Электродвижущая сила. Закон Ома для полной цепи
Как вы знаете, для существования электрического тока, необходимо наличие электрического поля. Причем, это поле должно постоянно поддерживаться неким источником тока. Сегодня мы поговорим об основной характеристике источника тока, которая называется электродвижущей силой (или, сокращенно, ЭДС). Для начала рассмотрим простой опыт: возьмем два противоположно заряженных шарика и соединим их проводником. В этом случае, в проводнике возникнет электрический ток, но он будет очень кратковременным. Дело в том, что очень скоро произойдет перераспределение заряда, и потенциалы шариков уравняются. Значит, перестанет существовать электрическое поле.
Из этого можно сделать вывод, что для поддержания постоянного тока необходимо наличие неких сил неэлектрического происхождения, чтобы эти силы могли перемещать заряды против поля. Такие силы называются сторонними силами. То есть, сторонние силы — это любые силы, которые действуют на электрические заряды, но при этом не являются силами электрического происхождения
В батареях или аккумуляторах работу по разделению электрических зарядов выполняют химические реакции.
Еще один аргумент, который мы можем привести — это то, что работа кулоновских сил при перемещении заряда по замкнутому контуру, равна нулю. А это значит, что какие-то другие силы должны обеспечивать ненулевую работу для поддержания разности потенциалов.
Устройство для поддержания электрического тока, называется источником тока. В любом источнике тока сторонние силы действуют на заряды, совершая работу против кулоновских сил. Стало быть, характеристикой источника должна быть величина, не зависящая от величины заряда. Эта величина называется электродвижущей силой. Электродвижущая сила равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру, к величине этого заряда:
Из формулы видно, что электродвижущая сила, как и напряжение, измеряется в вольтах:
Теперь, когда мы познакомились с ЭДС, мы можем перейти к изучению закона Ома для полной цепи. Полной цепью называется замкнутая цепь, включающая в себя источник тока. Для удобства, мы рассмотрим простейшую электрическую цепь, состоящую только из источника тока, резистора и соединительных проводов:
Как мы уже сказали, источник тока характеризуется ЭДС. Тем не менее, любой источник тока обладает определенным сопротивлением, которое называется внутренним сопротивлением. Закон Ома для полной цепи представляет собой связь между ЭДС, внутренним и внешним сопротивлением и силой тока в цепи. Для того, чтобы установить эту связь, воспользуемся законом сохранения энергии. Запишем, что работа сторонних сил равна произведению ЭДС источника и величины заряда:
Как вы знаете, каждый участок цепи выделяет то или иное количество теплоты. По закону Джоуля-Ленца, это количество теплоты вычисляется по формуле:
Исходя из закона сохранения энергии, мы можем приравнять это количество теплоты к работе сторонних сил:
Закон Ома для полной цепи звучит так: сила тока в замкнутой цепи равна отношению ЭДС источника к полному сопротивлению цепи:
Вывести закон Ома для полной цепи можно, рассуждая несколько иначе. Как мы знаем, при последовательном соединении полное напряжение цепи равно сумме падений напряжений на всех участках цепи:
Мы видим, что произведение силы тока и сопротивления резистора есть не что иное, как напряжение на этом резисторе. А произведение силы тока и внутреннего сопротивления — это падение напряжения на самом источнике:
Надо сказать, что внутреннее сопротивление источника во многих случаях пренебрежимо мало по сравнению с сопротивлением внешней части цепи. В этом случае, мы можем считать, что напряжение на зажимах источника примерно равно ЭДС (то есть падение напряжения на источнике считается приблизительно равным нулю):
Тем не менее, именно внутренним сопротивлением определяется сила тока в цепи при коротком замыкании. Напомним, что при коротком замыкании, внешнее сопротивление становится почти нулевым, поэтому в цепи резко возрастает сила тока:
Рассмотрим теперь цепь, содержащую несколько последовательно соединенных источников тока.
В этом случае, ЭДС всей цепи равна алгебраической сумме ЭДС отдельных источников.
В таких случаях необходимо выбрать так называемое «направление обхода тока». Это направление выбирается условно (в нашем случае — против часовой стрелки). Тогда, ,поскольку они стремятся вызвать ток в направлении обхода.
А,поскольку они стремятся вызвать ток в направлении, противоположном направлению обхода. Отрицательная ЭДС означает, что сторонние силы внутри источника совершают отрицательную работу. Таким образом, ЭДС нашей цепи будет равна:
В соответствии с правилами последовательного соединения, суммарное сопротивление цепи равно сумме внешнего сопротивления и внутренних сопротивлений всех источников тока:
Пример решения задачи.
Задача. К источнику тока с внутренним сопротивлением 1 Ом подключили резистор с сопротивлением 15 Ом. После этого в цепь включили амперметр, который показал, что сила тока равна 5 А.
Найдите работу сторонних сил внутри источника, совершенную за 2 минуты.Электрический ток. Закон Ома для полной цепи.
Электрический ток
Мы выяснили, что подвижные носители зарядов в проводнике перемещаются под действием внешнего электрического поля, пока не выровняются потенциалы всех точек проводника. Однако если в двух точках проводника каким-то образом искусственно поддерживать различные потенциалы, то это поле будет обеспечивать непрерывное движение зарядов: положительных — от точек с большим потенциалом к точкам с меньшим потенциалом, а отрицательных — наоборот. Когда эта разность потенциалов не меняется со временем, то в проводнике устанавливается постоянный электрический ток.
Вспомним из курса физики некоторые сведения об электрическом токе.
Упорядоченное движение свободных зарядов в проводнике называется электрическим током проводимости, или электрическим током.
- наличие свободных заряженных частиц;
- наличие источника тока, создает электрическое поле, действие которого приводит упорядоченное движение свободных заряженных частиц;
- замкнутость электрической цепи, которая обеспечивает циркуляцию свободных заряженных частиц.
В зависимости от величины удельного сопротивления, который вещества оказывают постоянному току, они делятся на проводники, полупроводники, диэлектрики.
В зависимости от среды различают особенности прохождения электрического тока, в частности в металлах, жидкостях и газах, где носителями тока могут быть свободные электроны, положительные и отрицательные ионы.
Направление движения электроновПолная электрическая цепь содержит источник тока и электроприборы, а также устройство для замыкания (размыкания) электрической цепи. За направление тока в цепи условно выбирают направление от положительного полюса источника тока к отрицательному (реальное движение носителей тока — электронов — происходит в обратном направлении).
Основными физическими величинами, характеризующими электрический ток, являются следующие:
Сила тока I — физическая величина, характеризующая скорость перераспределения электрического заряда в проводнике и определяется отношением заряда q, проходящий через любой сечение проводника за время t, к величине этого интервала времени, I=q/t. Единица силы тока — ампер, 1А =1Кл/сек.
Термин «сила тока» предложили задолго до установления научных положений электродинамики. Он несколько неудачный, поскольку никакого отношения к «силе» он не имеет.
Электрическое сопротивление R — это физическая величина, характеризующая свойство проводника противодействовать прохождению электрического тока. Единица электрического сопротивления — ом, 1 Ом.
Сопротивление проводника зависит от его физических параметров — длины l, площади поперечного сечения S и от удельного сопротивления вещества p, из которой он изготовлен: R = р*l/S.
И как мы знаем, образования тока в проводнике обуславлено наличием разности потенциалов ϕ 1 – ϕ 2 , которую еще называют напряжением.
Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля, U = A/q. Единица напряжения — вольт, 1 В.
Электродвижущая сила
При подключении к полюсам источника проводник, благодаря наличию разности потенциалов, свободные электроны проводимости, не прекращая хаотического движения, под действием кулоновских сил начнут двигаться направлено — от конца проводника с более низким потенциалом к концу с высшим, то есть от отрицательного полюса источника тока к положительному. Но силы электрического поля не могут переместить электрические заряды между полюсами внутри источника, поскольку действуют на них в противоположном направлении. Поэтому внутри источника, кроме электрических сил F кл , действуют еще и сторонние силы F ст. Природа сторонних сил может быть различной: в химических элементах — это действие химических реакций, в фотоэлементах — действие солнечных лучей, электрогенераторах — изменение магнитного потока.
Движение носителей заряда в полной электрической цепиСторонние силы перемещают отрицательные заряды от положительного полюса батареи к отрицательному и противодействуют электрическим силам, которые стремятся выровнять потенциалы на полюсах.
б — неоднородный участок; в — полный круг, содержащий внешнюю и внутреннюю части
Для перемещения зарядов сторонние силы выполняют соответствующую работу А. Чем больше заряд перемещается, тем больше работа выполняется. Иными словами, A ст ~ q или, используя знак равенства, A ст = εq, где ε — постоянный коэффициент пропорциональности, характеризующий соответствующий источник и называеющийся электродвижущей силой источника тока (сокращенно ЭДС).
Электродвижущая сила ε — это физическая величина, характеризующий энергию стороних сил источника тока и измеряется: работой сторонних сил (то есть сил не электростатического происхождения), выполненной для перемещения единичного позитивного электрического заряда, ε = A ст/q.
Единица электродвижущей силы — вольт, 1 В = 1 Дж/ 1Кл.
В результате разделения внутри источника положительных и отрицательных зарядов, источник приобретает запас потенциальной электрической энергии, которая тратится на выполнение работы по перемещению зарядов по всей окружности. Работа сторонних сил равна сумме работ, выполняемых по перемещению заряда на внутренней и внешней участках цепи.
В источниках тока постоянно происходит разделение положительных и отрицательных зарядов, которые сосредотачиваются на его полюсах, что вызывает появление электрического поля (стационарного). Свойства этого поля отличаются от электрического поля неподвижных зарядов, которое мы изучали в электростатике. В таблице 2 представлены сравнения свойств электрических полей подвижных и неподвижных зарядов.
Электростатическое поле неподвижных зарядов | Стационарное электрическое поле движущихся зарядов |
Линии напряженности являются незамкнутыми. Работа поля по замкнутому контуру равна нулю | Имеет замкнутые линии напряженности. Работа поля по перемещению заряда вдоль замкнутой линии напряженности не равна нулю. Такое поле называют вихревым |
Закон Ома для полной цепи
Источник тока, как и любой проводник, имеет определенное сопротивление, который называют внутренним сопротивлением источника и обозначают r, в отличие от сопротивления внешней цепи R. Как известно из курса физики, по закону Ома, для участка цепи сила тока I на участке цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению R этого участка, I=U/R. Формулу закона Ома записывают и в таком виде: U = IR, где произведение IR называют падением напряжения на данном участке цепи. Для участка, который не содержит источника тока, понятие напряжения и падения напряжения совпадают.
Согласно закону Ома, для внешней и внутренней участков цепи можно записать U вн = Ir, U вн = IR. Тогда ε = IR + Ir, то есть сумма падений напряжений на внешнем и внутреннем участках цепи равна ЭДС источника.
Соотношение, записанное в виде I = ε/R+r, называют законом Ома для полной цепи: сила тока в замкнутоq электрической цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.
Следовательно, сила тока в цепи зависит от трех величин, две из которых (ЭДС и внутреннее сопротивление) характеризуют источник, а третья зависит от самой цепи. Если пользоваться определенным источником электрической энергии, то ε и r можно считать постоянными величинами. Если менять сопротивление внешней цепи, то соответственно будет меняться сила тока I в цепи и падение напряжения IR на наружной части круга. С увеличением сопротивления внешней цепи сила тока уменьшается, а напряжение растет. Если R = ∞ (цепь разомкнута), то I = 0, падение напряжения внутри источника отсутствует, а напряжение на полюсах источника равна его ЭДС. На этом основывается метод измерения ЭДС источника. Вольтметр присоединяют к полюсам источника при разомкнутой внешней цепи. В этом случае вольтметр показывает падение напряжения IR на самом себе. А поскольку сопротивление вольтметра обычно очень большое, т.е R >> r, U = IR ≈ ε. Чем больше сопротивление вольтметра по сравнению с внутренним сопротивлением источника тока, то точнее будет измеренное значение ЭДС.
Работа и мощность электрического тока
Электрическое поле, создавая упорядоченное движение заряженных частиц в проводнике, выполняет работу, которую принято называть работой тока.
Работа электрического тока А — физическая величина, характеризующая: изменение электрической энергии тока — превращение ее в другие виды.
Единица работы электрического тока — джоуль, 1 Дж. В быту и технике используют также внесистемная единица — киловатт-час (кВт • ч), 1 кВт • ч = 3,6 • 106 Дж.
Если рассматривать внешний участок электрической цепи, то работа тока определяется как А = qU = UIt, где q — заряд, прошедший через поперечное сечение проводника за время t, U — электрическое напряжение на участке цепи, I — сила тока.
Если на участке цепи, по которой проходит ток, не выполняется механическая работа и не происходят химические реакции, то результатом работы электрического тока будет только нагрев проводников. Нагретый проводник вследствие теплообмена отдает полученную энергию в окружающую среду. Согласно закону сохранения энергии, количество выделенной теплоты равна работе тока: Q = А и вычисляется по закону Джоуля — Ленца: количество теплоты Q, выделяемой за время t в проводнике с сопротивлением R во время прохождения по нему тока силой I, равна Q = I2Rt.
Воспользовавшись законом Ома I = U/R, математически можно получить и такие формулы закона Джоуля — Ленца: Q =U2t/R и Q = UIt. Однако, если в цепи выполняется механическая работа или происходят химические реакции, эти формулы использовать нельзя.
Мощность электрического тока Р — физическая величина, характеризующая способность электрического тока выполнять определенную работу и измеряется работой, выполненной в единицу времени, Р = A/t, здесь А — работа электрического тока, t — время, за которое эта работа выполнена. Мощность во внешнем участке электрической цепи можно определить по формулам Р = UI, Р = I2R, Р = U2/R, где U — электрическое напряжение, I — сила тока, R — электрическое сопротивление участка цепи. Единица мощности — ватт, 1 Вт = 1.
Если цепь состоит из нескольких потребителей, то при параллельном их соединения общая мощность тока во всей цепи равна сумме мощностей отдельных потребителей. Это стоит принять во внимание. В быту мы пользуемся мощными электрическими приборами. Если одновременно их включить, то общая мощность может превышать ту, на которую рассчитана электрическая сеть в помещении.
Выясним, в каком случае в электрической цепи выделяется максимальная мощность. Для этого запишем закон Ома для полной цепи в таком виде: ε = IR + Ir. Умножив обе части уравнения на I, получим: εI = I 2 R + I 2 r, где εI — полная мощность, которую развивает источник тока, I2R — мощность потребителей внешней участка цепи, I2г — мощность, которую потребляет внутренняя часть круга. Итак, потребляемая мощность внешней частью цепи, составляет: P = εI – I 2 r.
График зависимости потребляемой мощности во внешней части цепи от силы токаГрафиком зависимости Р (I) является парабола, вершина которой имеет координаты {ε/2r;ε2/4r}. Из графика видно, что максимальная мощность потребляется во внешнем цепи при силе тока I = ε/2r.
Короткое замыкание
С уменьшением сопротивления внешней цепи, R -> 0, сила тока достигает максимального значения Iк.з. Этот случай называют коротким замыканием. Для источников тока, имеющих сравнительно малое внутреннее сопротивление (например, в свинцовых аккумуляторах r=0,1-0,001 Ом), сила тока короткого замыкания может достичь очень больших значений. Проводники могут расплавиться, а сам источник — выйти из строя. Особенно опасны короткие замыкания в осветительных сетях, питающихся от трансформаторных подстанций, ЭДС которых измеряется сотнями вольт. Сила тока короткого замыкания в них может достичь нескольких тысяч ампер.
404: Страница не найдена
Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы извиняемся за любые неудобства.
Что я могу сделать сейчас?
Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:
Поиск- Пожалуйста, свяжитесь с нами, чтобы сообщить, что эта страница отсутствует, или используйте поле выше, чтобы продолжить поиск
- Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, WhatIs.com.
- Посетите нашу домашнюю страницу и просмотрите наши технические темы
Просмотр по категории
Сеть
- система управления сетью
Система управления сетью, или NMS, представляет собой приложение или набор приложений, которые позволяют сетевым инженерам управлять сетевыми . ..
- хост (в вычислениях)
Хост — это компьютер или другое устройство, которое обменивается данными с другими хостами в сети.
- Сеть как услуга (NaaS)
Сеть как услуга, или NaaS, представляет собой бизнес-модель для предоставления корпоративных услуг глобальной сети практически на основе подписки.
Безопасность
- API веб-аутентификации
API веб-аутентификации (WebAuthn API) — это программный интерфейс приложения (API) для управления учетными данными, который позволяет веб-…
- Общая система оценки уязвимостей (CVSS)
Общая система оценки уязвимостей (CVSS) — общедоступная система оценки серьезности уязвимостей безопасности в …
- Вредоносное ПО Dridex
Dridex — это форма вредоносного ПО, нацеленное на банковскую информацию жертв с основной целью кражи учетных данных онлайн-аккаунта . ..
ИТ-директор
- программа аудита (план аудита)
Программа аудита, также называемая планом аудита, представляет собой план действий, в котором документируются процедуры, которым аудитор будет следовать для подтверждения…
- децентрализация блокчейна
Децентрализация — это распределение функций, контроля и информации вместо того, чтобы быть централизованным в едином учреждении.
- аутсорсинг
Аутсорсинг — это деловая практика, при которой компания нанимает третью сторону для выполнения задач, управления операциями или предоставления услуг…
HRSoftware
- командное сотрудничество
Совместная работа в команде — это подход к коммуникации и управлению проектами, который делает упор на командную работу, новаторское мышление и равенство . ..
- самообслуживание сотрудников (ESS)
Самообслуживание сотрудников (ESS) — это широко используемая технология управления персоналом, которая позволяет сотрудникам выполнять множество связанных с работой …
- платформа обучения (LXP)
Платформа обучения (LXP) — это управляемая искусственным интеллектом платформа взаимного обучения, предоставляемая с использованием программного обеспечения как услуги (…
Обслуживание клиентов
- сегментация рынка
Сегментация рынка — это маркетинговая стратегия, в которой используются четко определенные критерии для разделения общей адресной доли рынка бренда …
- воронка продаж
Воронка продаж — это визуальное представление потенциальных клиентов и того, где они находятся в процессе покупки.
- анализ потребительской корзины
Анализ потребительской корзины — это метод интеллектуального анализа данных, используемый розничными торговцами для увеличения продаж за счет лучшего понимания покупок клиентов. ..
5.4 Закон Ома. Введение в электричество, магнетизм и электрические цепи
ЦЕЛИ ОБУЧЕНИЯ
К концу этого раздела вы сможете:
- Описать закон Ома
- Распознавать, когда применяется закон Ома, а когда нет
До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление. Оказывается, многие материалы демонстрируют простую зависимость между значениями этих свойств, известную как закон Ома. Многие другие материалы не показывают этой взаимосвязи, поэтому, несмотря на то, что он называется законом Ома, он не считается законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.
Описание закона Ома
Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению. Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что сила тока в металлической проволоке прямо пропорциональна приложенному напряжению :
.
Это важное соотношение является основой закона Ома . Его можно рассматривать как причинно-следственную связь, где напряжение является причиной, а ток — следствием. Это эмпирический закон, то есть экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость не всегда имеет место. Любой материал, компонент или устройство, которые подчиняются закону Ома, где ток через устройство пропорционален приложенному напряжению, называется омический материал или омический компонент. Любой материал или компонент, не подчиняющийся закону Ома, называется неомным материалом или неомическим компонентом.
Эксперимент Ома
В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины. Аналогичный эксперимент показан на рисунке 5.4.1. Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор соединен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо поставить на резистор (параллельно резистору). Ток измеряется амперметром, который должен быть подключен к резистору (последовательно с резистором).
(рис. 5.4.1)
Рисунок 5.4.1 Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством. (а) Когда батарея присоединена, ток течет по часовой стрелке, а показания вольтметра и амперметра положительны. б) при переключении выводов батареи ток течет против часовой стрелки, а показания вольтметра и амперметра отрицательные.В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких разных напряжений. Когда батарея была подключена, как показано на рисунке 5.4.1 (а), ток протекал по часовой стрелке, а показания вольтметра и амперметра были положительными. Изменится ли поведение тока, если ток течет в противоположном направлении? Чтобы заставить ток течь в противоположном направлении, выводы батареи можно поменять местами. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, поскольку ток протекал в противоположном направлении, в данном случае против часовой стрелки. Результаты аналогичного эксперимента показаны на рисунке 5.4.2.
(рис. 5.4.2)
Рисунок 5.4.2 Резистор включен в цепь с батареей. Прикладываемое напряжение изменяется от до , увеличиваясь с шагом. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.В этом эксперименте напряжение, прикладываемое к резистору, изменяется от до с шагом . Измеряют ток через резистор и напряжение на резисторе. Строится график зависимости напряжения от тока, и результат приблизительно линейный. Наклон линии — это сопротивление или напряжение, деленное на ток. Этот результат известен как Закон Ома :
(5.4.1)
, где это напряжение, измеренное в вольтах на рассматриваемом объекте, это ток, измеренный через объект в амперах, и это сопротивление в единицах Ом. Как указывалось ранее, любое устройство, демонстрирующее линейную зависимость между напряжением и током, известно как омическое устройство. Таким образом, резистор является омическим устройством.
ПРИМЕР 5.4.1
Измерение сопротивления
Угольный резистор при комнатной температуре () подключен к батарее, и ток, измеренный через резистор, равен . а) Чему равно сопротивление резистора в омах? (b) Если температура резистора повышается до за счет нагревания резистора, какова сила тока через резистор?
Стратегия
(а) Сопротивление можно найти по закону Ома. Закон Ома гласит, что сопротивление можно найти, используя .
(b) Во-первых, сопротивление зависит от температуры, поэтому новое сопротивление после нагревания резистора можно найти с помощью . Силу тока можно найти по закону Ома в виде .
Решение
а. Используя закон Ома и найдя сопротивление, получаем сопротивление при комнатной температуре:
.
б. Сопротивление при можно найти, используя где температурный коэффициент для углерода равен .
Ток через нагретый резистор
Значение
Изменение температуры привело к изменению тока. Это может показаться не очень большим изменением, но изменение электрических характеристик может оказать сильное влияние на схемы. По этой причине многие электронные устройства, такие как компьютеры, содержат вентиляторы для отвода тепла, рассеиваемого компонентами электрических цепей.
ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 5.8
Напряжение, подаваемое в ваш дом, изменяется как . Если к этому напряжению подключить резистор, будет ли действовать закон Ома?
ИНТЕРАКТИВНЫЙ
Посмотрите, как формула закона Ома относится к простой цепи. Отрегулируйте напряжение и сопротивление и посмотрите, как изменится ток в соответствии с законом Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.
Неомические устройства не демонстрируют линейной зависимости между напряжением и током. Одним из таких устройств является полупроводниковый элемент схемы, известный как диод. А диод это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой цепи, состоящей из батареи, диода и резистора, показана на Рисунке 5.4.3. Хотя мы не рассматриваем теорию диода в этом разделе, диод можно проверить, чтобы увидеть, является ли он омическим или неомическим устройством.
(рис. 5.4.3)
Рисунок 5.4.3 Диод — это полупроводниковое устройство, пропускающее ток только в том случае, если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.График зависимости тока от напряжения показан на Рисунке 5.4.4. Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод имеет отрицательный потенциал, а катод — положительный, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет чрезвычайно большое сопротивление, и через диод и резистор протекает очень небольшой ток — практически нулевой ток. По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не начнет проводить ток, как показано на рисунке 5.4.4. Когда батарея и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит ток, и ток течет через диод, если напряжение больше чем . Сопротивление диода близко к нулю. (Это причина резистора в цепи; если бы его не было, ток стал бы очень большим.) Из графика на рис. 5.4.4 видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером неомического устройства.
(рис. 5.4.4)
Рисунок 5.4.4 Когда напряжение на диоде отрицательное и малое, через диод протекает очень небольшой ток.