Приборы для проверки конденсаторов – виды устройств и техника измерений

Содержание

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

profazu.ru

Прибор для проверки конденсаторов


При сборке практически любой радиолюбительской схемы, где есть конденсаторы, их необходимо проверить на исправность перед сборкой схемы. Для этого я собрал прибор для проверки конденсаторов. Схему взял из сборника Б. С. Иванов « В помощь радиокружку», Радио и связь. 1990г, 3-е издание. Вот схема прибора.

Для сборки нам потребуются следующие детали и инструменты:

1 – микросхема К 155 ЛА3,Сопротивления 0,25вт ,1,5ком, 15 ком, 3,3 ком, 1 ком, Конденсаторы 4700 пф, 68 пф , диод Д9Б , светодиод АЛ 307А , две кнопки, или двойной тумблер « шестиконтактный » , монтажные провода , припой , два 5-ти контактных магнитофонных разъема «папа» и «мама». 2- паяльник, пинцет , кусачки, пассатижи, дрель, сверла, винты и гайки М3 М4, два небольших уголка , Корпус небольших размеров , Фольгированный , стеклотекстолит для печатной платы. Собираем следующим образом. Шаг 1 – изготавливаем печатную плату. Как ее изготовить знает каждый школьник.

После этого спаиваем детали на плате, согласно схеме.

Шаг-2


в готовом у меня пластмассовом корпусе я просверлил два отверстия , и установил в них разъем и тумблер.

Шаг-3


установил печатную плату в корпус, при помощи винтов и гаек М3.

Шаг-4


из такой же пластмассы изготовил боковую стенку корпуса.

Внутри корпуса закрепил два уголка , а уже на них я закрепил боковую крышку при помощи двух винтов М4. После этого спаиваю до конца схему.

Шаг-5 налаживаю прибор


Для этого Нам нужен стрелочный прибор Ц4315 или аналогичный с пределом измерения постоянного тока 100 мка. Подключаю прибор согласно фото к источнику постоянного питания 4,5в, в моем случае к блоку питания , и к прибору Ц4315 согласно схеме.

Выводы разъема обозначены на схеме цифрами 1-6. При подключении кнопкой SB2 источника питания 4,5в через индикатор протекает ток около 15 мка. Если параллельно конденсатору С2 будет подключен кнопкой SB1 исправный проверяемый конденсатор, ток возрастет и будет находится в пределах 40 – 60 мка, независимо от его емкости .Эти пределы принимают за нормальные и отмечают на шкале зеленым цветом . При проверке конденсаторов емкостью больше 5 мкф стрелка прибора вначале резко отклоняется в сторону конечного деления шкалы 100 мка , а затем возвращается в пределы сегмента. При проверке оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (+). Если внутренний обрыв , стрелка остается на делении 15 мка.

Если конденсатор пробит , стрелка отклонится за конечное деление . Если с утечкой , стрелка отклонится за пределы сегмента, если сопротивление утечки менее 60 ком. Налаживаем так. Нажать SB2, убедится в отклонении стрелки на 15 мка , если не соответствует ( 15 – 20%) – подобрать R3. К гнездам XS1 и XS2 подключают конденсатор 250 пф и нажав сразу две кнопки замечают показания индикатора . Подбором R2 доводят стрелку до деления 50 мка ( середина сегмента).

Замкнув после этого гнезда убеждаются в отклонении стрелки за конечное деление. Я уменьшил C2 -20 пф, R1-1 ком , C1 – 3300 пф теперь прибор проверяет конденсаторы от 1 пф. Как подключать прибор к Ц4315 показано на фото. Этот прибор работает у меня уже 5 лет , им легко и быстро проверять конденсаторы.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

usamodelkina.ru

Приборы для проверки конденсаторов | Кое-что из радиотехники

   Бывает так, что при монтаже печатной платы возникает необходимость в проверке устанавливаемых конденсаторов на предмет обрывов выводов, отсутствия внутреннего замыкания или значительной утечки. Особенно это касается конденсаторов большой ёмкости, в частности оксидных.


   Для быстрой проверке конденсаторов ёмкостью не менее 50 пФ подойдёт прибор (Рис.1), содержащий цифровую микросхему, светодиод, стрелочный индикатор и несколько других деталей.
   На элементах DD1.1 – DD1.3 собран генератор прямоугольных импульсов, следующих с частотой около 75 кГц. ( она зависит от сопротивления резистора R1 и ёмкости конденсатора С1 ). Через инвертор DD1.4 импульсы генератора поступают на цепь нагрузки – она составлена из резисторов R2, R3, конденсатора С2 и проверяемого конденсатора Сх. Параллельно резистору R2 подключен через диод VD1 стрелочный конденсатор РА1.
   Детали цепи нагрузки подобраны так, что при подключении кнопкой SB2 источника питания GB1через индикатор протекает ток около 15 мкА. Если же параллельно конденсатору С2 будет подключён кнопкой SB1 исправный проверяемый конденсатор, ток возрастёт и будет находиться в пределах 40 … 60 мкА независимо от ёмкости конденсатора. Эти пределы принимают за нормальные и отмечают на шкале ( или на стекле индикатора ), скажем цветным сегментом.
   Следует учитывать, что при проверке конденсаторов ёмкостью более 5 мкФ стрелка индикатора вначале резко отклоняется в сторону конечного деления шкалы ( 100 мкА ), а затем возвращается в пределы сегмента. При проверке полярных оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (” + “).
В случае подключения испытываемого конденсатора с внутренним обрывом, стрелка индикатора останется на делении 15 мкА. Если же выводы конденсатора замкнуты ( конденсатор пробит ), стрелка индикатора может отклониться за конечное деление шкалы. При подключении конденсатора с утечкой стрелка индикатора выйдет за пределы сегмента, если сопротивление утечки менее 60 кОм.
   Напряжение питания прибора контролируется светодиодом HL1, ток через который ограничен резистором R4.
Деталей в приборе немного, и их можно разместить в любом подходящем корпусе, габариты которого определяются стрелочным индикатором и источником питания.
   Налаживают прибор в такой последовательности. Нажав кнопку SB2 убеждаются в отклонении стрелки индикатора на деление 15 мкА. В случае отклонении показаний более чем на 20%, нужно подобрать резистор R3.
Далее подключают к гнёздам XS1 и XS2 конденсатор ёмкостью 250 пФ и нажав кнопку SB1 ( конечно, одновременно с SB2 ), замечают показания стрелочного индикатора. Подбором резистора R2 доводят стрелку индикатора до деления 50 мкА ( середина сегмента ). Замкнув после этого гнёзда, убеждаются в отклонении стрелки индикатора за конечное деление шкалы.
   Конденсатор можно проверить иначе – измерить его ёмкость. Для целей во многих случаях окажется достаточным собрать приставку к авометру, позволяющую измерять ёмкость конденсаторов от 100 пФ до 1 мкФ. Схема такой приставки приведена на Рис.2


   На транзисторах VT1, VT2 и трансформаторе Т1 собран генератор импульсов, частоту следования которых можно изменять переключателем SA1. Со вторичной обмотки трансформатора сигнал генератора поступает через диод VD1 на переменный резистор R6 – это регулятор установки своеобразного “нуля” отсчёта. С его движка       сигнал поступает через один из эталонных конденсаторов С2 – С5 или проверяемый конденсатор ( его подключают к зажиму ” Сх ” ) на выпрямительный диод VD2 и авометр, подсоединённый к зажимам XS3 и XS4.
   Пользуются приставкой так. В зависимости от ёмкости проверяемого конденсатора устанавливают переключателем один из пределов измерения. К примеру, в положении ” 1 ” переключателя можно измерять ёмкости от 0,1 до 1мкФ, в положении ” 2 ” от 0,01 до 0,1 мкФ, в положении ” 3 ” – от 1000 пФ до 0,01 мкФ в положении ” 4 ” – от 100 до 1000 пФ.
   Переключатель SA2устанавливают в положении ” Калибровка ” и переменным резистором R6 добиваются отклонением стрелки авометра на десятую часть шкалы. Тогда вся шкала будет соответствовать десяти “единицам” выбранного диапазона измерений. Поэтому удобно пользоваться, например, шкалой постоянных напряжений до 10 В – стрелку индикатора устанавливают на одно деление 1 В.
   Подключают к зажимам XS1 и XS2 проверяемый конденсатор и переводят переключатель SA2 в положение ” Сх “. По отклонению стрелки авометра судят о ёмкости конденсатора. К примеру, стрелка отклонилась на 2,5 деления, а переключатель SA1 стоит в положении ” 3 “. Значит, ёмкость конденсатора равна 1000 пФ Х 2,5 = 2500 пФ.         Точность измерений зависит в основном от точности подбора ёмкости эталонных конденсаторов.
   Трансформатором в пробнике может быть согласующий трансформатор от радиоприёмников марки ” ВЭФ” ( “ВЭФ-12”, “ВЭФ-201”, “ВЭФ-204”). Транзисторы – любые из серий МП39 – МП42 с коэффициентом передачи тока не менее 50. Диоды – любые из серий Д2, Д9. Источник питания – “Крона” или две батареи 3336, соединённых последовательно, а также другие подобные напряжением 9 В.
Б. С. Иванов ” В ПОМОЩЬ РАДИОКРУЖКУ”, ” Радио и связь”, Москва, 1990 г, стр. 19 – 21

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка...

Похожее

admarkelov.ru

Прибор для проверки оксидных конденсаторов на ЭПС (ESR)

Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора.

Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р. Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад.

После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным. Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания — батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки.

Несколько измененная схема при­ведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны. Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис. 2

Детали и замена

Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН. Выключатель питания SA2 — миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.

Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы — малогабаритные керамические, резис­торы — мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора сущест­венного значения не имеет.

Настройка прибора

Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8. Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та». В течение нескольких минут ока­залось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди кото­рых был обнаружен один с завышен­ным значением ЭПС и заниженной емкостью. После его замены монитор заработал!

Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.

Редактор — А. Соколов, графика — Ю. Андреев

Вариант изготовленной печатной платы прибора

Вид со стороны дорожек

Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)

Вариант внешнего вида прибора

От редакции журнала «Радио». Эквивалентное по­следовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факто­ров: его типа, емкости, номинального напряжения, частоты, на которой про­водят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверх­ностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, нахо­дится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряже­ние от 6,3 до 160 В ЭПС, также изме­ренное на частоте 100 кГц, увеличива­ется от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки при­годности конденсатора в зависимости от значения ЭПС не существует реше­ние по отбраковке следует принимать в каждом конкретном случае.

Радио №10, 2005г.




П О П У Л Я Р Н О Е:

  • Запитываем сверхяркий светодиод от одной батарейки 1.5 вольта!
  • Давно хотел сделать себе миниатюрный и яркий фонарик питающийся от одного элемента АА или ААА. Для таких целей есть даже спец. микросхемы, но их дефицит у нас + жаба заставили меня пораскинуть мозгами. В результате было сделано это чудо: Подробнее…

  • Индикатор уровня заряда батареи на ARDUINO
  • Ранее мы рассматривали различные схемы на основе набора ARDUINO. В этой статье, сегодня  мы будем конструировать индикатор уровня заряда батареи. В ней ряд из 6-ти разноцветных светодиодов показывают уровень заряда батареи. Эта схема может пригодится для контроля вашего 12 В аккумулятора. Есть много схем на этом сайте более простых, но у нас цель собрать схему на основе ARDUINO, рассмотреть её работу.

    Подробнее…

  • Активная акустическая система.
  • Всем хороши минимузыкальные центры,  и широкий набор функциональных возможнос­тей, и неплохие характеристики, мало места занимают в квартире. Одно плохо, — выходная мощность невысокая, обычно не более 5-10W. Конечно, можно купить более мощный аппарат, но музыкальный центр с выходной мощностью около 100W стоит на порядок дороже. А это существенно для кармана многих наших граждан. Подробнее…


- н а в и г а т о р -


Популярность: 31 951 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

ПРИБОР ДЛЯ ПРОВЕРКИ КОНДЕНСАТОРОВ

После нескольких лет занятий ремонтами РЭА, наконец решено было сделать тестер конденсаторов ESR. Каждый знает, что конденсаторы часто бывают виноваты в отказе работы электроники. Они могут на вид быть в порядке (не вздутые), показывают при измерении хорошую емкость и понять их негодность имея обычный простой мультиметр нелегко. Вот здесь тестер ESR может быть спасением, позволяя узнать сопротивление переменному току конденсатора. Он может быть использован для тестирования "в схеме", без необходимости выпаивать каждый конденсатор из платы. И вот, поискав немного по сети, нашёл хороший и простой прибор, состоящий из 5 транзисторов плюс обвязка.

Схема прибора для проверки конденсаторов

Сохраните схему для увеличения

Питание от батареек или внешнего БП 9-12 вольт. Что касается печатной платы прибора - есть 2 варианта: на обычные детали и СМД.

Печатные платы

Возможно такое конструктивное исполнение, при котором плата прикручена сразу на винты стрелочного индикатора. Всё это поместите в подходящую коробочку, чтоб тестер был в пользовании удобнее, а выглядел красивее.

Перед началом работы установите на ноль стрелку регулятором, после чего подсоедините щупы к проверяемому радиоэлементу и считайте показания. Сравните их с табличными значениями и сделайте вывод о его исправности.

   Схемы измерительных приборов

elwo.ru

Прибор для измерения ёмкости конденсаторов

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость , насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов. Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять  микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта монитора samsung. Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Смотрим видеоверсию данной статьи:

.

radiobezdna.ru

Что такое ESR. Измерение ESR. Прибор для измерения ESR

Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер китайского происхождения Mega328. Купил его на алиекспресс у этого продавца. Какие именно достоинства этого прибора?

Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость. Это те самые микрофарады которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.

Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR.

ESR — Equivalent Series Resistance – параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.

Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом. Если этот параметр выше, то я меняю конденсатор на новый.

На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.

Измерение ESR

Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.

Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.

ESR 220 мкф на 35в

Или такой же 220мкф на 35в из статьи Ремонт кадровой развертки на примере телевизора AIWA TV-215KE, где ESR уже 15 Ом.

Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

Как видите, его ESR до 1 Ом, да и номинал стал меньше менее чем на 3 мкф, так что такие конденсаторы я оставляю в работе. Приведу пример идеального конденсатора. Это 1500мкф на 10в.

Здесь ESR вообще ноль Ом, а номинал больше заявленного.

Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны,  мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.

Пример проверки полевого транзистора:

Прибор показывает тип транзистора, порог открытия  и расположение ножек. Очень удобно, особенно для новичка.

Вот пример проверки обычного N-P-N транзистора.

Полный перечень возможностей данного тестера:

  Проверка: Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ, Сопротивление, регулируемые потенциометры и др.
Сопротивление: от 0.1 Ом до максимум 50 мОм
Конденсатор: от 25pF   до 100,000 мкФ
Индукторы: от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы . Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.

Очень важно!!! Перед измерением ESR, конденсатор необходимо разрядить !!!

Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил  в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

Не сильно красиво, но за красотой я особо и не гнался :).

Виде обзор работы ESR метра


Рекомендую покупать на алиекспресс напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка на продавца, где покупал я. Прибор пришел в Украину за 18 дней.

Рекомендую посмотреть обзор моего нового ESR метра на аккумуляторе по этой ссылке

Перечень всех моих инструментов для ремонта можете зайти здесь:

Спасибо за внимание.



Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Загрузка...

my-chip.info

Отправить ответ

avatar
  Подписаться  
Уведомление о