Подключения электродвигателя. Подключение электродвигателя: схемы, способы и особенности для разных типов двигателей

Как правильно подключить электродвигатель. Какие существуют схемы подключения трехфазных и однофазных электродвигателей. Чем отличается подключение звездой и треугольником. Как определить выводы обмоток двигателя.

Содержание

Основные схемы подключения трехфазных электродвигателей

Для подключения трехфазных асинхронных электродвигателей используются две основные схемы:

  • Звезда
  • Треугольник

Выбор схемы подключения зависит от напряжения сети и параметров самого двигателя. Рассмотрим особенности каждой схемы подробнее.

Схема подключения «звезда»

При соединении обмоток звездой:

  • Начала обмоток подключаются к фазам сети
  • Концы обмоток соединяются в общую точку (нулевую точку)
  • Напряжение на обмотке составляет 220В
  • Линейное напряжение между обмотками — 380В

Преимущества подключения звездой:

  • Более плавный пуск двигателя
  • Возможность кратковременной перегрузки
  • Повышенная надежность

Недостаток — мощность двигателя ниже номинальной.


Схема подключения «треугольник»

При соединении обмоток треугольником:

  • Конец одной обмотки соединяется с началом следующей
  • На соединения подаются фазы сети
  • Напряжение на обмотке равно линейному напряжению сети (380В)

Преимущества подключения треугольником:

  • Максимальная мощность двигателя
  • Повышенный вращающий момент
  • Лучшие тяговые характеристики

Недостаток — высокие пусковые токи и больший нагрев двигателя.

Как определить схему подключения двигателя

Схема подключения обычно указывается на шильдике (заводской табличке) электродвигателя. Типовые обозначения:

  • Δ/Y 220/380В — подключение треугольником на 220В или звездой на 380В
  • Y/Y 380/660В — подключение звездой на 380В или 660В

Если информации на шильдике нет, схему можно определить по количеству выводов:

  • 3 вывода — соединение звездой внутри двигателя
  • 6 выводов — возможно подключение звездой или треугольником
  • 9 выводов — двухскоростной двигатель

Как определить обмотки и их выводы

Если маркировка выводов двигателя неизвестна, можно самостоятельно определить обмотки и их начала/концы:


  1. Прозвонить обмотки мультиметром, найти пары выводов с низким сопротивлением
  2. Подать на две обмотки переменное напряжение 12-36В
  3. Измерить напряжение на третьей обмотке
  4. Наличие напряжения означает синфазное соединение (конец-начало)
  5. Отсутствие напряжения — соединение концами или началами

Таким образом можно определить начала и концы всех трех обмоток двигателя.

Комбинированное подключение «звезда-треугольник»

Для мощных двигателей (от 5 кВт) часто применяют комбинированную схему подключения:

  • Запуск производится по схеме «звезда» для ограничения пусковых токов
  • После разгона двигатель переключается на схему «треугольник» для работы на полной мощности

Переключение осуществляется автоматически с помощью магнитных пускателей или специальных переключателей.

Подключение однофазных двигателей

Однофазные асинхронные двигатели имеют две обмотки:

  • Рабочую
  • Пусковую

Для создания вращающегося магнитного поля используются пусковой и рабочий конденсаторы.

Типовая схема подключения однофазного двигателя:


  1. Рабочая обмотка подключается напрямую к сети
  2. Пусковая обмотка подключается через пусковой конденсатор
  3. Параллельно пусковой обмотке подключается рабочий конденсатор

После запуска пусковая обмотка отключается с помощью центробежного выключателя.

Особенности подключения трехфазного двигателя в однофазную сеть

Для подключения трехфазного двигателя к однофазной сети 220В требуется:

  • Фазосдвигающий конденсатор
  • Пусковой конденсатор (для старта)

Емкость рабочего конденсатора (мкФ) приблизительно равна мощности двигателя (кВт) умноженной на 50-60.

Емкость пускового конденсатора в 3-4 раза больше рабочего.

Схема подключения:

  1. Две обмотки подключаются к фазе и нулю сети
  2. Третья обмотка подключается через конденсаторы
  3. Для пуска параллельно рабочему подключается пусковой конденсатор

После запуска пусковой конденсатор отключается. Мощность двигателя при таком подключении снижается примерно на 30%.

Рекомендации по подключению электродвигателей

  • Перед подключением внимательно изучите паспорт и маркировку двигателя
  • Проверьте сопротивление изоляции обмоток
  • Используйте провода соответствующего сечения
  • Обеспечьте надежное заземление корпуса двигателя
  • Установите устройства защиты от перегрузки и короткого замыкания
  • Для мощных двигателей используйте устройства плавного пуска

Правильное подключение электродвигателя обеспечит его надежную и эффективную работу в течение длительного срока.



Как подключить электродвигатель, схема подключения

 

Трехфазные электродвигатели — имеют более высокую эффективностью, чем однофазные электродвигатели на 220 вольт. Поэтому подключение электродвигателя на 380 вольт обеспечивает более стабильную и экономичную работу устройства. Для запуска электродвигателя не понадобятся конденсаторы или другие пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

На шильде электродвигателя должно быть видно, что обмотки электродвигателя можно соединить, как треугольником на 220 Вольт, так звездой на 380 Вольт.
В клеммной коробке электродвигателя вы увидите шесть выводов — U1, U2, V1,V2, W1, W2. Это означает что электродвигатель можно подключить на 220 или 380 Вольт.

 

Схема подключения трехфазного электродвигателя:

Подключение звездой — большинство промышленных трехфазных электродвигателей подключается по схеме — «звезда» 380В.
При подключении звездой вам нужно подключить 3 фазы на разъемы А, В, С.

При подключении треугольником на 220В — необходимо сделать три разные последовательные соединения. После чего можно подключать к 3 независимым последовательным соединениям 3 фазы на разъемы А, В и С как не рисунке.

Подключение звезда-треугольник — В очень редких случаях для получения большей отдачи по мощности, электродвигатель подключают «звезда-треугольник»

Внимание:

Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу.

Хочу заметить, что при подключении электродвигателя по схеме «звезда» запуск будет достаточно плавным, но при этом сложно будет достичь максимальной мощности работы трехфазного асинхронного электродвигателя. Поэтому для достижения максимальных показателей электродвигатель подключают «треугольником» и тогда он выдаст полную заявленную мощность, а это в 1,5 раза больше чем при подключении звездой. Но нужно знать что при запуске «треугольником» ток настолько высокий, что может повредить изоляцию проводки и сократить срок службы электродвигателя. Именно поэтому для мощных электродвигателей применяют комбинированную схему подключения по принципу «звезда-треугольник». Сначала запуск мотора происходит по схеме «звезда», но когда электродвигатель набирает достаточную мощность происходит ручное или автоматическое (через реле) переключение на схему «треугольник». После чего мощность возрастает в несколько раз.

Подключение трехфазного электродвигателя, видео:

Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

5 шагов подключения неизвестного электродвигателя

Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.

Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.

1. Оцениваем номинальную мощность и ток двигателя

Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.

На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.

2. Определяем напряжение по схеме включения

Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.

Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».

Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.

Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».

Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.

Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».

3. Подаем питание на двигатель

После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.

Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.

Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).

На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.

4. Определяем необходимой ток защиты

Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.

Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.

В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.

5. Контролируем нагрев обмоток

При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.

Заключение

Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.

Другие полезные материалы:
Трехфазный двигатель в однофазной сети
Эксплуатация электрооборудования вне помещений
Как прозвонить электродвигатель мультиметром
Как рассчитать потребляемую мощность двигателя

Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Схемы подключения асинхронных электродвигателей

Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:

  • 220 вольт
  • 380 вольт
  • 660 вольт

Заказать новый электродвигатель по телефону
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети – «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»

220/380

220 В – «треугольник»

380 В – «звезда»

380/660

380 В — «треугольник»

660 В — «звезда»

Как правильно подключить шесть проводов электродвигателя?

Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник». Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».

Схема подключения «звезда»

При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).

Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:

  1. Плавный пуск
  2. Возможность перегрузки (недлительной)
  3. Повышенная надежность

При этом данная схема подключения обеспечит более низкую мощность от заявленной.

Схема подключения «треугольник»

При подключении треугольником последовательно конец одной обмотки соединяется с началом следующей обмотки.

Главными преимуществами такого подключения являются:

  1. Максимальная мощность
  2. Повышенный вращающий момент
  3. Увеличенные тяговые способности

Однако, электродвигатели подключенные по схеме звезда больше нагреваются.

Комбинированный тип подключения

Как уже было отмечено, подключение «звездой» обеспечивает более плавный пуск, но пр этом не достигается максимальная заявленная мощность электромотора. При подключении «треугольником» достигается полная мощность, но пусковой ток может повредить изоляцию. Поэтому для мощных двигателей (начиная от АИР100L2), часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник». Переключение обеспечивается магнитным пускателем или пакетным переключателем.

Наиболее популярные модели асинхронных электродвигателей:

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».



Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.


Рис. 3 Схема управления 

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).


Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».

Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.


Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».

Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Подключение электродвигателя

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А. Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаU1U2
вторая фазаV1V2
третья фазаW1W2
Соединение в звезду (число выводов 3 или 4)
первая фазаU
вторая фазаV
третья фазаW
точка звезды (нулевая точка)N
Соединение в треугольник (число выводов 3)
первый выводU
второй выводV
третий выводW

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаC1C4
вторая фазаC2C5
третья фазаC3C6
Соединение звездой (число выводов 3 или 4)
первая фазаC1
вторая фазаC2
третья фазаC3
нулевая точка0
Соединение треугольником (число выводов 3)
первый выводC1
второй выводC2
третий выводC3

Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

  • ,где Cраб — емкость рабочего конденсатора, мкФ,
  • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
  • U1 – напряжение однофазной сети, В.

Управление асинхронным двигателем

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

  • нереверсивного пуска: пуск и остановка;
  • реверсивного пуска: пуск, остановка и реверс.

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель

Реверсивная схема

Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

Функциональная схема частотно-регулируемого привода

    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
  • скалярное управление;
  • векторное управление.

Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Схема подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д. Www.leeson.com

Однофазные соединения: (трехфазные — см. Ниже)
Однофазные соединения:

Вращение L1 L2
CCW 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1 4,5 2, 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 ——-
CW 1,3,5 2,4,8 ——-

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ———
CW 1,3,5,7 2,4,6,8 ———

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Деталь Начало намотки:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 Т2 Т3 Т7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 выводов Номенклатура NEMA
WYE Connected (только низкое напряжение)

Т1 Т2 Т3 Т7 T8 Т9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 Т2 Т3 Т7 Т8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema — 6 выводов:

Одно напряжение — внешнее соединение WYE

L1 L2 L3 Присоединиться
1 2 3 4 и 5 и 6

Одно напряжение — внешнее соединение треугольником

Соединения одиночного напряжения WYE-треугольник

Режим работы Соединение L1 L2 L3 Присоединиться
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 ——-

Соединения двойного напряжения WYE-треугольник

Напряжение Соединение L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 ——-

Номенклатура NEMA — 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ————

Номенклатура NEMA — 12 выводов:
Двойное напряжение — Внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Запуск по схеме WYE
Работа по схеме треугольника

Напряжение Conn. L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ————

Номенклатура IEC — 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий-
режим
Conn. L1 L2 L3 Присоединиться
Старт WYE U1 В1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 —————

Соединения двойного напряжения WYE-треугольник

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 —————

Пуск с двойным напряжением, соединением по схеме «звезда»
Работа по схеме «треугольник»

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 В1, У6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКИЙ WYE У1, У5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
——————————

Номенклатура NEMA — 6 выводов:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (л.с. одинаковы на обеих скоростях)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC — 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE

Как подключить трехфазный двигатель высокого и низкого напряжения

Трехфазный двигатель более эффективен, чем однофазный, из-за особенностей переменного тока.Когда питание двигателя подается от трех проводов, а не только по одному, и подача энергии проходит через каждый из них в последовательности (отсюда, часть «А» переменного тока), это обеспечивает эффективный уровень мощности, равный √3-кратному. выше (примерно в 1,728 раза), чем у соответствующей однофазной схемы. Как вы помните, электрическая мощность — это уровень напряжения, умноженный на ток.

Трехфазный двигатель может иметь одну из двух конфигураций: Y-образный (часто пишется «звезда», как это произносится) или треугольный.Кроме того, эти двигатели имеют шесть или девять выводов. При установке с шестью выводами вы не можете выбрать, получаете ли вы систему высокого или низкого напряжения, но при установке с девятью выводами вы можете выбрать любой из них, используя любую конфигурацию. Это дает в общей сложности четыре варианта подключения.

В вашей схеме также могут использоваться программируемые логические переключатели или ПЛК.

Для справки: L1, L2 и L3 обычно черные, красные и синие соответственно. Провода двигателя (от T1 до T9) обычно в порядке: синий, белый, оранжевый, желтый, черный, серый, розовый, красный и кирпично-красный.При выполнении следующих шагов, если возможно, обратитесь к диаграмме.

Схема «звезда», низкое напряжение

Подключите 1 и 7 к L1, 2 и 8 к L2, а 3 и 9 к L3. Соедините оставшиеся выводы (4, 5 и 6) вместе.

Схема «звезда», высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Затем подключите 4 к 7, 5 к 8 и 6 к 9.

Дельта-конфигурация, низкое напряжение

Подключите 1, 6 и 7 к L1; 2, 4 и 8 к L2; и 3, 5 и 9 — L3.

Дельта-конфигурация, высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Подключите 4 к 7, 5 к 8 и 6 к 9.

Все о подключении электродвигателей

Схемы электрических цепей двигателя

Диаграммы показывают обесточенное или обесточенное состояние электроустановки. Различают:

Все о подключении электродвигателей (фото: electronics.stackexchange.com)

Блок-схема — Упрощенное представление схемы с ее основными частями.Он показывает, как работает электроустановка и как она подразделяется.

Принципиальная схема — Подробное представление электрической цепи с ее отдельными компонентами, показывающее, как работает электрическая установка.

Эквивалентная принципиальная схема — Специальная версия пояснительной принципиальной схемы для анализа и расчета характеристик схемы.

Рисунок 1 — Принципиальная электрическая схема двигателя: 1-полюсное и 3-полюсное представление

Электросхемы электродвигателя

На схемах электропроводки показаны проводящие соединения между электрическими устройствами.Они показывают внутренние и / или внешние соединения, но, как правило, не дают никакой информации о режиме работы. Вместо электрических схем также можно использовать таблицы электрических соединений.

Схема подключения устройства — Отображение всех соединений внутри устройства или комбинации устройств.

Схема соединений — Представление соединений между устройством или комбинацией устройств в установке.

Схема подключения — Изображение точек подключения электроустановки и подключенных к ним внутренних и внешних токопроводящих соединений.

Схема расположения (схема расположения) — Отображение физического положения электрического устройства, которое не должно быть масштабировано. Вы найдете примечания к маркировке электрического оборудования на схеме, а также дальнейшие детали схемы в главе «Технические характеристики, формулы, таблицы».

Все о проводке электродвигателей — EATON

Соответствующее содержание EEP с рекламными ссылками

Избегайте дорогостоящих ошибок подключения электродвигателей

Майк Хауэлл, Ассоциация по обслуживанию электроаппаратуры (EASA)

Производители применяют различных схем внешнего подключения для производства трехфазных асинхронных двигателей для различных напряжений и / или методов запуска.Обязательно следуйте соответствующей схеме подключения, которая обычно прилагается к двигателю или содержится в его руководстве. Если диаграмма потеряна, повреждена или проигнорирована, вы можете столкнуться с дорогостоящей перемоткой назад.

Следующие советы применимы к соединениям, которые обычно встречаются на машинах с одной скоростью при промышленной частоте. Если информация о внешнем подключении недоступна, обратитесь за помощью в местный сервисный центр, особенно если отсутствуют несколько проводов или указано несколько номинальных скоростей на паспортной табличке при промышленной частоте.Сервисный центр также может помочь с нестандартной нумерацией или перекрестными ссылками на нумерацию IEC и NEMA. Осторожно: Целостность маркировки на выводах зависит от уровня электрика, который вывел двигатель из эксплуатации, и качества имеющихся маркировочных материалов.

3 вывода

Хотя трехжильное соединение является наиболее простым, всегда проверяйте направление вращения перед окончательной установкой двигателя, независимо от количества проводов.

6 выводов

Если выводы пронумерованы от 1 до 6, обмотка обычно может быть соединена звездой или треугольником.На машинах, рассчитанных на два напряжения, соединение звездой предназначено для высокого напряжения; соединение треугольником предназначено для низкого напряжения.

Для одного номинального напряжения большинство шестиконтактных машин могут запускаться по схеме звезда-треугольник (и будут работать в треугольнике). Исключением будут некоторые большие машины, которые имеют внешние звездообразные соединения для облегчения дифференциальной защиты.

Если выводы пронумерованы от 1 до 3 и от 7 до 9, обмотка может запускаться по частям. При использовании другого метода пуска e.g., плавный пуск , частотно-регулируемый привод или параллельный режим, всегда подключайте машину для работы.

Некоторые машины имеют 1-1, 2-2, 3-3, что указывает на двигатель, работающий по треугольнику. Кроме того, поскольку некоторые пусковые двигатели с частичной обмоткой имеют неправильную нумерацию от 1 до 6, запомните используемый метод пуска.

9 выводов

Если выводы пронумерованы от 1 до 9, двигатель обычно рассчитан на два напряжения и может быть спроектирован с соединением звездой или треугольником. При использовании машины с более высоким рейтингом внешнее соединение в любом случае будет таким же.

Однако при более низком номинальном напряжении внешнее соединение будет другим для устройств, соединенных звездой и треугольником. Проверяйте, что у вас есть! Если мультиметр показывает обрыв цепи между проводами 7, 8 и 9, машина подключена звездой (см. Рис. 1).

12 выводов

Если выводы пронумерованы от 1 до 12, двигатель обычно рассчитан на два напряжения и может использоваться со стартером звезда-треугольник при любом напряжении или пускателем с частичной обмоткой только для низкого напряжения. Агрегаты, рассчитанные на одно напряжение, могут иметь 12 выводов и подходят для пусков по схеме звезда-треугольник или частичной обмотке.Двенадцатипроводные асинхронные двигатели почти всегда работают по схеме треугольника.

Немаркированные выводы

Если только пара отведений не помечена, вы можете восстановить нумерацию путем исключения. В противном случае лучше обратиться за помощью в сервисный центр, потому что у них есть надежные процедуры для выявления потенциальных клиентов.

Несвязанный ход

Если есть какие-либо сомнения относительно внешнего подключения, рекомендуется запустить машину без нагрузки, чтобы определить направление вращения и ток холостого хода.Ток холостого хода значительно выше или ниже диапазонов, указанных в таблице I, может указывать на ошибку подключения или ошибку обмотки в двигателях с перемоткой. ( Осторожно: Никогда не эксплуатируйте роликоподшипники без радиальной нагрузки.) MT

Майк Хауэлл (Mike Howell) — специалист технической поддержки в Ассоциации обслуживания электроаппаратуры (EASA), Сент-Луис. Для получения дополнительной информации посетите www.easa.com.

, трехфазный — Определите немаркированные выводы 9-выводного двигателя

Приведенные выше схемы, предоставленные Joshyp00, полезны при определении отведений, но сами по себе не предоставляют достаточно информации, чтобы отметить все 9 отведений.Для этого вы можете использовать метод прошивки аккумулятора, описанный ниже. Вам понадобится фонарь на 6 или 12 В и, предпочтительно, аналоговый вольтметр, такой как старый Simpson 260. Вам также понадобится чувствительный омметр. Прежде чем продолжить, рекомендуется проверить двигатель на наличие заземления. Мегомметр — лучший способ проверить, нет ли утечки в каком-либо из выводов на корпус двигателя.

Затем используйте омметр, чтобы определить, подключен ли двигатель по схеме «треугольник» или «треугольник». Двигатель с Y-соединением будет иметь 3 группы по 2 провода в каждой, которые показывают почти 0 Ом между каждой парой, и четвертую группу, которая показывает около 0 Ом между 3 проводами.Двигатель, подключенный по схеме «треугольник», будет иметь 3 группы по 3 провода в каждой с сопротивлением около 0 Ом (см. Схемы выше). Между группами не должно быть никакого показания сопротивления, т. Е. Бесконечного сопротивления. (Не держите провода измерителя пальцами, так как вы получите показания сопротивления через ваше тело). Если есть показания, это может означать, что двигатель неисправен или это двигатель другого типа, кроме асинхронного переменного тока. Оберните провода в каждой группе изолентой разного цвета, чтобы группы оставались разделенными. Остальные шаги, указанные ниже, различаются в зависимости от того, какой у вас двигатель: Y или треугольник.Вам понадобится фонарь от 6 до 12 В.

Двигатель с Y-образным соединением

  1. Случайным образом присвойте номера 7,8,9 трем отведениям, которые входят в группу из трех отведений.

  2. Вы будете касаться батареи между выводами 8 и 9 (полярность не важна на этом этапе) и следить за отклонением напряжения на каждой из трех других пар проводов по очереди. Найдите пару с минимальным отклонением напряжения или без него. Это будет пара 1-4.Используйте эту пару для следующего шага.

  3. Определите, что составляет 1 или 4, переместив батарею к 7-8 проводам, с + на 7 и — на 8. Подключите вольтметр между 1 и 4, поменяв местами провода таким образом, чтобы получить положительное отклонение при аккумулятор подключен (при снятии станет отрицательным). + Провод вольтметра будет проводом №1, а отрицательный провод вольтметра будет проводом №4.

  4. Переместите батарею к выводам 7–9 с положительным выводом № 9 и отрицательным проводом № 7.Найдите отведение № 3, ища положительный прогиб на одной из других пар. Другой вывод — №6.

  5. Наконец, переместите тесто к парам 8-9 с положительным отведением на # 8 и отрицательной вспышкой на # 9. Положительное отклонение измерителя идентифицирует отведение №2, а второе — №5.

Двигатель, подключенный по схеме треугольника

  1. Для соединения треугольником чувствительный омметр обычно работает, по крайней мере, на меньших двигателях. Измерьте сопротивление между любыми 2 из 3 проводов в группе.Найдите отведение, которое обычно является самым низким показанием из двух, и которое будет обозначено либо 1,2, либо 3. Просто выберите ярлык для каждой группы. Если показание в омах слишком мало для определения центрального провода, вы можете пропустить низковольтный постоянный ток через пары проводов и измерить падение напряжения, чтобы определить, какой из них находится в центре.

  2. Подключите минус батареи к обоим проводам из группы № 1, которые не имеют маркировки. Вы должны подключить положительный вывод аккумуляторной батареи к другому выводу, который должен быть помечен №1.Подключите один из выводов вольтметра к проводу №2. Вы будете следить за двумя другими отведениями из группы №2, чтобы найти тот, у которого наибольшее отклонение. Это отведение будет №7. Другой лидер в группе будет №5. Прогиб происходит при подключении АКБ.

  3. Сохраняя батарею такой же, как указано выше, повторите процедуру для другой группы. Поместите вольтметр между проводом №3 и одним из других выводов той же группы №3. Найдите наибольший прогиб между проводом №3 и двумя другими проводами.Провод с наибольшим прогибом будет отводом №6, а другой — отводом №8.

  4. Последний шаг — определить, какие из них — №4 и №9. Переместите отрицательный вывод аккумуляторной батареи к № 5 и № 7, и другой вывод аккумуляторной батареи будет мигать в № 2 во время теста. Подключите вольтметр между # 1 и одним из двух других проводов в той же группе # 1. Проволока с наибольшим прогибом будет №4. Другой провод — №9.

Завод Инжиниринг | Советы по подключению двигателя, чтобы избежать дорогостоящих ошибок

Производители применяют различные схемы внешних подключений для производства трехфазных асинхронных двигателей для различных напряжений и / или методов запуска, поэтому успешная установка зависит от использования соответствующей схемы подключения.Если эта информация будет потеряна, повреждена или проигнорирована, ошибка соединения может привести к дорогостоящей перемотке назад (см. Рисунок 1).

Следующие советы применимы к обычным соединениям на машинах с одной скоростью при промышленной частоте. Если внешняя схема подключения производителя недоступна, обратитесь за помощью в сервисный центр, особенно если есть несколько отсутствующих меток проводов, несколько номинальных скоростей при промышленной частоте, нестандартная нумерация или перекрестные ссылки NEMA-IEC.

Три отведения

Трехжильное соединение является наиболее простым.Однако всегда проверяйте направление вращения перед окончательной установкой двигателя, независимо от количества проводов.

Шесть отведений

Если выводы пронумерованы 1-6, обмотка обычно может быть соединена звездой или треугольником. На машинах, рассчитанных на два напряжения, соединение звездой предназначено для высокого напряжения; соединение треугольником предназначено для низкого напряжения.

Для одного номинального напряжения большинство 6-проводных машин могут запускаться по схеме звезда-треугольник (и будут работать в треугольнике).Исключением может быть то, что некоторые большие машины имеют внешние звездообразные соединения для облегчения дифференциальной защиты.

Если выводы пронумерованы 1-3 и 7-9, обмотка может запускаться по частям. При использовании другого метода пуска (например, плавного пуска, частотно-регулируемого привода или прямого включения) всегда подключайте машину для работы.

Некоторые машины будут иметь 1-1, 2-2, 3-3, которые будут работать по схеме треугольника (см. Рисунок 2). Кроме того, некоторые пусковые двигатели с неполной обмоткой имеют неправильную нумерацию от 1 до 6, поэтому помните о методе пуска, который вы используете.


Девять отведений

Если выводы пронумерованы от 1 до 9, двигатель обычно рассчитан на два напряжения и может быть спроектирован как со звездообразным, так и с треугольным соединением. При использовании машины с более высоким номинальным напряжением внешнее подключение в любом случае будет таким же.

Однако при более низком номинальном напряжении внешнее соединение будет отличаться для двигателей, соединенных звездой, и двигателей, соединенных треугольником, поэтому важно знать, что у вас есть.Если мультиметр показывает обрыв цепи между выводами 7, 8 и 9, машина подключена звездой (см. Рисунок 3).

Двенадцать отведений

Если выводы пронумерованы от 1 до 12, двигатель обычно рассчитан на два напряжения и может использоваться со стартером звезда-треугольник либо с напряжением, либо с пускателем с частичной обмоткой только для низкого напряжения. Машины, рассчитанные на одно напряжение, могут иметь 12 выводов и подходят для пусков по схеме звезда-треугольник или с частичной обмоткой. Двенадцатипроводные асинхронные двигатели почти всегда работают по схеме треугольника.

Отведения без маркировки

Если только пара отведений не помечена, вы можете восстановить нумерацию путем исключения. В противном случае обратитесь в сервисный центр; у них есть надежные процедуры для выявления потенциальных клиентов.

Несвязанный ход

Если есть сомнения относительно внешнего подключения, запустите машину без нагрузки, чтобы определить направление вращения и ток холостого хода. Ток холостого хода, значительно превышающий или меньший диапазонов в таблице 1, может указывать на ошибку подключения или ошибку обмотки, если машина была перемотана.(Примечание: никогда не эксплуатируйте машину с роликоподшипниками без радиальной нагрузки.)

Таблица 1: Типовые рекомендации по току холостого хода.

Некоторые неправильные подключения могут очень быстро вызвать сбои, поэтому помните, что отложенный запуск лучше, чем ненужный отказ двигателя.

— Майк Хауэлл (Mike Howell) — специалист технической поддержки в Ассоциации обслуживания электроаппаратуры (EASA). EASA является контент-партнером CFE Media.

Соединения выводов двигателя — базовое управление двигателем

Трехфазные двигатели используют катушки из проволоки для создания магнитных полей и вращения.

Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя предопределяются при изготовлении двигателя. Есть два класса трехфазных двигателей: звезда и треугольник.

Конфигурация «звезда» и «треугольник»

Трехфазные двигатели также сконструированы для работы с двумя разными напряжениями , поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.

В высоковольтной конфигурации две катушки каждой фазы соединены в серии друг с другом, так что более высокое значение напряжения питания распределяется между ними поровну, и через каждую обмотку протекает номинальный ток.

В низковольтной конфигурации две катушки каждой фазы соединены параллельно друг с другом, так что меньшее значение напряжения питания распределяется поровну между катушками, а номинальный ток протекает через каждую обмотку.

Обратите внимание, что низковольтное соединение обязательно потребует вдвое больше тока от источника, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Важно выбрать размер пускателя двигателя и его реле перегрузки на основе ожидаемого значения тока, который должен потребляться двигателем при том напряжении, при котором он используется.

Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать выводов. В конфигурациях «звезда» и «треугольник» три из этих выводов подключаются внутри, поэтому только девять выводов выводятся из двигателя для подключения. Эти выводы пронумерованы 1–9, и как в треугольнике, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, нарисуйте нисходящую внутрь спираль от каждой точки соединения, поднимаясь к следующему номеру на каждом шаге. .

В зависимости от внутренней конструкции двигателя эти провода могут быть подключены одним из четырех способов: звездами высокого или низкого напряжения или треугольником высокого или низкого напряжения

Иногда возникает необходимость проверить или подтвердить конфигурацию двигателя перед окончательным подключением. Если двигатель с звездообразной обмоткой подключен как двигатель с треугольной обмоткой или наоборот, двигатель не будет работать должным образом.

Рассмотрим ситуацию: у вас есть девять выводов, идущих от двигателя, но нет никаких указаний на то, имеет ли он соединение звездой или треугольником.Используя омметр для простой проверки целостности цепи, вы можете определить тип конструкции двигателя.

Если это соединение звезды, каждый из проводов 1, 2 и 3 должен иметь соединение только с одним другим проводом (4, 5 и 6 соответственно). Все три провода без соединения с проводами 1, 2 и 3 должны иметь непрерывность друг с другом.

Соединения двигателя звездой

Если он обмотан треугольником, каждый из проводов 1, 2 и 3 должен иметь соединение с двумя другими выводами:

  • T1 имеет связь с T4 и T9
  • T2 имеет преемственность с T5 и T7
  • T3 имеет преемственность с T6 и T8
Подключение электродвигателя треугольником

Важно отметить, что эти точки представляют собой внутреннее соединение катушек электродвигателя, а не то, как они должны быть подключены к источнику напряжения.

Низковольтная звезда

В этой конфигурации каждая фаза подводится к двум катушкам, которые подключены параллельно друг другу. Клеммы 4, 5 и 6 соединены вместе, чтобы создать второе нейтральное соединение.

Низковольтное соединение звездой
L1 L2 L3 Связать
1,7 2,8 3,9 4,5,6

звезда высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые последовательно соединены друг с другом.

Высоковольтное соединение двигателя «звезда».

L1 L2 L3 Связать
1 2 3 4,7 — 5,8 — 6,9

Низковольтный Delta

В этой конфигурации каждая фаза подведена к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.

Подключение низкого напряжения двигателя треугольником

L1 L2 L3 Связать
1,6,7 2,4,8 3,5,9 нет

Дельта высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые соединены последовательно с катушками других фаз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *