Предназначение трансформатора тока: Назначение и классификация трансформаторов тока

Содержание

принцип работы для измерения параметров электросетей

Трансформаторы тока (далее по тексту – ТТ) относятся к категории устройств, преобразующих параметры электромагнитных систем при помощи индуктивно связанных обмоток магнитопроводов. Принцип действия трансформатора тока, основанный на законе электромагнитной индукции, используется в ТТ при передаче и распределении электрической энергии, в развязках электрических цепей, при измерении параметров высоковольтных сетей и токов большой мощности. На рис. ниже показан трансформатор тока модели ТЛМ-10, используемый в системах управления и измерений электрических цепей с номинальным напряжением 10 кВ.

Трансформатор тока модели ТЛМ-10

Индуктивные связи в ТТ

Принцип работы трансформатора тока представляет собой техническую реализацию закона электромагнитной индукции Фарадея, согласно которому в замкнутом токопроводящем контуре при изменении магнитного потока возникает электродвижущая сила, называемая в современной электродинамике индуцированной ЭДС. Простейшим объяснением для «чайников», слабо представляющих, из чего состоит трансформатор, не знающих его устройство или что такое индуцированная ЭДС, и как она может влиять на работу сложнейших трансформаторных систем, послужит схема индуктивных связей трансформатора, приведенная ниже.

Дополнительная информация. Индуктивными связями называют связи между электрическими цепями посредством магнитных полей.

Схема индуктивных связей трансформатора

На схеме показаны три основных элемента трансформатора:

  • поз. 1 – магнитопровод, служащий для размещения токопроводящих контуров-обмоток;
  • поз. 2 – первичный контур, называемый первичной обмоткой, к которому подводят электроэнергию переменного тока;
  • поз. 3 – вторичный контур, называемый вторичной обмоткой. К нему подключается приемник электроэнергии.

При подаче на первичный контур переменного тока напряжением u1  через первичную обмотку начинает проходить переменный ток I1 , создающий магнитный поток Ф, изменяющийся по такой же синусоидальной гармонике. При этом в обмотке первичного контура индуцируется переменная ЭДС (электродвижущая сила) e1 . Контуры трансформатора находятся в индуктивной связи, поскольку через их обмотки проходит единый поток Ф. Соответственно, изменения магнитного поля в первичном контуре будут изменять магнитный поток, а он, в свою очередь, будет индуцировать во вторичном контуре электродвижущую силу e2 , изменяющуюся в той же гармонике. Под воздействием e2  во вторичном контуре возникает переменный ток I2. При замыкании вторичной обмотки на нагрузку ZН  создается вторичная цепь, которая может служить для применения в приемниках энергии, в выпрямителях, усилителях и других приборах с развязанными электрическими цепями.

По своей сути трансформатор является передатчиком энергии между проводящими контурами, преобразуя их электромагнитные характеристики (лат. transformare означает преобразовывать) в силу тока I , сопротивление R  и напряжение U. В соответствии со сложившейся терминологией проволочные или ленточные изолированные проводящие обмотки, намотанные на магнитопровод из ферромагнитных сталей, называют катушками, а сам магнитопровод – сердечником катушки.

Это важно! Передачу энергии путем создания ЭДС в контурах и трансформацию ее характеристик возможно осуществлять лишь для переменного тока. Постоянный ток также формирует магнитное поле, однако оно является постоянным и неизменяемым, тогда как ЭДС в обмотках катушек трансформатора образуется только при изменении окружающего магнитного поля.

На рис. ниже показана конструкция традиционного трансформатора, состоящего из двух катушек и сердечника, собранного из стальных пластин.

Конструкция традиционного трансформатора

Особенности трансформации энергии для ТТ

Для чего нужен трансформатор, в чем состоит его практическое предназначение? Зачем трансформаторные приборы присутствуют во всех электрических системах? На все вопросы ответ один – в практике эксплуатации электрических сетей трансформаторы выполняют важнейшую функцию изменения величины тока или напряжения, поданного от генератора переменного тока, для дальнейшего использования в промышленном электрооборудовании и бытовой технике. Данное преобразование называют масштабированием, поскольку сами трансформаторные приборы энергию не создают и не преобразовывают, а всего лишь увеличивают или уменьшают показатели системы переменного тока. Для количественной оценки изменения преобразованного параметра сети – тока или напряжения, введено понятие коэффициента трансформации K, показывающего, во сколько раз отличаются значения этого параметра на входе и выходе. Для напряжения коэффициент трансформации определяется по соотношению KU = U2 /U1, для тока – по формуле:

KI =I2 / I1 .

Если величины напряжения или тока на выходе превышают единицу (K>1), трансформатор называется повышающим. При К<1 трансформатор – понижающего типа. Для идеального трансформатора напряжения с неизменяющейся индуктивной связью между первичным и вторичным контурами коэффициент трансформации согласуется с количеством витков W обмоточного провода на катушках по прямой пропорциональной зависимости:

KU = W2 / W1  = U2 /U1

В этой формуле W2 и W1 указывают количество витков на катушках.

Если рассматривать трансформаторы тока, назначение и принцип действия этих приборов, то для них соблюдается пропорциональность первичного и вторичного тока:

I1 =I2 / KI   или   I2 = I1 * KI.

Функциональное назначение трансформаторов тока заключается в снижении вторичного тока до величины, гарантирующей безаварийную эксплуатацию электрооборудования и безопасность персонала, то есть канонический коэффициент трансформации по току всегда меньше единицы. Для расчета ТТ удобнее пользоваться номинальным коэффициентом трансформации, определяемым как отношение значения номинального I1 к номинальному I2 . В этом случае К больше единицы.

Величину номинального вторичного тока I2н указывают в паспорте каждого конкретного ТТ в качестве одного из параметров изделия. Значение I2н  составляет 1А или 5А. Для номинального первичного тока I1н  установлен стандартный числовой ряд значений от 1А до 40 000А.

Номинальный коэффициент трансформации ТТ определяют как отношение I1н  к I2н  и обозначают путем указания обоих параметров, например:

  • 150/5;
  • 1000/5 или
  • 600/1.

На рис. ниже показан ТТ типа Т-0,66 с коэффициентом трансформации 75/5 А.

ТТ типа Т-0,66

Особенности конструкции ТТ

Трансформаторы напряжения, по аналогии с ТТ, выполняют функцию изменения другого параметра электрической сети – напряжения. Однако, при сопоставлении, чем отличается трансформатор тока от трансформатора напряжения (далее – ТН), становится очевидным различное предназначение трансформаторов тока и напряжения:

  1. ТТ уменьшают величину тока до показателей, допускающих безопасное подключение измерительной аппаратуры или систем релейной защиты;
  2. Трансформаторы напряжения изменяют напряжение с целью подгонки определенной электрической системы под нужные стандарты. Изменяя параметры напряжения, установленные для универсальной электрической сети (например, трехфазные 220 и 380 В), с помощью ТН можно подключать любое промышленной оборудование и бытовую технику.

ТТ имеет существенное отличие от устройства ТН, поскольку заложенный в трансформатор тока принцип работы вносит свои особенности в конструкцию основных элементов ТТ и прибора в целом. К числу основных особенностей ТТ относят:

  • выполнение первичной обмотки просто в виде одиночной толстой шины с целью минимизации количества витков;
  • намотка провода вторичной обмотки на сердечник большой площади сечения;
  • ток во вторичном контуре ТТ равен 5А и реже 1А.

Измерительные ТТ и ТН

Трансформаторные устройства, регулируя величины напряжения и тока, обеспечивают стабильность энергетической системы. Кроме подачи электропитания требуемых параметров на приборы и оборудование, трансформаторы «помогают» проводить измерения параметров сети с большими значениями напряжения и тока для определения с высокой точностью их номинальных показателей. Назначение измерительных трансформаторов состоит в следующем:

  • отделение цепи измерительных устройств (амперметров, вольтметров, электросчетчиков и других приборов) или систем релейной защиты от сети с высоким напряжением или током;
  • преобразование высоковольтного напряжения или мощного тока до величин, удобных для измерений стандартными приборами;
  • получение максимально точного правильного результата измерений.

Измерительные трансформаторы тока и напряжения считаются вспомогательными приборами и используются совместно со средствами измерения и реле в сетях переменного тока. Если невозможно напрямую подключиться измерительными приборами в высоковольтную сеть, то здесь будет нужен трансформатор тока. Средства измерения подключаются к его вторичной обмотке и получают все необходимые данные по замеряемому параметру.

На рис. ниже показан измерительный трансформатор тока модели ТПЛ-СЭЩ 10 кВ номинальным напряжением 10 кВ, который предназначен для работы с номинальным первичным током  в диапазоне от 10 до 2000 А при номинальном вторичном токе в 5 А.

Измерительный трансформатор тока ТПЛ-СЭЩ 10 кВ

Область применения ТТ

Весь перечень прикладных задач, указывающий, для чего нужны трансформаторы тока, можно свести к двум основным направлениям:

  1. Измерение параметров сети с помощью доступных дешевых измерительных приборов, рассчитанных на малый ток (до 5 А) и низковольтное напряжение. Тем самым обеспечивается безопасное обслуживание измерительной аппаратуры;
  2. Контроль параметров электротока по всей цепи, в которой установлены ТТ. При достижении током предельного (аварийного) значения срабатывает аппаратура защиты, отключающая эксплуатируемое оборудование.

Это важно! Установка трансформаторов тока в контролируемых цепях позволяет концентрировать измерительную аппаратуру на специальных щитах или в составе пультов управления. Правильно выполненный монтаж трансформаторов тока дает возможность размещения измерительных приборов на безопасном удалении от коммутаций цепи и дистанционно управлять работой электрооборудования в автоматическом режиме.

Классы точности ТТ

Для ТТ определены пять классов точности, характеризующих в процентах допустимую погрешность по току при его номинальных значениях:

  • класс точности 0,2 ограничивает погрешность ТТ в пределах 0,2% и применим для трансформаторных устройств, используемых в лабораторных измерениях;
  • класс точности 0,5 допустим для ТТ, обслуживающих аппаратуру точной защиты и оборудование высокоточной наладки;
  • класс 1 – для цепей промышленного оборудования с подключением вольтметров, амперметров и устройств релейной защиты;
  • классы 3 и 10 – промышленные установки, релейные защиты.

Использование ТТ для локальных измерений в энергетических системах и в комплексе с современными системами измерений и контроля позволяет значительно повышать ресурс безаварийной эксплуатации промышленного электрооборудования и сложнейшей бытовой техники. Внедрение ТТ в автоматизированные системы управления электросетями позитивно влияет на снижение потерь электроэнергии в периоды ежедневных пиковых нагрузок и ставит барьеры для прямых хищений электрической энергии.

На рис. ниже показано подключение счетчика электроэнергии через трансформатор тока.

Подключение счетчика электроэнергии через трансформатор тока

Видео

Оцените статью:

Трансформаторы тока — описание, принципы работы, схемы

В числе задач, которые решает электротехника – проведение профессиональных измерений при больших значениях величин. В качестве вспомогательного оборудования при проведении «исследований» выступает трансформатор тока. Основными элементами прибора выступают его обмотки. Для производства «измерений» осуществляется последовательное подключение первичной обмотки к сети переменного (исследуемого) тока. При этом вторичный контур прибора замыкается на контрольно-измерительную аппаратуру. В числе ведущих характеристик трансформатора высокая точность, которая достигается постоянным пропорциональным соотношением значений тока между обмотками. В целях исследований могут применяться прибора с большим количеством обмоток.

Главным отличием прибора для измерения токов от аналогичных устройств мощности или напряжения является использование нескольких витков. Первичная обмотка изготавливается в виде катушки или плоского, установленных на сердечник. Есть и другие варианты исполнения, например, в виде шины, расположенной на центральном отверстии. В нашем случае применяются трансформаторы тока Т-0,66 и ТШП.

Особенности вспомогательных приборов

Компоновка первичной обмотки трансформатора обычно не имеет более одного витка. Такое расположение позволяет подключать прибор в последовательную цепь. Вторичная же обмотка выполняется с большим количеством витков, посаженных на многослойный сердечник, что обеспечивает низкую плотность магнитного поля. В этой части трансформатора будет происходить короткое замыкание (при подаче на амперметр), либо ток будет подаваться на резистивную нагрузку. Во втором случае происходит эффект насыщения сердечника с одновременным пробоем напряжения до отказа.

Вне зависимости от подаваемого на первичную обмотку тока, значение на вторичном контуре будет равняться 1 или 5 Ампер. В отличие от последовательного прибора, на трансформаторе напряжения зависимость входящего и выходного значений сохраняется.

Типы вспомогательных приборов, используемых в промышленных целях:

  1. Обмоточный трансформатор. Первичная обмотка устройства имеет постоянное последовательное соединение с проводником. На этом участке цепи протекает замеренный ток. Вторичная обмотка выдает электрическую величину, значение которой будет зависеть от количества витков.
  2. Тороидальный трансформатор. Такие устройства не имеют первичной обмотки. Для изготовления приборов используется рулонная сталь. Ток проходит через специальное окно практически без потерь, при этом наблюдается высокая индукция насыщения. Сам сердечник может быть выполнен в раздельном виде, что позволяет отключать его без разрыва цепи. В числе преимуществ тороидального трансформатора меньшие вес, объем и уровень шума, экономия энергии и простой монтаж. Среди недостатков отмечаются более высокая стоимость, отсутствие магнитного зазора и повышенная чувствительность к сетевому напряжению.
  3. Стержневой трансформатор. В качестве первичной обмотки используется подключаемый кабель или шина основной цепи. Элементы фиксируются на жесткой сцепке, подключаются только при выполнении измерений.

Сухой силовой трансформатор обеспечивает снижение больших значений тока до нормативных 1 или 5 Ампер. При таких условиях может работать контрольно-измерительная аппаратура или управляющая автоматика. Таким образом проявляется защитная функция приборов, в паре с которыми могут подключаться к высоковольтным линиям передач защитные реле, магнитные выключатели, измерители мощности или МСВ (модульные автоматические расцепители). Также устройства используются при оборудовании комплектных трансформаторных подстанций

(КТП).

Конструктивные особенности

На практике трансформаторы тока не используются в качестве одиночной компоненты. Включаются в цепь как вспомогательные приборы. Примером такой связки служит согласованная пара трансформатора и амперметра. При этом под различные типы контрольно-измерительной аппаратуры подбирается подходящий тип устройства. В случае с трансформатором осуществляется калибровка на предмет установления пропорциональной зависимости между первичной и вторичной обмотками.

В технических характеристиках вспомогательных приборов чаще можно найти стандартное значение вторичной мощности 5 А. Соотношение на первичной и вторичной обмотках при этом устанавливается как 100/5. Расшифровка пропорции означает, что входящий ток больше выходного в 20 раз. Для соотношения 500/5 будет применяться соответственно стократное превышение на первичной обмотке.


Учитывая стандартные параметры трансформаторов и их возможности, появляется возможность регулирования значений выходного тока за счет увеличения количества вторичных обмоток. В этом случае используется обратная пропорциональность между количеством витков между двумя контурами устройства. Исходя из этого подтверждаются два уравнения электрической цепи:

  1. Соотношение витков T.R.=N=Np/Ns=Is/Ip.
  2. Для вычисления выходного тока (на вторичной обмотке) Is=Ip*Np/Ns.

Коэффициент тока как параметр трансформатора устанавливает соотношение для витков в обмотках. Если в первичном контуре может быть один или несколько оборотов проводника, то на втором их число может достигать нескольких сотен. При этом соотношения 100/5 и 20/1 не определяют аналогичные трансформаторы, поскольку входные токи будут разные. Что касается преобразования трансформаторов, это можно сделать за счет изменения проходов на входной обмотке. Так, для преобразования прибора 300/5А в меньший достаточно поменять (увеличить) число витков на первичном контуре. Наращивание числа витков позволит получить трансформатор с максимальными выходными параметрами.


Примеры расчетов

Назначением трансформатора стержневого типа с количеством витков 1 и 160 на первичной и вторичной обмотках соответственно будет использование в паре с амперметром 0.2 Ом. Измерительный прибор рассчитан на максимальный входной ток в 800 А. Для расчета выходных параметров будет использоваться формула:

Is=Ip*Np/Ns=800/160=5 A.

Напряжение на амперметре рассчитается следующим образом: vs=Is*Ra=5*0.

2=1 V

Формула показывает, что при использовании силового трансформатора тока в паре с амперметром малого сопротивления падение напряжения будет незначительным. При условиях подачи максимального тока составит 1 В.

При удалении из связки измерительного прибора произойдёт размыкание вторичной обмотки. При таком условии трансформатор станет повышающим, поскольку на выходном сердечнике будет наблюдаться значительное увеличение намагничивающего потока. Для расчета возрастающего напряжения используется формула Vp*Ns/Np. К примеру, если трансформатор включен в цепь линии электропередач с расчетным напряжением 480 В, то на выходе значение будет 76.8 кВ. Указанное значение получится по формуле Vp*Ns/Np=480 В*160 витков первичной обмотки/1 проход первичного контура.


Исходя из этого использование трансформатора без нагрузки не допускается. Аналогично вспомогательные приборы для напряжения не могут включаться без короткого замыкания.

Для того чтобы исключить поражение электрическим током, перед удалением измерительной аппаратуры следует закоротить вторичный контур.

Возвращаясь к расчетной формуле, растущее напряжение является только показателем высокого насыщения. Отсутствие сдерживающих факторов может привести к повреждению изоляционного слоя проводника и пробою цепи. В этом случае на выходе трансформатора возрастает риск поражения электрическим током.

Дополнительная классификация устройств

Промышленное назначение трансформаторов задается не только конструкцией первичной обмотки. Включение в цепь осуществляется по таким параметрам рабочих условий, принципу работы или типу установки:

  • Назначение приборов. Промежуточные, защитные или измерительные трансформаторы используются в паре с соответствующими устройствами. Назначение задает схему подключения, в том числе для проведения лабораторных испытаний, где важны коэффициенты трансформации;
  • Тип установки. Трансформаторы могут быть встраиваемыми, накладными или переносными. Тип установки внутренний или наружный учитывается при включении устройств в схему промышленного оборудования или специальных аппаратов. При монтаже также учитываются опорные или проходные способы;
  • При активной эксплуатации трансформаторов имеет значение тип изоляции. В технических характеристиках приборов встречаются описания конденсаторных, сухих, фарфоровых или бакелитных исполнений. Самый надежных вид изоляции – заливка компаундом;
  • Количество ступеней трансформации. Этот параметр определяет возможности приборов по корректировке значений входного тока. Существуют одноступенчатые или каскадных устройства.
Технические характеристики трансформаторов тока, определяющие практическое применение

Поскольку вспомогательные приборы используются в промышленных условиях, выбор устройств должен осуществляться профессионально, по ряду параметров. В их числе следующие:

  1. Номинальный ток. Это не максимальное значение цепи, а параметр, при котором будет сохраняться отказоустойчивость трансформатора. Запас перегрева обычно находится на уровне 20% от номинального тока.
  2. Коэффициент трансформации. Отличается от установленного значения номинального тока. Определяет соотношение между токами на входной (первичной) и выходной (вторичной) обмотках.
  3. Номинальное напряжение. Аналогично нормативному значению для тока задает нормальные для прибора условия работы. Номинальное напряжение определяет качество изоляции, способность к отказоустойчивости в режиме перегрузок.
  4. Токовая погрешность. Явление, возникающее под действием намагничивающего тока. Обозначает разницу между параметрами входного и выходного токов. Возрастает при увеличении намагничивания сердечника в трансформаторе.
  5. Нагрузка номинальная. Под этим параметром понимается значение в Ом, определяющее нормативные условия работы устройства. Нормированными остаются значение входного тока и класс точности.
  6. Номинальная предельная кратность. Соотношение тока первичного к току номинальному.
  7. Максимальное значение кратности для вторичного контура. Соотношение токов на выходной обмотке к номинальному току задает предельный уровень насыщения магнитопровода.

Трансформаторы тока остаются популярными приборами с широким спектром применения в электроэнергетике. Используются для измерений, защиты или в качестве промежуточных устройств корректировки цепи. Самый высокий класс точности применяется в лабораторных условиях.

Дать определение трансформатора тока. Назначение и принцип действия трансформатора тока

Существует два основных вида тока – постоянный и переменный. Обычная электрическая батарейка, например, дает постоянный ток напряжением 1,5 вольта , а в электросети действует переменный электрический ток с напряжением 220 В. Трансформаторы используются исключительно для преобразования переменного электрического тока. Постоянный ток трансформации не поддается.

Как осуществляется трансформация тока

В простейшем варианте трансформатор состоит из металлического сердечника – например, из Ш-образных пластин, и двух обмоток, первичной и вторичной. Обмотки электрически между собой не связаны, передача электрической энергии осуществляется за счет электромагнитной индукции.

Зачем вообще нужен трансформатор? Он позволяет в необходимых пределах изменять напряжение и силу тока. Например, у вас есть электрическая лампочка на 2,5 В. Ее нельзя напрямую подключить к электросети 220 В, она тут же сгорит. Чтобы она нормально работала, необходимо понизить напряжение с 220 В до 2,5 В – то есть снизить его почти в 100 раз.

Эту задачу и позволяет решить трансформатор. Его первичная обмотка имеет достаточно большое количество витков – например, 1000. Благодаря этому она легко выдерживает напряжение 220 В, включение обмотки в сеть не вызывает короткого замыкания. Поверх первичной обмотки наматывается вторичная, но число ее витков значительно меньше. Если в нашем примере 1000 витков рассчитаны на 220 В, то на 1 виток тогда приходится 0,22 В. Нам нужно 2,5 В. Нетрудно подсчитать, что для нормальной работы лампочки напряжением 2,5 В необходимо намотать вторичную обмотку из 11-12 витков.

Области применения трансформаторов электрического тока

Чтобы передавать электроэнергию на большие расстояния, используются высоковольтные линии электропередач. Передается именно переменный ток, так как при передаче постоянного потери электроэнергии оказываются слишком велики. Потери уменьшаются и с увеличением напряжения, поэтому на магистральных направлениях используется напряжение в сотни тысяч вольт.

Чтобы получить высокое напряжение для передачи на расстояние, а затем вновь преобразовать его в нужное потребителям, и используются трансформаторы. Как правило, это мощные масляные трансформаторы, рассчитанные на высокое напряжение.

Небольшие трансформаторы используются и в радиоэлектронной аппаратуре и бытовой технике, они позволяют понижать напряжение 220 В до более низкого, необходимого для питания электронных компонентов. Иногда трансформаторы используют для гальванической развязки – в этом случае количество витков в первичной и вторичной обмотке одинаково. С вторичной обмотки снимают то же напряжение, которое действует на первичной обмотке, но это уже другая цепь, не имеющая прямой электрической связи с первичной обмоткой.

На сегодняшний день во многих случаях не представляется возможным заменить трансформаторы переменного тока какими-то другими устройствами. Поэтому можно не сомневаться в том, что они будут использоваться еще очень долгое время.

Трансформатор тока
с масляным охлаждением
и фарфоровой покрышкой

Для измерения большого переменного тока, его предварительно уменьшают до удобного значения (обычно до 5А) при помощи трансформаторов тока.

Трансформатором тока, называется такой трансформатор, в котором при нормальных условиях работы выходной сигнал выходной сигнал является током, практически пропорциональным первичному току и при правильном включении сдвинутым относительно него по фазе на угол, близкий к нулю.

Описание трансформаторов тока, марок: ЗНОЛ , НЛЛ , НОЛ , НОЛП , ОМ , Т-0,66 , ТЗЛ , ТЗЛМ , ТЗРЛ , ТЛ , ТЛК , ТЛШ , ТНШ , ТНШЛ , ТОЛ , ТОП , ТПК , ТПЛ , ТПОЛ , ТШЛ .

Схема включения трансформатора тока

Принципиальная схема трансформатора тока.

На схеме:

1 — первичная обмотка трансформатора тока;
2 — вторичная обмотка трансформатора тока;
3 — общий магнитопровод;
4 — токопровод высокого напряжения;
I 1 — ток линии;
Ф 1 — переменный магнитный поток, создаваемый током I 1 ;
I 2 — ток протекающий во вторичной обмотке под действием Ф 1 ;
Ф 2 — переменный магнитный поток, создаваемый током I 2 ;

Первичную обмотку трансформатора тока, имеющую малое число витков, включают последовательно в линию, в которой измеряют или контролируют ток. В цепь вторичной обмотки трансформатора тока включают прибор с малым сопротивлением. Таким прибором может быть амперметр, токовая катушка ваттметра, счетчика, какого либо иного измерительного прибора или реле. Приборы во вторичную цепь включают так, чтобы положительное направление тока в приборе совпадало по направлению с положительным направлением тока в контролируемой цепи.

В трансформаторе тока высокого напряжения первичная обмотка изолирована от вторичной на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.

В цепь вторичной обмотки трансформатора тока можно включать несколько приборов, соединив их последовательно, чтобы через них проходил один и тот же ток. Однако включать в цепь вторичной обмотки трансформатора тока большое число измерительных приборов нежелательно, так как это увеличивает сопротивление нагрузки трансформаторов и снижает точность измерений.

Устройство трансформатора тока

Трансформатор тока имеет сердечник, первичную и вторичную обмотки. Как правило, их изготавливают с таким коэффициентом трансформации, чтобы на вторичной стороне сила тока была стандартной. (1;5 и 10А)

Первичная обмотка трансформатора тока включается в сеть последовательно, поэтому для уменьшения потерь энергии и напряжения сечение проводов первичной обмотки выбирают большим, а число витков – один или несколько. Число витков вторичной обмотки всегда больше числа витков первичной. Сечение обмоточных проводов вторичной обмотки сравнительно небольшое.

Трансформаторы тока по конструктивным признакам разделяют на звеньевые(или восьмерочные), в которых первичная обмотка имеет форму кольца, продетого через сердечник; шинные(или стержневые) – первичной обмоткой служит стержень(или шина), петлевые – первичная обмотка имеет форму вытянутой петли; катушечные – первичная обмотка изготовлена в форме катушки.

Первичные обмотки трансформаторов тока могут быть одно или многовитковыми. При одновитковой обмотке витком служит провод, стержень или шина, проходящая через окно магнитной системы; таким образом создается контур, замкнутый через цепь нагрузки. Примерами такого устройства могут служить встроенные трансформаторы тока, применяемые в силовых трансформаторах и масляных выключателях.

Вторичные обмотки трансформаторов тока охватывают магнитную систему и образуют контур через цепи вторичной нагрузки (приборы электрических измерений и релейной зашиты, сигнализации и т. д.). Вторичные обмотки часто изготовляют с ответвлениями; начала, концы и ответвления обмотки подключены к зажимам клеммного щитка. Первичные обмотки имеют зажимы для включения витков параллельно или последовательно. Такое устройство обмоток позволяет использовать трансформатор тока на разные номинальные вторичные токи.

Назначение трансформатора тока

Трансформаторы тока в зависимости от назначения разделяются на трансформаторы тока для измерений и трансформаторы тока для защиты. Зачастую трансформаторы тока совмещают в себе обе функции и могут использоваться как для измерения, так и для защиты.

Трансформаторы тока для измерений предназначаются для передачи информации измерительным приборам. Они устанавливаются в цепях высокого напряжения или в цепях с большим током, то есть в цепях в которых невозможно прямое включение измерительных приборов. Трансформатор тока для измерения обеспечивает:

  • Преобразование переменного тока любого значения в переменный ток, приемлемый для непосредственного измерения с помощью стандартных измерительных приборов;
  • Изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформаторы тока для защиты предназначаются для передачи измерительной информации в устройства защиты и управления. Трансформатор тока для защиты обеспечивает:

  • Преобразование переменного тока любого значения в переменный ток, приемлемый для питания устройств защиты;
  • Изолирование реле, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформатор тока в установке высокого напряжения, необходим даже в тех случаях, когда уменьшения тока для измерительных приборов или реле не требуется.

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке (да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Просто? Еще-бы!

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

    Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.

    Межвитковая емкость в ТТ может стать причиной сдвига фазы.

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Результаты симуляции при к. связи = 1


К. связи = 0.5



Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:


Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о .

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений. Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

Для измерения токов в силовых цепях переменного напряжения применяют трансформаторы тока. Они применяются как в цепях до 1000 В так и выше 1000 В. Они имеют стандартные токи вторичной цепи – 1 А или 5 А и измерительные приборы и реле выполняют на этот ток. Вторичная обмотка трансформатора обязательно заземляется, чтоб в случае пробоя изоляции измерительные устройства не оказались под напряжением первичной цепи.

Схема такого трансформатора показана ниже:

Главной особенностью таких устройств является то, что ток, протекающий в первичной цепи абсолютно независим от режимов работы вторичной цепи. Во вторичной цепи трансформатора предохранитель не ставят, так как обрыв вторичной цепи трансформатора тока – это аварийный режим работы. Почему так мы рассмотрим в следующих статьях.


Основные параметры трансформаторов тока

Номинальное напряжение

Это напряжение линейное сети, в которой должен работать трансформатор. Именно это напряжение будет определять изоляцию между обмотками, одна из которых будет находится под высоким потенциалом, а вторая заземлена.

Номинальные токи

Токи, при которых устройство может работать в длительном режиме не перегреваясь. Как правило, такие трансформаторы имеют большой запас по нагреву и могут работать нормально с перегрузкой в 20%.

Коэффициент трансформации

Отношение первичного и вторичного тока определяемый формулой:

Коэффициент трансформации действительный будет иметь отличия от номинального ввиду потерь в трансформаторе.

Токовая погрешность

В процентах имеет вид:


Где I 2 – вторичный, I 1 ‘ — первичный приведенный токи.

Угловая погрешность

В реальном трансформаторе первичная составляющая по фазе сдвинута от вторичной на угол отличный от 180 0 . Для отсчета угловой погрешности вектор вторичной составляющей поворачивают на 180 0 . Угол между вектором первичной составляющей и этим вектором носит название угловой погрешности. Если перевернутый вектор вторичной составляющей опережает первичную – то погрешность будет положительной, если отстает – отрицательной. Измеряется такой вид погрешности в минутах.

Соответственно трансформаторы тока имеют свой класс точности согласно ГОСТ – 0,2;0,5;1;3;10. Класс точности говорит о допустимой погрешности в процентах Z 2 = Z 2н.

Полная погрешность

Определяется в процентах %, и имеет формулу:


Где: I 1 – действующее первичное значение, i 1, i 2 – мгновенные значения первичных и вторичных токов, Т – период частоты напряжения переменного.

Номинальная нагрузка

Нагрузка, определяемая в Омах, при которой трансформатор будет работать в пределах своего класса точности и с cosφ 2н =0,8. Иногда могут применять понятие номинальной мощности Р:

Поскольку значение I 2н строго нормировано, то мощность трансформатора будет зависеть только от нагрузки Z 2н.

Номинальная предельная кратность

Кратность первичного тока к значению его номинальному, при котором погрешность его может достигать примерно 10%. При этом нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока

Отношение максимального вторичного тока, к номинальному его значению при действующей вторичной нагрузке равной номинальной. Максимальная кратность определяется насыщением магнитопровода, это когда при дальнейшем увеличении первичного тока, вторичный остается неизменным.

Человечество в значительной мере зависит от тока. Но просто так он не подчиняется, необходимы специальные аппараты. В качестве оного выступает трансформатор тока. Чем он является и каково его предназначение? Каков принцип действия трансформатора тока? И насколько он важен?

Что такое трансформатор тока?

Под ТТ понимают измерительный аппарат, который необходим, чтобы преобразовать ток. Конструктивно в трансформаторе первичная обмотка включена в цепь последовательно, тогда как вторичная имеет измерительные приборы, а также реле защиты и автоматики. ТТ является основным измерительным устройством в электроэнергетике. Обе обмотки находятся в изоляции. Вторичная во время эксплуатации обычно имеет потенциал, который близок к «земле», что достигается путём заземления одного конца.

Благодаря трансформатору можно учитывать и измерять ток высокого напряжения, используя приборы для низкого. В конце сводится всё к измерению первичного, значение которого записывают в амперах. Следует отличать измерительный трансформатор тока от силового. Так, в первом индукция является непостоянной и напрямую зависит от режима эксплуатации. Поэтому и считаются универсальными трансформаторы тока.

Назначение и принцип действия

Как всё происходит? Каков принцип действия трансформатора тока? Через силовую первичную обмотку, которая имеет определённое число витков, протекает напряжение, которое преодолевает полное сопротивление. Вокруг катушки возникает магнитный поток, который может уловить магнитопровод. Его необходимо расположить перпендикулярно относительно направления тока. Таким образом, будет теряться минимум электроэнергии во время её преобразования в электрическую. Пересекая перпендикулярно расположенные витки вторичной обмотки, магнитный поток активирует электродвижущую силу, под влиянием которой и возникает ток, преодолевающий полное сопротивление катушки и выходной нагрузки. Вместе с этим на зажимах 2-й цепи возникает падение напряжения.

Теперь немного о частных случаях:

  • Принцип действия сварочного трансформатора базируется на максимальной отдаче мощности. Его конструкция должна выдерживать высокое напряжение.
  • Принцип действия однофазного трансформатора базируется на магнитном потоке. Так, если замкнуть вторичную обмотку на какое-то сопротивление, то при появлении тока возникнет движущая сила. Если обратить внимание на закон Ленца, то можно сделать заключение, что магнитный поток будет уменьшаться. Но принцип действия однофазного трансформатора предусматривает подведение постоянного тока к первичной обмотке, в результате чего уменьшения магнитного потока не происходит.

Классификация

Все трансформаторы тока (как для измерений, так и для защиты) поддаются классификации по таким признакам:

  • По роду установки.
  • ТТ, предназначенные для работы в воздухе.
  • Трансформаторы тока для функционирования в условиях закрытых помещений.
  • ТТ, предназначенные для встраивания внутрь электрооборудования.

Основные параметры

Трансформаторам тока выдвигают целый ряд требований. Вся необходимая информация должна быть указана в паспорте или приложенной таблице.

Вот их краткий список:

  • Номинальное напряжение может находиться в широком диапазоне.
  • Номинальный первичный ток, который идёт по 1-й обмотке. Указываются значения для длительной работы аппаратуры.
  • Номинальный вторичный ток, проходящий по 2-й обмотке. Его качество обозначается показателем в 1 или 5 ампер.
  • Вторичная нагрузка соответствует сопротивлению во внешней 2-й цепи и выражается в омах.

Ограничения

По термической стойкости:

  • I1т — рассчитан на номинальное напряжение выше 330 кВ.
  • I3т — применяется в диапазоне значений в 110-220 кВ.
  • I4т — используется при напряжении, которое не превышает 35 кВ.

Принцип действия трансформатора может зависеть от материала:

  • При изготовлении токопроводящих частей из алюминия температура не должна превышать 200°С.
  • Если детали, что проводят ток, сделаны из меди или её сплавов и соприкасаются с маслом или органической изоляцией, то ограничение составляет 250°С.


Также существуют требования к механическим нагрузкам, которые должен выдерживать трансформатор тока при скорости ветра в 40 м/с. Принцип действия устройства может немного поменяться из-за конструктивных дополнений:

  • Если ТТ до 35 кВ, то это значение составляет 500 ньютонов.
  • При значениях в 110-220 кВ необходима стойкость в 1000 Н.
  • При превышении 330 кВ требование к механическим нагрузкам возрастает до уровня 1500 ньютонов.

Опасные факторы при работе с трансформатором тока

При работе с ТТ необходимо быть чрезвычайно осторожным, поскольку существуют значительные риски пострадать вплоть до летального исхода. Итак, следует опасаться:

  • Возможности поражения высоковольтным потенциалом, что может случиться в случае повреждения изоляции. Так как магнитопровод трансформатора тока сделан из металла, то он имеет хорошую проводимость и соединяет магнитным путём отделенные обмотки ТТ (первичную и вторичную). Поэтому существует повышенная опасность, что персонал получит электротравмы, или повредится оборудование вследствие дефектов в изоляционном слое. Чтобы избежать таких ситуаций, заземляют один из вторичных выводов трансформатора.


  • Возможность поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Её выводы промаркированы как «И1» и «И2». Чтобы направление, по которому протекает ток, было полярным и совпадало по всем обмоткам, они всегда во время работы трансформатора подключаются на нагрузку. Это необходимо из-за того, что ток, проходящий по первичной обмотке, имеет мощность высокого потенциала, которая передаётся во вторичную цепь с незначительными потерями. При разрыве в таких случаях резко уменьшаются показатели из-за утечки во внешнюю среду. При таких происшествиях значительно ускоряется падение напряжения на данном разорванном участке. Потенциал, который сформировывается на разомкнутых контактах, при прохождении тока достигает нескольких киловольт. Такое значение является опасным для жизни. Поэтому необходимо убеждаться, что все вторичные цепи на трансформаторах тока надежно собраны. А при выходе из строя устанавливаются шунтирующие закоротки. Принцип действия трансформатора не терпит пренебрежения правилами безопасности, и получить электротравму очень легко.


  • Конструкторские решения, которые были использованы в трансформаторах тока. Любой ТТ, как и все электротехнические устройства, должен решать определённые задачи, которые возникают во время эксплуатации электроустановок. Благо, промышленность предлагает значительный ассортимент. Но в некоторых случаях бывает лучше усовершенствовать имеющуюся конструкцию с точки зрения предприятия, чем изготавливать что-то новое, чем многие и пользуются, не имея достаточного опыта. Без знания, что собой представляет принцип действия трансформатора, последствия такого вмешательства могут создать ситуации, опасные для жизни.

Заключение

В рамках статьи мы обсудили назначение и принцип действия трансформатора тока. Как видите, это устройство является очень важным для нормального функционирования общества. Но вместе с этим оно является и довольно опасным, поэтому всегда стоит придерживаться осторожности и без надобности не лезть внутрь аппарата, особенно тогда, когда работают трансформаторы тока. Назначение и принцип действия таких приспособлений были нами рассмотрены настолько, насколько это позволил размер статьи. Однако все самое важное мы изучили.

Принцип работы трансформаторов тока | Бесплатные дипломные работы на DIPLOMKA.NET

1.3 Принцип работы
Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле.

Рисунок 1 – Трансформатор тока:
а — устройство, б, в — схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока
Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а—в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой:
KТТ = I1/I2 = w2/wl ,
где KТТ — коэффициент трансформации; w1 и w2 — число витков первичной и вторичной обмоток.
Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов.
Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка.
Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а—в).
Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора.

Рисунок 2 – Трансформаторы тока на напряжение до 1000 В:
а — катушечный, б, в — шинные ТШ-0,5 и ТШЛ-0,5; 1 — каркас, 2, 4 — зажимы вторичной и первичной обмоток, 3 — защитный кожух, 5 — окно


Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией:
а — многовитковый ТПЛ-10, б — одновитковый ТПОЛ-10, в —шинный ТПШЛ-10; 1, 2 — зажимы первичной и вторичной обмоток, 3 — литая изоляция, 4 — установочный угольник, 5 — сердечник


Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки
В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока.

Рисунок 5 – Трансформаторы тока:
а — проходной ТПФМ-10 на 10 кВ, б — опорный ТФН-35М на 35 кВ; 1 и 3 — первичная и вторичная обмотки, 2 — фарфоровый изолятор, 4 — сердечник вторичной обмотки, 5 — контактный угольник, 6 — крышка, 7 — кожух, 8 — верхний фланец, 9 — зажимы выводов вторичной обмотки, 10 — якореобразный болт, 11 — крышка, 12 — фарфоровая покрышка, 13 — изоляционное масло, 14 — кольцевые обмотки («восьмеркой»), 15 — полухомут, 16 — масловыпускатель, 17 — цоколь, 18 — коробка вторичных выводов, 19 — кабельная муфта, 20 — маслоуказатель

Трансформаторы тока ТР и ТЛ

Главная » Трансформаторы » Трансформаторы тока » Класс напряжения 0.66 кВ » Трансформаторы тока ТР и ТЛ Трансформаторы тока ТР и ТЛ

 


Трансформаторы тока ТР-0,66

 Назначение

Трансформатор тока ТР — 0,66 предназначен для передачи сигнала измерительной информации измерительным приборам в цепях дифференциальных защит, а также в цепях защиты, присоединённой к фильтру токов нулевой последовательности. Первичная обмотка трансформатора включается последовательно в цепь вторичных обмоток основных трансформаторов тока на 10 кВ и выше, а во вторичную цепь трансформатора включаются электроизмерительные приборы и счётчики. Трансформатор предназначен для эксплуатации в климатическом исполнении У или Т категории размещения 2 по ГОСТ 15150-69. При этом: высота над уровнем моря — до 1000 м; температура окружающего воздуха от — 45 С до + 60 С; окружающая среда невзрывоопасная, не содержащая токопроводящей пыли; рабочее положение в пространстве — любое. 
 Устройство:
Трансформатор тока ТР — 0,66 по принципу конструкции является опорным, катушечным. Магнитопровод — витой ленточный, корпус литой из эпоксидного компаунда. Трансформатор крепится к конструкции электроустановки с помощью лап. Выводы первичной обмотки, включаемой в цепь измеряемого тока, обозначены Л1 и Л2. Выводы вторичной обмотки, к которой подключаются приборы, обозначены И1 и И2. Обозначения первичной и вторичной обмоток находятся на трансформаторе. Трансформатор имеет один коэффициент трансформации и одну вторичную обмотку для измерений.

Трансформатор ремонту не подлежит.*

Трансформатор тока ТЛ-0,66

Назначение

Трансформатор тока ТЛ-0,66 предназначен для работы в передвижных и в стационарных установках: ТЛ-0,66-I — для передачи сигнала измерительной информации измерительным приборам, устройствам защиты и управления; ТЛ-0,66-II — для работы в магнитных и кулачковых контроллерах; ТЛ-0,66-III — для автоматического выравнивания нагрузки параллельно работающих генераторов. Трансформаторы ТЛ-0,66-I и ТЛ-0,66-III рассчитаны для эксплуатации в районах с умеренным или тропическим климатом (климатическое исполнение У или Т), для работы в закрытых помещениях с естественной вентиляцией (категория размещения 3) по ГОСТ 15150-69; трансформатор ТЛ-0,66-II — для эксплуатации в районах с умеренно-холодным морским климатом (климатическое исполнение М), для работы в помещениях с повышенной влажностью (категория размещения 5) по ГОСТ 15150-69.  При этом: наибольшая высота над уровнем моря 4300 м, при этом температура окружающего воздуха от минус 50 С до плюс 50 С; температура окружающего воздуха от -50 до +60 С; окружающая среда невзрывоопасная, не содержащая токопроводящей пыли в концентрациях, снижающих параметры изделий в недопустимых пределах — для ТЛ-0,66-II атмосфера типа III, для остальных типоисполнений — атмосфера типа II по ГОСТ 15150-69; рабочее положение в пространстве — любое.
Трансформаторы соответствуют группе условий эксплуатации М25 по ГОСТ 17516.1-90 в части стойкости к механическим внешним воздействующим факторам.

Устройство:
Трансформатор тока ТЛ — 0,66 по принципу конструкции является опорным, катушечным. Магнитопровод — витой ленточный, корпус литой из эпоксидного компаунда. Трансформатор крепится к конструкции электроустановки с помощью фланца. Выводы первичной обмотки, включаемой в цепь измеряемого тока, обозначены Л1 и Л2. Выводы вторичной обмотки, к которой подключаются приборы, обозначены И1 и И2. Обозначения первичной и вторичной обмоток находятся на трансформаторе. Трансформатор имеет один коэффициент трансформации и одну вторичную обмотку для измерений.

Трансформатор ремонту не подлежит.*

 Технические характеристики.
ТипНом.первичн.
тока,А
Ном.вторич.
тока,А
Класс
точности
Ном.
вторич.
нагрузка,ВА
Габаритные
размеры,мм
Масса,
кг
Тр-0,66 У,Т2110,510145х113х1303,1
5
ТЛ-0,66 УТЗ

5,10,30,50,75,100,

150,200,300

0,5;1100х120х1552,0
400,600

115х120х145

175х120х139


1.Назначение трансформаторов тока

Кафедра

ЭС и ЭЭС

Электромагнитные трансформаторы тока

Работа №4

Цель работы:

1. Изучить назначение трансформаторов тока.

2. Изучить основные элементы конструкции электромагнитных трансформаторов тока.

3. Виды и причины погрешностей трансформаторов тока.

4. Изучить конструкции электромагнитных трансформаторов тока для внутренней установки.

5. Изучить конструкции электромагнитных трансформаторов тока для наружной установки.

Для управления и контроля за состоянием энергообъектов в целом и отдельных их элементов необходимо контролировать ряд параметров режима. Основными параметрами являются ток Iи напряжениеU. Остальные параметры: фаза(φ), мощность (P, Q), энергия (W), частота (f), определяются на основе информации о токе и напряжении. Однако контролировать ток и напряжение первичной сети не представляется возможным из-за их больших значений. Проблему согласования больших значений величин первичной сети с контролирующими их приборами выполняют с помощью измерительных трансформаторов тока и напряжения, которые уменьшают соответствующие контролируемые параметры (IилиU) до приемлемых величины и изолируют первичную цепь от вторичной, где подключаются приборы.

Трансформатор тока предназначен для уменьшения первичного тока до значений, наиболее удобных для измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.

В настоящее время в основном применяются электромагнитные трансформаторы тока, принцип действия которых основан на использовании закона электромагнитной индукции Фарадея. Однако начинают применяться и оптические трансформаторы тока, основанные на использовании магнитооптического эффекта Фарадея.

2.Основные элементы конструкции электромагнитных трансформаторов тока.

Трансформатор тока (ТТ) имеет замкнутый магнитопровод 2 (рис. 1) и две обмотки — первичную 1 (с выводами Л1 и Л2 и числом витков W1 )и вторичную 3 (с выводами И1 и И2 и числом витков W2 ). Первичная обмотка включается последовательно в цепь измеряемого тока I1, а ко вторичной обмотке могут присоединяются измерительные приборы, устройства автоматики или релейной защиты, обтекаемые током I2. Во вторичной цепи приборы и устройства автоматики и релейной защиты должны включаться последовательно, чтобы в них протекал один и тот же ток I2 . Обязательным элементом конструкции ТТ является изоляция: изоляция между витками обмоток, изоляция обмоток от магнитопровода и изоляция между обмотками.

Рис. 1 Принципиальная конструкция трансформатора тока и подключение его к первичной и вторичной цепи.

Вторичная обмотка заземляется в одной точке, это заземление должно защитить вторичные цепи от высокого напряжения в случае пробоя изоляции между первичной и вторичной обмотками.

ТТ могут иметь и несколько вторичных обмоток, но в этом случае каждая вторичная обмотка наматывается на отдельный магнитопровод, а общей обмоткой этих магнитопроводов будет только первичная обмотка, которая будет пронизывать все магнитопроводы. Такое выполнение ТТ позволяет исключить влияние нагрузок вторичных обмоток на токи в других вторичных обмртках.

МДС первичной обмотки I1W1создает в магнитопроводе потокФ1,если цепь вторичной обмотки замкнута, то ее МДСI2W2создает в магнитопроводе потокФ2. Согласно правилу Ленца потокФ2направлен встречно потокуФ1, поэтому в магнитопроводе устанавливается относительно не большой результирующий магнитный поток

Ф0= Ф1— Ф2.

Трансформатор тока характеризуется номинальным коэффициентом трансформации

где I1ном и I2ном номинальные значения первичного и вторичного тока соответственно. Коэффициент трансформации примерно может быть выражен через отношение чисел витков обмоток: KIW2/W1. Чтобы ТТ уменьшал первичный ток, необходимо выполнение условия: W2> W1.

Значения номинального вторичного тока у ТТ могут быть 5 или 1 А. Соответственно первые называются пятиамперными ТТ, а вторые – одноамперными ТТ.

Блок в футере (ru)

Самарская область

Азербайджан

Армения

Белоруссия

Грузия

Дальнее Зарубежье

Казахстан

Киргизия

Молдавия

Монголия

Прибалтика

Таджикистан

Туркменистан

Узбекистан

Украина

Москва

Санкт-Петербург

Алтайский край

Амурская область

Архангельская область

Aстраханская область

Белгородская область

Брянская область

Владимирская область

Волгоградская область

Вологодская область

Воронежская область

Еврейская автономная область

Забайкальский край

Ивановская область

Иркутская область

Кабардино-Балкарская Республика

Калининградская область

Калужская область

Камчатский край

Карачаево-Черкесская республика

Кемеровская область

Кировская область

Костромская область

Краснодарский край

Красноярский край

Курганская область

Курская область

Ленинградская область

Липецкая область

Магаданская область

Московская область

Мурманская область

Ненецкий автономный округ

Нижегородская область

Новосибирская область

Омская область

Оренбургская область

Орловская область

Пензенская область

Пермский край

Приморский край

Псковская область

Республика Адыгея

Республика Алтай

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Ингушетия

Республика Калмыкия

Республика Карелия

Республика Коми

Республика Марий Эл

Республика Мордовия

Республика Саха (Якутия)

Республика Северная Осетия-Алания

Республика Татарстан (Татарстан)

Республика Тыва

Республика Хакасия

Ростовская область

Рязанская область

Самарская область

Саратовская область

Сахалинская область

Свердловская область

Смоленская область

Ставропольский край

Новгородская область

Тамбовская область

Тверская область

Томская область

Тульская область

Тюменская область

Удмуртская республика

Хабаровский край

Ханты-Мансийский автономный округ

Челябинская область

Чеченская Республика

Чувашская республика (Чувашия)

Чукотский автономный округ

Ямало-ненецкий автономный округ

Ярославская область

Защита трансформатора тока — условия обрыва цепи

W ЧТО ТАКОЕ ТРАНСФОРМАТОР ТОКА?

Трансформатор тока (CT) используется для измерения тока другой цепи. Трансформаторы тока используются во всем мире для контроля высоковольтных линий в национальных электрических сетях. ТТ предназначен для создания переменного тока во вторичной обмотке, пропорционального измеряемому току в первичной обмотке. При этом трансформатор тока снижает ток высокого напряжения до более низкого значения и, следовательно, обеспечивает безопасный способ контроля электрического тока, протекающего в линии передачи переменного тока.

Опасности при эксплуатации

Опасности при работе могут возникнуть, если вторичная цепь ТТ остается разомкнутой, пока первичная находится под напряжением. Обрыв цепи может произойти непреднамеренно из-за планового технического обслуживания нагрузки или повреждения выводов вторичной цепи. В этих ситуациях могут возникать переходные процессы высокого напряжения и повреждать изоляцию обмотки ТТ; возможно, что сделает его неработоспособным. Кроме того, эти переходные процессы могут вызвать высокие вихревые токи в сердечнике ТТ.Это может отрицательно сказаться на характеристиках намагничивания трансформатора тока и привести к ошибкам в точности измерения.

IEEE C57.13 рекомендует оборудовать устройства ограничения напряжения вторичными обмотками для защиты от опасного напряжения. В нем указано, что устройство ограничения напряжения должно выдерживать обрыв цепи в течение одной минуты без повреждения вторичной цепи. Блоки защиты трансформатора тока (CTPU) Metrosil предлагают такую ​​защиту и, в отличие от других устройств ограничения напряжения, не требуют немедленной замены после выхода из нормального состояния.Они могут оставаться на месте без вмешательства пользователя.

Устройства защиты трансформатора тока

В нормальных рабочих условиях или в условиях неисправности с подключенной нагрузкой варистор подвергается действию приложенного напряжения. Он действует как пассивная нагрузка и потребляет небольшой ток, что предотвращает неточности измерения ТТ. Во время разомкнутой цепи варистор подвергается действию приложенного тока и действует как активная нагрузка. Таким образом, он ограничивает напряжение на клеммах ТТ и предотвращает любые повреждения.Термостатический выключатель управляет термоциклированием внутри Metrosil CTPU, когда ТТ находится в состоянии разомкнутой цепи. Второй термостатический выключатель может быть установлен на пластине радиатора для удаленного контроля. Варисторы Metrosil могут управлять величиной обратной ЭДС, рассеивая накопленную в катушке энергию на соответствующую нагрузку.

ЦТПУ Метросил может быть выполнен в одно- и трехполюсном исполнении для удобства установки. Все CTPU проходят заводской аудит по ISO9001-2015.CTPU Метросил защищают трансформаторы тока от повреждений в условиях холостого хода. Они не защищают системы реле или трансформаторов тока от перенапряжений, возникающих из-за высоких вторичных токов замыкания. Для защиты релейных систем с высоким импедансом от перенапряжений в условиях неисправности, пожалуйста, обратитесь к нашему проспекту реле Metrosil . Для получения помощи в использовании CTPU Metrosil в сочетании с реле Metrosil для высокоомных релейных систем, пожалуйста, обращайтесь в команду Metrosil .

Шкафы CTPU

Линейка предварительно смонтированных шкафов CTPU Метросил обеспечивает улучшенную защиту от разрушительного воздействия разомкнутых цепей вторичной стороны.Типовые испытания и независимая сертификация согласно IEC 61439, части 1 и 2, блоки доступны в адаптируемых конфигурациях и гибких вариантах установки.

Почему Метросил?

Варисторы из карбида кремния Metrosil были произведены в отделении высокого напряжения Метрополитен-Виккерс в 1936 году и произведены серийно в 1937 году. В качестве крупного энергетического предприятия в 20 -м веке компания Metrovicks была известна своим промышленным электрооборудованием. в том числе генераторы, паровые турбины, распределительное устройство, трансформаторы, электроника и тяговое оборудование для железных дорог.Следовательно, резисторы Metrosil были включены в крупные флагманские проекты, проложившие путь к эффективному распределению электроэнергии. По сей день наши резисторы остаются на своих местах в установленных сетях электроснабжения, что вызывает доверие как у крупных OEM-производителей, так и у коммунальных предприятий. По мере развития современной энергетической инфраструктуры мы продолжаем внедрять инновации и специализироваться на подстанциях в глобальном масштабе.

Каковы функции трансформатора тока?

Обновлено 14 декабря 2020 г.

Пол Дорман

Трансформатор тока (CT) — это трансформатор, который измеряет ток другой цепи.Он подключен к амперметру (A на схеме) в своей собственной цепи для выполнения этого измерения. Непосредственное измерение высоковольтного тока потребовало бы включения измерительных приборов в измеряемую цепь — ненужная трудность, которая потребовала бы того самого тока, который должен быть измерен. Кроме того, тепло, выделяемое в измерительном оборудовании из-за высокого тока, может давать ложные показания. Косвенное измерение тока с помощью трансформатора тока гораздо практичнее.

Взаимосвязь трансформаторов напряжения и тока

Функцию трансформатора тока (CT) можно лучше понять, сравнив его с более широко известным трансформатором напряжения (VT).Вспомните, что в трансформаторе напряжения переменный ток в одной цепи создает переменное магнитное поле в катушке в цепи. Катушка намотана вокруг железного сердечника, который передает почти неизменное магнитное поле на другую катушку в другой цепи, в которой нет источника питания.

Напротив, отличие ТТ в том, что схема с питанием фактически имеет один контур. Цепь с питанием проходит через железный сердечник только один раз. Таким образом, трансформатор тока является повышающим трансформатором.

Формулы ТТ и ТН

Напомним также, что ток и количество витков в катушках в ТН могут быть связаны как:

i_1N_1 = i_2N_2

Это потому, что для катушки (соленоида):

B = \ mu Ni

, где mu означает постоянную магнитной проницаемости. Небольшая интенсивность B теряется от одной катушки к другой с хорошим железным сердечником, поэтому уравнения B для двух катушек фактически равны, что дает нам первое соотношение.

Однако N 1 = 1 для первичной обмотки в случае трансформатора тока. Является ли одиночная линия электропередачи эквивалентом одной петли? Сводится ли последнее уравнение к i 1 = i 2 N 2 ? Нет, потому что это было основано на уравнениях соленоида. Для N 1 = 1 более подходящей является следующая формула:

B = \ frac {\ mu i} {2 \ pi r}

, где r — расстояние от центра провода до точки, где B измеряется или измеряется (железный сердечник в корпусе трансформатора).Итак:

\ frac {i} {2 \ pi r} = i_2N_2

i 1 , следовательно, просто пропорционально измеренному амперметром значению i 2 , сокращая измерение тока до простого преобразования.

Использует общий трансформатор

Одной из основных функций трансформатора тока является определение тока в цепи. Это особенно полезно для мониторинга высоковольтных линий по всей электросети. Другое повсеместное использование трансформаторов тока — это бытовые электросчетчики.ТТ соединен с измерителем, чтобы измерить, какое потребление электроэнергии заряжает покупатель.

Безопасность электрических инструментов

Другой функцией трансформаторов тока является защита чувствительного измерительного оборудования. Увеличивая количество (вторичных) обмоток, N2, можно сделать ток в ТТ намного меньше, чем ток в измеряемой первичной цепи. Другими словами, когда N 2 повышается, i 2 понижается.

Это важно, потому что сильный ток выделяет тепло, которое может повредить чувствительное измерительное оборудование, такое как резистор в амперметре.Уменьшение i2 защищает амперметр. Это также предотвращает снижение точности измерения из-за тепла.

Защитные силовые реле

ТТ, обычно устанавливаемые в специальный корпус, называемый шкафом ТТ, также защищают основные линии электросети. Реле максимального тока — это тип защитного реле (переключателя), которое отключает автоматический выключатель, если ток высокого напряжения превышает определенное заданное значение. Реле максимального тока используют трансформатор тока для измерения тока, поскольку ток высоковольтной линии нельзя измерить напрямую.

Трансформатор тока: узнайте цель, стоимость и время выполнения заказа

Высокоточный трансформатор тока с обмоткой C800, обычно используемый для коммерческого учета.
Назначение трансформатора тока

Реле необходимо знать величину тока — либо для измерения, либо для реализации схем защиты. Трансформатор тока (ТТ) выполняет эту роль, понижая сотни, а иногда и тысячи ампер до (обычно) 5 А, который затем подается на реле.

Типичное место для установки ТТ — ввод выключателя или трансформаторный ввод.Это кольцевые трансформаторы тока, которые используют магнитное поле, создаваемое током (протекающим через проходной изолятор), чтобы вызвать ток в его обмотке.

Трансформатор тока на выключатель. Изображение предоставлено: FirstEnergy — Огайо Эдисон — вокзал Лиссабона.

Для сверхвысокого напряжения автоматические выключатели сконструированы как выключатели под напряжением. Из-за веса и размера трансформаторов тока их нельзя установить непосредственно на корпусе прерывателя. Используются внешние автономные трансформаторы тока.

Внешние трансформаторы тока рядом с выключателем бака под напряжением

Для коммунальных предприятий важно знать, сколько энергии импортируется или экспортируется на границе обслуживания.ТТ вместе с ПТ устанавливаются прямо там, где линия электропередачи входит в подстанцию, что является точкой разграничения собственности.

Трансформатор тока возле тупиковой конструкции, где линия передачи входит в подстанцию. Изображение предоставлено: Western Area Power — подстанция испытательного трека.

На изображении ниже показан трансформатор тока, установленный на отрезке шины среднего напряжения.

Внешний трансформатор тока, используемый рядом с переключателем

До сих пор вы видели автономные и кольцевые трансформаторы тока.Взгляните на стержневой трансформатор тока и пояс Роговского.

С точки зрения защиты и управления трансформаторы тока устанавливают зону защиты в энергосистеме. Строка, взятая из одной из электронных книг PEguru, показана ниже. Он показывает, как стратегически выбираются ТТ на выключателе и трансформаторе для реализации защиты линии, защиты трансформатора и защиты выключателя. Реле oneline для кольцевой подстанции.

Стоимость трансформатора тока
  • 138 кВ автономный трансформатор тока: ~ 15000 долларов США / фаза
  • 345 кВ 3000: 5A MR C800 точность CT: ~ 30000 долларов США / фаза
Время выполнения заказа на приобретение трансформатора тока

Сверхвысокое напряжение автономное устройство: ~ 1 год

Информация о стоимости и сроках выполнения предназначена только для вашего общего ознакомления.Обратитесь к поставщику и сообщите технические характеристики вашего оборудования для получения фактических данных.

OR
Выберите другое основное оборудование
OR
Попробуйте пройти викторину

Поддержите этот блог, поделившись статьей

Строительство, работа, типы и их применение

Трансформатор — это электрическое устройство, используемое для передачи электроэнергии от одной цепи к другой без изменения ее частоты, и это достигается за счет электромагнитной индукции. В основном трансформаторы бывают двух типов: с оболочкой и с сердечником.Основная функция — повышать и понижать напряжение. Для целей измерения используются измерительные трансформаторы, поскольку эти трансформаторы измеряют ток, напряжение, энергию и мощность. Они используются в различных приборах, таких как вольтметр, амперметр, ваттметр и измеритель энергии. Эти трансформаторы подразделяются на два типа, а именно трансформатор тока и трансформатор напряжения.

Что такое трансформатор тока?

Определение: Измерительный трансформатор, который используется для генерации переменного тока во вторичной обмотке трансформатора, известен как трансформатор тока.Он также известен как последовательный трансформатор, поскольку он включен последовательно со схемой для измерения различных параметров электроэнергии. Здесь ток во вторичной обмотке пропорционален току в первичной обмотке. Они используются для уменьшения токов высокого напряжения до токов низкого напряжения.


Устройство с трансформатором тока

Принцип работы

Принцип работы трансформатора тока несколько отличается по сравнению с обычным трансформатором напряжения.Как и трансформатор напряжения, он имеет две обмотки. Когда переменный ток подается через первичную обмотку, может генерироваться переменный магнитный поток, тогда переменный ток будет индуцироваться во вторичной обмотке. В этом типе сопротивление нагрузки очень мало. Таким образом, этот трансформатор работает в условиях короткого замыкания. Таким образом, ток во вторичной обмотке зависит от тока в первичной обмотке, но не зависит от сопротивления нагрузки.

Конструкция трансформатора тока

Конструкция этого трансформатора включает в себя различные особенности, основанные на конструкции, такие как первичные ампер-витки, сердечник, обмотки и изоляция.

Конструкция трансформатора тока
Число витков в первичной обмотке

№ Количество ампер-витков в первичной обмотке трансформатора колеблется от 5000 до 10000, поэтому они определяются через первичный ток.

Сердечник

Для достижения низких скручиваний в амперном намагничивании материал сердечника должен иметь низкие потери в стали и низкое сопротивление. Материалы сердечника, такие как никель и сплав железа, обладают разными свойствами, такими как низкие потери и высокая проницаемость.


Обмотки

Реактивное сопротивление утечки в трансформаторе можно уменьшить, разместив обмотки близко друг к другу.Провода, используемые в первичной обмотке, представляют собой медные ленты, а для вторичной обмотки используются провода SWG. Эти обмотки можно спроектировать для обеспечения надлежащей прочности и фиксированных связей без каких-либо повреждений.

Изоляция

Обмотки трансформатора изолированы лаком и лентой. Приложения с высоким напряжением нуждаются в изоляционных устройствах, которые поглощаются маслом, используемым для обмоток.

Сердечник трансформатора можно спроектировать, используя слоистую кремнистую сталь.Первичная обмотка трансформатора несет ток и подключена к главной цепи. Ток во вторичной обмотке пропорционален току в первичной обмотке, и он подключен к счетчикам или приборам.

Первичная и вторичная обмотки изолированы от жил. Первичная обмотка включает один виток, по которому проходит полный ток нагрузки, тогда как вторичная обмотка включает несколько витков.
Соотношение тока в первичной и вторичной обмотках называется коэффициентом трансформации тока.Обычно коэффициент тока трансформатора высокий. Номинальный ток во вторичной обмотке составляет 0,1 А, 1 А и 5 А, тогда как номинальный ток в первичной обмотке находится в диапазоне от 10 А до 3000 А.

Типы трансформаторов тока

Они подразделяются на четыре типа, включая следующие.

Внутренний трансформатор тока

Внутренний трансформатор применяется в цепях низкого напряжения. Они подразделяются на разные типы, такие как рана, окно и стержень. Подобно базовому типу, намотанный тип включает две обмотки, такие как первичная и вторичная.Они используются в приложениях суммирования из-за высокой точности и высоких значений скручивания первичного тока.

Штыревой трансформатор включает первичную шину с вторичными сердечниками. В этом типе стержень является важной частью. Точность этого трансформатора может быть снижена из-за намагничивания сердечника. Оконный тип может быть установлен в области первичного проводника, так как эти трансформаторы могут быть спроектированы без первичной обмотки.

Эти типы трансформаторов доступны в исполнении со сплошным и разъемным сердечником.Перед подключением этого типа трансформатора необходимо отсоединить первичный проводник, тогда как в случае разъемного сердечника его можно установить непосредственно в области проводника, не разъединяя его.

Трансформаторы тока наружной установки

Трансформаторы наружного типа используются в высоковольтных цепях, таких как подстанции и распределительные устройства. Они доступны в двух типах: с масляной изоляцией и с элегазовой изоляцией. Трансформаторы с элегазовой изоляцией имеют меньший вес по сравнению с маслонаполненными трансформаторами.

Бак-пик может быть подключен к первичному проводнику, который известен как трансформатор тока конструкции под напряжением. В этой конструкции используются небольшие вводы, потому что и резервуар, и первичный провод имеют одинаковый потенциал. Для ТТ с несколькими коэффициентами используется первичная обмотка с разъемным типом.

Таким образом, на баке, предназначенном для первичной обмотки, расположены отводы, поэтому с помощью этих трансформаторов можно получить переменный коэффициент тока. После того, как ответвления поданы на вторичную обмотку, рабочие ампер-витки могут быть изменены при подаче на первичную обмотку, поэтому неиспользуемое медное пространство можно оставить, за исключением самого низкого диапазона.

Втулочный трансформатор тока

Этот тип трансформатора аналогичен линейному типу, в котором сердечник и вторичная обмотка расположены в области первичного проводника. Вторичная обмотка трансформатора может быть превращена в круглый сердечник, иначе имеющий форму кольца. Он подключается к высоковольтному вводу в автоматических выключателях, силовых трансформаторах, распределительном устройстве или генераторах.

Как только проводник проходит через проходной изолятор, он действует как первичная обмотка, и расположение сердечника может быть выполнено с помощью изоляционной втулки.Эти типы трансформаторов используются в цепях высокого напряжения для реле, поскольку они не дороги.

Переносные трансформаторы тока

Эти типы трансформаторов являются высокопрецессионными, в основном используются для анализаторов мощности и высокоточных амперметров. Эти трансформаторы доступны в различных типах, таких как гибкий, переносной с зажимом и с разъемным сердечником. Диапазон измерения тока для портативных трансформаторов тока составляет от 1000 до 1500 A. Эти трансформаторы в основном используются для обеспечения изоляции измерительных приборов от цепей с высоким напряжением.

Ошибки трансформатора тока

Ошибки, возникшие в этом трансформаторе, включают следующее.

  • Первичная обмотка этого трансформатора требует MMF (магнитодвижущей силы) для создания магнитного потока, который потребляет ток намагничивания.
  • Ток холостого хода трансформатора включает в себя элемент, связанный с потерями в сердечнике, и возникает гистерезис и потери на вихревые токи.
  • Как только сердечник трансформатора насыщается, плотность потока намагничивающей силы может быть остановлена, и могут возникнуть другие потери.

Применение трансформаторов тока

Эти трансформаторы используются для измерения электроэнергии в электростанциях, промышленных предприятиях, сетевых станциях, диспетчерских в промышленных предприятиях для измерения и анализа протекания тока в цепи, а также в целях защиты.

Часто задаваемые вопросы

1). В чем разница между CT и PT?

Трансформатор трансформатора тока изменяет высокое значение тока на значение низкого тока, тогда как трансформатор тока изменяет значение высокого напряжения на низкое.

2). Трансформатор тока является повышающим трансформатором?

В принципе, ТТ — это повышающий трансформатор

3). Почему ТТ подключается последовательно?

ТТ подключается последовательно через линию для изменения линейного тока до типичных 1/5 ампер, подходящих для счетчика, иначе реле. Эти трансформаторы используются для расчета огромного тока, протекающего по проводнику.

4). Что такое коэффициент CT?

Это отношение первичного тока i / p к вторичному току o / p при полной нагрузке

5).Почему ТТ используется на подстанции?

Этот трансформатор используется для измерения и защиты на подстанции

Таким образом, это все об обзоре трансформатора тока, который включает его определение, принцип работы, конструкцию, различные типы, ошибки и области применения. Вот вам вопрос, что такое измерительный трансформатор?

Трансформатор тока — обзор

34.3.1 Трансформаторы тока

Трансформатор тока — это преобразователь тока, который подает сигнал тока, прямо пропорциональный по величине и фазе току, протекающему в первичной цепи.У него также есть еще одна очень важная функция: сигнал, который он производит, должен иметь потенциал земли по отношению к проводнику высокого напряжения. Первичная цепь трансформатора тока должна быть изолирована на том же уровне целостности, что и первичная изоляция системы. Для трансформаторов тока, используемых в системах высокого напряжения, изоляция первичной цепи составляет очень большую часть стоимости трансформатора.

Трансформатор тока — единственный преобразователь тока, широко используемый в высоковольтных сетях.Последние разработки волоконно-оптических высоковольтных преобразователей тока перспективны, но высокая стоимость и сомнительная надежность ограничивают их применение. Однако нет никаких сомнений в том, что в будущих датчиках тока будет использоваться волоконно-оптическая технология.

Трансформатор тока, как следует из названия, является трансформатором. Он почти всегда имеет форму сердечника кольцевого типа, вокруг которого намотана вторичная обмотка.

Первичная обмотка обычно состоит из прямого стержня, проходящего через центр сердечника, который образует один виток первичной обмотки.Для малых первичных токов, обычно ниже 100 А, могут использоваться многооборотные первичные обмотки, состоящие из двух или более витков, чтобы получить на выходе достаточное количество ампер-витков для работы подключенного вторичного оборудования. Для использования при распределительном напряжении сердечник и вторичная обмотка вместе с выводами вторичной обмотки обычно размещаются над прямым изолятором высоковольтного проводника, который образует изоляцию между высоковольтным проводом и землей. Заземленный экран обычно предусмотрен на внешней поверхности ввода, и трансформаторы тока размещаются над этим заземляющим экраном, чтобы гарантировать ограничение активности частичных разрядов высокого напряжения в воздушном зазоре между вводом и обмоткой трансформатора тока.Вторичные обмотки трансформатора тока обычно подключаются к электромагнитным реле. Как правило, они требуют высокого рабочего входа, что требует применения трансформаторов тока с высокой выходной мощностью (обычно 15 В-А). Более современная защита имеет твердотельную форму и требует гораздо более низкого рабочего сигнала, что позволяет снизить конструкцию трансформатора тока и снизить затраты. Вторичные обмотки трансформаторов тока обычно имеют номинал 1 или 5 А, хотя иногда используются другие номиналы.

Там, где требуются длинные вторичные соединения между трансформатором и реле, вторичная обмотка 1 А является преимуществом для снижения нагрузки на свинец.Холоднокатаное кремнистое железо обычно используется в качестве материала сердечника для защитных трансформаторов тока, но там, где требуется высокая точность измерения, используется легированная сталь очень высокого качества, которую обычно называют «Mumetal».

Для использования при более высоких напряжениях передачи необходимо встроить интегральную изоляцию в трансформатор тока между проводниками высокого напряжения и вторичными обмотками. Эта изоляция почти всегда выполняется в виде пропитанной маслом бумаги, хотя иногда используется газ SF 6 .Стоимость обеспечения герметичной газовой оболочки SF 6 обычно делает изолированные трансформаторы тока SF 6 неэкономичными.

Существуют две основные формы конструкции трансформаторов тока с масляной пропиткой и бумажной изоляцией для напряжения передачи: форма с действующим резервуаром и форма с мертвым резервуаром.

В корпусе под напряжением сердечник и обмотка размещаются на том же уровне, что и первичный проводник, который проходит через центр сборки. Ясно, что сердечник и обмотки должны иметь потенциал земли.Обычно они заключены в металлический корпус, имеющий длинную вертикальную металлическую трубку, через которую выводы вторичной обмотки проходят на базовый уровень. Этот корпус и вертикальная металлическая труба затем имеют очень много слоев бумаги, обернутых вокруг них, чтобы сформировать основную первичную изоляцию. Слои из алюминиевой фольги, регулирующие напряжение, наматываются между слоями бумаги для обеспечения равномерного распределения напряжения от потенциала земли на нижнем конце сборки до линейного потенциала на верхнем конце.

Изолированный трансформатор тока в сборе затем помещается в изолятор, имеющий металлический верхний узел, через который проходит первичный проводник. Этот проводник электрически соединен с верхним узлом с одной стороны и изолирован с другой для предотвращения короткозамкнутого витка трансформатора тока.

Перед установкой верхней крышки весь трансформатор в сборе помещается под вакуум на несколько дней, чтобы обеспечить полное удаление влаги из бумаги.Затем сборка заполняется под вакуумом высококачественным изоляционным маслом для предотвращения образования пузырьков воздуха. После заполнения трансформатора доверху он герметизируется. Для расширения и сжатия масла в его герметичном отсеке предусмотрена некоторая форма расширительного узла. Это может быть сильфон или герметичная азотная подушка. Трансформатор тока может также включать в себя индикатор уровня масла, позволяющий проверять потери масла, и систему обнаружения газа, позволяющую контролировать образование газообразных продуктов в результате частичного пробоя диэлектрика.

В версии с мертвым баком сердечник и обмотки трансформатора тока размещаются внизу, заземление, конец сборки, а изоляция между первичной и вторичной обмотками в этом случае размещается вокруг проводника первичной обмотки высокого напряжения, а не узла сердечника и обмотки. . Центральная часть изолированного высоковольтного первичного проводника, на котором размещаются сердечник и обмотки, должна иметь потенциал земли. Изоляция первичного проводника высокого напряжения должна иметь градацию по обе стороны от сердечника и обмоток. Между слоями бумаги вставлены обертки из алюминиевой фольги, чтобы обеспечить необходимую градацию от потенциала земли в центральной части до линейного потенциала на обоих концах.Чтобы можно было разместить узел первичного проводника высокого напряжения в вертикальном изоляторе, узел изгибается «шпилькой». Изолированная бумага фактически наматывается на проводник, уже сформированный в эту форму шпильки. Затем ножки этого изолированного узла открываются, чтобы можно было надеть сердечник и обмотки.

Готовая сборка проходит вакуумную обработку и заполняется маслом аналогично тому, как это описано для трансформатора тока с токоведущим резервуаром.

Очень широко используются конструкции как с живыми, так и с мертвыми цистернами.Обе конструкции показаны на рис. 34.26 .

Рисунок 34.26. Поперечное сечение трансформаторов тока с действующим резервуаром (а) и с внутренним резервуаром (б)

Трансформаторы тока

Этот трансформатор тока является важной частью энергосистемы. Основы трансформатора тока, включая конструкцию, применение, принципы работы, будут рассмотрены в этой статье. Кроме того, будут всесторонне рассмотрены некоторые практические аспекты, такие как заземление и подключение трансформатора тока, а также связанные с этим ошибки.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам и получите от этого пользу.

Что такое трансформатор тока и W Почему он используется?

Трансформатор тока — это измерительный трансформатор, который понижает высокие значения токов до более низких значений.

Как видно из названия, измерительные трансформаторы используются для изоляции измерительных устройств от высоких напряжений и токов, чтобы облегчить измерение электрических величин.

Трансформаторы тока

широко используются для измерения тока и контроля работы электросети. Необходимость в трансформаторе тока оправдана двумя причинами:

  1. Изолирует систему защиты от высоких напряжений и токов, что приводит к уменьшению размера и стоимости защитного оборудования.
  2. Выход трансформатора тока стандартный (т. Е. 1 А или 5 А), что устраняет необходимость в защитном оборудовании, например. реле с разнообразными рабочими значениями.

Строительство ТТ (трансформатор тока):

Конструкция трансформатора тока очень похожа на обычный трансформатор. Сердечник трансформатора тока изготовлен из слоистой кремнистой стали.

Трансформатор тока (ТТ) в основном имеет первичную обмотку из одного или нескольких витков с большим поперечным сечением.В некоторых случаях перемычка, по которой проходит большой ток, может действовать как первичная обмотка. Он включен последовательно с линией, по которой проходит большой ток.

Вторичная обмотка трансформатора тока состоит из большого количества витков тонкой проволоки с малой площадью поперечного сечения. Обычно он рассчитан на 1А или 5А.

Принцип работы:

Трансформатор тока не только по конструкции похож на обычный трансформатор, но и принцип работы такой же.

Переменный ток в первичных обмотках индуцирует магнитный поток в сердечнике, который передается вторичным обмоткам и индуцирует там переменный ток.

Эти трансформаторы в основном представляют собой повышающие трансформаторы, то есть повышающие напряжение от первичной до вторичной. Таким образом, ток снижается от первичного к вторичному.

Классификации:

На основе функции:

Измерительный CT:

Трансформатор тока

, используемый для цепей измерения и индикации, обычно называют измерительным CT . У них низкая точка насыщения. В случае неисправности сердечник станет насыщенным, и вторичный ток не повредит подключенные к нему измерительные устройства.

Защита CT:

Трансформатор тока

, используемый вместе с защитными устройствами, называется Protection CT . Назначение — обнаружение токов короткого замыкания в системе и передача сигнала на реле. Поскольку он работает при значениях тока, превышающих его номинальное значение, его сердечник имеет высокую точку насыщения.

На основе конструкции:

Трансформатор тока стержневого типа:

В трансформаторе тока этого типа в качестве первичной обмотки используется фактический кабель или шина главной цепи, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения.

Трансформатор тока с обмоткой:

Первичная обмотка трансформатора физически соединена последовательно с проводником, по которому проходит измеряемый ток, протекающий в цепи.

Тороидальный / оконный трансформатор тока:

Не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разъемный сердечник», который позволяет открывать, устанавливать и закрывать его без отключения цепи, к которой они подключены.

Подключение ТТ:

ТТ довольно просто подключить к однофазной системе, но для трехфазной системы есть 3 ТТ, которые можно подключить двумя способами:

Звезда (звезда) Подключено:

В случае соединения звездой полярная сторона трансформаторов тока подключается к оборудованию i.е. реле и неполярные стороны закорочены, а затем заземлены. Нейтральная сторона может присутствовать или отсутствовать в трехфазной системе.

Дельта подключено:

При соединении по схеме треугольник ТТ подключаются друг к другу по схеме треугольник, но при подключении учитывается полярность ТТ.

Обычно ТТ подключаются по схеме треугольник, если трансформатор подключен по схеме звезды и наоборот.

Полярность CT:

Как и любой другой трансформатор, ТТ также имеет полярность.Полярность относится к мгновенному направлению первичного тока по отношению к вторичному току и определяется тем, как выводы трансформатора выведены из корпуса.

Все трансформаторы тока имеют вычитающую полярность. Полярность ТТ иногда указывается стрелкой, эти ТТ следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.

Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.

Заземление ТТ:

Заземление трансформатора тока очень важно для безопасности и правильной работы защитных реле.

В соответствии со стандартом заземления трансформатора тока вторичная цепь трансформатора тока должна быть подключена к заземлению станции только в одной точке. Это справедливо независимо от количества вторичных обмоток трансформатора тока, подключенных к цепи.

Бремя CT:

Нагрузка трансформатора тока определяется как нагрузка, подключенная к его вторичной обмотке.Обычно выражается в ВА (вольт-ампер).

Короче говоря, соединительные провода и подключенный счетчик образуют нагрузку трансформатора тока. Технически это называется нагрузкой в ​​ВА. Эта нагрузка влияет на точность трансформатора тока. В конструкции трансформатора тока учтены внутренние потери и внешняя нагрузка трансформатора тока.

Нагрузка выражается в ВА путем умножения вторичного тока на падение напряжения на нагрузке (нагрузке) ТТ.Трансформаторы тока делятся на классы на основе точности, которая, в свою очередь, зависит от нагрузки ТТ.

Коэффициент CT:

Коэффициент CT — это отношение первичного входного тока к вторичному выходному току при полной нагрузке. Например, трансформатор тока с соотношением 100: 5 рассчитан на 100 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока, когда 100 ампер проходят через первичную обмотку.

Коэффициент трансформации =

Первичный ток Вторичный ток

Ошибки в CT:

Трансформатор тока имеет две ошибки — ошибку соотношения и ошибку угла сдвига фаз.

Ошибки коэффициента тока

Это в основном связано с энергетической составляющей тока возбуждения и определяется как

Ошибка соотношения =

K т I с — I p I p

Где I p — первичный ток, K t — коэффициент трансформации, а I s — вторичный ток.

Ошибка фазового угла

В идеальном трансформаторе тока векторный угол между первичным и обратным вторичным током равен нулю.Но в реальном трансформаторе тока существует разница фаз между первичным и вторичным токами, потому что первичный ток также обеспечивает составляющую тока возбуждения. Таким образом, разница между двумя фазами называется ошибкой фазового угла.

Фазорные диаграммы идеального и реального КТ:

Можно определить идеальный трансформатор тока, в котором любое первичное состояние воспроизводится во вторичной цепи в точном соотношении и фазовом соотношении.Векторная диаграмма идеального трансформатора тока показана на рисунке 1.

В реальном трансформаторе обмотки имеют сопротивление и реактивное сопротивление, а трансформатор также имеет намагничивающую и потерянную составляющую тока для поддержания магнитного потока (см. Рисунок 2). Следовательно, в реальном трансформаторе соотношение тока не равно соотношению витков, и также существует разность фаз между током первичной обмотки и токами вторичной обмотки, отраженными обратно на первичной стороне. Следовательно, у нас есть ошибка отношения и ошибка угла фазы.

Где:

Kn = соотношение витков = количество витков вторичной обмотки / количество витков первичной обмотки,

Rs, Xs = сопротивление и реактивное сопротивление вторичной обмотки соответственно,

Rp, Xp = сопротивление и реактивное сопротивление первичной обмотки соответственно,

Ep, Es = первичное и вторичное индуцированные напряжения соответственно,

Tp, Ts = количество витков первичной и вторичной обмоток соответственно,

Ip, Is = токи первичной и вторичной обмоток соответственно,

θ = фазовый угол трансформатора

Φm = рабочий поток трансформатора

δ = угол между вторичным наведенным напряжением и вторичным током,

Io = ток возбуждения,

Im = намагничивающая составляющая возбуждающего тока

Il = составляющая потерь возбуждающего тока,

α = угол между Io и Φm

Вы получите знания о принципах, работе, применении и определении размеров трансформатора тока, которые позволят вам прочно разобраться в основах трансформатора тока.Ознакомьтесь с курсом «Основы работы с трансформатором тока» , в котором мы кратко обсудили «Режим эквивалентной схемы трансформатора тока».

Модель ТТ:

Трансформатор тока моделируется так же, как и любой другой трансформатор. Модель CT как показано ниже:

X 1 = Первичное реактивное сопротивление утечки

R 1 = Сопротивление первичной обмотки

X 2 = Вторичное реактивное сопротивление утечки

Z 0 = намагничивающее сопротивление

R 2 = Сопротивление вторичной обмотки

Z b = Вторичная нагрузка

Основы трансформатора тока

— Peak Demand Inc

Основные сведения о трансформаторе тока

Размещено в h в инструментальных трансформаторах от

Основные сведения о трансформаторе тока

Джон Ренни

Рисунок с сайта www.electronics-tutorials.ws

Трансформаторы тока

(ТТ) широко используются в электрических распределительных системах для измерения, измерения и защиты. Это простые устройства, предназначенные для создания переменного тока во вторичной обмотке, который прямо пропорционален току в первичном проводе.

Самый распространенный тип ТТ — это тороидальный ТТ. Тороидальные трансформаторы тока характеризуются тем, что первичный токопроводящий провод проходит непосредственно через центральную жилу.Тороидальные трансформаторы тока всегда подключаются последовательно, поэтому их часто называют «последовательными трансформаторами».

Конструкция ТТ проста. Вторичные обмотки из медной магнитной проволоки намотаны вокруг полого сердечника из электротехнической стали, а первичный проводник проходит через центр сердечника. Магнитный поток первичного проводника улавливается сердечником и индуцирует ток во вторичных обмотках, пропорциональный количеству вторичных обмоток. ТТ бывают разных конфигураций, но все имеют эту базовую конструкцию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *