Принцип работы частотника: Принцип работы частотного преобразователя. Схема частотного привода.

Принцип работы частотного преобразователя. Схема частотного привода.

Переити в каталог продукции: Частотные преобразователи

Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.

Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.

При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

      Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.

       Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.

      Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.

Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Переити в каталог продукции: Частотные преобразователи

Принцип работы частотного преобразователя и критерии его выбора

Краткое описание назначения, принципа работы и критериев выбора частотного преобразователя, как устройства управления асинхронным электродвигателем

Асинхронный двигатель с короткозамкнутым ротором является сегодня самым массовым и надежным устройством для привода различных машин и механизмов. Но у каждой медали есть и обратная сторона.

Два основных недостатка асинхронного двигателя – это невозможность простой регулировки скорости вращения ротора, очень большой пусковой ток — в пять, семь раз превышающий номинальный. Если использовать только механические устройства регулирования, то указанные недостатки приводят к большим энергетическим потерям и к ударным механическим нагрузкам. Это крайне отрицательно сказывается на сроке службы оборудования.

Частотный преобразователь

В результате исследовательских работ в этом направлении родился новый класс приборов, позволивший решить эти проблемы не механическим, а электронным способом.

Частотный преобразователь с широтно–импульсным управлением (ЧП с ШИМ) снижает пусковые токи в 4-5 раз. Он обеспечивает плавный пуск асинхронного двигателя и осуществляет управление приводом по заданной формуле соотношения напряжение / частота.

Частотный преобразователь дает экономию по потреблению энергии до 50%. Появляется возможность включения обратных связей между смежными приводами, т.е. самонастройки оборудования под поставленную задачу и изменение условий работы всей системы.

Принцип работы частотного преобразователя

Частотный преобразователь с ШИМ представляет собой инвертор с двойным преобразованием напряжения. Сначала сетевое напряжение 220 или 380 В выпрямляется входным диодным мостом, затем сглаживается и фильтруется с помощью конденсаторов.

Это первый этап преобразования. На втором этапе из постоянного напряжения, с помощью микросхем управления и выходных мостовых IGBT ключей, формируется ШИМ последовательность определенной частоты и скважности. На выходе частотного преобразователя выдаются пачки прямоугольных импульсов, но за счет индуктивности обмоток статора асинхронного двигателя, они интегрируются и превращаются наконец в напряжение близкое к синусоиде.

Критерии выбора частотных преобразователей

Выбор по функциям

Каждый производитель пытается обеспечить себе конкурентное превосходство на рынке. Первое правило для обеспечения максимума продаж – это низкая цена. Поэтому производитель стремиться включить в свое изделие только необходимые функции. А остальные предлагает в качестве опций. Прежде чем купить частотный преобразователь, определитесь, какие функции вам нужны. Стоит выбирать тот прибор, который имеет большинство необходимых функций в базовом варианте.

По способу управления

Сразу отбрасывайте те преобразователи, которые не подходят по мощности, типу исполнения, перегрузочной способности и т.д. По типу управления, нужно определиться, что выбрать, скалярное или векторное управление.

Большинство современных частотных преобразователей реализуют векторное управление, но такие частотные преобразователи дороже, чем частотные преобразователи со скалярным управлением.

Векторное управление дает возможность более точного управления, снижая статическую ошибку. Скалярный режим только поддерживает постоянное соотношение между выходным напряжение и выходной частотой, но например, для вентиляторов это вполне достаточно.

По мощности

Если мощности оборудования примерно одинаковы, то выбирайте преобразователи одной фирмы с мощностью по мощности максимальной нагрузки. Так вы обеспечите взаимозаменяемость и упростите обслуживание оборудования. Желательно, чтобы сервис центр выбранного частотного преобразователя был в вашем городе.

По сетевому напряжению

Всегда выбирайте преобразователь с максимально широким диапазоном напряжений как вниз, так и вверх. Дело в том, что для отечественных сетей само слово стандарт может вызвать только смех сквозь слезы. Если пониженное напряжение приведет, скорее всего, к отключению частотного преобразователя, то повышенное может вызвать взрыв сетевых электролитических конденсаторов и входу прибора из строя.

По диапазону регулировки частоты

Частотный преобразователь Верхней предел регулировки частоты важен при использовании двигателей с высокими номинальными рабочими частотами, например для шлифовальных машин ( 1000 Гц и более). Убедитесь, что диапазон частот соответствует вашим потребностям. Нижний предел определяет диапазон регулирования скорости привода. Стандарт – это 1:10. Если вам нужен более широкий диапазон, то выбирайте только векторное управление, запросите параметры привода у производителя. Даже заявленный предел от 0 Гц, не гарантирует устойчивую работу привода.

По количеству входов управления

Дискретные входы нужны для ввода команд управления ( пуск, стоп, реверс, торможение и т.д.). Аналоговые входы необходимы для ввода сигналов обратной связи (регулировки и настройки привода в процессе работы). Цифровые входы нужны для ввода высокочастотных сигналов от цифровых датчиков скорости и положения (энкодеров). Количество входов много не бывает, но чем больше входов, тем сложнее систему можно построить, и тем она дороже.

По количеству выходных сигналов

Дискретные выходы используются для выхода сигналов о различных событиях (авария, перегрев, входное напряжение выше или ниже уровня, сигнал ошибки ит. д.). Аналоговые выходы используются для построения сложных систем с обратными связями. Рекомендации по выбору аналогичны предыдущему пункту.

По шине управления

Оборудование, с помощью которого вы будете управлять частотным преобразователем должно иметь ту же шину и количество входов выходов что и выбранный вами частотный преобразователь. Предусмотрите некоторый запас по входам и выходам для дальнейшей модернизации.

По сроку гарантии

Срок гарантии косвенно позволяет оценить надежность частотного преобразователя. Естественно, нужно выбирать частотный преобразователь с большим сроком. Некоторые производители оговаривают особо случаи поломок, которые не являются гарантийными. Всегда тщательно читайте документацию и посмотрите в интернете отзывы о моделях и производителях оборудования. Это поможет правильному выбору. Не жалейте денег на качественный сервис и обучение персонала.

По перегрузочным способностям

В первом приближении, мощность частотного преобразователя нужно выбирать на 10-15% больше мощности двигателя. Ток преобразователя должен быть больше номинального тока двигателя и чуть больше тока возможных перегрузок.

В описании на конкретный механизм обычно указывают токи перегрузок и длительность их протекания. Читайте документацию! Это вас развлечет, и возможно, обезопасит от поломок оборудования в будущем. Если для привода характерны еще и ударные (пиковые) нагрузки (нагрузки в течении 2-3 сек), то необходимо выбрать преобразователь по пиковому току. Опять возьмите запас 10%.

 

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Устройство

, принцип действия, назначение

Поскольку электропривод является одним из основных способов механизации производства и бытовых задач, в ряде случаев возникает необходимость регулирования частоты вращения электродвигателей. В зависимости от их типа и принципа действия применяются различные технические решения. Одним из них является преобразователь частоты. Что это такое и где применяется частотник, мы расскажем в этой статье.

  • Определение
  • Устройство
  • Типы частотников и область применения
  • Методы управления
  • Количество фаз
  • Схема подключения

Определение

По определению преобразователь частоты представляет собой электронный преобразователь мощности для изменения частоты переменного тока. Но в зависимости от исполнения меняется как уровень напряжения, так и количество фаз. Вам может быть не совсем понятно, зачем нужно такое устройство, но мы постараемся рассказать вам об этом простыми словами.


Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

n = (60*F/p)*(1-S),

где n — число оборотов вала АД, p — число пар полюсов, s — скольжение, f — частота переменного тока.

Проще говоря, скорость вращения ротора зависит от частоты и количества пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Следовательно, чтобы регулировать скорость, мы можем управлять частотой только с помощью преобразователей.

Устройство

С учетом вышеизложенного переформулируем ответ на вопрос, что это такое:

Преобразователь частоты – это электронное устройство для изменения частоты переменного тока, а значит, и скорости вращения ротор асинхронной (и синхронной) электрической машины.

Графическое обозначение по ГОСТ 2.737-68 вы можете увидеть ниже:

Называется электронным, так как основан на схеме полупроводникового переключателя. В зависимости от функциональных особенностей и типа управления будет видоизменяться как принципиальная схема, так и алгоритм работы.

На схеме ниже показано, как устроен преобразователь частоты:


Принцип работы преобразователя частоты следующий:

  • Сетевое напряжение поступает на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 представляет собой группу силовых ключей, управляемых системой управления (4) с использованием широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое регулируемое ШИМ напряжение, которое после сглаживания приближается к синусоидальной форме. В дорогих моделях применена трехуровневая схема, где используется большее количество клавиш. Это позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут быть использованы тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых убытков и простоты управления.
  • С помощью ШИМ формируется необходимый уровень напряжения, простыми словами — так модулируется синусоида, поочередно включая пары ключей, формируя линейное напряжение.

Вот мы вкратце описали, как работает преобразователь частоты для электродвигателя и из чего он состоит. Он используется в качестве вторичного источника питания и не только управляет формой тока питающей сети, но и преобразует его значение и частоту в соответствии с заданными параметрами.

Типы частотников и область применения

Способы управления

Регулировка скорости может осуществляться различными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делятся на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть напряжение изменяется вместе с частотой. Пример такой зависимости напряжения от частоты можно наблюдать ниже.

Может быть разным и запрограммирован под конкретную нагрузку, например, на вентиляторах он не линейный, а напоминает ветвь параболы. Этот принцип работы удерживает магнитный поток в зазоре между ротором и статором практически постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации.

Чаще всего используется для насосов, вентиляторов и компрессоров. Такие частотники часто используют, если необходимо поддерживать стабильное давление (или другой параметр), это могут быть и погружные насосы для скважин, если рассматривать бытовое применение.

В производстве область применения широкая, например, регулирование давления в тех же трубопроводах и выполнение автоматических систем вентиляции. Диапазон регулирования обычно 1:10, проще говоря максимальная скорость от минимальной может отличаться в 10 раз. Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что является их основным преимуществом.

Недостатки:

  • Не слишком точная поддержка оборотов.
  • Замедленная реакция на смену режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • При увеличении скорости выше номинальной момент на валу двигателя падает (то есть когда поднимаем частоту выше номинальной 50Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равно сетевому, и частотник не умеет его поднимать выше, на графике можно было увидеть четную часть графика после 50 Гц. Следует отметить, что зависимость момента от частоты, она падает по закону 1/f, на графике ниже показана красным цветом, а зависимость мощности от частоты — синим цветом.

Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не только напряжение соответствует кривой U/f. Характеристики выходного напряжения изменяются в соответствии с сигналами датчиков, благодаря чему на валу поддерживается определенный момент. Но зачем нужен такой метод управления? Отличительными чертами преобразователя частоты с векторным управлением являются более точная и быстрая регулировка. Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и крутящего момента на исполнительном органе.


Такая нагрузка характерна для токарных и других видов станков, в том числе с ЧПУ. Точность регулирования до 1,5%, диапазон регулировки 1:100, для большей точности с датчиками скорости и т.п. — 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше, чем была раньше (15-35% в зависимости от производителя), и основное отличие больше в прошивке, чем в схемотехнике. Также обратите внимание, что большинство векторных моделей также поддерживают скалярное управление.

Преимущества:

  • большая стабильность и точность;
  • более быстрая реакция на изменение нагрузки и высокий крутящий момент на низкой скорости;
  • более широкий диапазон регулирования.

Главный недостаток — дороже скалярных.

В обоих случаях частоту можно задать вручную или с помощью датчиков, например, датчика давления или расходомера (если речь идет о насосах), потенциометра или энкодера.

Все или почти все преобразователи частоты имеют функцию плавного пуска, которая облегчает запуск двигателей от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов срабатывания частотники различаются количеством фаз на входе и выходе. Так различают преобразователи частоты с однофазным и трехфазным вводом.

При этом большинство трехфазных моделей могут питаться от одной фазы, но при таком применении их мощность снижается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие элементы силовой цепи. Однофазные модели доступны в диапазоне мощностей до 3 кВт.

Важно! Обратите внимание, что при однофазном подключении с напряжением 220В на входе будет на выходе 3 фазы 220В, а не 380В. То есть на линейном выходе будет ровно 220В, короче. В связи с этим обычные двигатели с обмотками, рассчитанными на напряжение 380/220В, необходимо соединить треугольником, а на 127/220В — звездой.

В сети можно найти много предложений типа «преобразователь частоты 220 на 380» — это в большинстве случаев маркетинг, продавцы называют любые три фазы «380В».

Чтобы получить реальные 380В от одной фазы, необходимо либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный преобразователь частоты с однофазным вводом и трехфазный выход 380 В.



Отдельным и более редким типом преобразователей частоты являются однофазные инверторы с однофазным выходом 220. Они предназначены для регулирования однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

  • ЭРМАН ER-G-220-01
  • ИННОВЕРТ IDD

Схема подключения

На самом деле, чтобы получить 3-фазный выход от преобразователя частоты 380 В, необходимо подключить 3-фазный вход 380 В:

Подключение частотника к одной фазе аналогично, кроме подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насос или маломощный вентилятор) подключается следующим образом:

Как видно на схемах, кроме питающих проводов и проводов к двигателю, преобразователь частоты имеет другие клеммы, датчики, кнопки пульта дистанционного управления, шины для подключения к компьютеру (обычно стандарта RS-485) , и так далее связаны с ними. Это дает возможность управлять двигателем по тонким сигнальным проводам, что позволяет убрать преобразователь частоты в электрощит.


Частотники — универсальные устройства, назначение которых не только регулировка скорости, но и защита электродвигателя от неправильных режимов работы и питания, а также от перегрузок. Помимо основной функции устройства реализуют плавный пуск приводов, что снижает износ оборудования и силовые нагрузки. Принцип работы и глубина настройки параметров большинства преобразователей частоты позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью клапанов) и другим оборудованием.

На этом мы заканчиваем рассмотрение вопроса. Надеемся, что после прочтения статьи вы поймете, что такое преобразователь частоты и зачем он нужен. Напоследок рекомендуем посмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Как измерить частоту переменного тока
  • Как работает магнитный пускатель
  • Как выбрать частотник по мощности и току

Анализ принципа работы преобразователя частотыEncyclopedia_Shenzhen Olen Electric Co.

, Ltd.

Обзор принципа работы:

Основная цепь представляет собой часть преобразования мощности, которая обеспечивает питание асинхронного двигателя с регулированием напряжения и частоты. Главную схему инвертора можно условно разделить на две категории: тип напряжения — это инвертор, который преобразует постоянный ток источника напряжения в переменный, а фильтр контура постоянного тока — это конденсатор. Тип тока представляет собой преобразователь частоты, который преобразует постоянный ток источника тока в переменный, а фильтр контура постоянного тока представляет собой индуктивный фильтр.

Он состоит из трех частей: «выпрямителя», который преобразует мощность промышленной частоты в мощность постоянного тока, и «выпрямителя с плоской петлей», который поглощает пульсации напряжения, создаваемые преобразователем, и инвертор использует большое количество диодных преобразователей. Источник питания промышленной частоты преобразуется в источник питания постоянного тока. Два набора транзисторных преобразователей также могут использоваться для формирования инвертора, который может регенерироваться благодаря реверсивному направлению мощности.

Сглаживающая цепь содержит пульсирующее напряжение, в 6 раз превышающее частоту источника питания, в постоянном напряжении, выпрямленном выпрямителем. Кроме того, пульсирующий ток, генерируемый инвертором, также влияет на постоянное напряжение. Для подавления колебаний напряжения используются катушки индуктивности и конденсаторы для поглощения пульсирующего напряжения (тока). Когда мощность устройства мала, если источник питания и основная цепь составляют устройство с запасом, индуктор можно не использовать и использовать простую плавноволновую схему.

Инвертор противоположен выпрямителю. Инвертор преобразует мощность постоянного тока в мощность переменного тока требуемой частоты, а также включает и выключает 6 коммутационных устройств в определенное время, чтобы получить на выходе трехфазный переменный ток. На примере ШИМ-инвертора, работающего по напряжению, показаны время переключения и форма кривой напряжения.

Цепь управления представляет собой цепь, которая подает управляющие сигналы на главную цепь, питающую асинхронный двигатель (регулируемое напряжение и частота). Он имеет «рабочую цепь» частоты и напряжения, «цепь определения напряжения и тока» главной цепи и «определение скорости» двигателя. «Схема» состоит из «схемы управления», которая усиливает управляющий сигнал арифметической схемы, и «схемы защиты» инвертора и двигателя.

(1) Схема расчета: сравнение внешней скорости, крутящего момента и других команд с сигналами тока и напряжения схемы обнаружения для определения выходного напряжения и частоты инвертора.

(2) Цепь определения напряжения и тока: Она изолирована от потенциала основной цепи для определения напряжения и тока.

(3) Цепь привода: цепь, которая управляет устройством главной цепи. Он изолирован от цепи управления, так что устройство основной цепи включается и выключается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *