Приборы для проверки конденсаторов: виды устройств и техника измерений

Содержание

Прибор для проверки конденсаторов: схема, без выпайки

Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности.

Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов.

Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Принцип действия прибора для проверки конденсаторов

Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.

Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.

При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Виды конденсаторов

Параметры приборов

У каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.

Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.

Как сделать прибор для проверки конденсаторов своими руками

Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:

  • источник постоянного тока;
  • резистор;
  • конденсатор;
  • вольтметр.

Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.

Схема проверки

После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.

При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.

Использование мультиметра

Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии.

Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Мостовая схема

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.

Радиосхемы.

— Прибор для проверки конденсаторов

Самодельные приборы

материалы в категории

При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.

Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1— DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.

Схема прибора для проверки конденсаторов

Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 .

.. 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.
Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента.
Полярный конденсатор «плюсовым» выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.

Настройка прибора для проверки конденсаторов

После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3.

Затем к гнездам «Сх» подключают конденсатор емкостью 220 … 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.
После этого замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.Монтажную плату устройства вместе с питающей его батареей 3336Л следует разместить в корпусе подходящих размеров. Но прибор можно питать от любого другого источника с напряжением 5 В и током не менее 50 мА.

Печатная плата прибора


В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:

Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно «родной» шкалы он будет находиться в районе 8…20 Ом по верхним делениям. Вот так она будет выглядеть

Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА. 

 

Внешний вид прибора

Примеры измерений

Примечание:
Источник: Массовая радиобиблиотека (МРБ), И.А.Нечаев, «Конструкции на логических элементах цифровых микросхем» стр.43, Издательство «Радио и связь»
Фото с сайта radio-hobby.org

Прибор для проверки конденсаторов разных типов на исправность

Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.

Что такое конденсатор

Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:

  • пикофарад обозначается pF или пФ;
  • нанофарад обозначается nF или нФ;
  • микрофарад обозначается mF или мФ.

Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.

Цепь переменного тока

В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.

Цепь постоянного тока

В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.

Виды конденсаторов

Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:

  1. Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
  2. Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
  3. Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.

Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:

  1. Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.
  2. Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.
  3. Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.
  4. Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.
  5. Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
  6. Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.

Определение параметров

Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.

Проверка емкости

Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.

Инструкция:

  1. Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
  2. Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
  3. Оба щупа присоединяются к выводам.

Полученное значение является номиналом емкости.

Определение полярности

Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:

  1. Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
  2. Современные радиодетали также имеют обозначение на корпусе знаком «+».
  3. SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.

Минус определяется также визуально:

Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.

Проверка мультиметром

Для определения полярности с помощью мультиметра, необходимо:

  1. Полностью разрядить деталь, закоротив ее выводы.
  2. Резистор присоединить к клемме «+» мультиметра.
  3. Второй конец резистора присоединить к выводу блока питания на 12 вольт.
  4. Резистор присоединить к выводу конденсатора.
  5. Минусовую жилу блока питания соединить со 2 выводом конденсатора.

Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.

Проверка исправности конденсаторов

Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.

Мультиметр

Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.

Для проверки необходимо:

  1. Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
  2. Установить мультиметр в режим определения емкости «cX».
  3. Переключить прибор на определение максимального диапазона емкости.
  4. Щупы присоединить к ножкам или выводам конденсатора.
  5. Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.

Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.

Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.

Тестер

Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.

Инструкция:

  1. Для проверки необходимо установить тестер в режим сопротивления.
  2. Выпаять и разрядить проверяемый элемент.
  3. Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
  4. Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.

Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.

Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.

Проверка без выпаивания

Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.

Первый способ

Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.

Второй способ

Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.

Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.

Третий способ

Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.

Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.

Прибор своими руками

Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.

Схема сборки:

Для прибора понадобятся следующие детали:

  1. Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
  2. Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
  3. Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
  4. VD1 подходит любой диод малой мощности, например, SOD 232.
  5. SA1 является любым переключателем на 5 положений.
  6. Мультиметр Х1.
  7. Батарея или блок питания до 12 вольт.

Принцип работы прибора заключается в следующем:

  1. Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
  2. Заряд для испытуемого элемента подается через диод VD1.
  3. Разрядниками заряда являются резисторы R10, 12, 15.
  4. Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
  5. Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
  6. Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.

При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.

Принципиальная схема на печатной плате:

Основные неисправности конденсаторов

Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:

  1. Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
  2. Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
  3. Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.

Полезные советы

Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.

Перед проверкой стоит учитывать:

  1. Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
  2. Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
  3. Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
  4. Элементы емкостью менее 0.25 мкФ можно проверить только на замыкание.
  5. При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.

Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.

Видео по теме

Приборы для проверки конденсаторов

   Бывает так, что при монтаже печатной платы возникает необходимость в проверке устанавливаемых конденсаторов на предмет обрывов выводов, отсутствия внутреннего замыкания или значительной утечки. Особенно это касается конденсаторов большой ёмкости, в частности оксидных.

Для быстрой проверке конденсаторов ёмкостью не менее 50 пФ подойдёт прибор (Рис. 1), содержащий цифровую микросхему, светодиод, стрелочный индикатор и несколько других деталей.
   На элементах DD1.1 – DD1.3 собран генератор прямоугольных импульсов, следующих с частотой около 75 кГц. ( она зависит от сопротивления резистора R1 и ёмкости конденсатора С1 ). Через инвертор DD1.4 импульсы генератора поступают на цепь нагрузки – она составлена из резисторов R2, R3, конденсатора С2 и проверяемого конденсатора Сх. Параллельно резистору R2 подключен через диод VD1 стрелочный индикатор РА1.
   Детали цепи нагрузки подобраны так, что при подключении кнопкой SB2 источника питания GB1 через индикатор протекает ток около 15 мкА. Если же параллельно конденсатору С2 будет подключён кнопкой SB1 исправный проверяемый конденсатор, ток возрастёт и будет находиться в пределах 40 … 60 мкА независимо от ёмкости конденсатора. Эти пределы принимают за нормальные и отмечают на шкале ( или на стекле индикатора ), скажем цветным сегментом.

   Следует учитывать, что при проверке конденсаторов ёмкостью более 5 мкФ стрелка индикатора вначале резко отклоняется в сторону конечного деления шкалы ( 100 мкА ), а затем возвращается в пределы сегмента. При проверке полярных оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (” + “).
В случае подключения испытываемого конденсатора с внутренним обрывом, стрелка индикатора останется на делении 15 мкА. Если же выводы конденсатора замкнуты ( конденсатор пробит ), стрелка индикатора может отклониться за конечное деление шкалы. При подключении конденсатора с утечкой стрелка индикатора выйдет за пределы сегмента, если сопротивление утечки менее 60 кОм.
   Напряжение питания прибора контролируется светодиодом HL1, ток через который ограничен резистором R4.
Деталей в приборе немного, и их можно разместить в любом подходящем корпусе, габариты которого определяются стрелочным индикатором и источником питания.
   Налаживают прибор в такой последовательности. Нажав кнопку SB2 убеждаются в отклонении стрелки индикатора на деление 15 мкА. В случае отклонении показаний более чем на 20%, нужно подобрать резистор R3.
Далее подключают к гнёздам XS1 и XS2 конденсатор ёмкостью 250 пФ и нажав кнопку SB1 ( конечно, одновременно с SB2 ), замечают показания стрелочного индикатора. Подбором резистора R2 доводят стрелку индикатора до деления 50 мкА ( середина сегмента ). Замкнув после этого гнёзда, убеждаются в отклонении стрелки индикатора за конечное деление шкалы.
   Конденсатор можно проверить иначе – измерить его ёмкость. Для целей во многих случаях окажется достаточным собрать приставку к авометру, позволяющую измерять ёмкость конденсаторов от 100 пФ до 1 мкФ. Схема такой приставки приведена на Рис.2


   На транзисторах VT1, VT2 и трансформаторе Т1 собран генератор импульсов, частоту следования которых можно изменять переключателем SA1. Со вторичной обмотки трансформатора сигнал генератора поступает через диод VD1 на переменный резистор R6 – это регулятор установки своеобразного “нуля” отсчёта. С его движка       сигнал поступает через один из эталонных конденсаторов С2 – С5 или проверяемый конденсатор ( его подключают к зажиму ” Сх ” ) на выпрямительный диод VD2 и авометр, подсоединённый к зажимам XS3 и XS4.
   Пользуются приставкой так. В зависимости от ёмкости проверяемого конденсатора устанавливают переключателем один из пределов измерения. К примеру, в положении ” 1 ” переключателя можно измерять ёмкости от 0,1 до 1мкФ, в положении ” 2 ” от 0,01 до 0,1 мкФ, в положении ” 3 ” – от 1000 пФ до 0,01 мкФ в положении ” 4 ” – от 100 до 1000 пФ.

   Переключатель SA2 устанавливают в положении ” Калибровка “ и переменным резистором R6 добиваются отклонением стрелки авометра на десятую часть шкалы. Тогда вся шкала будет соответствовать десяти “единицам” выбранного диапазона измерений. Поэтому удобно пользоваться, например, шкалой постоянных напряжений до 10 В – стрелку индикатора устанавливают на одно деление 1 В.
   Подключают к зажимам XS1 и XS2 проверяемый конденсатор и переводят переключатель SA2 в положение ” Сх “. По отклонению стрелки авометра судят о ёмкости конденсатора. К примеру, стрелка отклонилась на 2,5 деления, а переключатель SA1 стоит в положении ” 3 “. Значит, ёмкость конденсатора равна 1000 пФ Х 2,5 = 2500 пФ.         Точность измерений зависит в основном от точности подбора ёмкости эталонных конденсаторов.
   Трансформатором в пробнике может быть согласующий трансформатор от радиоприёмников марки ” ВЭФ” ( “ВЭФ-12”, “ВЭФ-201”, “ВЭФ-204”). Транзисторы – любые из серий МП39 – МП42 с коэффициентом передачи тока не менее 50. Диоды – любые из серий Д2, Д9. Источник питания – “Крона” или две батареи 3336, соединённых последовательно, а также другие подобные напряжением 9 В.

Б. С. Иванов ” В ПОМОЩЬ РАДИОКРУЖКУ”, ” Радио и связь”, Москва, 1990 г, стр. 19 – 21

Похожее

Прибор для проверки ESR электролитических конденсаторов MasterKit NM8032

Описание товара Прибор для проверки ESR электролитических конденсаторов MasterKit NM8032

 

Технические характеристики.

Напряжение питания: 6 В (4 элемента ААА).

Ток потребления, не более: 100 мА.

Размеры печатной платы: 63х63 мм.

Диапазон измеряемых сопротивлений,

в режиме (х1): 0,1…3 Ом;

в режиме (х10): 1…30 Ом.

Вид индикации: линейка из 10 светодиодов.

Формат индикации:

«светящийся столб»;

«бегающая точка».

 

Описание работы.

На микросхеме DA1-HEF4049BP собран генератор импульсов, работающий на частоте около 80 кГц. Сигнал с выхода генератора (выводы 2,4,6,11,15 DA1) поступает через разделительный конденсатор С3, токоограничивающие резисторы R3 или R2 и переключатель SW1 на измеряемый конденсатор. Переключатель SW1 служит для переключения диапазонов измерения прибора. Так как значения измеряемых сопротивлений много меньше номиналов токоограничивающих резисторов, можно считать, что измеряемые конденсаторы запитываются фиксированным током. В этом случае напряжение на измеряемом конденсаторе прямо пропорционально его комплексному сопротивлению.

Сигнал с измеряемого конденсатора поступает на микросхему DA2-КР157ДА1, которая выступает в роли усилителя и детектора. Микросхема представляет собой сдвоенный линейный выпрямитель с динамическим диапазоном более 50 дБ. Здесь эта микросхема использована не совсем в стандартном включении. Одна ее половина включена в режиме линейного усилителя переменного тока с коэффициентом усиления около 10, а другая в режиме линейного выпрямителя. Такое включение позволило увеличить чувствительность прибора, без увеличения постоянного смещения на выходе выпрямителя.

С выхода линейного выпрямителя сигнал поступает на сглаживающий фильтр R9C7, и далее на вход логарифмического индикатора на микросхеме DA3-LM3915. Эта микросхема представляет собой логарифмический индикатор уровня. Значения сигнала с шагом 3 дБ отображаются линейкой из 10 светодиодов. Использование логарифмического индикатора позволило обеспечить широкий диапазон измеряемых значений при относительно небольшом числе светодиодов индикации. Особенностью включения микросхемы является то, что опорное напряжение на 6 вывод микросхемы подается не от внутреннего стабилизатора, а с делителя R10, R12, подключенного непосредственно к шине питания. При таком включении, при снижении напряжения питания повышается чувствительность индикатора. Одновременно при этом снижается выходное напряжение генератора на микросхеме DA1. Оба эти эффекта компенсируют друг друга и поэтому, без использования дополнительных стабилизаторов, удается обеспечить правильные показания прибора при изменении напряжения питания. Яркость свечения светодиодов индикатора задается значением резистора R11.

 

Порядок сборки.

Проверьте комплектность набора согласно перечню элементов.

Закрепите печатную плату в корпусе (при установке может потребоваться срезать ножовкой углы платы по пунктирным линиям) и просверлите отверстия под светодиоды, используя печатную плату как трафарет.

Отформуйте выводы компонентов (кроме светодиодов) и смонтируйте их на печатной плате. Конденсаторы С5; С8 устанавливаются горизонтально.

В контактные отверстия светодиодов впаяйте проволочные штыри согласно рисунка (можно использовать обрезки от выводов элементов). Вставьте светодиоды, с ориентацией согласно печатной плате, в отверстия корпуса прибора, смонтируйте печатную плату, пропустив выводы светодиодов в отверстия диаметром 3 мм. Отформуйте и запаяйте светодиоды.

Впаяйте провода щупов в контактные отверстия 1-2, 3-4. Скрутите между собой провода, подходящие к контактам 1-2 и 3-4. Подпаяйте к зажимам типа «крокодил» провода, подходящие к контактам 1-3 и 2-4.

Внимание! Провода должны соединяться между собой непосредственно на зажимах.

Сделайте в корпусе отверстия для переключателей и проводов щупов.

Вклейте в корпус батарейный отсек и подпаяйте выводы батареи к плате.

Проверьте правильность монтажа.

 

Правильно собранное устройство не нуждается в настройке.

 

Автор на +google

Пробник для проверки конденсаторов

Очень простой прибор для проверки конденсаторов, схема которого показана на рис. 1, описан в одном из американских радиолюбительских журналов.

Прибор может быть использован для проверки различных конденсаторов, в том числе и электролитических, однако в этом случае необходимо следить за полярностью включения таких конденсаторов.

При подключении конденсаторов к прибору неоновая лампочка вспыхнет на короткое время, а затем сразу же потухнет.

Рис. 1. Принципиальная схема прибора для проверки конденсаторов.

При наличии утечки лампочка потухает медленно. Если конденсатор пробит— лампочка светится, не потухая. Следует помнить, что таким прибором нельзя проверять низковольтные конденсаторы, так как напряжение, подаваемое на конденсаторы, относительно высоко — от 50 до 125 в. В случае, если прибором проверяются конденсаторы очень малой емкости, прибор может указать лишь наличие утечки и короткого замыкания.

Конденсаторы большой емкости следует после проверки разряжать, так как на них может оставаться заряд. «CQ», октябрь, 1959 г.

При изменении I’ переключатель П1, ставится в положение 2, а выключатель Вк2 замыкается. Стрелочный прибор покажет тогда непосредственно значение тока Iко ‘ .

Для измерения параметра b переключатель П1, ставится в положение 3. Потенциометр R4 («Установка нуля») устанавливается в положение, при котором стрелочный прибор будет показывать нуль. При замыкании выключателя Вк1, стрелка прибора отклонится и даст непосредственно показание параметра b.

Для измерения входного сопротивления h21′ и граничной частоты fгр, как уже упоминалось, необходимо дополнительно использовать генератор (с диапазоном частот от 1 до 200 кгц) и ламповый вольтметр (можно заменить осциллоскопом). Эти приборы подключаются к соответствующим зажимам, показанным на схеме.

Сигнал от генератора при этом попадает на испытываемый триод через сопротивление R1. Нагрузкой коллекторной цепи триода служит в данном случае сопротивление R9 (выключатель Вк2 остается в замкнутом положении).

При этом триод работает в режиме близком к режиму разомкнутого входа и закороченного выхода. Выходное напряжение триода усиливается затем широкополосным вспомогательным усилителем измерительного прибора и подается на вход лампового вольтметра.

Порядок измерения входного сопротивления следующий. Выключатель Вк3 замыкается, затем частота генератора устанавливается в 1 кгц и напряжение, подаваемое с него, регулируется так, чтобы ламповый вольтметр показал 0,5 в.

Далее выключатель Вк3 размыкается, и записывается новое показание вольтметра. Если это новое показание обозначить как л, то входное сопротивление (в ком) можно вычислить по формуле h21 = 2n—1.

Если затем провести еще одно измерение при разомкнутом выключателе Вк2, то можно найти входное сопротивление, соответствующее коллекторной нагрузке в 4,4 ком.

Предельная частота триода определяется следующим образом. Выключатель Вк2 замыкается, а Вк3 — размыкается. Напряжение на входе вольтметра должно быть равно 1 в.

Затем частота генератора увеличивается (генерируемое напряжение должно оставаться постоянным) до тех пор, пока вольтметр не покажет 0,7 в. Частоту Д, на которой это наблюдается, используют для расчета предельной рабочей частоты триода по формуле: fгр = b * f3,

В усилителе прибора применены два высокочастотных ПП триода с граничной частотой в 6 Мгц. Цепь обратной связи, соединяющая коллектор второго триода с эмиттером первого, стабилизирует усиление, расширяет полосу частот и повышает входное сопротивление.

Усиление такого устройства равномерно в пределах от 200 гц до 200 кгц и составляет 30 дб, однако в случае необходимости полоса за счет введения коррекции может быть расширена до 500 кгц.

Следует сказать, что точность измерений в значительной степени зависит от подбора сопротивлений R1, R2, R3, R5, R7, и R8. Отклонение величины их от номинала, указанного на схеме, должно быть минимальным.

«Electronic Engineering», октябрь, 1969 г.

виды устройств и техника измерений

Проверка емкости конденсатора тестерами

Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Принцип действия прибора для проверки конденсаторов

Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.

Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.

При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Параметры приборов

У каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.

Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.

Как сделать прибор для проверки конденсаторов своими руками

Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:

  • источник постоянного тока;
  • резистор;
  • конденсатор;
  • вольтметр.

Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.

После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.

При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.

Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.


Как измерить емкость конденсатора своими руками

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0. 01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Приборы для проверки конденсаторов

Схема № 1

Часто в руки радиолюбителей попадают электролитические конденсаторы, качество которых вызывает сомнение. Дело в том, что с течением времени электролит в них высыхает и их емкость падает. Иногда почти до нуля. Устанавливать такие конденсаторы в схему, конечно, нельзя. Но как их проверить? Как узнать, годится этот конденсатор или нет? Приборы, предназначенные для измерения емкости электролитических конденсаторов, сложны и дороги. В любительских условиях вполне можно обойтись простейшим прибором, описание которого приведено в этой статье. Он позволяет проверить работоспособность конденсаторов, в том числе и электролитических, с рабочим напряжением более 4,5 В и емкостью от 0,5 до 1000 мкФ. Таким образом можно определить пробой в конденсаторе, наличие большой утечки и ориентировочно оценить даже его емкость.

Конечно, точность определения емкости невелика, но вполне достаточна, чтобы ответить, можно или нельзя устанавливать данный конденсатор в схему.

Принципиальная схема прибора приведена на рисунке 1.

Как видно из схемы, прибор представляет собой несимметричный мультивибратор, собранный на транзисторах разной проводимости.

Принцип действия прибора основан на том, что его частота зависит от величины емкости параллельно включенных конденсаторов С1 и Сх. Индикатором колебаний служит лампа накаливания h2. Питается прибор от батареи Б1.

При включении питания оба транзистора открываются. Вспыхивает лампочка, и через резистор R1 начинает заряжаться конденсатор С1. Ток заряда проходит по цепи база-эмиттер V1, открывая его. когда конденсатор зарядится, ток заряда, открывавший транзистор V1, падает до нуля. Транзисторы закрываются. Лампочка гаснет. В таком состоянии схема будет находится до тех пор, пока конденсатор С1 не разрядится через резисторы R2, R3. Затем этот процесс повторится сначала.

При подключении параллельно С1 проверяемого конденсатора их общая емкость увеличивается и время разряда станет больше. Лампочка начнет мигать реже. Если емкость подключаемого конденсатора мала, то это изменение будет незначительным. А при подключении конденсатора емкостью в 1000 мкФ лампочка будет вспыхивать примерно через двадцать секунд. Если конденсатор пробит или имеет большой ток утечки, то лампочка будет гореть непрерывно.

Транзистор V1 – КТ315 или другой аналогичный структуры n-p-n. Только надо отбирать экземпляры с Jко не более 1 мкА и коэффициентом усиления не менее 50.
Транзистор V2 – МП39 или другой аналогичный структуры p-n-p c коэффициентом усиления не менее 50.

Конденсатор С1 бумажный или керамический любого типа. Резисторы тоже любого типа.

Лампочка Н1 – обычная, от карманного фонаря, напряжением 2,5 В и током 0,15 А. Использовать лампочки с большим током и напряжением нельзя.

НАЛАЖИВАНИЕ ПРИБОРА начинайте с установки максимального значения величины резистора R3, поставив его движок в нижнее (по схеме) положение. Для начала поставьте резистор R1 величиной 680 Ом. Включив питание, проверьте работу мультивибратора. Если он работает, то лампочка должна мигать. В противном случае увеличьте величину резистора R2. Добившись работы мультивибратора, подберите величину R1. Она может быть выбрана в пределах 680 Ом -4,7 кОм. При больших величинах лампочка горит дольше, но мультивибратор работает менее устойчиво. Поэтому надо установить такую величину резистора R1, при которой генератор устойчиво работает и лампочка достаточно ярко светит на максимальной частоте. Эту частоту устанавливают резистором R3. В смонтированном образце она равна примерно 10 Гц.

Мигающая лампочка служит хорошим индикатором включения прибора. Подключение проверяемого конденсатора уменьшает частоту мигания лампочки. Для опытного глаза изменение частоты заметно уже при подключении конденсатора в 0,05 мкФ. Подключение пробитого конденсатора или конденсатора с большой утечкой вызывает непрерывное свечение лампочки. Лампочка довольно долго горит при подключении конденсаторов большой емкости – 100 – 1000 мкФ. Поэтому, чтобы воспользоваться прибором, надо предварительно потренироваться, подключая к прибору заведомо исправные конденсаторы в 5, 10, 20, 50 и более микрофарад. Прибором, несомненно, можно проверять и неэлектролитические конденсаторы.

В заключение хотелось бы заметить, что давно не работавшие электролитические конденсаторы с большой утечкой следует на некоторое время подключить к источнику постоянного тока с напряжением, равным рабочему напряжению конденсатора. После непродолжительной работы в таком режиме ток утечки заметно понизится, и конденсатор вновь может быть использован.

Схема № 2 Измеритель ESR электролитических конденсаторов
Илья Липавский. © 2003
НАЗНАЧЕНИЕ

Устройство позволяет измерять ESR электролитических конденсаторов с индикацией измеряемой величины на линейной шкале стрелочного прибора или на индикаторе цифрового мультиметра.

КОНСТРУКЦИЯ

Схема устройства собрана на четырёх ОУ. На ОР 1 собран генератор частотой 120 кГц. Напряжение с этого генератора подаётся на инвертирующий усилитель на ОР 2, в цепь обратной связи которого включается тестируемый конденсатор. Так как величина коэффициента усиления инвертирующего усилителя на ОУ прямо пропорциональна величине сопротивления резистора в цепи ООС, то его выходное напряжение будет прямо пропорционально измеряемой величине. Далее следует нормирующий усилитель ОР 3. Меняя его коэффициент усиления, переключая резистор обратной связи, получаем возможность легко изменять диапазон измерения. Далее, следует линейный вольтметр на ОР 4. Если вместо микроамперметра включить резистор, величиной в несколько килоом, то напряжение на нём можно измерять цифровым мультиметром. Например, на FLUKE есть oчень удобный поддиапазон – 300 мВ.

Рис. 2 Принципиальная схема измерителя ESR электролитических конденсаторов

Схема устройства предоставлена на Рис.2, и имеет два предела измерения 1 Ом и 5 Ом. Но их может быть сколько угодно. Включив вместо резистора R9,например, 9 кОм, получим предел 10 Ом.

Вообще, как мне представляется, применение данного прибора для целей выявления неисправных конденсаторов при ремонтах РЭА ничем не лучше, чем применение устройства для измерения ESR на трансформаторе. Но, когда интересует точное значение ESR, при подборе конденсаторов, например, тогда его применение целесообразно.

Следует учитывать, что наличие даже очень маленькой индуктивности (ферритовой бусинки, например, надетой на провод) вызывает заметное (на пределе 1 Ом – более половины шкалы) отклонение стрелки. Так можно легко различать проволочные и плёночные резисторы, например, если по внешнему виду определить затруднительно.

Следует остановиться на конструкции щупов. Наилучшие результаты показали витые щупы из четырёх проводов, диаметром в изоляции, около одного миллиметра. Два провода свиваются между собой, а потом две косички свиваются между собой. При длине 40 см, вносимая погрешность – около 0.2 Ома. Такой же косичкой из четырёх проводов, только короткой, производится подключение к клеммам на корпусе прибора. В качестве клемм удобно использовать колодки для подключения звуковых колонок.

Номиналы деталей, за исключением номиналов резисторов R7, R8 и R9, определяющих границы диапазонов,не критичны. Питание устройства от 12 дисковых аккумуляторов, ёмкостью 0.28 А-Ч.

НАСТРОЙКА

Настройка производится так. Вставляем в колодку известное сопротивление, например, 3 Ома. Вращая триммер R11 устанавливаем стрелку на 30 (если 50-и микроамперная головка). И всё. Испытания устройства на конденсаторах ёмкостью 820-4700 мкФ производителей SXE, SAMHWA, KELNA, LXY и других, с величиной ESR менее 0.1 Ома, подтвердили его достаточно высокую эффективность.

Всего хорошего, пишите to Elremont © 2005

Приборы для проверки конденсаторов

Бывает так, что при монтаже печатной платы возникает необходимость в проверке устанавливаемых конденсаторов на предмет обрывов выводов, отсутствия внутреннего замыкания или значительной утечки. Особенно это касается конденсаторов большой ёмкости, в частности оксидных.


Для быстрой проверке конденсаторов ёмкостью не менее 50 пФ подойдёт прибор (Рис.1), содержащий цифровую микросхему, светодиод, стрелочный индикатор и несколько других деталей.
На элементах DD1.1 – DD1.3 собран генератор прямоугольных импульсов, следующих с частотой около 75 кГц. ( она зависит от сопротивления резистора R1 и ёмкости конденсатора С1 ). Через инвертор DD1.4 импульсы генератора поступают на цепь нагрузки – она составлена из резисторов R2, R3, конденсатора С2 и проверяемого конденсатора Сх. Параллельно резистору R2 подключен через диод VD1 стрелочный индикатор РА1.
Детали цепи нагрузки подобраны так, что при подключении кнопкой SB2 источника питания GB1 через индикатор протекает ток около 15 мкА. Если же параллельно конденсатору С2 будет подключён кнопкой SB1 исправный проверяемый конденсатор, ток возрастёт и будет находиться в пределах 40 … 60 мкА независимо от ёмкости конденсатора. Эти пределы принимают за нормальные и отмечают на шкале ( или на стекле индикатора ), скажем цветным сегментом.
Следует учитывать, что при проверке конденсаторов ёмкостью более 5 мкФ стрелка индикатора вначале резко отклоняется в сторону конечного деления шкалы ( 100 мкА ), а затем возвращается в пределы сегмента. При проверке полярных оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (” + “).
В случае подключения испытываемого конденсатора с внутренним обрывом, стрелка индикатора останется на делении 15 мкА. Если же выводы конденсатора замкнуты ( конденсатор пробит ), стрелка индикатора может отклониться за конечное деление шкалы. При подключении конденсатора с утечкой стрелка индикатора выйдет за пределы сегмента, если сопротивление утечки менее 60 кОм.
Напряжение питания прибора контролируется светодиодом HL1, ток через который ограничен резистором R4.
Деталей в приборе немного, и их можно разместить в любом подходящем корпусе, габариты которого определяются стрелочным индикатором и источником питания.
Налаживают прибор в такой последовательности. Нажав кнопку SB2 убеждаются в отклонении стрелки индикатора на деление 15 мкА. В случае отклонении показаний более чем на 20%, нужно подобрать резистор R3.
Далее подключают к гнёздам XS1 и XS2 конденсатор ёмкостью 250 пФ и нажав кнопку SB1 ( конечно, одновременно с SB2 ), замечают показания стрелочного индикатора. Подбором резистора R2 доводят стрелку индикатора до деления 50 мкА ( середина сегмента ). Замкнув после этого гнёзда, убеждаются в отклонении стрелки индикатора за конечное деление шкалы.
Конденсатор можно проверить иначе – измерить его ёмкость. Для целей во многих случаях окажется достаточным собрать приставку к авометру, позволяющую измерять ёмкость конденсаторов от 100 пФ до 1 мкФ. Схема такой приставки приведена на Рис.2


На транзисторах VT1, VT2 и трансформаторе Т1 собран генератор импульсов, частоту следования которых можно изменять переключателем SA1. Со вторичной обмотки трансформатора сигнал генератора поступает через диод VD1 на переменный резистор R6 – это регулятор установки своеобразного “нуля” отсчёта. С его движка сигнал поступает через один из эталонных конденсаторов С2 – С5 или проверяемый конденсатор ( его подключают к зажиму ” Сх ” ) на выпрямительный диод VD2 и авометр, подсоединённый к зажимам XS3 и XS4.
Пользуются приставкой так. В зависимости от ёмкости проверяемого конденсатора устанавливают переключателем один из пределов измерения. К примеру, в положении ” 1 ” переключателя можно измерять ёмкости от 0,1 до 1мкФ, в положении ” 2 ” от 0,01 до 0,1 мкФ, в положении ” 3 ” – от 1000 пФ до 0,01 мкФ в положении ” 4 ” – от 100 до 1000 пФ.
Переключатель SA2 устанавливают в положении ” Калибровка “ и переменным резистором R6 добиваются отклонением стрелки авометра на десятую часть шкалы. Тогда вся шкала будет соответствовать десяти “единицам” выбранного диапазона измерений. Поэтому удобно пользоваться, например, шкалой постоянных напряжений до 10 В – стрелку индикатора устанавливают на одно деление 1 В.
Подключают к зажимам XS1 и XS2 проверяемый конденсатор и переводят переключатель SA2 в положение ” Сх “. По отклонению стрелки авометра судят о ёмкости конденсатора. К примеру, стрелка отклонилась на 2,5 деления, а переключатель SA1 стоит в положении ” 3 “. Значит, ёмкость конденсатора равна 1000 пФ Х 2,5 = 2500 пФ. Точность измерений зависит в основном от точности подбора ёмкости эталонных конденсаторов.
Трансформатором в пробнике может быть согласующий трансформатор от радиоприёмников марки ” ВЭФ” ( “ВЭФ-12”, “ВЭФ-201”, “ВЭФ-204”). Транзисторы – любые из серий МП39 – МП42 с коэффициентом передачи тока не менее 50. Диоды – любые из серий Д2, Д9. Источник питания – “Крона” или две батареи 3336, соединённых последовательно, а также другие подобные напряжением 9 В.

Б. С. Иванов ” В ПОМОЩЬ РАДИОКРУЖКУ”, ” Радио и связь”, Москва, 1990 г, стр. 19 – 21

Прибор для проверки конденсатора: виды устройств и техника измерений

Измеритель LOW ESR конденсаторов

Автор: Simurg
Опубликовано 17.08.2012
Создано при помощи КотоРед.

Всё гениальное – просто!

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

– измерение на частоте 100 – 110 кГц

– измерение низким напряжением (до 0,2 вольт)

– растянутая шкала в диапазоне до 0,5 Ома

– работа от одного аккумулятора напряжением 1,2 вольта

– длительная работа без зарядки аккумулятора

– отсутствие неудобных проводов витой пары

– мощные щупы для пробивания окислов и лака

– минимум корректирующих настроек

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:

Схема состоит из автоколебательного блокинг – генератора,

собранного на транзисторе VTI, выпаянном из серверной материнки:

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

Стоит он обычно около выходного строчного транзистора

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.

Для ТР2 можно ставить без выведенного отвода (таких большинство).

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.

Некоторые фото проведенных измерений:


Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 – 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.

Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Аналоговые (со стрелочной измерительной головкой) тестеры типа 4353, 43101 и аналогичные были в своё время широко распространены и, возможно, есть в «закромах» многих радиолюбителей. Современные цифровые приборы, конечно, имеют гораздо меньшие габариты и большую функциональность и универсальность, тем не менее, из такого «старого» тестера можно при желании сделать вполне удобный измерительный прибор. Тем более, что стрелочный индикатор во многих случаях оказывается гораздо удобнее и нагляднее для отображения информации, если, конечно, при измерениях не требуется запредельная точность.

Так например, с использованием стрелочной головки от подобного тестера мной был сделан небольшой настольный измерительный прибор, который позволяет с достаточной для радиолюбителя точностью измерить ёмкость конденсаторов ( 5 пФ — 10 мкФ), индуктивности катушек ( от единиц мкГн до 1 Гн ), ёмкости электролитов ( 1 мкФ — 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты ( 10, 100. 1000 Гц, 10, 100, 1000 кГц ). И, кроме того, имеет встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколёвки неизвестных транзисторов. Причём проверить параметры большинства элементов можно, не выпаивая их из схемы.

Прибор собирался в корпусе меньших размеров, чем «родной» от тестера и делался по «модульному» принципу — по желанию можно добавлять или исключать отдельные измерительные узлы и при этом не производить никаких существенных изменений в остальной схеме. Можно сохранить также и изначальные фунции измерения напряжений и токов, если это потребуется. Причём совсем не обязательно ориентироваться на применённую здесь стрелочную головку от взятого мной тестера — подойдёт любая другая с током полного отклонения 50 … 200 мкА, это не принципиально. Ниже будут даны схемы и описания отдельных функциональных узлов-«модулей», структурная схема их соединений в приборе в целом.

Каждый «модуль» предназначен для измерения-проверки различных радиодеталей широкого применения и может использоваться не только в составе такого прибора, но и, конечно, отдельно, в виде небольшой независимой конструкции. Сами схемы измерительных узлов, входящие в состав, не новы и не раз были опубликованы в своё время в различных источниках и проверены на практике многими радиолюбителями, показав стабильную и надёжную работу, Никаких редких и дорогих элементов констукция не содержит, схемы чрезвычайно «лаконичные» и просты в понимании, не требуют особых приборов для настроек, при этом обеспечивают достаточную точность измерений при внимательной и грамотной сборке и применении заведомо исправных деталей.

Генератор образцовых частот

Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:

Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.

С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем).

Модуль измерения L, C

Первая схема представляет собой узел измерения емкостей конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).

Сигнал на вход подается с выхода генератора сигналов ( в нашем случае – с движка переключателя SA1 на рис.1). Через транзистор VT1, работающий в режиме ключа, прямоугольный импульсный сигнал можно снять с выхода «F» и использовать для проверки или настройки других внешних устройств, при этом уровень сигнала можно регулировать резистором R4 в широких пределах. Этот же импульсный сигнал подаётся на измеряемые элементы — конденсаторы или индуктивности, подключаеые к соответствующим клеммам «C» или «L», выставив переключатель SA2 в соответствующее положение.

К выходу Uизм. подключаем непосредственно нашу измерительную головку (может понадобиться добавочное сопротивление, об этом будет сказано подробнее далее – «Модуль индикации»). Резистором R5 устанавливаем пределы измерений индуктивностей, а R6 — ёмкостей (например, подключаем к клеммам «Сх» и «Общ.» образцовый конденсатор 0,1 мкФ на диапазоне с частотой 1 кГц (см. схему рис.1) и подстроечником R6 устанавливаем стрелку прибора на конечное деление шкалы. ). Питание этого модуля может быть 6-12 вольт.

Примечание: при настройке этого модуля была совсем исключена из схемы ёмкость С1 (1000 пФ), так как при её наличии не удавалось настроить диапазон измерений 1-100 пФ. При настройке также возможен подбор сопротивлений R2, R3 в зависимости от напряжения питания и конкретного типа применённого транзистора (может быть любой маломощный p-n-p структуры). В качестве выпрямительных использовались «старинные» германиевые диоды типа Д9, обеспечивающие более линейную характероистику отображения показаний стрелочной головки. Возможно применение кремниевых, но в данном случае я этот вариант не пробовал, так как диодов Д9 давно лежала без дела небольшая кучка.

Модуль измерения электролитических конденсаторов (+ C и ESR)

Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):

Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.

Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.

Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).

Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.

В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.

Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR может быть как и у предыдущих схем.

Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).

Функциональная схема соединений модулей прибора

Соединение между собой всех перечисленных выше «модулей» в одном общем приборе не представляет особой сложности и это видно из рис.4:

Модуль индикации, помимо самой стрелочной головки, включает в себя шунтирующий конденсатор (10 … 47 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. Добавочное сопротивление подбирается в зависимости от чувствительности измерительной головки.

В случае объединения всех перечисленных выше модулей в одном приборе следует иметь ввиду, что клемма «Общ.» на схеме рис.2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.

Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.

В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

При проверке полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С». Полевые транзисторы, или очень мощные биполярные всё-таки лучше проверять, выпаяв их из плат.

Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.

Примечания к схеме

Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:

  • 1 МГц — 100 пФ — 100 мкГн
  • 100 кГц — 1000 пФ — 1 мГн
  • 10 кГц — 0,01 мкФ — 10 мГн
  • 1 кГц — 0,1 (+100) мкФ — 100 мГн
  • 100 Гц — 1 (+1000) мкФ — 1 Гн
  • 10 Гц — 10 (+10000) мкФ — 10 Гн

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Материал в редакцию сайта Радиосхемы прислал автор – Андрей Барышев.

Обсудить статью УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Как измерить емкость цифровым мультиметром

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.

    Примечание: Некоторые мультиметры предлагают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию прерывателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

10 лучших измерителей емкости 2021 года — обзоры эксперта!

Вы электрик? Тогда вы можете знать о важности измерителя емкости.Это устройство, используемое для измерения уровня энергии в устройствах. Электрики используют его для считывания емкости отдельных конденсаторов.

С развитием технологий появилось все больше и больше лучших измерителей емкости. Рынок наводнен сотнями из них. Некоторые из них поставляются как отдельные устройства, а другие, например, мультиметр, интегрированы с другими устройствами.

Top 5 лучших измерителей емкости: выбор редакции

Но вы не можете пойти в магазин и купить какой-либо измеритель емкости.Вы должны выбрать тот, который подходит для вашей работы. В противном случае вы можете не получить качественный результат. Из-за их большого количества на рынке вы можете не понять, что выбрать.

В результате мы исследовали лучший измеритель емкости, который вы можете купить сегодня на рынке. Каждый из следующих основных обзоров емкости даст вам представление об устройстве и о том, почему оно в настоящее время является одним из лучших на рынке. Но перед этим вот список;

Обзор 10 лучших измерителей емкости:

1.Signstek MESR-100 V2 Автоматический выбор диапазона в цепи Конденсатор измерителя ESR LCR

Тестер Signstek MESR-100V2 — мечта каждого электрика. Это поможет вам проверить, поврежден ли ваш конденсатор, неисправен или работает ли он правильно. Плохие электронные конденсаторы вместо фильтрации шума создают большую рябь.

Большие конденсаторы имеют сопротивление более 3 Ом. Поскольку этот измеритель ESR работает от пика до пика с хорошими конденсаторами или 15 мВ постоянного тока, он отлично подходит для тестирования схем.

Вы уменьшаете импеданс на 100 кГц, чтобы измерить истинное значение последовательного резистора.Измеритель тестирует с использованием низкого напряжения, что означает, что полупроводник внутри тестируемого устройства не подвергается риску включения. Вы также можете использовать эту программу проверки для проверки вашего телевизора, аудиоплаты, ЖК-дисплея или других устройств во время их ремонта.

Благодаря большому ЖК-дисплею вы можете легко просматривать и читать информацию. Переносить этот тестер цепей не составит труда благодаря прилагаемому к нему пластиковому корпусу изогнутой формы.

Батарея выходит за рамки батареи 9 В, что делает ее удобной в использовании в любое время.Тестер Signstek MESR-100V2 поставляется с внешним USB-источником питания, что означает, что вы можете заряжать его от компьютера или внешнего блока питания.

Двойной терминал помогает быстро и легко проверить резистор или конденсатор. Если вы не понимаете, как работает измеритель емкости, вы можете следовать инструкциям, прилагаемым к этому тестеру.

Плюсы:
  • Быстрое и удобное использование
  • Обеспечивает точные результаты
  • Помогает уменьшить высокочастотную составляющую прямоугольной волны для улучшения результатов
  • Его разрешение 0.001 Ом очень высокий
  • Имеет большой ЖК-дисплей для удобного чтения результатов
  • Поставляется в пластиковом футляре для коляски
  • Использует батареи с длительным сроком службы
  • Использует стандартный порт micro-USB
Минусы:
  • Поставляется с короткими щупами
  • У вас могут возникнуть трудности с обнулением счетчика

Купить на Amazon

2. Цифровой тестер конденсаторов ELIKE от 0,1 пФ до 20 мФ Цифровой тестер конденсаторов

ELIKE входит в наш список лучших на рынке благодаря своим диапазонам измерения.Их девять, начиная с 200Pf и заканчивая 20mF.

В его ЖК-дисплей влюбится любой электрик. Он большой, с подсветкой сзади и с местом для хранения данных. Информация не только достаточно большая, чтобы ее можно было прочитать, но ее можно увидеть даже в темных местах.

Измерения обычно точны, так как вы можете измерять, начиная с нуля, используя кнопку настройки нуля. Вам не нужно беспокоиться о качестве этого устройства, поскольку оно соответствует стандартам безопасности IEC 61010.

Это лучший измеритель электрических конденсаторов для устранения всех проблем с электричеством в вашем доме.Использовать его не составляет труда, и тестер идеально подходит для проверки конденсаторов перед использованием. Ваша печатная плата становится неисправной, если возникает проблема с конденсатором.

Благодаря небольшому размеру вы можете легко носить его с собой куда угодно. С его кнопкой удержания информация остается на дисплее. Сигнал индикатора батареи предупреждает вас, когда вам необходимо заменить батарею, делая ее надежной.

Плюсы:
  • Испытания конденсаторов и всей бытовой электротехники
  • Информация остается на ЖК-дисплее для справки благодаря функции удержания
  • Поставляется с большим ЖК-дисплеем для лучшей видимости отображаемой информации
  • Вы можете узнать, когда заменить батарею, по индикатору разряда батареи
  • Благодаря компактным размерам его можно легко носить с собой куда угодно.
  • Соответствует стандартам безопасности IEC
Минусы:
  • Не идет с носителем
  • Легко портится при неправильном обращении

Купить на Amazon

3.Honeytek A6013l Тестер конденсаторов

Благодаря девяти диапазонам измерения вы можете измерять устройства с диапазоном от 200 пФ до 20 мФ. Поскольку существует множество электронных устройств, подпадающих под этот диапазон, это удобный тестер конденсаторов. Читать отображаемую информацию не составит труда благодаря большому ЖК-дисплею. Он также подсвечивается сзади, чтобы обеспечить вам оптимальный обзор.

Если вам нужно, чтобы отображаемая информация оставалась на долгое время для справки, вам нужно только включить функцию удержания данных.Большинство пользователей не любят тратить свои кровно заработанные деньги на недолговечные устройства, но это устройство — отличное решение для ваших денег.

Тестер конденсаторов Honeytek A60131 показывает превышение дальности, чтобы увеличить срок его службы. Вам также не доставляет неудобств разряженная батарея, поскольку она предупреждает вас о низком уровне заряда. Тестер также поставляется с очень прочной и надежной LSI-схемой.

Использовать это проще простого. Вам нужно только установить его на ноль, используя настройки нуля для компенсации измерительных проводов.Вы можете легко положить его в сумку или карман и носить с собой куда угодно благодаря карманному размеру.

Плюсы:
  • Имеет девять диапазонов измерения, начиная с 200 пФ и заканчивая 20 мФ.
  • Поставляется со значительным ЖК-дисплеем с подсветкой для лучшей видимости.
  • Имеет защиту от перегрузки входа
  • Можно долго держать данные на дисплее
  • Предупреждает пользователя о выходе за пределы допустимого диапазона и низком заряде батареи
  • Небольшой размер для облегчения переноски
Минусы:
  • Иногда 9-вольтовый разъем может расшататься и его нужно подтянуть
  • Иногда показания нестабильны

Купить на Amazon

4.Тестер цепей MESR-100, тестер конденсаторов KKMOON mesr-100

Вы ищете лучший цифровой измеритель емкости? На этом ваш поиск может закончиться тестером цепей MESR-100. Благодаря своему дуэт-терминалу это высокая производительность. Тестер идеально подходит для быстрой и простой проверки любого резистора или конденсатора общего назначения. Вы также можете использовать его для проверки ремонта ЖК-дисплея, телевизора и аудиоплаты.

Проверка обычно выполняется очень быстро из-за распечатанной тестером таблицы СОЭ. Он убирает импеданс с частотой 100 кГц, при этом импеданс уменьшается, что позволяет проводить измерения последовательного резистора.Используя эту теорию, тестер может определить, поврежден ли конденсатор, неисправен или находится в хорошем состоянии.

Тестер цепей

MESR-100 оснащен дисплеем автоматической полярности на большом ЖК-дисплее, который светится в фоновом режиме. Показания видны даже при слабом освещении. Если вы не используете его в течение 10 часов, он автоматически отключается для экономии энергии. Благодаря диапазону измерения от 0,001 до 100,0R он обладает невероятно мощной функцией тестирования.

Вы можете использовать его для выполнения внутрисхемных тестов, от пика до пика в конденсаторе ниже 15МВ и использовать синусоидальную волну 100 кГц для измерения значения ESR.Его легко использовать, так как вам нужно всего лишь нажать кнопку измерения, чтобы выбрать режим.

Безопасность этого счетчика гарантируется, так как он поставляется в нескользящем футляре. С этим устройством вы по достоинству оцените соотношение цены и качества.

Плюсы:
  • Высокая производительность
  • Измеряет исправность конденсатора.
  • Автоматический переход в спящий режим с подсветкой
  • Имеет мощную тестовую функцию
  • Поставляется с красивой защитной оболочкой
Минусы:
  • Иногда внутрисхемные показания нестабильны
  • Поставляется с короткими испытательными кабелями

Купить на Amazon

5.Мультиметр Цифровой измеритель емкости, cciyu Тестер конденсаторов от 0.1Pf до 2000uF

Если вас беспокоит безопасность, это лучший измеритель конденсаторов, который вы можете купить сегодня на рынке. Цифровой измеритель емкости мультиметра поставляется с защитными перчатками, и вы можете легко использовать его и носить с собой.

Отлично подходит для измерения электричества различными инструментами. Если у вас есть несколько проблем с бытовой техникой и автомобильные проблемы, этот тестер устранит их все.

Имея 9 диапазонов измерения, от 200PF до 20mF, он обладает превосходным диапазоном точности.ЖК-дисплей имеет 3 1/2 дюйма, достаточно большой для хорошей видимости. Экран также имеет подсветку, которая улучшает видимость как в ярких, так и в темных областях.

Аналого-цифровое преобразование тестера и технология двойной интеграции CMOS автоматически выбирают и сбрасывают полярность. Вы можете рассчитывать на этот измеритель во всех ваших энергетических испытаниях.

Плюсы:
  • Поставляется с защитными перчатками
  • Точно измеряет
  • Автоматически очищает и выбирает полярность
  • Приходит в бой, поэтому его легко носить с собой.
  • Простота использования
  • Точно устраняет различную бытовую технику и автомобильные проблемы
  • Поставляется с большим ЖК-дисплеем с подсветкой для четкой видимости.
  • Гарантия 1 год — отличное соотношение цены и качества.
Минусы:
  • Измерительный переключатель расположен сбоку, поэтому считывание показаний затруднено, так как вы должны держать прибор.
  • Некоторые аксессуары нельзя прикрутить неплотно

Купить на Amazon

6.Цифровой автоматический измеритель емкости Excelvan M6013, тестер конденсатора

Привлекательный цвет и дизайн тестера могут вас заинтересовать, но что может вас поразить, так это его диапазон измерения. Excelvan измеряет от 0,01 пФ до 470 мФ у v2. Вам потребуется ~ 0.2S только для чтения 2200Uf. Для получения оптимальных результатов вам необходимо сначала разрядить конденсатор перед тестированием.

Цифровой тестер автоматического определения дальности Excelvan M6013 может измерять большой диапазон, но расстояние и длина проводов могут повлиять на его точность.Но вам понравится тот факт, что его показания более стабильны по сравнению с большинством тестеров. ЖК-экран большой, поэтому вы четко видите все цифры.

На ЖК-дисплее можно прочитать не более пяти цифр. Благодаря средней функции бега, которая выполняется автоматически, это повышает удобство. Зарядить его легко, так как он оснащен разъемом micro-USB для подключения внешнего источника питания. Тот факт, что производитель предлагает 1-летнюю гарантию, гарантирует, что вам понравится соотношение цены и качества.

Плюсы:
  • Поставляется со значительным ЖК-дисплеем для лучшей видимости
  • Измеряет большой диапазон
  • Поставляется со стабильными показаниями
  • Функционирование автоматическое
  • Можно заряжать извне
  • Поставляется с годовой гарантией
Минусы:
  • Длина провода может повлиять на его точность
  • Перед зарядкой необходимо разрядить конденсатор

Купить на Amazon

7.Цифровой измеритель емкости профессиональный конденсатор 0.1Pf — 20000Uf

Производитель разработал этот измеритель для профессионалов, что сделало его лучшим тестером конденсаторов на сегодняшний день. Качество не подвергается риску, поскольку оно сертифицировано CE. Вы можете питать его от мощной батареи на 9 В, но она не входит в комплект поставки.

Батареи потребляют мало энергии, поэтому вам не нужно беспокоиться о счетах за электроэнергию. Вы также можете легко просматривать результаты благодаря большому ЖК-дисплею.Некоторые тестеры сложны в использовании, но не этот. Вы также можете с комфортом переносить его куда хотите, благодаря его легкости и компактности.

С этим тестером безопасность на высшем уровне. В упаковке есть защитная куртка. Если вы хотите, чтобы информация оставалась надолго, вам нужно только нажать функцию удержания. Он поставляется с ручкой, с помощью которой вы можете вручную установить нулевое значение.

Вам не нужно беспокоиться при покупке этого тестера, так как продавцы проверяют его перед отправкой.Это реальная сделка за ваши деньги.

Плюсы:
  • Сертифицирован CE и идеально подходит для профессионалов
  • Простота эксплуатации и переноски
  • Бескомпромиссная безопасность благодаря защитной куртке.
  • Поставляется с функцией удержания для более длительного хранения данных
  • Имеет ручку ручной регулировки, которая поможет вам обнулить его
  • Отображаемые цифры большие для облегчения видимости
  • Аппарат проходит испытания перед отгрузкой
Минусы:
  • Батареи надо ставить отдельно
  • Легко портится при неправильном обращении

Купить на Amazon

8.KKmoon M6013 Цифровой высокоточный измеритель конденсатора

Диапазон измерения этого тестера цепей впечатляет. Тестер конденсатора сопротивления измеряет от 0,01 пФ до 470 мФ для V2. Вы будете использовать 0,2 с, чтобы считать емкость 2200 мкФ. Вам понравятся показания этого тестера. Они не ошибаются, но всегда стабильны, что отличает его от остальных.

Функция усреднения тестера работает автоматически, что позволяет более точно считывать пФ. Вы можете четко видеть показания, поскольку они большие и содержат пять цифр.Точечно-матричный ЖК-дисплей также большой, что улучшает читаемость. Благодаря микро-USB вы также можете заряжать его от внешнего источника питания, например от внешнего аккумулятора.

Но перед тестированием нужно разрядить конденсатор. Расстояние и длина провода могут повлиять на его точность. Из-за простоты использования этот тестер могут использовать как профессионалы, так и домашние мастера.

Плюсы:
  • Имеет большой диапазон измерения
  • Отображает пять крупных единиц на большом матричном ЖК-дисплее
  • Показания обычно стабильные
  • Этот тестер может использовать любой желающий
Минусы:
  • Расстояние и длина кабеля тестера могут повлиять на получение точных результатов.
  • Конденсатор должен быть разряжен перед испытанием

Купить на Amazon

9.Цифровой измеритель емкости Elenco CM1555

Elenco CM1555 — это прибор, который вам нужен, когда вам нужны точные результаты и четкость считывания. Благодаря большому диапазону измерения и ЖК-дисплею. Вы можете измерять конденсаторы от 0,1 пФ до 20000 мкФ. Подразумевается, что вы можете использовать его для тестирования различных устройств.

Благодаря компактным размерам и легкому весу вы можете легко носить его с собой на различных устройствах для тестирования. Его ЖК-экран имеет 3 ½ дюйма и отображает большие цифры. Он также поставляется с ручкой регулировки нуля, чтобы установить его для тестирования.

В комплект поставки входят такие аксессуары, как измерительные провода, специальный и банановый разъем. Он также поставляется с мощными батареями на 9 В. Что может вас заинтересовать, так это небольшая цена, несмотря на потрясающие возможности тестера. Подчеркивается качество, благодаря чему вы будете служить вам долго.

Не ждите разочарований, потому что он не противоречит тому, для чего был создан, что делает его любимым для многих пользователей. Но будьте осторожны при обращении с ним, так как на экране могут появиться царапины.У него также нет футляра для его хранения, а это значит, что вам придется покупать его отдельно.

Из-за его известной точности и других возможностей этот тестер стоит купить!

Плюсы:
  • Обеспечивает точные результаты
  • Работает дольше
  • Имеет большой диапазон измерения
  • Идеально подходит для тестирования различных устройств
  • Простота использования и переноски
  • Имеет ручную ручку регулировки нуля для установки нуля для тестирования
  • Поставляется с большим ЖК-дисплеем
  • Отображает пять больших цифр для лучшей читаемости
Минусы:
  • При неправильном обращении экран может поцарапать
  • Без футляра

10.Цифровой измеритель емкости UYIGAO UA6013L

Если вы профессиональный электрик, этот тестер конденсаторов создан для вас. Его широкий диапазон измерения от 0,1 пФ до 20 000 мкФ впечатляет. Цифровой измеритель емкости поставляется с девятью измерительными секциями, что объясняет, почему он дает точные результаты.

Вы без труда увидите показания благодаря большим цифрам, которые отображаются без ошибок. Отображение происходит на большом ЖК-дисплее тестера. Что вам понравится в этом тестере, так это его простота в эксплуатации.Он поставляется с ручным регулятором для установки нуля и готов к тестированию.

Вам не нужно беспокоиться о счетах за электроэнергию при использовании цифрового измерителя емкости UYIGAO UA6013L. Его энергопотребление очень низкое. Универсальность этого устройства поразит вас. Цифровой измеритель емкости также можно использовать для выбора конденсаторов, проверки ошибок, согласования емкостей, проведения численного анализа и измерения кабелей, печатных схем и емкостей переключателей.

Благодаря своей небольшой и менее громоздкой конструкции вы можете легко носить его с собой в любое место.Безопасность этого устройства оптимальна благодаря защитной рубашке, входящей в комплект.

Плюсы:
  • Идеально для профессионалов
  • Простота использования
  • Обеспечивает точные показания
  • Четкие показания в виде больших цифр на значительном ЖК-дисплее
  • Потребляет меньше энергии
  • Поставляется с большим диапазоном измерения в девяти секциях
  • Выполняет прочие задачи
  • Поставляется в защитной куртке
  • Легко носить с собой
  • Доступный
Минусы:
  • Может дать небольшую погрешность в результате ручного измерения
  • Мониторы откалиброваны иначе, чем отображаемое устройство

Купить на Amazon

Возможно, каждый из приведенных выше обзоров измерителя емкости мог побудить вас купить его для вашей работы.Но вам не нужно покупать что-либо в сети магазина или в Интернете. Тот факт, что измеритель емкости занимает первое место в нашем списке или лучше всего подходит для вашего друга, не означает, что он идеален для вас.

Конденсаторы

имеют разные характеристики для удовлетворения определенных потребностей. Если вы хотите приобрести емкость, которая будет соответствовать вашим потребностям и бюджету, вам необходимо учесть некоторые моменты перед покупкой. Вот что вам следует сделать в первую очередь;

Руководство по покупке: что следует учитывать при выборе измерителя емкости

a) Характеристики

Чем лучше характеристики измерителя емкости, тем он лучше! Характеристики устройства определяют его производительность.Его переменный и постоянный ток, сопротивление, переменное и постоянное напряжение должны иметь высокие характеристики. Измеритель с более высоким напряжением, чем устройства, которые вы хотите проверить, отлично подойдет. Но убедитесь, что текущий диапазон не превышает допустимого для тестируемого устройства. Убедитесь, что измеритель емкости высокого класса показывает истинное среднеквадратичное значение.

б) Разрешение цифрового мультиметра

Разрешение цифрового мультиметра — это количество цифр, которое измеряет уровень сигнала устройства. Это измерение изменения выходного сигнала в результате любого колебания входного сигнала.Цифровые мультиметры требуют, чтобы вы больше времени наблюдали за крайним правым значением. У вас может не быть времени, что делает это недостатком.

c) Измерение частоты

Подумайте, хотите ли вы измерять частоту и в то же время контролировать ток и напряжение в заданном частотном диапазоне. Некоторые цифровые мультиметры могут справиться со всем сразу. Устройство должно поддерживать правильную частоту, если оно питается от переменного напряжения.

г. Измерение температуры

Емкость с функцией двойного перепада температур идеальна для покупки, если вы хотите ее контролировать.С помощью такого прибора можно одновременно измерять две температуры.

e) Точность

Избегайте измерителей емкости, которые показывают ошибки. Выбирайте те, которые показывают точные и стабильные результаты. Исследования могут помочь вам выбрать наиболее точный измеритель, который вы можете купить в любое время. Попросите отзывы пользователей или профессионалов.

f) Входное сопротивление

Высокий входной импеданс поможет вам получить точные измерения даже с помощью самой чувствительной электроники.

г) Энергетическая емкость

Учитывайте энергоемкость устройств, с которыми вы хотите работать. Кроме того, знайте, что оптимальный измеритель переходного напряжения может работать без повреждений.

Заключение

Измерители емкости необходимы для тестирования наших электронных устройств. Некоторые также имеют другие функции, такие как анализ, сопоставление и выбор. Как показано выше, лучший измеритель емкости — это тот, который удовлетворяет все ваши потребности и вписывается в ваш бюджет.Но перед покупкой нужно учесть некоторые факторы, описанные выше.

Ссылка на источник:

  1. https://en.wikipedia.org/wiki/Capacitance_meter

Руководство и 10 лучших выборов [2021]

Емкость — это способность электронного компонента накапливать энергию (в виде электрического заряда), генерируемую различными напряжениями. Электронный компонент, хранящий энергию, называется конденсатором. Чтобы измерить емкость конденсатора, нам понадобится электронное измерительное устройство, которое называется тестером конденсатора или тестером емкости.Для проведения измерения щупы должны быть подключены к ножкам конденсатора (вывод конденсатора).

Способы проверки конденсатора

На практике существуют различные методы проверки конденсатора:

  1. Мультиметр (может быть цифровой или аналоговый мультиметр) с измерением емкости
  2. Автономный тестер конденсатора
  3. ESR-метр / ESR-тестер

Для проверки конденсатора вне цепи правильным выбором являются мультиметр с функцией измерения емкости и тестер конденсаторов.

Перед проведением теста необходимо полностью разрядить конденсатор. Для тестирования конденсатора с помощью тестера конденсаторов требуется только демонтированный / отключенный конденсатор и подключение к нему датчиков.

Тот же метод применяется при использовании мультиметра с измерением емкости (измеритель емкости). Чтобы определить качество конденсатора, убедитесь, что сравниваемые показания все еще находятся в пределах допустимых значений. Если показания за его пределами, то конденсатор можно считать плохим.

С другой стороны, измеритель ESR является лучшим, когда дело доходит до проверки конденсатора внутри цепи.

В то время как предыдущие способы показывают единицы измерения в Фарадах, измеритель СОЭ показывает показания в единицах Ом.

Качество конденсатора можно определить, сравнив показания с таблицей характеристик, в которой содержится ожидаемое считываемое значение в отношении рабочего напряжения и значения емкости. Если показания соответствуют таблице и находятся в пределах допуска, конденсатор находится в хорошем состоянии.

Несмотря на то, что в повседневной жизни существует множество приложений для тестирования конденсаторов, самым простым из них является замена конденсатора во время ремонта электроприборов.

10 лучших тестеров конденсаторов 2021

Если вы ищете лучший тестер конденсаторов, мы надеемся, что этот пост поможет вам. Мы рассмотрим 10 лучших тестеров конденсаторов. На самом деле, это далеко не все тестеры конденсаторов. Некоторые из них являются мультиметрами с измерением емкости (функция измерения емкости встроена в мультиметр), а некоторые — измерителями ESR.Конечно, они призваны расширить ваши возможности, когда дело доходит до покупки прибора для измерения и проверки емкости.

№1. B&K Precision 830C [Лучший автономный тестер конденсаторов в целом]

Если вы профессионал и пытаетесь найти лучший тестер конденсаторов для работы, то B&K Precision 830C будет правильным выбором.

Этот счетчик оснащен множеством функций и функций, разработанных компанией. Таким образом, он становится лучшим тестером конденсаторов. Он имеет широкий диапазон измерения от 1000 пФ до 200 мФ.Он подходит для большинства конденсаторов, имеющихся на рынке. Он соответствует стандартам безопасности: EN61010-1 по степени загрязнения и EN61326-1 по устойчивости и выбросам. Есть два дисплея (основной и дополнительный) и два типа питания (батарея 9 В и адаптер переменного тока). Дисплей также оснащен подсветкой.

Использование этого глюкометра дает вам совершенно новый опыт измерения. Он поддерживает ручные и автоматические измерения диапазона. Существуют различные режимы, такие как режим допуска, относительный, режим сравнения и режим записи.

  1. Режим допуска: полезен для сортировки и тестирования большого количества компонентов.
  2. Относительный режим: полезен, когда пользователю необходимо «обнулить» счетчик на основе эталонного значения.
  3. Режим сравнения: для сортировки конденсаторов и настройки 25 наборов предельных диапазонов.
  4. Режим записи: лучше всего подходит для регистратора данных и настраивается на ПК через USB (Virtual COM).

Плюсы:
  • Широкий диапазон измерений
  • Интерфейс USB
  • Функция автоматического выбора диапазона
  • 3-летняя гарантия
Минусы:
Часто спрашивают вопросы:

Q: Поддерживает ли он автоматическое измерение диапазона?

A: Да, он поддерживает быстрое автоматическое определение диапазона для измерений компонентов.

В: Что необходимо сделать перед измерением?

A: Обязательно отключите питание и разрядите конденсатор, чтобы предотвратить возможное повреждение измерителя.

Q: Как эффективно измерить емкость?

A: Емкость измеряется измерителем, заряжающим конденсатор известным током, в результате чего определяется время периода зарядки, а затем вычисляется емкость. Чем больше емкость, тем больше времени требуется на измерение. Для этого измерителя вам необходимо выбрать подходящий диапазон измерения, чтобы ускорить измерение.

2. KKMoon M6013 [Другой автономный вариант]

Всегда лучше иметь другой вариант для покупки. В этом случае вариант KKMoon M6013. Это не подведет. Будучи вторым по качеству после BK Precision 830C, этот продукт подходит для большинства домашних пользователей и профессиональных инженеров.

Самая сильная особенность — диапазон измерения от 0,01 пФ до 470 мФ, что шире, чем у BK Precision 830C. Простой и минимальный интерфейс делает его удобным даже для новичков.Можно выбрать автоматический или ручной режим в зависимости от ваших предпочтений. Он поддерживает два источника питания (2 аккумулятора AA или micro-USB). Его цена почти в десять раз дешевле, чем у BK Precision 830C. Таким образом, это будет полезно для вас.

Плюсы:
  • Недорого
  • Большой диапазон измерения
  • Простой и удобный интерфейс
  • Подходит для HVAC
Минусы:
  • Кабели зонда слишком короткие
Часто задаваемые вопросы

Q: Какие режимы измерения доступны на измерителе?

A: В нем есть автоматический и ручной режимы измерения дальности.

Q: Сколько ручных диапазонов установить?

A: Он имеет только три типа ручных диапазонов, что упрощает его использование.

Q: Какое практическое применение лучше всего подходит для этого измерителя?

A: Лучше всего подходит для домашних пользователей и профессиональных инженеров, таких как HVAC (отопление, вентиляция и кондиционирование воздуха).

3. Honeytek A6013L [Лучший автономный тестер конденсаторов для бюджета]

Иногда бывает достаточно бюджета. Фактор, который является серьезной причиной, когда речь идет о покупке определенного счетчика.Неудивительно, что его можно было ограничить. Вот почему выбор Honeytek A6013L в качестве лучшего тестера конденсаторов с ограниченным бюджетом, несомненно, пойдет вам на пользу.

Сама цена почти в три раза дешевле KKMoon M6013. Несмотря на то, что он дешевый, он по-прежнему поддерживает стандартные и базовые функции измерения емкости. Диапазоны измерения разделены на 9 позиций от 0,1 пФ до 20 мФ, что более чем достаточно для дешевого измерителя. В этом измерителе доступны дополнительные функции, такие как сохранение данных, ЖК-дисплей с подсветкой, регулировка нуля, по всему диапазону и индикация низкого заряда батареи.Его уникальная особенность заключается в том, что он автоматически разряжает конденсаторы ниже 1000 В. Он упакован в компактную структуру и карманный размер с защитной кобурой.

Плюсы:
  • В три раза дешевле, чем KKMoon M6013
  • Функция автоматического разряда
  • Размер кармана
Минусы:
Часто задаваемые вопросы:

Q: Поддерживает ли он авто -диапазон?

A: Нет.

Q: Сколько диапазонов у измерителя?

A: Есть девять диапазонов от 200 пФ до 20 мФ.

Q: Какая у него самая лучшая функция?

A: Имеет функцию автоматического разряда конденсаторов ниже 1000 В.

4. Автономный тестер конденсаторов Elike DT6013 [Лучшая альтернатива]

Наличие альтернативы означает, что вы можете получить больше преимуществ, сравнивая их характеристики. Цифровой тестер конденсаторов Elike DT6013 — лучшая альтернатива, которая у вас есть, помимо Honeytek A6013L.

Расходомер такой же недорогой, как и Honeytek A6013L. Предоставляемые функции в основном такие же, как у Honeytek.Например, диапазон измерения, удержание данных, настройка нуля и LDC с подсветкой. Тем не менее, он соответствует стандарту безопасности IEC 61010 и является хорошим выбором для поиска и устранения неисправностей бытовой электросети. На ЖК-дисплее также есть большие цифры, что упрощает чтение для пользователей.

Плюсы:
  • Легко читаемый дисплей с подсветкой
  • Недорого, как Honeytek A6013L
  • Хорошо подходит для устранения бытовых электрических проблем
  • Стандарт безопасности IEC 61010
Минусы:
Часто задаваемые вопросы :

В: Есть ли в этой модели режим автоматического выбора диапазона?

A: Нет, эта модель не поддерживает режим автоматического выбора диапазона.

В: Подходит ли он для такого серьезного использования?

A: Соответствует стандарту безопасности 61010, касающемуся электрических требований к лабораторному испытательному и измерительному оборудованию.

В: Для чего это лучше всего?

A: Лучше всего решать бытовые проблемы с электричеством.

5. Тестер конденсаторов Supco MFD10 [Автономная модель с простейшим интерфейсом]

Типичный тестер конденсаторов может быть довольно утомительным и требовать больше времени для работы. Тем более, если у вас есть несколько лет опыта.Поэтому логично, что счетчик с действительно простым интерфейсом даст новый пользовательский опыт. Supco MFD10, безусловно, может быть правильным выбором из-за своей простоты.

Стоит разумная цена. Несмотря на то, что его диапазон измерения меньше, он по-прежнему имеет другие преимущества для пользователей. Время измерения будет короче. Это связано с его функцией автоматического выбора диапазона и нажатием одной кнопки. Это означает, что нажимать кнопку нужно только после того, как конденсатор будет готов к измерениям. Измеритель покажет OPEN для разомкнутых конденсаторов и SHRT для закороченных конденсаторов на светодиодном дисплее.Помимо этого, он предназначен для удовлетворения промышленных и сервисных нужд. Так что не нужно беспокоиться о его применении в реальной жизни.

Плюсы:
  • Интерфейс действительно простой
  • Умеренная цена
  • Режим автоматического выбора диапазона
Минусы:
  • Выводы слишком короткие
  • Меньший диапазон измерения
Часто задаваемые вопросы:

В: Какой режим измерения предоставляет измеритель?

A: Обеспечивает режим автоматического выбора диапазона.

В: Почему кнопка только одна?

A: Потому что он разработан компанией для кнопочного управления.

Q: В чем он хорош?

A: Это достойный вариант для промышленных и сервисных нужд.

6. Fluke-117 [Лучший мультиметр с измерением емкости]

Всегда существует потребность в том, чтобы пользователи нуждались в большом количестве измерительных функций в одном измерителе. Это пригодится; приятно использовать в экстремальных условиях. Таким образом, для удобства пользователей требуется такой практичный измеритель.Если вы ищете такой, то Fluke-117 — правильный выбор.

Fluke-117 — цифровой мультиметр для измерения сопротивления, напряжения, силы тока, целостности цепи, частоты и емкости. Диапазон измерения емкости составляет от 1000 нФ до 9999 мкФ. Несмотря на то, что его диапазон меньше, чем у любого типичного тестера конденсаторов, он выполняет больше функций измерения. Этот измеритель также поддерживает режим автоматического выбора диапазона. Среди других предлагаемых функций — низкое входное сопротивление для лучшего чтения и «VoltAlert» для определения напряжения без контакта.Он соответствует стандарту CAT III 600 В. Он совместим с громкой связью с использованием дополнительного магнитного подвеса и лучше всего подходит для коммерческих зданий.

Плюсы:
  • VoltAlert
  • True RMS
  • Низкое входное сопротивление
  • Работа в режиме громкой связи
Минусы:
  • Дорого
  • Меньший диапазон измерения
Часто задаваемые вопросы :

Q: Как измерить емкость в этом измерителе?

A: поверните поворотный переключатель к значку диода, затем нажмите желтую кнопку, чтобы переключиться на функцию измерения емкости, и автоматический выбор диапазона выполнит свою работу в зависимости от диапазонов, указанных в технических характеристиках измерителя.

Q: Какие замечательные функции предлагает этот измеритель?

A: Компания предлагает «VoltAlert» для бесконтактного обнаружения напряжения и низкого входного сопротивления для предотвращения ложных показаний, вызванных паразитным напряжением.

Q: Для каких реальных приложений это лучше всего?

A: Лучше всего подходит для коммерческих зданий, больниц и школ.

7. Neoteck 8233D PRO [Лучший недорогой мультиметр с измерением емкости]

Цифровой мультиметр с измерением емкости также доступен по доступной цене.Neoteck 8233D PRO доступен для продажи компанией по недорогой цене для пользователей. Однако о его производительности не стоит беспокоиться.

Neoteck 8233D PRO — компактный портативный цифровой мультиметр. Он соответствует стандарту безопасности IEC 61010-1. Диапазон его емкости составляет от 1 мкФ до 2000 мкФ. Собственно, диапазоны неплохие, учитывая невысокую цену и другие функции. Он поддерживает режим автоматического выбора диапазона. Его цена почти в десять раз дешевле Fluke-117. Для защиты от ударов при падении предлагается резиновый чехол.Что касается дисплея, компания разработала ЖК-дисплей с подсветкой и индикатором хранения данных. Измеритель будет упакован вместе с проводами зонда, проводами с зажимами из крокодиловой кожи и руководством.

Плюсы:
  • Недорогой
  • Режим автоматического выбора диапазона
  • Стандарт безопасности IEC 61010-1
Минусы:
  • Меньшие диапазоны емкостей, чем у Fluke-117
Часто задаваемые вопросы :

Q: Поддерживает ли он режим автоматического выбора диапазона?

A: Да, этот измеритель поддерживает режим автоматического выбора диапазона.

Q: Есть ли дополнительные аксессуары в упаковке?

A: Поставляется с проводами зонда и зажимами типа «крокодил».

8. Signstek MESR-100

Важно понимать, что существуют различные методы проверки конденсаторов. Один из них — с помощью измерителя СОЭ. В то время как тестер конденсаторов и мультиметр показывают единицы измерения в Фарадах, ESR показывает значение в Ом. И емкость, и ESR (эквивалентное последовательное сопротивление) являются отличными индикаторами для определения состояния конденсатора.Signstek MESR-100 может стать первым измерителем СОЭ, который вы, вероятно, захотите попробовать.

Этот измеритель использует 100 кГц для измерения значения ESR. Диапазон измерения довольно широк — от 1 мкФ до 1 мФ. Его пользовательский интерфейс подходит как для новичков, так и для профессионалов из-за своей простоты. Вы можете увидеть прямо в нижней части распечатанную таблицу электролитического СОЭ для быстрой проверки. Еще одна особенность — вы можете переключиться в автоматический или ручной режим в зависимости от ваших предпочтений. Он поддерживает два типа питания: батарея 2xAA для внутреннего источника питания и порт USB для внешнего источника питания.

Плюсы:
  • Простой пользовательский интерфейс
  • Типы двух источников питания
  • Поддерживает автоматический и ручной диапазон
Минусы:
  • Очень короткие провода датчика
Часто задаваемые вопросы :

Q: Как настроить автоматический / ручной режим?

A: Для автоматического режима нажмите и отпустите кнопку RANGE, пока на ЖК-дисплее не отобразится AUTO. Он автоматически выберет подходящий диапазон.

В ручном режиме после нажатия и отпускания кнопки RANGE на ЖК-дисплее отобразится MANUAL. Затем вы можете выбрать диапазоны от 1R, 10R и 100R.

В: Что такое таблица СОЭ?

A: Это таблица, которая действует как справочная и определяет соотношение между емкостью и ожидаемым измеренным сопротивлением.

9. Atlas ESR70

Хорошо иметь еще один измеритель СОЭ по другой цене. Всегда есть больше пользы, если тратить больше бюджета.Atlas ESR70 будет достойным выбором, так как у него есть уникальные особенности.

Он имеет форму, не похожую на другие типичные счетчики на рынке. Таким образом, он действительно выделяется среди измерителей ESR. Его диапазон шире, чем у MESR-100, от 1 мкФ до 22 мФ. Он может автоматически разряжать заряженные конденсаторы перед их измерением. Эта функция называется «Уникальный контролируемый разряд». Он также имеет звуковые оповещения, чтобы помочь пользователям.

Плюсы:
  • Уникальный дизайн счетчика
  • Звуковые сигналы
  • Простота использования
  • Более широкий диапазон, чем MESR-100
Минусы:
  • Дорогой
  • Предоставляются только зажимы типа «крокодил»
  • не прилагается распечатанная таблица ESR
Часто задаваемые вопросы:

В: Как определить характеристики конденсатора?

A: Более низкое значение ESR считается лучше, чем большее значение ESR.Хорошее значение ESR конденсатора обычно ниже, чем значение, указанное в таблице ESR.

Q: Что такое уникальный контролируемый разряд?

A: Это функция автоматического разряда заряженного конденсатора перед измерением емкости и ESR.

10. Интеллектуальный пинцет ST5-S [Подходит для SMD]

Иногда электронные компоненты имеют размер SMD (устройства для поверхностного монтажа). Обычным измерителем его не измерить. Другими словами, для этого нужен специально разработанный инструмент.Smart Tweezers ST5-S будет лучшим выбором для измерения конденсаторов SMD.

Он представлен как портативный измеритель LCR, который может измерять сопротивление, индуктивность, емкость, импеданс и ESR соответственно. Диапазон емкости составляет от 3 пФ до 199 мкФ в автоматическом режиме и от 0,5 пФ до 999 мкФ для максимальных диапазонов. Выберите емкость в меню РЕЖИМ для измерения емкости. Доступен автоматический режим для измерения индуктивности, емкости и сопротивления. Аккумулятор вставлен внутрь, и его нужно будет перезарядить с помощью зарядного устройства USB, как только загорится индикатор.

Плюсы:
  • Богатые возможности
  • Многоплатформенное подключение
Минусы:
Часто задаваемые вопросы:

В: Поддерживается ли автоматический режим?

A: да, глюкометр поддерживает автоматический режим. Для этого войдите в меню РЕЖИМ и выберите АВТО.

Что такое тестер конденсаторов?

Тестер конденсаторов — это измеритель, который обеспечивает автономное измерение емкости. Наличие такого измерителя позволяет нам проводить измерение емкости быстрее, чем с помощью мультиметра.

По сравнению с тестером конденсаторов, нам по-прежнему требуется измеритель емкости или мультиметр с функцией измерения емкости, чтобы выполнять на несколько шагов больше, чем использование автономного тестера конденсаторов для измерения емкости. Фактически, стандартный мультиметр может проверять конденсатор, но единицы измерения, используемые для измерения, — это единицы сопротивления или напряжения. Вот почему тестер конденсаторов по-прежнему остается лучшим выбором для измерения емкости.

Использование тестера конденсаторов можно также заменить другим вариантом, например, измерителем ESR.Эта опция полезна, когда вам нужно проверить конденсатор, не распаивая его. Однако использование ESR не позволяет напрямую измерить его емкость. Вы только собираетесь измерить сопротивление (эквивалентной серии).

Что следует учитывать при покупке тестера конденсаторов

1. Диапазон измерений

Типичный тестер конденсаторов должен иметь несколько диапазонов измерения. Это первая функция, которую вы должны учитывать перед покупкой, которая определит гибкость того, как вы будете использовать ее в реальной жизни.

2. Интегрированные функции

Имеет смысл, если некоторым пользователям удобнее иметь счетчик с большим количеством функций или возможностей. Однако имейте в виду, что нет ничего странного в том, что существует компромисс между встроенным измерителем и автономным тестером конденсаторов.

3. Точность

Тестер конденсаторов с большей точностью лучше, чем с меньшей точностью. Он определяет близость измерения к фактическому или стандартному значению.

4. Разрешение

Более высокое разрешение предоставит пользователям больше деталей, чем более низкое.Если при измерениях требуется много деталей, то лучше приобрести тестер конденсаторов с более высоким разрешением.

5. Точность

Хорошая точность означает, что измерения будут повторять одни и те же или почти одинаковые значения в нескольких измерениях. С другой стороны, плохая точность приведет к значительной разнице в значениях измерения.

6. Чувствительность

Чувствительность означает способность прибора обнаруживать малейшие изменения в измерениях.Таким образом, инструмент с хорошей чувствительностью полезен для тех, кому необходимо обнаружить действительно небольшие изменения в реальных условиях использования.

Заключение

Подводя итог, можно сказать, что существуют различные способы проверки конденсаторов. Каждый из них может быть выполнен с помощью счетчиков определенного типа. Даже есть тестер компонентов или тестер транзисторов, который также может измерять или тестировать конденсатор. Кроме того, с помощью осциллографа можно получить более полную информацию о том, как конденсатор накапливает электрический заряд (заряжается и разряжается).

Вы должны иметь в виду, что здесь мы пытаемся предложить лучшее, основываясь на наших собственных исследованиях и знаниях. Вы всегда можете принять решение.

Вкратце, мы настоятельно рекомендуем следующие продукты:

  1. BK Precision для лучшего автономного тестера конденсаторов .
  2. Fluke-117 для цифрового мультиметра best с функцией измерения емкости .
  3. Atlas ESR70 для лучшего измерителя СОЭ .
  4. Smart Tweezer ST5-S для , лучший для SMD .

Надеюсь, этот пост вам поможет. Спасибо!

Конденсаторы-тестеры — Все производители — eTesters.com

Отображение недавних результатов 1 — 15 из 16 найденных продуктов.

  • Тестер конденсаторов

    Cap Check® — HD Electric Company

    Линия тестеров конденсаторов Cap Check® предназначена для выявления внутренних проблем с конденсатором или конденсаторной батареей.Доказано, что приборы являются ценным активом при обслуживании конденсаторов как на опорах, так и на подстанциях. Тестеры определят неисправные или вышедшие из строя конденсаторы, которые могут разорваться при подаче напряжения. Cap Check III предназначен для установки на столб и отдельных конденсаторов и может позволить бригаде из двух человек проверить батарею из 12 примерно за 20 минут. Cap Check II основан на тех же принципах и специально разработан для проверки конденсаторных блоков в батареях подстанций.

  • Тестер трансформаторов и конденсаторов

    Quick-Check® — HD Electric Company

    Тестер трансформаторов и конденсаторов Quick-Check® — это универсальный инструмент для быстрой и простой проверки конденсаторов, трансформаторов и подключенных к ним соединений.В полевых условиях Quick-Check используется для проверки первичной и вторичной сторон новых или модернизированных одно- или трехфазных трансформаторных установок на предмет короткого замыкания перед подачей питания. В магазине Quick-Check используется для быстрой проверки входящих и выходящих трансформаторов на предмет коротких замыканий или обрывов первичной и вторичной обмоток, включая внутренние предохранители и прерыватели. Quick-Check также проверяет конденсаторы и конденсаторные батареи. Имеется магнит, чтобы удерживать Quick-Check на месте во время тестирования.

  • Тестер электролитических конденсаторов

    Chroma ATE Inc.

    Анализатор

    — это универсальный измерительный прибор, предназначенный для анализа характеристик электролитических конденсаторов. Он имеет несколько функций, которые могут быть запрограммированы в зависимости от характеристик конденсатора путем изменения настроек для проверки выдерживаемого напряжения тонкой пленки окисления металла, тока утечки конденсатора, емкости, коэффициента рассеяния, импеданса и эквивалентного последовательного сопротивления и т. Д.

  • Тестер конденсатора для EDLC (электрический двухслойный конденсатор)

    PFX2400 серии — Kikusui Electronics Corp.

    Тестеры конденсаторов серии PFX2400 предназначены для разработки тестеров заряда / разряда для конденсаторов с двойным электрическим слоем. Номинальное напряжение составляет 5 В, предназначено для одноэлементных батарей, и доступна линейка из 4 моделей: 5A / 12 каналов, 35A / 4 канала, 70A / 2 канала и 140A / 1 канал.В последние годы конденсатор с двойным электрическим слоем увеличивал свою емкость, и его можно использовать в электромобилях в качестве источников энергии для запуска двигателя и помощи при разгоне. Ожидается более широкое использование этих конденсаторов в качестве нового источника энергии для повышения экономии автомобильного топлива, а также улучшения качества выхлопных газов. Тестеры конденсаторов серии PFX 2400 удовлетворяют потребность в более сложных и специализированных тестах, связанных с двумя ключевыми проблемами, с которыми сталкивается более широкое использование конденсаторов с двойным электрическим слоем: технологии накопления энергии и управление питанием (оптимизация энергопотребления).

  • Тестер внутрисхемного ESR и DCR конденсатора

    236 — GME Technology

    Этот внутрисхемный тестер ESR и DCR предназначен для измерения ESR (эквивалентного последовательного сопротивления) конденсаторов в диапазоне от 0,47 мкФ до 2200 мкФ, внутри или вне цепи. Возможность устранения неисправностей в цепи экономит время и делает 236 обязательным для всех, кто тестирует или устраняет неисправности в печатных платах.

  • Автоматический тестер диэлектрических потерь с защитой от помех

    SFK061 — Shanghai Launch Electric Co., Ltd.

    Он предназначен для проверки tgδ и Cx материалов и оборудования, таких как различные типы изоляционных материалов, изолирующие втулки, силовой кабель и конденсатор, измерительный трансформатор и трансформатор.Тестер оснащен высоковольтным преобразователем переменного тока и прецизионным стандартным конденсатором, прост в эксплуатации, полностью автоматизирован, имеет стабильные и надежные данные и пригоден для печати. Тестер также оборудован защитным устройством высокого напряжения.

  • Полностью автоматический тестер емкости и индуктивности

    SFh266 — Shanghai Launch Electric Co., Ltd.

    Полностью автоматический тестер емкости и индуктивности специально разработан для групп шунтирующих реакторов, одиночных реакторов в оборудовании SCV, под руководством специалистов по компенсации реактивной мощности.Измерение емкости шунтирующего конденсатора, сборка одиночного конденсатора или групповых конденсаторов без снятия обмотки Измерение индуктивности реактора и волнового улавливателя без снятия обмотки Измерение пусковой емкости трансформаторов и генераторов без снятия обмотки Измерение шунтирующего (разрядного) сопротивления

  • Тестеры высокого напряжения постоянного тока

    DPW серии — UDEYRAJ ELECTRICALS PRIVATE LIMITED

    Эти портативные тестеры были разработаны для использования при испытании высоковольтного оборудования в энергетике.Регулярные испытания изоляции и утечки являются необходимым требованием для ОПН, испытаний на пробой кабеля, зарядки конденсаторов и другого лабораторного использования.

  • Измеритель диэлектрических потерь изоляционного масла

    HDLT — Hention Electrical Equipment Co., Ltd.

    Этот интегрированный измеритель диэлектрических потерь драгоценного изоляционного масла предназначен для измерения диэлектрических потерь TAN и емкости изоляционного масла трансформаторов.Это высокоточный инструмент; интегрирован с масленкой, прибором контроля температуры, датчиком температуры, мостом для испытания на диэлектрическую потерю, испытательной мощностью переменного тока, стандартным конденсатором и т. д.

  • Тестеры ограничителей перенапряжения

    SST 450 — ATSI

    Тестер ограничителя перенапряжения ATSI SST-450 разработан для быстрого и простого тестирования всех обычно используемых ограничителей переходного напряжения: металлооксидных варисторов (MOV), газоразрядных трубок (GDT), кремниевых лавинных диодов (SAD), тиристорных устройств защиты от перенапряжений. (TSPD) и гибридные устройства.Источник постоянного тока 1 мА и напряжением до 1000 вольт тестера имеет функцию определения как пикового, так и среднего значения, чтобы обеспечить полные параметры тестирования как для ломов, так и для клещей. Измерения отображаются с разрешением 0,1 В. Тестер может тестировать супрессоры с фильтрующим конденсатором до 200 мкФ. Также доступна переходная коробка для вставных глушителей.

  • Оборудование для тестирования аккумуляторных элементов

    Xiamen WinAck Battery Technology Co., ООО

    Тестер срока службы аккумуляторных батарей — это высокоточная система, разработанная специально для тестирования заряда и разряда аккумуляторных элементов. Он подходит для проверки цикла аккумуляторных элементов, испытаний заряда и разряда аккумуляторных батарей, тестирования производительности аккумуляторных элементов, теста на определение емкости аккумуляторных элементов, батареи. ИК-тест элемента, тест на глубокую разрядку, функциональный тест мощных литий-ионных аккумуляторных элементов, таких как аккумуляторный модуль EV, аккумуляторный модуль ES, суперконденсатор…

▷ Как пользоваться измерителем емкости?

В прошлый раз Насир рассказал нам об измерении тока амперметрами, сегодня статья про емкостной измеритель…

Что такое конденсатор?

Конденсатор — это двухполюсное устройство накопления заряда, которое накапливает электрический заряд между двумя проводящими пластинами, разделенными сопротивлением.Это основное введение в конденсатор, которое кратчайшим образом описывает его работу. Прежде чем углубляться в детали измерителя емкости, необходимо знать о функционировании и работе конденсатора.

Конденсатор

накапливает энергию, но он не так эффективен, как другие устройства накопления энергии, такие как батареи и т. Д. Основная причина этого заключается в том, что он довольно быстро разряжается, и это одна из причин, по которой он весьма полезен в приложениях, где требуется высокая энергия.

Что такое измеритель емкости?

Способность конденсатора накапливать электрические заряды известна как его емкость, и именно для этого используется измеритель емкости. Измеритель емкости используется для измерения емкости конденсатора. Он измеряет скорость накопления заряда и возвращает значение емкости в цифровом виде, обычно, но не всегда.

Также доступны аналоговые измерители емкости, которые показывают показания в виде стрелки, движущейся по шкале, но они довольно старые и неточные.В настоящее время широко используются цифровые измерители емкости, поскольку они просты в обращении и считываются, а также повышают точность.

Измерение емкости с помощью измерителя емкости

Измеритель емкости может быть выполнен в виде отдельного устройства или встроен в цифровой мультиметр. Он имеет два выходных пробника, которые можно легко подключить к двум ножкам конденсатора для измерения его емкости, как показано ниже:

Это можно измерить двумя способами, а именно:

  1. Путем измерения скорости нарастания напряжения
  2. Пропуская переменный ток высокой частоты

Каждый из этих процессов будет подробно описан ниже…

Измерение скорости нарастания напряжения

Когда измеритель емкости соединен с конденсатором, он заряжает его заданным значением тока.Когда конденсатор заряжается и разряжается таким образом с помощью измерителя емкости, измеритель емкости измеряет скорость, с которой напряжение на этом конденсаторе растет из-за этого тока.

Затем измеряется емкость как функция повышения напряжения. Чем медленнее нарастает напряжение на конденсаторе, тем больше будет значение его емкости.

Пропуская высокочастотный переменный ток

Другой метод измерения емкости с помощью измерителя емкости — пропускание высокочастотного переменного тока.Когда переменный ток пропускается с очень высокой частотой, измеряется результирующее изменение напряжения и определяется емкость как функция этого результирующего напряжения.

Использование измерителя емкости

Конденсаторы

широко используются в настоящее время в приложениях, где требуется быстрый источник энергии, из-за того, что они разряжают энергию с большой скоростью. Часто конденсатор имеет неразборчивую емкость, поэтому его невозможно использовать, не зная его фактического номинала.

Измеритель емкости используется для измерения неизвестных емкостей в цепи, что важно для правильной работы схемы.

Насир.

Есть много других подобных измерительных устройств, которые чрезвычайно часто используются в повседневных электрических приложениях. Чтобы узнать о них больше, следите за обновлениями и продолжайте посещать нас.

Конденсаторы 101 — iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы направляют постоянное напряжение на другие компоненты и, таким образом, обеспечивают стабильное электропитание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пикового напряжения. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается линейно к компоненту, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглых жестяных банок обычно являются электролитическими конденсаторами.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектриком может быть воздух (простейший конденсатор) или другие непроводящие материалы. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старых радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильный источник напряжения, обычно имеется большой электролитический конденсатор, параллельный керамическому дисковым конденсаторам. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос — как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего». Этот тест покажет только, полностью ли разряжен конденсатор. , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый в этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отсоедините аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте использование конденсатора меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой, которая как проверить и проверить конденсатор? Хороший, плохой (мертвый), короткий или открытый?

Здесь мы можем проверить конденсатор с помощью аналога (измеритель AVO i.е. Ампер, напряжение, омметр), а также цифровой мультиметр — либо он в хорошем состоянии, либо следует заменить его новым.

Примечание. Для определения значения емкости вам понадобится цифровой измеритель с функциями измерения емкости. .

Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .

Связанные сообщения:

Метод 1.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов.Будьте осторожны, выполняя эту практику, так как это опасно. Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2–6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждение и рекомендации по тестированию конденсатора методом 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство по проверке конденсатора этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
  5. Отсоедините предохранительные провода от источника переменного тока 230 В.
  6. Теперь закоротите клеммы конденсатора (пожалуйста, сделайте это осторожно и убедитесь, что у вас есть защитные очки).
  7. Если возникает сильная искра, то конденсатор годится. .
  8. Если дает слабую искру, то это конденсатор плохой и немедленно замените его на новый.

Связанные сообщения:

Метод 2.

Проверка конденсатора аналоговым мультиметром

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.

  1. Убедитесь, что подозрительный конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Обратите внимание на чтение и сравните со следующими результатами.
  6. Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
  8. Хорошие конденсаторы : Сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM), выполните следующие действия.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
  3. Подключите выводы измерителя к клеммам конденсатора.
  4. Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. И тут сразу вернется в OL (Open Line).Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, значит Конденсатор не работает .

Вы также можете проверить:

Метод 4.

Проверка конденсатора с помощью мультиметра в режиме емкости

Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или мультиметр с функцией проверки емкости.Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на мультиметре.
  4. Теперь подключите клемму конденсатора к проводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
  7. Если вы читаете значительно меньшую емкость или ее нет вовсе, то конденсатор неисправен, и вам следует его заменить.

Связанные сообщения:

Метод 5.

Тестирование конденсатора простым вольтметром.
  1. Обязательно отсоедините один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатор от цепи (при необходимости вы также можете полностью отсоединить его)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в приведенном ниже примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд до номинального значения. (не до точного значения, но меньше, чем i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Обязательно подключите положительный (красный) вывод источника напряжения к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательный и положительный вывод конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.
  5. Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания очень малы, значит, конденсатор неисправен. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Связанные сообщения:

Метод 6.

Найдите значение конденсатора, измерив значение постоянной времени

Мы можем найти значение конденсатора, измерив постоянную времени (TC или τ = Тау), если значение емкости конденсатора известно в микрофарадах (обозначено мкФ), напечатанном на нем i.е. конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки около 63,2% приложенного напряжения при заряде через резистор известного номинала, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:

τ = RxC

Где:

  • R = Известный резистор
  • C = Значение емкости
  • τ = TC или τ = Tau (постоянная времени)

Например, если напряжение питания 9V , затем 63.2% из этого составляет около 5,7 В .

Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.

Обязательно отключите и разрядите конденсатор от платы.

Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого значения составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени) .

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, поскольку он не работает должным образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *