Принцип действия мультиметра: Принцип работы мультиметра

Содержание

Цифровой мультиметр: конструкция и работа

Содержание

  • 1 Из чего состоит цифровой мультиметр
    • 1.1 Историческая справка: магнитная стрелка, катушка индуктивности в качестве измерительного прибора
    • 1.2 Как применяется мультипликатор в механических тестерах
  • 2 Как работает цифровой мультиметр

Цифровой мультиметр – многофункциональное электронное измерительное устройство. В перечень оцениваемых параметров входят величины: ток, напряжение, емкость конденсатора, сопротивления резисторов.

Мультиметр китайский

Из чего состоит цифровой мультиметр

Историческая справка: магнитная стрелка, катушка индуктивности в качестве измерительного прибора

Удосужившийся единожды вскрыть старенький аналоговый тестер, устройству мультиметра не удивится. Налицо чувствительный элемент, сдобренный изрядной порцией типичных резисторов. В старых тестерах использовались емкости для измерения номиналов конденсаторов, в сегодняшних приборах принцип действия отличается. Рассмотрим вкратце исторические конструкции, чтобы переход к новинкам не вызвал футурошок.

В основе тестера заложены принципы, использованные в 1820 году (16 сентября) Швейггером для первой конструкции гальванометра. В темах про постоянный ток, магнитную индукцию обсуждалась историческая последовательность событий. Первый прибор автор называл мультипликатором. В переводе на русский – умножителем. Эффекты множества витков проволоки складывались. Получалось физическое умножение напряженности полей на число элементарных контуров. Речь затрагивает катушку индуктивности.

Произошло все так. В начале 1820 года Ханс Эрстед обнаружил: провод с током отклоняет стрелку компаса, расположенную неподалеку. Мнения расходятся, иногда утверждается: наблюдение сделал ассистент (студент, вольный слушатель), прочие придерживаются мнения – заметил происходящее сторонний человек, случайно зашедший в помещение. Тогда было принято использовать наглядные эксперименты, завлекая аудиторию.

Педагогикой зарабатывали многие люди науки ввиду скудности государственных дотаций. Как выразился сэр Хампфри Дэви, инструктируя молодого Майкла Фарадея – избегайте бросать немедля дела: наука – скупая леди, не слишком щедро одаривает людей, увлеченных ею.

Ханс Эрстед собирался показать студентам эффект нагрева проволоки, обнаруженный двумя десятилетиями ранее. Желающие прочитают подробнее в разделе, касающемся лампочки накала. Открытие совершил упомянутый выше сэр Хампфри Дэви, учредитель Королевского научного общества (Англии) – в числе прочих учредителей. При замыкании терминалов вольтова столба (подобие современного аккумулятора) платиновая нить быстро раскалялась докрасна (в скором времени сгорала в атмосфере). На момент 1820 года неизвестно о состоявшемся изобретении лампочки накала (см. о противоречиях исторической справки в разделе про лампочки накала), следствие неоткрытого закона Джоуля-Ленца было широко известно – нить светилась под действием электрического тока.

Линии магнитного поля охватывают проволоку спиралью. Имеют круговое сечение в поперечной плоскости. В ходе демонстрации Хансом Эрстедом свойств электричества провод прошел над стрелкой компаса. За счет взаимодействия собственного и наведенного током магнитных полей последняя отклонилась. Эффект наблюдался в 1802 году, писал о нём Джованни Доменико Романьози, одинокий вопль светила науки прошел незамеченным. Ханс Эрстдед не оставил неизвестного явления, немедля разослал весть на латинском – тогда общепринятом в научной среде языке – многим ученым. Даже сделал доклад.

Позже Ампер на очередном заседании продемонстрировал новое явление, присутствующий Лаплас заметил: эффект допустимо усилить, изогнув провод. Появилась первая катушка индуктивности, которую Швейггер встроил в мультипликатор. Столь долгое вступление сделано, чтобы показать, как появился амперметр, до недавних пор выступавший основой тестера.

Амперметр постоянного тока

Как применяется мультипликатор в механических тестерах

В силу особенностей цифровой мультиметр измеряет напряжение, механический тестер – электрический ток. В катушке индуктивности поле витков усиливается, отклоняя стрелку. Напоминает опыты Эрстеда. Простой прибор послужит для разнообразных задач:

  1. Измерение напряжения.
  2. Оценка величины переменного и постоянного тока.
  3. Измерение величины активных сопротивлений и ёмкостей.

Опишем происходящее:

  • Малый ток измеряется непосредственно. Каждый следующий предел пропускается через резистор нужного номинала. Больший ток ослабляется, малый подается почти без изменений мультипликатору (амперметр). Для переключения пределов присутствует ручка управления, перебрасывающая контактор в нужное положение. Переменный ток перед оценкой значения требуется выпрямить. Используются полный или половинный диодный мост. Выпрямленный ток пропускается через нужной величины резистор для ослабления, предел регулируется ручкой управления, результат подается мультипликатору.
  • Напряжение измеряется схожим образом. Постоянное образует резистивный делитель с дополнительным сопротивлением, активной частью импеданса катушки мультипликатора. Возникает рассчитанный заранее ток, с учётом которого и проградуирована шкала прибора. Аналогично выделяется ряд пределов, переключаемых ручкой. У каждого номинала резистор индивидуальный, шкалы могут совпадать (см. надписи циферблата тестера). Переменное напряжение выпрямляется диодным мостом.

    Корпус мультиметра

  • Для измерения емкостей используется блок конденсаторов. Измеряемый элемент включается параллельно связке, ответвляет часть тока (сеть 220 вольт 50 Гц). Мультипликатор оценивает потери, отклонение стрелки указывает на градуировку шкалы в единицах долей фарада (названа в честь Майкла Фарадея). Здесь следует обратить внимание: показания прибора будут сильно зависеть от частоты сети, амплитуды напряжения розетки.
  • Номиналы резисторов измеряются с использованием встроенной батарейки (Крона). Принцип прежний: постоянное напряжение образует некий ток, значение заранее известно. Отклоняет стрелку на определенный угол, шкала проградуирована соответствующими единицами (Омы).

Как работает цифровой мультиметр

В основе цифрового мультиметра контроллер с модулем аналого-цифрового преобразователя. В микросхему (на фото залита каплей компаунда) входит блок, анализирующий размер приходящего напряжения. Отличие от описанной выше конструкции: позволяет проделывать уже упомянутые операции плюс:

Микросхема мультиметра

  1. Прозванивать сопротивления, резисторы. На жаргоне электронщиков операцией обозначается процедура оценки целостности проводников, либо p-n-переходов полупроводниковых приборов. Звонок напоминает типичный зуммер, встретим в любом системном блоке персонального компьютера (см. фото). При замыкании цепи издает резкий звук. Отсюда происходит название процедуры. Зуммер молчит – оцениваемый элемент электрической цепи неисправен.
  2. Аналогичным образом проверим транзисторы, но современный мультиметр припас один приятный сюрприз: многие приборы позволят измерить коэффициент усиления по току. Параметр часто обозначается греческой буквой бета, либо представлен h-параметрами, как h21. Иногда сюда добавляется буква. Например, «э» означает: параметр измерен транзистора, включенного по схеме с общим эмиттером (наиболее часто встречающаяся в простых устройствах). Под указанные цели на фронтальной панели цифрового мультиметра имеется специальное гнездо. Целых два – для p-n-p и n-p-n-структур. Параметры полевых транзисторов оцениваются иначе, конкретика выходит за рамки статьи.
  3. Максимальные изменения претерпел принцип измерения емкостей. Теперь на терминал, куда вставлены ножки элемента, подается кратковременно напряжение, затем оценивается время разряда. Напряжение конденсатора убывает по экспоненциальному закону, изучив, можно выдать оценку исследуемого параметра. Факт широко используется техникой для разных целей. Литературе чаще приводит примеры с постоянной времени RC, характеризующей параметры фильтров. Считается, за три периода равных постоянной времени, заряд теряется практически полностью.
  4. Дополнительным бонусом дорогих цифровых мультиметров является измеритель температуры. Действие основано на эффекте термопары. Раз Георг сумел оценить напряжение, электроника тем паче сделает. Напряжение оценивается аналого-цифровым преобразователем, отображается в виде температуры дисплеем.

Использование мультиметра

Отличаясь от мультипликатора, оперирующего током, контроллер оценивает напряжение. Встречается чаще серия чипов 7601. Описания типичных представителей приводятся повсеместно. Смотрите видео на ютубовском канале Чип&Дип. Измерительных входов два: один для высоких напряжений. Внутри стоит компаратор, преобразующий уровень аналогового сигнала в цифровой вход. У серии 7601 несколько опорных входов внешних резисторов, конденсаторов, структурно входящих в состав таймера, генерирующего тактовые импульсы. Иногда используется встроенный, в остальных – постоянная времени задается значениями R и C.

Полученный с компаратора код разбивается на группы по тысячам, сотням, десяткам, единицам, подается на защелку (latch). Последнее выступает ячейкой памяти, способной хранить внесенную информацию. В противном случае показания на дисплее будут неустойчивы. Устройство обновляет цифры, чтобы не казалось слишком быстро человеку (порядка трех раз в секунду). Экраном управляет специальный драйвер – микросхема, формирующая сигналы свечения сегментов дисплея. Отдельной строкой идет символ минуса. Подсветка отсутствует, хотя может иметься опция.

Занимательной частью цифрового мультиметра считается переключатель режимов. Ручка, снабженная множеством контактов (см. фото), замыкающая в нужном порядке лабиринт контактных дорожек, расположенных на плате. Мало отличается от механического тестера принципом действия, несмотря на кажущуюся сложность: чередуются пассивные элементы схемы.

Переключатель режимов

После сборки прибор часто нуждается в калибровке. Для цепи измерения температуры выполняется так:

  1. Помещают термопару в смесь холодной воды со льдом температурой 0 градусов Цельсия, добиваются подстройкой потенциометра нижнего предела (низковольтный вход) соответствующих показаний табло.
  2. Датчик нагревается до ста градусов, регулируется верхний предел. Пока на дисплее не появится нужное значение.

В процесс работы цифрового мультиметра выделение тепла с микросхемы минимальное. Типичное значение мощности рассеивания составляет доли ватта. Охлаждение прибору не требуется. Важно правильно подключать щупы. Черный является схемной землей, обозначается COM. Измерительных входов чаще два, один для больших токов. Хотя присутствует защита предохранителем (помечено меткой fused), при неправильной подаче сигнала возможен выход цифрового мультиметра из строя. Избегайте черным щупом трогать высоковольтные цепи, выполнять не предусмотренные инструкцией действия.

Основные принципы работы с мультиметром

В своей деятельности радиолюбителю придется -использовать множество контрольных приборов различного типа для тестирования, измерения и обнаружения неисправностей в электронном оборудовании

Мультиметр является универсальным прибором, который используется практически каждый день. Имеется два основных типа мультиметров для общего использования: аналоговые и цифровые.

Аналоговые мультиметры

В аналоговом мультиметре (тестер или стрелочный авометр — ампервольтомметр) применяется стандартная измерительная шкала с указателем. Значение напряжения, тока или сопротивления отсчитываются от позиции указателя на измерительной шкале. Определение показаний аналогового мультиметра очень похоже на определение времени по стрелкам на часах. В случае часов приходится интерполировать число секунд между маркировками минут. Точно так же при работе с аналоговым мультиметром нужно определять или оценивать фактическое значение путем интерполирования между маркировками напряжений, токов или сопротивлений на измерительной шкале.

Аналоговые мультиметры все еще широко используются, поскольку они недороги и надежны в работе. Их основным недостатком является то, что они имеют невысокую точность и большой разброс при измерениях. В большинстве случаев погрешность аналогового мультиметра составляет менее 2% от пределов измерения по шкале прибора, что вполне приемлемо в большинстве практических применений. Тем не менее во многих случаях желательны более точные измерения.

Цифровые мультиметры

Цифровой мультиметр подобен аналоговому в том отношении, что он также является универсальным измерительным прибором, способным измерять напряжение, ток и сопротивление. Основным отличием является то, что результаты измерений выводятся на индикаторную панель десятичной цифровой индикации. В большинстве цифровых мультиметров имеется жидкокристаллический индикатор (дисплей). Значение тока, напряжения или сопротивления выводится в виде десятичных цифр на семисегментные индикаторы. Индикация в более старых цифровых мультиметрах осуществляется с использованием индикаторов на светоизлучающих диодах.

В дополнение к удобствам, связанным с использованием десятичных дисплеев, цифровые мультиметры обеспечивают также более высокую точность измерений. Хороший цифровой мультиметр обеспечивает точность измерений 0,5-1% от фактического значения. Такие точные измерения предпочтительны при тестировании электронных схем, поскольку они дают наилучшую информацию о состояниях схем. Цифровые мультиметры имеют также более высокую разрешающую способность измерительной системы, что обеспечивает более высокоточные измерения.

Большинство мультиметров позволяют также измерять основные параметры транзисторов: коэффициент передачи тока базы h31э, обратный ток коллектора /ко и обратный ток эмиттера Iэо.

При использовании мультиметра для измерения напряжений синусоидальных сигналов необходимо иметь в виду, что представляемая на индикации величина является эффективным или среднеквадратическим значением. Необходимо знать также, что мультиметр имеет ограничение по высокой частоте. Это предельное значение частоты варьируется от прибора к прибору, однако оно не превышает обычно нескольких килогерц.

Опасность появлення ошибочных показаний

На всех цифровых мультиметрах стоят индикаторы, предупреждающие пользователя о том, что батарейка скоро разрядится. У многих дешевых приборов индикатор включается слишком поздно, когда в показаниях уже появились ошибки. Если результаты измерений вызывают подозрения, следует проверить состояние батарейки. При этом не стоит использовать мультиметр для проверки его собственной батарейки из-за опасности внутреннего короткого замыкания.

Измерения на разомкнутой цепи

При высоком входном сопротивлении цифрового мультиметра (приблизительно 10МОм) в режиме измерения переменных сигналов на индикаторе нередко появляется напряжение (иногда до 220 В), хотя измерительные щупы не присоединены. На самом деле так проявляется антенный эффект, обусловленный, как правило, работой расположенного поблизости мощного прибора. Если цель измерения — убедиться в отсутствии напряжения перед проведением работ на схеме, это будет существенной помехой. В подобных случаях надо использовать либо гальванометрический (неэлектронный) вольтметр, либо индикатор напряжения.

Режим короткого замыкания

На стадии наладки схемы иногда требуется выполнить временное замыкание двух точек, чтобы проверить работу управляющей схемы реле или светодиода в режиме короткого замыкания, прежде чем монтировать схему в корпус. Включение мультиметра, выполняющего функцию амперметра и рассчитанного на соответствующий ток, вполне заменяет рискованную процедуру замыкания проводов. Измерительные щупы обеспечат электрический контакт, в то время как предохранитель, включенный последовательно с амперметром, гарантирует безопасность этого временного соединения.

После подобных манипуляций, как и всегда после использования мультиметра в качестве амперметра, измерительные провода сразу необходимо переместить в гнезда вольтметра. Это дает гарантию того, что при следующем использовании мультиметра в схеме или, что еще хуже, в сети не произойдет случайное короткое замыкание.

Мегаомметр

Мегаомметр используется для измерения сопротивления изоляции проводов или кабелей с целью определения их пригодности к использованию. Следует отметить некоторые особенности при работе с мегаомметром. В нем вырабатывается высокое напряжение, и если в установке, где производится измерение, есть элементы, которые могут быть повреждены этим напряжением, например, конденсаторы и полупроводниковые приборы, то они должны быть отсоединены или их выводы закорочены.

Не допускается пользование загрязненным и покрытым влагой прибором, так как это может исказить показания. Перед измерением прибор должен быть проверен соединением концов его проводов при вращении рукоятки, при этом стрелка прибора должна показать «нуль», а при рассоединении проводов — «бесконечность». Чтобы прибор вырабатывал нужное напряжение, его рукоятку нужно вращать с частотой не меньшей, чем указана на щитке со шкалой.

Измерение емкости и индуктивности

В практических схемах измерителей напряжение треугольной формы прикладывается к измеряемой емкости, при этом ток, идущий через нее, имеет форму меандра и его амплитуда пропорциональна измеряемой емкости.

 

 

Рис. 1. Принцип измерения емкости (а) и индуктивности (б)

При измерении индуктивности через нее пропускается ток треугольной формы, падение напряжения на индуктивности имеет форму меандра и пропорционально ее величине. Измеряемая емкость и эталонный резистор подключаются в соответствии с рис. 4.5а, а измеряемая индуктивность — по схеме рис. 1.

Insight — Как работает цифровой мультиметр

Рис. 1: Изображение цифрового мультиметра

Как следует из названия, мультиметры — это измерительные приборы, которые можно использовать для расчета характеристик нескольких цепей. Превращение их в цифровые дает очень точные выходные данные, поскольку, в отличие от их аналоговых аналогов, нет стрелки, указатель которой нужно вычислить. Чем цифровые счетчики более совершенны, чем их предшественники? Какая внутренняя схема обеспечивает такие быстрые и быстрые вычисления? Просто подключить его к цепи и снимать показания на лету? Мультиметр делает это за нас. Итак, давайте рассмотрим мельчайшие детали мультиметра, которые делают его мастером многих (если не всех) операций электрических измерений.

 

Внешний корпус

 

Рис. 2. Изображение, показывающее различные части внешней конструкции мультиметра

 

На приведенном выше изображении показан широко используемый мультиметр. Этот измерительный и испытательный прибор, заключенный в прочный пластиковый корпус, поставляется с опциональной опорой, позволяющей наклонять его для облегчения считывания показаний.

 

Каждый мультиметр имеет несколько спецификаций, определяющих функции и диапазон измерений, которые он может измерять. Например, тот, что в этом понимании, может измерять напряжение постоянного тока в диапазоне от 400 мВ до 1000 В, а сопротивление можно измерять от 400 Ом до 400 МОм. Помимо обычных измерений тока, напряжения и сопротивления, показанный прибор может также тестировать логику, измерять характеристики диодов и тестировать транзисторы на малый коэффициент усиления по току и даже измерять частоту. Для измерения непрерывности предусмотрен зуммер, который издает звук, указывающий на то, что цепь работает.

 

Точность — один из наиболее важных аспектов спецификаций. Эта степень близости измеренного результата к фактическому должна быть как можно выше. Чем меньше запас по отклонению, тем выше будет точность. Например, мультиметр, измеряющий напряжение с точностью +/- 0,6 В, будет более точным в своих показаниях по сравнению с +/- 0,8 В. Часто о качестве мультиметров судят по точности.

Входные порты и батарея

 

 

Рис. 3. Порты мультиметра

 

Большинство мультиметров имеют вольт и общий порт, к которому подключаются щупы. Однако для измерения тока предусмотрены дополнительные порты. Именно включение порта миллиамперного тока требует хорошей защитной схемы в мультиметре, так как случайные приложения сильного тока могут повредить прибор и причинить вред пользователю.

 

 

Рис. 4. Аккумулятор и предохранитель в задней части мультиметра

 

В задней части мультиметра находится батарея 9 В и предохранитель. Помещенный между батареей и входными портами, предохранитель действует как защита цепи, отключая процесс измерения, когда на мультиметр подаются входные сигналы, превышающие допустимый диапазон. Батарея и предохранитель закрываются крышкой с помощью всего одного винта, поэтому их можно легко заменить, избегая длительных перерывов в процессе измерения. Для удобства предусмотрен дополнительный предохранитель.

Внутренняя структура

 

Рис. 5: Печатная плата и схема мультиметра

 

Для открывания корпуса мультиметра не требуются винты, так как верхняя и нижняя секции крепятся с помощью пластиковых защелок. Печатная плата и все схемы установлены на верхней секции, а нижняя секция представляет собой тонкий слой анодированного алюминия. Этот непроводящий слой способствует равномерному рассеиванию тепла в случаях подачи сильного тока на мультиметр.

Печатная плата

Рис. 6: Детальный вид печатной платы и схемы

Печатная плата содержит набор различных компонентов, включая различные типы резисторов, конденсаторов, диодов и интегральных схем. Кроме того, в нем находится батарея, кварцевый генератор, PTC, ЖК-дисплей и зуммер, который проверяет непрерывность тестируемого устройства (DuT).

ИС, закрепленные на показанной выше печатной плате:

 

1.       LM324DG: это микросхема операционного усилителя с низким энергопотреблением, которая работает как компаратор. Эта ИС имеет четыре входа и выхода и требует только одного источника питания. Таким образом, он обеспечивает оптимизированную мощность при низком входном напряжении.

 

 

Рис. 7. ИС операционного усилителя — LM324DG

 

Эта микросхема в основном используется в качестве логического компаратора и устройства проверки четности.

 

 

Рис. 8: 14-контактная ИС — HEF4070

 

Работая со средней потребляемой мощностью, эта инверторная микросхема требует 30 нс для изменения выходного сигнала с низкого на высокий и наоборот.

 

 

Рис. 9. Шестнадцатеричный инвертор — HCF4069

 

4.      TL062: 8-выводная микросхема операционного усилителя JFET, предназначенная для операций с низким энергопотреблением, она работает в двухфункциональном режиме. работа двух ОУ.

 

 

Рис. 10. ИС операционного усилителя JFET — TL062

 

Помимо всех упомянутых выше ИС, на задней панели ЖК-экрана также имеется микросхема в форме выступа, которая взаимодействует с ЖК-дисплеем.

Переключатель диапазонов

Проводящие круглые кольца и выбор диапазона/функции

 

Рис. винтов. ЖК-дисплей и поворотный переключатель расположены между верхней частью корпуса и другой стороной печатной платы. Также видны контакты включения и выключения мультиметра. В некоторых мультиметрах используется поворотный переключатель для управления параметрами включения и выключения, в то время как для других требуется ползунковый переключатель, как в этом обзоре.

На другой стороне печатной платы имеется 11 концентрических токопроводящих колец, соединения между которыми осуществляются и размыкаются с помощью поворотной ручки, выполняющей функцию переключателя. Рисунок колец может различаться в зависимости от производителя мультиметра и перечисленных функций. Ни одно из колец не завершает полный круговой рисунок, но разорвано в той или иной части. Эти линии также смазаны, чтобы обеспечить плавный ход переключателя при его вращении.

Вращение переключателя определяет, какая часть схемы на печатной плате будет активной, а какая нет.

 

 

Рис. 12: Изображение поворотного переключателя (вверху) и выравнивание колец (внизу)

 

Лучшее представление о том, как кольца выровнены в соответствии с селектором диапазона/функции, можно увидеть выше. На самом деле, поворотный переключатель не обязательно контактирует с кольцами, соответствующими функции, рядом с которой они расположены.

Например, когда мультиметр активируется для измерения сопротивления в диапазоне 400K, расположение контактов переключателя можно увидеть на изображениях, показанных ниже:

РИС. Контакты

 

 

 

Рис. 16: Расположение поворотного переключателя на печатной плате

 

Вместо того, чтобы располагаться прямо под индикатором диапазона, контакты расположены под прямым углом к ​​нему. Металлические пластины в нижней части циферблата действуют как перемычки, которые устанавливают взаимосвязи между различными парами проводящих колец в каждом положении. Соединение между кольцами передает электрический сигнал на печатную плату относительно измеряемой величины и соответствующего диапазона

 

 

Рис. 17. Направляющая на верхней части корпуса, где расположен переключатель

 

Чтобы переключатель можно было легко вращать, на внутренней стороне верхней части корпуса имеется направляющая вместе с двумя крошечными металлическими шариками. Эти крошечные шарики помогают двигаться по дорожке и издают звук «щелчка» всякий раз, когда вращается ручка, чтобы подтвердить, что либо диапазон, либо функция, либо и то, и другое были изменены пользователем. Использование крошечных металлических шариков на гофрированной дорожке также делает циферблат и, следовательно, режим мультиметра остается на месте, даже если установка трясется или мультиметр падает.

LCD

 

Рис. 18: 7-сегментный ЖК-дисплей мультиметра

 

Выдавая 7-сегментный выходной сигнал, ЖК-дисплей формирует критическую спецификацию конфигурации мультиметра с точки зрения отображаемых цифр. Поскольку выход ЖК-дисплея является прямым показателем разрешения мультиметра, желательно, чтобы он отображал как можно больше символов. Дисплей ЖК-дисплея измеряется количеством цифр, которые он может отображать. Общее число, которое может отображаться на ЖК-дисплее, определяется как количество. . Разрешение ЖК-дисплея определяется количеством отсчетов вместе со старшим разрядом. Если старшая значащая цифра 0 или 1, дробь ½ сопровождает разрешение, а для других значений меньше 9, это ¾. Например, у ЖК-дисплея с количеством 3999 разрешение будет 3¾.

Рис. 19: Разрешение ЖКД

Рис. 20: Пластическое покрытие ЖК-дисплея (вверху) и амортизационная резиновые колодки

распиновка на самой плате. Над ЖК-дисплеем находится прозрачный пластиковый кожух, предохраняющий его от царапин. Кроме того, амортизацию обеспечивают резиновые прокладки, плотно прикрепленные вверху и внизу ЖК-дисплея.

 

 Работа

После включения прибора пользователь поворачивает ручку до нужной функции измерения и ее диапазона. В соответствии с выбором функции и диапазона концентрические кольца печатной платы закорачиваются. Это, в свою очередь, активирует ту часть печатной платы, которая отвечает за проведение измерений в этом диапазоне. Поскольку это цифровой измерительный прибор, аналого-цифровой преобразователь широко используется для преобразования измерений в дискретные значения.

 

Рис. 21: Блок-схема работы мультиметра

 

За исключением тока, большинство измерений основано на напряжении. Например, при измерении сопротивления через клеммы DuT проходит небольшой ток. Генерируемое падение напряжения принимается за вход и делится на ток внутренней схемой для определения сопротивления.

Блок-схема, показанная выше, дает общее представление о работе мультиметра. Входной сигнал, проходящий через датчики, является аналоговым и входит во внутреннюю схему в виде волны. Входной сигнал сначала обрабатывается, а затем поступает в соответствующую измерительную схему. Кроме того, он оптимизируется для выбора диапазона и отправляется на аналого-цифровой преобразователь. Аналого-цифровой преобразователь может быть разных типов в зависимости от возможностей мультиметра и производителя. Для преобразования сигнала АЦП берет образцы аналоговой волны. Для обеспечения восстановления сигнала частота дискретизации должна быть как минимум в два раза выше частоты аналогового сигнала.

Большинство АЦП, используемых в мультиметрах, используют метод интегрирования с двойным наклоном, в котором цифровой сигнал сравнивается с опорным. Их выходной сигнал поступает в регистр последовательного приближения (SAR), который отправляет окончательный вывод в блок обработки и уравновешивает опорный сигнал для оптимизированного сравнения. Тактовый вход необходим для счетчика SAR, который обеспечивается кварцевым генератором. Обработка, используемая в мультиметрах, обычно ограничивается суммированием импульсов и представляет собой схему интегратора.

После аналого-цифрового преобразования результирующее значение отправляется в блок обработки, который принимает значения, декодирует их величину и отправляет на ЖК-дисплей.

Мультиметры уже давно предназначены для электронных измерений, и ожидается, что они останутся надолго и получат больше модификаций измеряемых величин. Аналоговые мультиметры изначально были в тренде, но требовали калибровки, а человеческий фактор часто приводил к ошибкам в измерениях. Благодаря цифровым измерениям результаты не только более точны, но и могут иметь высокое разрешение. От напряжения до тока цифровые мультиметры теперь могут даже измерять температуру, емкость и теперь могут иметь разъемы RS232 для связи с более интеллектуальными машинами. С появлением новых конструкций каждый день и созданием специализированных ИС для каждого мыслимого измерения разработчики-новаторы продолжают добавлять больше функциональных возможностей в тесные углы мультиметра, работая при номинальном энергопотреблении и стоимости.


Рубрики: Insight
С тегами: цифровой, цифровой мультиметр, измерение, мультиметр
 




Как работает цифровой мультиметр? Объясните с помощью схемы

Вы находитесь здесь: Главная / Прикладная электроника / Как работает цифровой мультиметр? Объясните с помощью диаграммы

опубликовано

Это пост 9 из 10 в серии «Лабораторные приборы»

Прежде чем вдаваться в подробности того, как работает цифровой мультиметр, давайте рассмотрим его применение. Это широко используемый лабораторный прибор для различных видов измерений. Его важные особенности приведены ниже –

  1. Может измерять напряжение переменного тока В крупных регионах Азии, Африки и Европы используется сеть переменного тока с напряжением от 200 до 230 В. Однако сюда не входят некоторые районы Мадагаскара, Ливии, Марокко и Юго-Восточной Азии, где питание составляет 110 В, 50 Гц.
    В большей части Северной Америки, включая Колумбию, Венесуэлу и Эквадор, используется строго 115 В, 60 Гц. Однако почти вся Аргентина использует электропитание 220 В, 50 Гц. Австралия полностью использует электропитание 230 В, 50 Гц. Глобальные варианты питания от сети: 200 В, 50 Гц; 220В, 50Гц; 230В, 50Гц, 240В, 50Гц; 100В, 60Гц, 110В, 60Гц; 115В, 60Гц; 120В, 60Гц; 127В, 60Гц; 220В, 60Гц; 230В, 60Гц; 240В, 60Гц; 100В, 50Гц; 110В, 50Гц; 115В, 50Гц. Только есть два своеобразных случая 127В, 50Гц и 127В, 60Гц. Это некоторые части Ливии, Индонезии, Вьетнама, Малайзии, Мадагаскара, Папуа (Новой Гвинеи) и Марокко 9.0091 (Standard Ref: World Plugs, получено 19 декабря 2012 г. Iec.ch. Получено 05 февраля 2013 г. ) разница и для объяснения напряжения, тока и мощности. В общих чертах заряд — это вода, напряжение — это давление воды, ток — это расход воды. Мощность – это общее количество воды, протекающее за данное время. Читайте тему., AC/DC ток и сопротивление очень точно.
  2. Максимальная точность благодаря минимальным эффектам нагрузки.
  3. Звуковая и визуальная индикация для проверки целостности электропроводки.
  4. Автоматическая индикация знака, т. е. индикация (+) или (–).
  5. Автоматическая установка нуля.

Рабочий

Чтобы понять, как работает цифровой мультиметр, давайте посмотрим на блок-схему цифрового мультиметра, приведенную ниже. Работа каждого блока для измерения различных типов электрических величин выглядит следующим образом.

Блок-схема базового цифрового мультиметра

Как измерить сопротивление?

Чтобы измерить неизвестное сопротивление с помощью цифрового мультиметра, подключите неизвестный резистор к его входным щупам. Держите поворотный переключатель в положении-1. Пропорциональный ток протекает через резистор от источника постоянного тока. По закону Ома на нем создается напряжение. Это напряжение прямо пропорционально его сопротивлению. Это напряжение буферизуется и подается на аналого-цифровой преобразователь, чтобы получить цифровой дисплей в омах.

Как измерить напряжение переменного токаНапряжение переменного тока В крупных регионах Азии, Африки и Европы используется сеть переменного тока с напряжением от 200 до 230 В. Однако сюда не входят некоторые районы Мадагаскара, Ливии, Марокко и Юго-Восточной Азии, где питание составляет 110 В, 50 Гц. В большей части Северной Америки, включая Колумбию, Венесуэлу и Эквадор, используется строго 115 В, 60 Гц. Однако почти вся Аргентина использует электропитание 220 В, 50 Гц. Австралия полностью использует электропитание 230 В, 50 Гц. Глобальные варианты питания от сети: 200 В, 50 Гц; 220В, 50Гц; 230В, 50Гц, 240В, 50Гц; 100В, 60Гц, 110В, 60Гц; 115В, 60Гц; 120В, 60Гц; 127В, 60Гц; 220В, 60Гц; 230В, 60Гц; 240В, 60Гц; 100В, 50Гц; 110В, 50Гц; 115В, 50Гц. Только есть два своеобразных случая 127В, 50Гц и 127В, 60Гц. Это некоторые части Ливии, Индонезии, Вьетнама, Малайзии, Мадагаскара, Папуа (Новой Гвинеи) и Марокко 9.0091 (Стандартный номер:

World Plugs, получено 19 декабря 2012 г. Iec.ch. Получено 05 февраля 2013 г.) .?

Подключите неизвестное переменное напряжение к входным датчикам. Держите поворотный переключатель в положении-2. Напряжение ослабляется, если оно превышает выбранный диапазон, а затем выпрямляется для преобразования в пропорциональное постоянное напряжение. Затем он подается на аналого-цифровой преобразователь, чтобы получить цифровой дисплей в вольтах.

Как измерить переменный ток?

Ток косвенно измеряется путем преобразования его в пропорциональное напряжение. Подключите неизвестный переменный ток к входным датчикам. Держите переключатель в положении-3. Ток преобразуется в напряжение пропорционально с помощью преобразователя I-V, а затем выпрямляется. Теперь напряжение переменного тока подается на аналого-цифровой преобразователь для получения цифрового дисплея в амперах.

Как измерить постоянный ток?

Постоянный ток также измеряется косвенно. Подключите неизвестный постоянный ток к входным пробникам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *