйверы для работы от 220В
- Для низковольтных светодиодов используют специальные блоки питания
Люминесцентные лампы
- Требуют использования балластов или ЭПРА
- Обычно подключаются параллельно
- Возможно последовательное включение двух ламп для уменьшения пульсаций
При подключении ламп разных типов важно учитывать их особенности и использовать подходящие схемы и комплектующие.
Практические советы по монтажу освещения
При самостоятельном монтаже системы освещения важно соблюдать ряд правил:
- Отключите электричество перед началом работ
- Используйте провода подходящего сечения
- Надежно изолируйте все соединения
- Проверяйте полярность при подключении светодиодов
- Устанавливайте выключатель в разрыв фазного провода
Соблюдение этих простых рекомендаций обеспечит безопасность и надежность работы системы освещения.
Распространенные ошибки при подключении ламп
При монтаже освещения нередко допускаются ошибки, которые могут привести к проблемам в работе или даже опасным ситуациям. Рассмотрим наиболее частые из них:
- Неправильный расчет нагрузки на провода
- Использование проводов малого сечения
- Некачественная изоляция соединений
- Подключение большого количества ламп на один выключатель
- Игнорирование полярности при подключении светодиодов
Чтобы избежать этих ошибок, важно тщательно планировать систему освещения и соблюдать правила электробезопасности при монтаже.
Выбор оптимальной схемы подключения ламп
Когда выбрать последовательное соединение?
- Для создания гирлянд и декоративной подсветки
- При необходимости подключить низковольтные лампы к сети 220В
- Для уменьшения общей яркости ламп
Когда оптимально параллельное подключение?
- Для основного освещения в доме или офисе
- При использовании ламп разной мощности
- Для обеспечения надежности работы системы освещения
- При необходимости добавлять или убирать светильники
В большинстве случаев для бытового и офисного освещения оптимальным выбором будет параллельное соединение ламп. Оно обеспечивает наибольшую гибкость и надежность системы.
Параллельное подключение лампочек
Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.
Параллельное подключение светильников к проводам питания
В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.
На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.
Схема подключений
Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:
- проводники графически обозначаются прямыми неразрывными линиями;
- соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
- электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.
Параллельное и последовательное соединение
Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.
Схема параллельного соединения лампочек
Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.
Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):
I = I1 + I2 + I3.
Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):
Р = Р1 +Р2 + Р3.
Сопротивление (R) для трех нагрузок определяется из выражения:
1/R = 1/R1 + 1/R2 + 1/R3,
где R1, R2, R3 – сопротивления лампочек.
Типы ламп и схемы подключения
Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.
Галогенные
Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).
Схема подключения галогенной лампы
Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках. Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.
Схема подключения галогенных ламп
Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.
Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).
Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.
Пример расчета
Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.
Потери в проводах питания лампочек
Напряжение на первой и второй лампочках составят:
V1 = VR(2r + R)/(4r2 +6rR + R2) = 10,34 В,
V2 = VR2/(4r2 +6rR + R2) = 9,54 В.
Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.
Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.
Люминесцентные
Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше. Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается.
На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L1) и (L2). Но к лампе (2) подключен дополнительный балластный конденсатор (Сб), благодаря которому создается сдвиг тока по фазе на 600.
Схема двухлампового светильника
В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.
Видео про подключения
Про особенности параллельного и последовательного подключения рассказывает видео ниже.
Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:
- начертить принципиальную электрическую схему системы освещения;
- выполнить расчет проводки;
- подобрать электрооборудование, арматуру и светильники;
- правильно выполнить монтаж лампочек.
Как соединить светодиодные лампы последовательно или параллельно. Как подключить точечные светильники параллельно
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Электрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.
- При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.
Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.
Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.
Перед последовательным соединением
Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.
- Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.
Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.
Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.
Лучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.
Все источники света люминесцентные (экономки), светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.
Последовательное и параллельное подключение двух и более источников света
Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.
Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.
Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.
При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.
Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.
Подключение лампы на один выключатель или на несколько
Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.
Интереснее является подключение так называемого проходного выключателя.
Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.
Усовершенствование освещения путём установки датчика движения
Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.
Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.
В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:
- проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
- автоматы питания освещения должны быть под замком;
- работы производить исправным инструментом.
Видео о подключении ламп
Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.
ВАЖНО!!! Опытный электрик слил в сеть секрет, как платить за электроэнергию вдвое меньше, легальный способ…На сегодняшний день их существует огромное количество, различной мощности (сверхяркие ), работающих от постоянного напряжения, которые можно подключать тремя способами:
- Параллельно.
- Последовательно.
- Комбинированно.
Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.
Основные принципы подключения
Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.
Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть . Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.
Как определить полярность?
Для решения вопроса существует всего 3 способа:
С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью . В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.
Способы подключения
Условно, подключение происходит по 2 способам:
- К стационарной сети промышленной частоты (50Гц) напряжением 220В;
- К сети с безопасным напряжением величиной 12В.
Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.
Рассмотрим каждый из вышеприведенных примеров по отдельности.
Подключение светодиодов к напряжению 220В
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).
Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:
На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.
Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.
Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:
Подключение светодиодов к сети 12В
12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.
Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.
Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:
В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:
- R = 1,3 кОм;
- P = 0,125Вт.
Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.
Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:
- Последовательное.
- Параллельное.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное подключение
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).
Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
Недостатки параллельного подключения:
- Большое количество элементов;
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить мощный светодиод?
Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.
Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.
Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.
Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.
Ошибки при подключении
Видео
Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.
Заключение
Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.
Секция Физика
Номинация: Учебные проекты
Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.
Научный руководитель: Колегойда Е.А., учитель начальных классов
Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.
Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.
Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.
Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным .
Если подать напряжение питания 220В на концы L и N , то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.
Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.
Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.
Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.
Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.
Вывод:
Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.
А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.
Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.
На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»
Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.
Именно «звездой» делают разводку по квартире при монтаже розеток.
Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.
Цель моей исследовательской работы: показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.
Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.
Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.
Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.
Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.
Исследования:
1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.
2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.
Полученные результаты и их оценка:
Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.
Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии ) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.
Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы
Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.
Первая помощь при поражении электрическим током.
Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.
Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами.
Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.
Вызови (самостоятельно или с помощью окружающих) «скорую помощь».
Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.
При отсутствии признаков жизни проведи сердечно-легочную реанимацию.
При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение.
Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца.
Освобождение пострадавшего от тока.
Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.
Сопротивление тела человека. От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.
Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.
Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.
Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.
перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;
надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;
перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;
предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат.
главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники. Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;
покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;
не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;
наиболее внимательно надо подойти к вопросу электробезопасности в помещениях, где обычно находятся дети;
мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;
поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;
осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.
Заземление бытовых приборов. Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки.
Эксплуатация мощных потребителей.
Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода.
Электробезопасность во влажных помещениях. Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение.
Использование инструмента и электроинструмента. Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение.
Общие советы по безопасности:
Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.
Д
ля проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.
Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.
Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию
на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.
Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.
Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1. Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1. Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя. Втыкаем эл. вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.
Эл. схема параллельного подключения выглядит вот так.
Особенностью такого соединения, является возможность, задействовать одновременно несколько потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.
На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно. Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода. Что бы предотвратить возгорание изоляции, при превышении эл. током определенного порога, срабатывает автоматический выключатель, и все гаснет.
В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные
электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными
параллельно, к жилам вводного питающего кабеля.
В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения, дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике. Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа и Ома, со всеми формулами и выкладками. Несколько упрощенный вариант этой темы вы можете посмотреть
Необязательное лирическое дополнение.
В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки. Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н. Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт. Их покрывали разноцветными лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво. К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона. Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное желание что-нибудь сделать.
Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало. Что же делать? Тут и пришло на помощь параллельное соединение. Паять к тому времени, я уже немного умел (научили на уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил зелеными чернилами, половину красными. Прилепил это все пластилином к большой стекляшке от старой люстры, найденной на помойке — настоящая получилась вещь!
Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен. Соединял я в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга, таких издевательств не вынес — сдох. Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело. Можно брать их хоть четыре(светильников), хоть шесть — да и подключать, к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт
параллельное, последовательное соединение, последовательность работ
После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.
Содержание статьи
Последовательное соединение
Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:
- Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.
Принцип последовательного соединения
- Если перегорает одна лампочка — не работают все. Найти причину неисправности можно только последовательно меняя лампочки во всей цепочке.
Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.
Схема последовательного соединения лампочек (точечных светильников)
Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.
Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).
Схема последовательного подключения точечных светильников через одноклавишный выключатель
У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.
Параллельное соединение
В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.
Схема параллельного подключения точечных светильников
Как подключить точечные светильники параллельно
Есть два способа параллельного соединения:
- Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
- Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.
Способы реализации параллельного подключения
Лучевая
Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.
Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.
Способы соединения проводов при лучевом исполнении
Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).
И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.
Подробнее о способах соединения электрических проводов читаем тут.
Пример исполнения лучевого подключения точечных светильников
Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.
Шлейфное соединение
Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.
Фактическая реализация параллельного соединения шлейфным способом
В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.
Как подключить точечные светильники к двойному выключателю
Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.
Подключение встроенных потолочных светильников со светодиодными лампами на 12 в
Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.
Схема подсоединения точечных светильников на 12 В через общий трансформатор
В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.
Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).
Подключение светильников на 12 В через двойной выключатель
Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.
Подключение точечных светильников на 12 В с персональным трансформатором
С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.
Схема подключения точечных светильников на 12 В с персональным трансформатором
В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.
Выбор сечения проводов
При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.
Таблица для определения сечения кабеля при подключении точечных светильников на 12 В
Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм2. Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.
Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.
Особенности монтажа
Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.
Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.
Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.
Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше
В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.
Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.
Как соединены между собой лампы на схемах
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Люстра с большим числом лампочекЭлектрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.
- При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.
Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.
Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.
Последовательное соединение и разная яркость лампочек 40 Вт и 60 ВтПеред последовательным соединением
Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.
- Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.
Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.
Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.
Параллельное соединение лампочекЛучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Параллельное и последовательное соединение лампочек
При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.
Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.
Последовательное и параллельное подключение ламп
Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.
При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.
Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.
Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.
Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.
Лампочки, соединенные параллельно
Параллельное соединение может быть лучевым и шлейфным:
- первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
- второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.
Параллельное соединение лампочек
Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.
Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.
Лампочки, соединенные последовательно
Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.
При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.
Последовательное соединение лампочек и параллельное – схема
Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.
Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.
Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.
Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.
Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.
Типы ламп и схемы подключения
Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.
Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.
Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.
Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.
В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.
Видео на тему
Школа электрика. Последовательное соединение ламп накаливания |
Как видим на рисунке выше обе лампочки HL1 и HL2 включены последовательно – одна за другой. Поэтому такое соединение называют последовательным.
Если поступает входное переменное напряжение 220В на провода L и N, то засветятся обе лампы, но гореть они будут в пол силы, точнее в половину накала. Так как сопротивление нитей ламп накаливания рассчитано на напряжение 220В, и когда они включены в соответствии со схемой, одна за другой, то за счет добавления сопротивления нити накала первой лампы, общее сопротивление возрастает, а значит, согласно закону Ома, напряжение уменьшится в два раза. Поэтому пр на каждой лампе напряжение 220В будет делиться пополам, и составит около 110В.
А если соединить три лампы?
В данном случае напряжение на каждой лампе будет уже 73 Вольт, так как будет делиться уже между тремя потребителями.
Так же хорошим практическим примером являются простые новогодние гирлянды. Здесь из кучи миниатюрных лампочек с низким питанием создается одна общая гирлянда на напряжение 220В.
Выводы: Недостатками этого типа подключения в области электрики является то, что если сгорит хоть одна из лампочек, гореть не будут все, так как нарушается целостность электрической цепи. И второй существенный недостаток это слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в электрике практически не используется.
Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.
Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.
В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.
- две лампы вкрученные в патроны
- два провода питания выходящие из патронов
Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.
Просто берете любой конец провода от каждой лампы и скручивает их между собой.
На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).
Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.
Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.
При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.
Соответственно и светить они будут менее чем в половину от своей изначальной мощности.
Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.
Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт
Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.
Что это дает нам в практическом смысле при реализации данных схем?
Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.
Возьмите к примеру лампочки, кардинально отличающиеся по мощности – 25Вт и 200Вт и соедините последовательно.
Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.
Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.
При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.
Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.
Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.
Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.
Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.
Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.
Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.
У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.
Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.
В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении – другая.
При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?
Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.
Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.
При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».
А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.
В то время как большей, практически потухнет. Все как и было описано выше.
Где же можно в быту, применить такую казалось бы не практичную схему?
Самое широко известное использование подобных конструкций – это елочные новогодние гирлянды.
Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.
Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход – включить последовательно еще одну.
Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.
Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.
Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?
Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.
Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
При одноименных фазах, лампочки светиться не будут (например фА ввод№1 – фА ввод№2).
А при разных (фА ввод№1 – фВ ввод№2) – они загорятся.
Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.
Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.
Что-то подобное зачастую применяется в инкубаторах.
Теперь давайте рассмотрим параллельную схему соединения.
При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.
Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.
В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.
На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.
Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.
Данная схема применяется повсеместно – в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.
И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
Напряжение на них подается одновременно и всегда составляет номинальные 220В.
Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.
Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).
Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при паралл ельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.
Свойства и технические характеристики резисторов
Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.
Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для делителей напряжения – последовательное.
На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.
Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.
Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.
Для соединения резисторов в схемах используются три разных способа подключения – паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.
Мощность при последовательном соединение
При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.
Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.
Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:
- P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
- P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
- P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
- P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.
Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.
Мощность при паралл ельном соединение
При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.
Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:
- 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
- Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
- Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
- Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
- Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.
Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.
Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.
Как подключить лампы последовательно — Яхт клуб Ост-Вест
При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.
Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.
Последовательное и параллельное подключение ламп
Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.
В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.
Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.
Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.
Лампочки, соединенные параллельно
Параллельное соединение может быть лучевым и шлейфным:
- первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
- второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.
Параллельное соединение лампочек
Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.
Лампочки, соединенные последовательно
Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.
При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.
Последовательное соединение лампочек и параллельное – схема
Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.
Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.
Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.
Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.
Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.
Типы ламп и схемы подключения
Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.
Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.
Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.
Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.
В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.
Видео на тему
тел. +7(929)597-18-32 +7(916)271-49-67 e-mail: [email protected] Мы находимся в Москве Сб и Вс выходные
Новая статья по освещению в кукольном домике. Как подключить несколько светильников (параллельное и последовательное подключение).
Множество схем подключения.
Подборка интересных мастер-классов по элементам кукольного домика
Search
Параллельное и последовательное подключение
Как подключить в кукольном домике несколько светильников
Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.
Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.
Примечание: в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.
Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.
Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.
Последовательное подключение
Выглядит оно вот так.
Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.
Достоинства – простота соединения.
Недостатки – если перегорела хоть одна лампочка, то не будет работать вся цепь.
Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.
При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U, измеряется в вольтах V. Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.
Пример №1: вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.
У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.
Подробнее о том, как выбрать источник питания написано в этой статье
Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.
Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.
Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.
Исходя из этого , для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения – параллельное.
Читайте так же статьи по теме:
- Обзор миниатюрных ламп накаливания
- Диоды или лампы накаливания
Параллельное подключение лампочек
Вот так выглядит параллельное подключение лампочек.
В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.
При выходе из строя одной лампочки другие продолжают гореть.
Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.
По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.
Вывод: при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.
Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.
Комбинированное подключение
Пример комбинированного подключения.
Три последовательные цепи, соединенные параллельно
А вот другой вариант:
Три параллельные цепи, соединенные последовательно.
Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки – как параллельное соединение.
Пример
При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.
Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.
Но нельзя включить одну-единственную лампочку.
При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:
А при нарушении на последовательном участке вот так:
Для того, чтобы рассчитать такую сложную последовательно-параллельную цепь, её нужно разбить на участки последовательные и параллельные. Каждый участок просчитать отдельно.
Пример:
Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.
На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.
Пример
У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь – последовательно. Разбиваем систему на три параллельных цепи.
В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.
Пример
Для кукольных домиков можно использовать такое смешанное подключение.
Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух – по одной лампочке, есть двухрожковое бра из двух лампочек и трехрожковая люстра. В люстре и бра лампочки соединены последовательно.
У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V. А у тех, что соединены последовательно напряжение складывается на участке цепи
. Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки).
Для участка люстры 12V:3=4V (напряжение одной лампочки люстры).
Больше трех лампочек в одном светильнике соединять последовательно не стоит.
Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике , самые базовые принципы. Удачи!
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Электрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.
- При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.
Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.
Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.
Перед последовательным соединением
Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.
- Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.
Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.
Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.
Лучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
“>
Серияи параллельное соединение | Клуб электроники серии
и параллельное соединение | Клуб электроникиСледующая страница: Напряжение и ток
См. Также: символы и электрические схемы
Соединительные компоненты
Есть два способа подключения компонентов:
В серии , так что каждый компонент имеет одинаковый ток .
Напряжение аккумулятора делится между двумя лампами. Каждая лампа будет иметь половину напряжения батареи, если лампы идентичны.
Параллельно , так что каждый компонент имеет одинаковое напряжение .
Обе лампы имеют полное напряжение батареи. Ток батареи делится между двумя лампами.
Большинство цепей содержат как последовательные, так и параллельные соединения
Иногда используются термины последовательная цепь и параллельная цепь , но только самые простые схемы полностью относятся к тому или иному типу. Лучше обратиться к конкретным компонентам и сказать, что они соединены последовательно, или соединены параллельно .
Например: схема показывает резистор и светодиод, соединенные последовательно (справа) и две лампы, соединенные параллельно (в центре). Выключатель соединен последовательно с двумя лампами.
Другой пример см. Ниже в разделе «Параллельные лампы».
Схема с последовательным
и параллельным подключением.
Лампы серии
Если несколько ламп соединены последовательно, все они будут включаться и выключаться вместе с помощью подключенного переключателя. в любом месте цепи.Напряжение питания делится между лампами поровну (при условии, что все они идентичны).
Если перегорит одна лампа, все лампы погаснут из-за разрыва цепи.
Параллельные лампы
Если несколько ламп подключены параллельно, каждая из них имеет полное напряжение питания. Лампы можно включать и выключать независимо, подключив выключатель последовательно с каждая лампа , как показано на принципиальной схеме. Такое расположение используется для управления лампами в зданиях.
Этот тип схемы часто называют параллельной схемой , но вы можете видеть, что это не совсем так просто — переключатели идут последовательно с лампами, а именно эти Пары переключателя и лампы , соединенные параллельно.
Коммутаторы серии
Если несколько двухпозиционных переключателей подключены последовательно, все они должны быть замкнуты (включены), чтобы замкнуть цепь.
На схеме показана простая схема с двумя последовательно включенными переключателями для управления лампой.
Переключатель S1 И Переключатель S2 должен быть замкнут, чтобы зажечь лампу.
Параллельные переключатели
Если несколько двухпозиционных переключателей подключены параллельно, только один должен быть замкнут (включен) для замыкания цепи.
На схеме показана простая схема с двумя переключателями, включенными параллельно для управления лампой.
Выключатель S1 ИЛИ Выключатель S2 (или оба) должны быть замкнуты, чтобы зажечь лампу.
Следующая страница: Напряжение и ток | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Как подключить фары последовательно? Установка основной электропроводки
Как последовательно соединить точки освещения?В сегодняшнем руководстве по монтажу базовой электропроводки мы покажем , как подключать точки освещения в быках? .Хотя мы знаем, что последовательное соединение для бытовой электропроводки, такой как вентиляторы, выключатели, лампочки и т. Д., Не является предпочтительным способом вместо параллельной или последовательно-параллельной проводки. Но в некоторых случаях нам также необходимо последовательно подключить и подключить электроприборы.
Как подключить фары последовательно?На рисунке выше все три световые точки соединены последовательно. Каждая лампа подключается к следующей, то есть L (линия, также известная как фаза или фаза), подключается к первой лампе, а другие лампы подключаются через средний провод, а последний провод как N (нейтральный) подключается к тогда напряжение питания.
согласно аналогии с последовательной схемой протекающий ток одинаков во всех этих лампах накаливания / лампах, но напряжение другое, в отличие от параллельной схемы, где напряжение одинаково в каждой точке, где ток различен.
Один из основных недостатков схемы последовательного освещения, добавление или удаление одной лампы из схемы повлияет на всю схему, т. Е. Другие лампы будут тускнеть в свете, а другие подключенные устройства и приборы не будут получать достаточное или требуемое рабочее напряжение, потому что Напряжение в последовательной цепи различается в каждой точке, но текущий ток одинаков.
Любое количество точек освещения или нагрузки может быть добавлено (в соответствии с расчетом нагрузки схемы или подсхемы) в такой схеме, просто продлив проводники L и N на другие лампы, но они не будут гореть в соответствии с к номинальной выходной эффективности. Короче говоря, добавление большего количества лампочек в последовательную цепь приведет к затемнению остальных световых точек.
Еще одним серьезным дефектом цепи последовательного освещения является то, что, поскольку все лампы или лампочки подключены между линией L и нейтралью N соответственно, если одна из лампочек выходит из строя, остальная часть цепи не будет работать, поскольку цепь будет разомкнута, как показано на рисунке ниже.Здесь вы можете увидеть, что на линейном проводе, подключенном к лампе 3, есть перерез, поэтому лампа выключена, а остальная цепь работает нормально, т.е. лампочки светятся.
Фонари, подключенные последовательно.Недостатки последовательной цепи освещения.
- Обрыв провода, отказ или удаление любой отдельной лампы приведет к разрыву цепи и остановке работы всех остальных, поскольку в цепи протекает только один единственный путь тока.
- Если в цепь последовательного освещения добавлено больше ламп, их яркость уменьшится.потому что напряжение распределяется по последовательной цепи. Если мы добавим больше нагрузок в последовательной цепи, падение напряжения возрастет, что не является хорошим признаком для защиты электроприборов.
- Последовательная проводка типа «ВСЕ или НЕТ» означает, что все устройства будут работать одновременно или все они отключатся, если произойдет сбой в любом из подключенных устройств в последовательной цепи.
- Высокое напряжение питания необходимо, если нам нужно добавить дополнительную нагрузку (лампочки, электрические обогреватели, кондиционер и т. Д.) В последовательную цепь.Например, если пять ламп 220 В должны быть подключены последовательно, то напряжение питания должно быть: 5 x 220 В = 1,1 кВ.
- Общее сопротивление последовательной цепи увеличивается (а ток уменьшается), когда в цепь добавляется дополнительная нагрузка.
- В соответствии с будущими потребностями, в последовательную цепь тока следует добавлять только те электроприборы, если они имеют тот же номинальный ток, что и ток, одинаковый в каждой точке последовательной цепи. Однако мы знаем, что электрические приборы и устройства i.е. электрические лампочки, вентилятор, обогреватель, кондиционер и т. д. имеют разный номинальный ток, поэтому их нельзя подключать последовательно для бесперебойной и эффективной работы.
Преимущества :
- При последовательном подключении требуется кабель меньшего размера.
- Мы используем для защиты цепи для последовательного подключения предохранителей и автоматических выключателей с другими приборами.
- Последовательная цепь не может легко получить накладные расходы из-за высокого сопротивления, когда в цепь добавляется дополнительная нагрузка.
- Срок службы батареи в последовательной цепи больше, чем в параллельной.
- Это наиболее простой метод электрического подключения, который позволяет легко обнаружить и устранить неисправность по сравнению с параллельным или последовательно-параллельным подключением.
Полезно знать:
- Выключатели и предохранители должны быть подключены через линию (под напряжением).
- Параллельное подключение электрических устройств и приборов, таких как вентилятор, розетка, лампочка и т. Д., Предпочтительнее, чем последовательное подключение.
- Метод параллельного или последовательно-параллельного подключения более надежен, чем последовательный.
Предупреждение:
- Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда его не упустят. Пожалуйста, прочтите все предостережения и инструкции при выполнении этого руководства на практике.
- Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
- Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
- Работать с электричеством только в присутствии лиц, имеющих хорошие знания, практическую работу и опыт, умеющих обращаться с электричеством.
- Прочтите все инструкции и предупреждения и строго следуйте им.
- Выполнение собственных электромонтажных работ опасно, а также незаконно в некоторых регионах. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
- Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате.Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.
Сопутствующие руководства по установке базовой домашней электропроводки:
Учебное пособие по физике: два типа соединений
Когда в цепи с источником энергии присутствуют два или более электрических устройства, существует несколько основных способов их соединения. Они могут быть подключены последовательно или подключены параллельно . Предположим, что в одну цепь включены три лампочки.При последовательном соединении они соединяются таким образом, чтобы отдельный заряд проходил через каждую из лампочек последовательно. При последовательном соединении заряд проходит через каждую лампочку. При параллельном подключении один заряд, проходящий через внешнюю цепь, будет проходить только через одну из лампочек. Лампочки помещаются в отдельную ветвь, и заряд, проходящий через внешнюю цепь, проходит только через одну из ветвей на обратном пути к клемме с низким потенциалом.Способы подключения резисторов будут иметь большое влияние на общее сопротивление цепи, общий ток в цепи и ток в каждом резисторе. В Уроке 4 мы исследуем влияние типа подключения на общий ток и сопротивление цепи.
Обычная физическая лаборатория состоит в построении обоих типов цепей с лампами, подключенными последовательно, и лампами, подключенными параллельно. Эти две схемы сравниваются и противопоставляются.
Основные вопросы, вызывающие беспокойство при такой лабораторной деятельности, как правило, следующие:
- Что происходит с общим током в цепи при увеличении количества резисторов (лампочек)?
- Что происходит с общим сопротивлением в цепи при увеличении количества резисторов (лампочек)?
- Если один из резисторов выключится (т.е. лампочка погаснет, ), что произойдет с другими резисторами (лампочками) в цепи? Они остаются на (т.е., лит)?
При проведении лабораторных работ для двух типов цепей производятся совершенно разные наблюдения. Последовательная цепь может быть построена путем соединения лампочек таким образом, чтобы оставался единственный путь для потока заряда; луковицы добавляются к той же линии без точки ветвления. По мере того, как добавляется все больше и больше лампочек, яркость каждой лампочки постепенно уменьшается.Это наблюдение является индикатором того, что ток в цепи уменьшается.
Итак, для последовательных цепей по мере добавления резисторов общий ток в цепи уменьшается. Это уменьшение тока согласуется с выводом о том, что общее сопротивление увеличивается.
Последнее наблюдение, которое является уникальным для последовательных цепей, — это эффект вынимания лампы из розетки. Если одна из трех лампочек в последовательной цепи вывинчивается из своего патрона, то наблюдается, что остальные лампочки сразу же гаснут.Чтобы устройства в последовательной цепи работали, каждое устройство должно работать. Если один погаснет, погаснут все. Предположим, что вся бытовая техника на домашней кухне подключена последовательно. Чтобы холодильник работал на этой кухне, должны быть включены тостер, посудомоечная машина, мусоропровод и верхний свет. Чтобы одно устройство, включенное последовательно, работало, все они должны работать. Если ток равен , отрежьте от любого из них, он отключается от всех. Совершенно очевидно, что приборы на кухне не подключены последовательно.
Исследование параллельных подключенийИспользуя тот же набор проводов, D-элементов и лампочек, можно таким же образом исследовать параллельные цепи. Можно исследовать влияние количества резисторов на общий ток и общее сопротивление. На схемах ниже изображены обычные способы построения схемы с параллельным подключением лампочек. Следует отметить, что исследование общего тока для параллельных соединений требует добавления индикаторной лампы .Лампа индикатора размещена вне ответвлений и позволяет наблюдать влияние дополнительных резисторов на общий ток. Лампочки, размещенные в параллельных ветвях, показывают только ток, протекающий через эту конкретную ветвь. Поэтому, исследуя влияние количества резисторов на общий ток и сопротивление, нужно внимательно следить за лампочкой индикатора, а не за лампочками, помещенными в ответвления. На диаграмме ниже показаны типичные наблюдения.
Из показаний лампочек индикаторов на приведенных выше схемах видно, что добавление большего количества резисторов приводит к тому, что лампочка индикатора становится ярче. Для параллельных цепей с увеличением количества резисторов общий ток также увеличивается. Это увеличение тока согласуется с уменьшением общего сопротивления. Добавление резисторов в отдельную ветвь приводит к неожиданному результату уменьшения общего сопротивления!
Если отдельная лампочка в параллельной ветви вывинчивается из патрона, то ток в общей цепи и в других ветвях все равно остается.Удаление третьей лампочки из патрона приводит к преобразованию схемы из параллельной цепи с тремя лампами в параллельную цепь с двумя лампами. Если бы приборы на домашней кухне были подключены параллельно, то холодильник мог бы работать без включения посудомоечной машины, тостера, мусоропровода и верхнего освещения. Одно устройство может работать без включения других. Поскольку каждое устройство находится в своей отдельной ветви, выключение этого устройства просто прекращает подачу заряда в эту ветвь.По другим ответвлениям к другим приборам по-прежнему будет поступать заряд. Совершенно очевидно, что бытовая техника в доме подключена параллельно.
Эффект добавления резисторов совершенно иной, если они добавляются параллельно, по сравнению с их последовательным соединением. Последовательное добавление большего количества резисторов означает увеличение общего сопротивления; тем не менее, добавление большего количества резисторов параллельно означает уменьшение общего сопротивления.Тот факт, что можно добавить больше резисторов параллельно и добиться меньшего сопротивления, многих очень беспокоит. Аналогия может помочь прояснить причину этой изначально надоедливой правды.
Поток заряда по проводам цепи можно сравнить с потоком автомобилей по платной дороге в очень густонаселенном мегаполисе. Основными источниками сопротивления на платных дорогах являются посты. Остановка автомобилей и принуждение их к уплате дорожных сборов не только замедляет движение автомобилей, но и в районе с интенсивным движением, также вызовет узкое место с резервной копией на многие мили.Скорость, с которой автомобили проезжают через точку на этой платной системе, значительно снижается из-за наличия платы за проезд. Понятно, что пункты пропуска дороги — это главный фактор, препятствующий потоку автомобилей.
Теперь предположим, что в попытке увеличить скорость потока Управление взимания платы за проезд решает добавить еще две точки взимания платы за проезд на конкретной станции взимания платы, где узкое место создает проблемы для путешественников. Они рассматривают два возможных способа подключения своих платных пунктов оплаты — последовательно или параллельно. При добавлении платных постов (т.е., резисторы) последовательно, они добавляли бы их таким образом, чтобы каждая машина, движущаяся по шоссе, должна была бы последовательно останавливаться на каждой плате. При наличии только одного пути через пункты взимания платы за проезд каждая машина должна будет останавливаться и платить за проезд в каждой будке. Вместо того, чтобы платить 60 центов один раз в одной будке, теперь им придется платить по 20 центов трижды в каждой из трех платных. Совершенно очевидно, что добавление платных постов последовательно имело бы общий эффект увеличения общего сопротивления и уменьшения общей скорости потока автомобилей (т.э., ток).
Другим способом добавления двух дополнительных пунктов взимания платы на этой конкретной станции сбора платы за проезд может быть параллельное добавление пунктов взимания платы. Каждую будку можно разместить в отдельном филиале. Машины, проезжающие по платной дороге, останавливались только у одной из трех будок. У автомобилей будет три возможных пути, по которым они будут проезжать через станцию взимания платы, и каждая машина выберет только один из них. Совершенно очевидно, что параллельное добавление платных постов приведет к уменьшению общего сопротивления и увеличению общей скорости потока автомобилей (т.е., ток) по платной дороге. Как и в случае параллельного добавления большего количества электрических резисторов, добавление дополнительных плат в параллельных ветвях создает меньшее общее сопротивление. Обеспечивая большее количество путей (то есть ответвлений), по которым заряд и автомобили могут проходить через узкие места, скорость потока может быть увеличена.
Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать — это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, расположить и подключить их так, как вам нужно. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).
1. Обратите внимание на электрическую проводку, указанную ниже. Укажите, являются ли соединения последовательными или параллельными. Объясните каждый выбор.
2. Ниже показаны две электрические цепи. Для каждой цепи укажите, какие два устройства подключены последовательно, а какие — параллельно.
Последовательно? ___________________ Параллельно? _________________ | Последовательно? ___________________ Параллельно? _________________ |
и параллельные соединения Серия
и параллельные соединения Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки Следующая страница: Напряжение и ток
См. Также: Условные обозначения и электрические схемы.
Соединительные элементы
Есть два способа подключения компонентов:Последовательнотак что каждый компонент имеет одинаковый ток . Напряжение аккумулятора делится между двумя лампами. | |
Параллельнотак что каждый компонент имеет одинаковое напряжение . Обе лампы имеют полное напряжение батареи. |
Большинство цепей содержат сочетание последовательных и параллельных соединений
Иногда используются термины последовательная цепь и параллельная цепь , но только самые простые схемы полностью относятся к тому или иному типу.Лучше обратиться к конкретным компонентам и сказать, что они соединены последовательно или соединены параллельно .Например: на схеме справа показаны резистор и светодиод, соединенные последовательно . (справа) и две лампы соединены параллельно (в центре). Выключатель соединен последовательно с двумя лампами.
См. Другой пример в разделе «Параллельные лампы» ниже.
Лампы серии
Если несколько ламп соединены последовательно, все они будут включаться и выключаться одновременно. переключателем, подключенным в любом месте цепи.Напряжение питания делится поровну между лампами (при условии, что все они идентичны). Если перегорит одна лампа, все лампы погаснут из-за разрыва цепи.Рождественские огни
Лампы на елке соединены последовательно.Обычно можно ожидать, что все лампы погаснут, если одна задует, но лампы на елке особенные! Они предназначены для короткого замыкания (проводят как проволочная перемычка) при перегреве, поэтому цепь не разрывается, а другие лампы продолжают гореть, что упрощает поиск неисправная лампа.В комплект также входит одна лампа-предохранитель, которая нормально перегорает.
Если имеется 20 ламп и напряжение в сети составляет 240 В, каждая лампа должна быть подходящей. для источника питания 12 В, потому что 240 В поровну делятся между 20 лампами: 240 В ÷ 20 = 12 В.
ВНИМАНИЕ! Лампы для новогодней елки могут показаться безопасными, потому что они используют только 12 В, но они подключены к электросети, что может привести к летальному исходу. Перед заменой лампы всегда отключайте ее от сети.Напряжение на держателе Отсутствует лампа — это полные 240В электросети! (Да, действительно!)
Параллельные лампы
Если несколько ламп соединены параллельно, каждая из них имеет полное напряжение питания. Лампы можно включать и выключать независимо, подключив выключатель последовательно с каждая лампа , как показано на принципиальной схеме. Такое расположение используется для управления лампами. в зданиях. Этот тип схемы часто называют параллельной схемой , но вы можете видеть, что это
не совсем так просто — переключатели идут последовательно с лампами, а именно эти
Пары переключателя и лампы соединены параллельно.
Коммутаторы серии
Если несколько двухпозиционных переключателей подключены последовательно, все они должны быть замкнуты (включены). чтобы замкнуть цепь.На схеме показана простая схема с двумя переключателями, подключенными последовательно к управлять лампой.
Переключатель S1 И Переключатель S2 должен быть замкнут, чтобы зажечь лампу.
Параллельные переключатели
Если несколько двухпозиционных переключателей подключены параллельно, необходимо замкнуть (включить) только один. чтобы замкнуть цепь.На схеме показана простая схема с двумя переключателями, включенными параллельно для управления лампой.
Выключатель S1 ИЛИ Выключатель S2 (или оба) должны быть замкнуты, чтобы зажечь лампу.
Следующая страница: Напряжение и ток | Изучение электроники
© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker.Это сообщение не появляется на лицензированной копии WebWhacker.
Что такое последовательное и параллельное соединение и когда что применять? — служба поддержки клиентов
Возможны два различных метода подключения: последовательное соединение и параллельное соединение. Вы должны знать разницу в проводке светодиодного освещения. Светодиод должен быть подключен либо последовательно, либо параллельно. Как они должны быть связаны, зависит от источника света. Неправильное соединение со светодиодами приведет к выходу из строя светодиодных фонарей.
Последовательный порт на 350 мА, 500 мА, 700 мА и 1050 мАТребуется последовательное соединение со светодиодной подсветкой на 350 мА, 500 мА, 700 мА и 1050 мА. В этом случае вы используете источник питания с регулируемым током.
При последовательном подключении есть только один поток. Ток входит в первую точку через +, а затем уходит через -, чтобы перейти к следующей точке и сделать то же самое с третьей точкой. Ток течет таким образом в одном направлении, пока все точки не будут снабжены током.Всякий раз, когда хотя бы одна точка нарушается, цепь разрывается. Дефектное пятно больше не может проводить ток, поэтому все виды спорта в цепи выходят из строя.
Однако самые современные светодиодные прожекторы защищены от этого. Эти защищенные точки имеют встроенный мост, который позволяет току течь к другим точкам цепи в случае пробоя.
Параллельно с 12 В, 24 В и 230 ВТребуется параллельное подключение со светодиодной подсветкой на 12 В, 24 В и 230 В.В этом случае вы используете подачу напряжения.
При параллельном подключении начальные (+) и конечные (-) точки (-) разных точек соединяются друг с другом. В отличие от последовательного соединения, питание при параллельном соединении может проходить через несколько цепей. Всякий раз, когда одна точка выходит из строя, все остальные точки не выходят из строя. Электроэнергия все еще может достигать других точек в цепи.
На рисунке ниже показано, что происходит с силовой цепью при выходе из строя одной точки.При параллельном подключении силовая цепь остается неизменной, а все остальные точки продолжают работать. Однако при последовательном соединении, когда выходит из строя одна точка, питание больше не может циркулировать, поэтому другие точки выходят из строя.
При параллельном подключении силовая цепь продолжается. При последовательном подключении цепь питания не может продолжаться.
Чтобы продлить срок службы светодиодных фонарей, мы советуем подключать их к источнику постоянного тока.
лампочек последовательно и параллельно — Научные проекты
Сбор информации:
Узнайте об электричестве, напряжении и токе.Прочтите книги, журналы или спросите профессионалов, которые могут знать, чтобы узнать, как соединительные цепи влияют на распределение электричества между различными устройствами. Следите за тем, откуда вы получили информацию. Ниже приведены образцы информации, которую вы можете найти:
Что такое электричество? Электричество — это поток электронов в проводнике, таком как медный провод. (Это почти как поток воды в трубе. Чтобы вода текла с одной стороны на другую, с одной стороны должно быть некоторое избыточное давление.
Что такое напряжение? Напряжение — это разница в давлении или концентрации электронов между двумя точками. Откройте водопроводный кран и попытайтесь остановить воду рукой. Вы увидите, что давление высокое. Это давление, которое заставляет воду выходить с высокой скоростью. Когда мы говорим об электричестве, это давление называется напряжением.
Что сейчас? Текущее количество электронов, текущих в секунду. Представьте себе широкую реку. Хотя вода движется медленно, каждую секунду мимо вас проходит большое количество воды.Теперь о шланге для воды, которым вы поливаете свой сад. Хотя вода внутри шланга движется очень быстро, общее количество воды, проходящей через одну точку шланга, невелико. Заполнение бассейна одним шлангом может занять несколько дней; в то время как медленный поток воды в большой реке может заполнить тот же бассейн за несколько секунд. Таким образом, поток воды в реке высокий, а в шланге — низкий.
Что такое нагрузка? Нагрузка или резистор — это все, что потребляет электричество.Например, лампа в электрической цепи — это нагрузка.
Что такое параллельная цепь? Параллельная схема имеет более одного резистора (все, что использует электричество для работы) и получила свое название от наличия нескольких (параллельных) путей для движения. Заряды могут перемещаться по любому из нескольких путей. Если один из элементов в цепи сломан, заряды не будут перемещаться по этому пути, но другие пути будут продолжать пропускать заряды через них. Параллельные цепи встречаются в большинстве бытовых электропроводок.Это сделано для того, чтобы свет не переставал работать только из-за того, что вы выключили телевизор.
Что такое последовательная цепь?
Цепи сериииногда называют токовой или гирляндной связью. Ток, протекающий в последовательной цепи, должен проходить через каждый компонент в цепи. Следовательно, все компоненты в последовательном соединении проводят одинаковый ток.
Свойства цепей — Электрические цепи, переменного и постоянного тока — GCSE Physics (Single Science) Revision
Компоненты в электрических цепях могут быть соединены последовательно или параллельно.
Последовательные соединения
Компоненты, которые подключаются друг за другом в одном контуре цепи, подключаются последовательно. Ток, который протекает через каждый компонент, подключенный последовательно, является одно и тоже.
Две последовательно соединенные лампы
На принципиальной схеме показана цепь с двумя последовательно включенными лампами. Если одна лампа сломается, другая лампа не загорится.
Две лампы, соединенные последовательно с разомкнутым переключателем и ячейкой Цепи серииполезны, если вы хотите получить предупреждение о том, что один из компонентов в цепи вышел из строя.Например, автоматический выключатель или предохранитель должны быть подключены последовательно, чтобы они работали. Если при поломке одной лампочки все гирлянды на елке гаснут, они соединяются последовательно.
Сумма всех разностей потенциалов на компонентах в последовательной цепи равна общей разности потенциалов на источнике питания.
Параллельное соединение
Компоненты, подключенные к отдельным контурам, подключаются параллельно. Ток распределяется между каждым компонентом, подключенным параллельно.Общее количество тока, протекающего в переход, или разделение, равно общему текущему току. Ток описывается как сохраненных .
Две лампы, подключенные параллельно
На принципиальной схеме показана цепь с двумя лампами, подключенными параллельно. Если одна лампа лопнет, другая лампа по-прежнему будет гореть.
Две лампы, соединенные параллельно с разомкнутым выключателем и ячейкаФонари в большинстве домов подключаются параллельно. Это означает, что все они получают полное напряжение, и если одна лампочка перегорает, остальные остаются включенными.
Для параллельной цепи ток от источника питания больше, чем ток в каждая ветка. Сумма всего тока в каждой ветви равна току от источника питания.
- Вопрос