Принцип работы электрического двигателя. Электрические двигатели: принцип работы, типы, устройство и характеристики

Как работает электрический двигатель. Какие бывают типы электродвигателей. Какое устройство имеют различные электромоторы. Каковы основные характеристики и параметры электрических двигателей. Где применяются разные виды электродвигателей.

Содержание

Принцип работы электрического двигателя

Электрический двигатель представляет собой устройство, преобразующее электрическую энергию в механическую. Принцип его работы основан на взаимодействии магнитных полей и проводников с током.

Основные компоненты электродвигателя:

  • Статор — неподвижная часть с обмотками, создающими магнитное поле
  • Ротор — вращающаяся часть с обмотками или постоянными магнитами
  • Коммутатор — устройство для изменения направления тока в обмотках ротора
  • Щетки — для подвода тока к обмоткам ротора через коммутатор

При подаче электрического тока на обмотки статора создается магнитное поле. Оно взаимодействует с магнитным полем ротора, вызывая его вращение. Коммутатор обеспечивает постоянное изменение направления тока в роторе, поддерживая непрерывное вращение.


Основные типы электродвигателей

Существует несколько основных типов электрических двигателей:

Двигатели постоянного тока

Работают от источника постоянного напряжения. Обладают хорошими регулировочными свойствами. Применяются в приводах с регулируемой скоростью вращения.

Асинхронные двигатели

Наиболее распространенный тип. Просты по конструкции и надежны. Скорость вращения ротора отстает от скорости вращения магнитного поля статора.

Синхронные двигатели

Скорость вращения ротора совпадает со скоростью вращения магнитного поля статора. Применяются в приводах, требующих строго постоянной скорости.

Шаговые двигатели

Позволяют точно задавать угол поворота. Используются в системах точного позиционирования.

Устройство электродвигателей разных типов

Конструкция электродвигателя зависит от его типа:

Двигатель постоянного тока

  • Статор с постоянными магнитами или электромагнитами
  • Ротор (якорь) с обмотками
  • Щеточно-коллекторный узел для подвода тока к ротору

Асинхронный двигатель

  • Статор с трехфазной обмоткой
  • Ротор короткозамкнутый или фазный
  • Подшипниковые щиты
  • Вентилятор охлаждения

Синхронный двигатель

  • Статор с трехфазной обмоткой
  • Ротор с обмоткой возбуждения или постоянными магнитами
  • Контактные кольца для подвода тока к ротору

Основные характеристики и параметры электродвигателей

Ключевые характеристики электрических двигателей:


  • Мощность — измеряется в ваттах (Вт) или киловаттах (кВт)
  • Напряжение питания — постоянное или переменное, величина в вольтах (В)
  • Частота вращения — измеряется в оборотах в минуту (об/мин)
  • КПД — коэффициент полезного действия в процентах
  • Момент — крутящий момент на валу в ньютон-метрах (Н*м)

Какие еще важные параметры характеризуют электродвигатели?

  • Пусковой ток — величина тока при запуске
  • Допустимая перегрузка — максимально допустимая нагрузка
  • Режим работы — продолжительный, кратковременный и т.д.
  • Степень защиты — защита от внешних воздействий
  • Способ охлаждения — естественное, принудительное

Применение различных видов электродвигателей

Сферы применения основных типов электродвигателей:

Двигатели постоянного тока

  • Электротранспорт (электромобили, электропогрузчики)
  • Станки с ЧПУ
  • Роботы и манипуляторы
  • Сервоприводы

Асинхронные двигатели

  • Промышленные приводы (насосы, вентиляторы, компрессоры)
  • Бытовая техника (стиральные машины, холодильники)
  • Лифты и эскалаторы
  • Станочное оборудование

Синхронные двигатели

  • Мощные промышленные приводы
  • Генераторы электростанций
  • Приводы прокатных станов
  • Судовые двигатели

Где еще применяются электродвигатели разных типов?


  • Аэрокосмическая отрасль
  • Медицинское оборудование
  • Автомобильная промышленность
  • Бытовая электроника
  • Возобновляемая энергетика

Преимущества и недостатки различных типов электродвигателей

Каждый тип электродвигателя имеет свои достоинства и недостатки:

Двигатели постоянного тока

Преимущества:

  • Высокая точность регулирования скорости
  • Большой пусковой момент
  • Компактность конструкции

Недостатки:

  • Наличие коллекторно-щеточного узла, требующего обслуживания
  • Относительно высокая стоимость
  • Искрение при коммутации

Асинхронные двигатели

Преимущества:

  • Простота конструкции и надежность
  • Низкая стоимость
  • Высокий КПД

Недостатки:

  • Сложность регулирования скорости
  • Относительно небольшой пусковой момент
  • Потребление реактивной мощности

Синхронные двигатели

Преимущества:

  • Постоянная скорость вращения
  • Высокий КПД при больших мощностях
  • Возможность работы с высоким коэффициентом мощности

Недостатки:

  • Сложность конструкции
  • Необходимость в устройствах пуска и синхронизации
  • Высокая стоимость

Тенденции развития электродвигателей

Современные направления совершенствования электрических двигателей:


  • Повышение энергоэффективности
  • Применение новых магнитных материалов
  • Интеграция с системами управления и диагностики
  • Разработка двигателей для электромобилей
  • Миниатюризация для робототехники и медицины

Какие инновации ожидаются в сфере электродвигателей в ближайшем будущем?

  • Сверхпроводящие электродвигатели
  • Двигатели с прямым приводом без редуктора
  • Интеллектуальные двигатели с самодиагностикой
  • Гибридные конструкции с комбинированным принципом работы
  • Двигатели для аддитивного производства (3D-печать)

Выбор электродвигателя для конкретного применения

При выборе электродвигателя необходимо учитывать следующие факторы:

  • Требуемая мощность и момент
  • Диапазон регулирования скорости
  • Условия эксплуатации (температура, влажность, вибрации)
  • Режим работы (непрерывный, повторно-кратковременный)
  • Напряжение и род тока питающей сети
  • Габаритные ограничения
  • Стоимость и срок службы

Как правильно подобрать электродвигатель для конкретной задачи?

  1. Определить требуемые характеристики (мощность, скорость, момент)
  2. Выбрать тип двигателя, наиболее подходящий для данного применения
  3. Рассчитать необходимые параметры с учетом условий эксплуатации
  4. Сравнить технические характеристики доступных моделей
  5. Учесть экономические факторы (стоимость, энергоэффективность)
  6. Проверить совместимость с системой управления

Электрический двигатель — принцип работы электромотора классификация и технические характеристики

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Содержание:

Электрический двигатель: вид в разрезе

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.

Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

Самый простой электрический двигатель

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Биполярный электрический двигатель

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым. Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность. Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила. Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения. В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью. Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС. Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Принцип работы электрического мотора

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Электрические двигатели: классификация, устройство, принцип работы

Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.

Побочный эффект такой конвертации – выделение тепла.

При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.

Электрические двигатели и их разновидности

Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.

 

Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.

 Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.

По принципу работы электродвигатели переменного тока бывают

  • асинхронными;
  • синхронными.

Подробное сравнение этих видов машин можно почитать тут.

Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.

Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.

Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.

Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.

Максимальная скорость вращения асинхронных установок – 3000 об/мин.

Интересное видео о двигателях смотрите ниже:

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Особенности работы синхронных двигателей

Все синхронные двигатели обладают такими преимуществами:

  1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
  2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
  3. Хорошая сопротивляемость перегрузкам.
  4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

  • сложная конструкция;
  • затрудненный пуск в ход;
  • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

Принцип работы электродвигателя — HiSoUR История культуры

Электродвигатель представляет собой электромеханический преобразователь (электрическая машина), который преобразует электрическую энергию в механическую. В обычных электродвигателях генерируются магнитные поля с токопроводящими проводниками, взаимные силы притяжения и отталкивания которых приводятся в движение. Таким образом, электродвигатель является аналогом очень аналогичного сконструированного генератора, который преобразует мощность двигателя в электрическую. Электродвигатели обычно генерируют вращающиеся движения, но они также могут использоваться для создания трансляционных движений (линейный привод). Электродвигатели используются для управления многими оборудованием, машинами и транспортными средствами.

Принцип действия
Электродвигатели — это устройства, которые преобразуют электрическую энергию в механическую энергию. Средствами этого преобразования энергии в электродвигателях является магнитное поле. Существуют различные типы электродвигателей, и каждый тип имеет разные компоненты, структура которых определяет взаимодействие электрических и магнитных потоков, которые вызывают силу или крутящий момент двигателя.

Основной принцип заключается в том, что описание того, как сила вызвано взаимодействием точечного электрического заряда q в электрическом и магнитном полях, является законом Лоренца:

где:
q: пунктуальный электрический заряд
E: Электрическое поле
v: скорость частиц
B: плотность магнитного поля

В случае чисто электрического поля выражение уравнения сводится к:

Сила в этом случае определяется только зарядом q и электрическим полем E. Это кулоновская сила действует вдоль проводника, создающего электрический поток, например, в катушках статора индукционных машин или в роторе двигателей постоянного тока.

В случае чисто магнитного поля:

Сила определяется зарядом, плотностью магнитного поля B и скоростью нагрузки v. Эта сила перпендикулярна магнитному полю и направлению скорости нагрузки. Обычно в движении имеется много нагрузок, поэтому удобно переписать выражение в терминах плотности заряда Fv (сила в единице объема):

К продукту 

 он известен как плотность тока J (ампер на квадратный метр):

Тогда полученное выражение описывает силу, возникающую при взаимодействии тока с магнитным полем:

Это основной принцип, объясняющий, как возникают силы в электромеханических системах, таких как электродвигатели. Однако полное описание для каждого типа электродвигателя зависит от его компонентов и конструкции.

Линейный двигатель
Линейный двигатель — это по существу любой электродвигатель, который был «разворачиван», так что вместо создания крутящего момента (вращения) он создает прямолинейную силу вдоль своей длины.

Линейные двигатели чаще всего являются асинхронными двигателями или шаговыми двигателями. Линейные двигатели обычно встречаются во многих роликовых подстаканниках, где быстрое движение безмоторного вагона контролируется рельсом. Они также используются в поездах маглева, где поезд «летает» над землей. В меньших масштабах, в 1985 году эскалатор HP 7225A использовал два линейных шаговых двигателя для перемещения пера вдоль осей X и Y.

электромагнетизм

Сила и момент
Основная цель подавляющего большинства мировых электродвигателей состоит в том, чтобы электромагнитно индуцировать относительное перемещение в воздушном зазоре между статором и ротором для получения полезного крутящего момента или линейной силы.

Согласно закону силы Лоренца сила обмоточного проводника может быть задана просто:

или в более общем плане, для обработки проводников с любой геометрией:

Наиболее общие подходы к вычислению сил в двигателях используют тензоры.

Мощность
Где rpm — скорость вала, а T — момент, механическая мощность двигателя Pem определяется,

в британских единицах с Т, выраженным в фунтах,

 (лошадиная сила), и,

в единицах СИ с угловой скоростью вала, выраженной в радианах в секунду, и Т, выраженной в Ньютонометрах,

 (Вт).

Для линейного двигателя с силой F, выраженной в ньютонах и скоростью v, выраженной в метрах в секунду,

 (Вт).

В асинхронном или асинхронном двигателе соотношение между скоростью двигателя и мощностью воздушного зазора, пренебрегая скин-эффектом, определяется следующим:

 , где

Rr — сопротивление ротора
r 2 — квадрат тока, индуцированного в роторе
s — проскальзывание двигателя; т.е. разница между синхронной скоростью и скоростью скольжения, которая обеспечивает относительное движение, необходимое для индукции тока в роторе.

Назад emf
Так как обмотки якоря постоянного тока или универсального двигателя движутся через магнитное поле, они имеют индуцированное в них напряжение. Это напряжение имеет тенденцию противостоять напряжению питания двигателя и поэтому называется «назад электродвижущей силой (ЭДС)». Напряжение пропорционально скорости движения двигателя.Задняя ЭДС двигателя плюс падение напряжения на внутреннем сопротивлении обмотки и щетках должны быть равны напряжению на щетках. Это обеспечивает фундаментальный механизм регулирования скорости в двигателе постоянного тока. Если механическая нагрузка увеличивается, двигатель замедляется; результаты обратной волны в нижней части спины, и больше тока извлекается из питания. Этот увеличенный ток обеспечивает дополнительный крутящий момент для баланса новой нагрузки.
В компьютерах с переменным током иногда полезно учитывать источник обратной волны emf в машине; в качестве примера это вызывает особую озабоченность по поводу тесного регулирования скорости асинхронных двигателей на VFD.

потери
Потери двигателя связаны главным образом с резистивными потерями в обмотках, потерями в сердечнике и механическими потерями в подшипниках, а также возникают аэродинамические потери, особенно там, где присутствуют охлаждающие вентиляторы.

Потери также возникают при коммутации, искровых механических коммутаторах и электронных коммутаторах, а также рассеивают тепло.

КПД
Для расчета эффективности двигателя механическая выходная мощность делится на электрическую входную мощность:

 ,

где 

 является эффективность преобразования энергии,  электрическая входная мощность, и  механическая выходная мощность:

где 

 это входное напряжение,  входной ток, T — выходной крутящий момент, и  — выходная угловая скорость. Аналитически можно получить точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента.

Различные регулирующие органы во многих странах внедрили и внедрили законодательство, поощряющее производство и использование электродвигателей с более высокой эффективностью.

Коэффициент добротности
Эрик Лайтвейт предложил метрику, чтобы определить «доброту» электродвигателя: 

Куда:

 коэффициент добротности (коэффициенты выше 1, вероятно, будут эффективными)
 — площади поперечного сечения магнитной и электрической цепи
 представляют собой длины магнитных и электрических цепей
 является проницаемость сердечника
 — это угловая частота, с которой двигатель

Из этого он показал, что наиболее эффективные двигатели, вероятно, будут иметь относительно большие магнитные полюса. Однако это уравнение относится только к моделям без ПМ.

Параметры производительности

Момент затяжки моторов
Все электромагнитные двигатели, которые включают в себя упомянутые здесь типы, вызывают крутящий момент от векторного произведения взаимодействующих полей. Для расчета крутящего момента необходимо знать поля в воздушном зазоре. Как только они были установлены путем математического анализа с использованием FEA или других инструментов, крутящий момент можно вычислить как интеграл всех векторов силы, умноженных на радиус каждого вектора. Ток, текущий в обмотке, создает поля, а для двигателя с использованием магнитного материала поле не линейно пропорционально току. Это затрудняет вычисление, но компьютер может выполнить многие расчеты.

Как только это будет сделано, цифра, связывающая ток с крутящим моментом, может использоваться как полезный параметр для выбора двигателя. Максимальный крутящий момент для двигателя будет зависеть от максимального тока, хотя это, как правило, будет использоваться только до тех пор, пока термические соображения не будут иметь приоритет.

При оптимальном проектировании в пределах заданного ограничения насыщения ядра и для заданного активного тока (т. Е. Крутящего момента), напряжения, числа пар полюсов, частоты возбуждения (т. Е. Синхронной скорости) и плотности потока воздушного зазора все категории электродвигателей или генераторы будут демонстрировать практически такой же максимальный непрерывный крутящий момент вала (т. е. рабочий крутящий момент) в заданной области воздушного зазора с обмотками и глубиной заднего железа, которая определяет физические размеры электромагнитного сердечника. В некоторых приложениях требуется крутящий момент за максимальный рабочий крутящий момент, такой как короткие всплески крутящего момента для ускорения электромобиля от остановки. Всегда ограниченные насыщением магнитного сердечника или безопасным повышением температуры и напряжением, способность к крутящим моментам за пределы максимального рабочего момента значительно отличается между категориями электродвигателей или генераторов.

Емкость для всплесков крутящего момента не следует путать с возможностью ослабления поля. Ослабление поля позволяет электрической машине работать за пределы заданной частоты возбуждения. Ослабление поля выполняется, когда максимальная скорость не может быть достигнута за счет увеличения приложенного напряжения. Это относится только к двигателям с регулируемыми по току полям и, следовательно, не может быть достигнуто с помощью двигателей с постоянными магнитами.

Электрические машины без топологии трансформаторной схемы, такие как WRSM или PMSM, не могут реализовать всплески крутящего момента выше максимального расчетного момента без насыщения магнитного сердечника и любого увеличения тока как бесполезного. Кроме того, блок ПМСМ с постоянными магнитами может быть поврежден непоправимо, если попытки всплесков крутящего момента превышают максимальный крутящий момент.

Электрические машины с топологией трансформаторной схемы, такие как индукционные машины, индукционные двухкомпонентные электрические машины, а также индукционные или синхронные машины с двунаправленным раневым ротором (WRDF), демонстрируют очень высокие всплески крутящего момента, поскольку активный ток, индуцированный ЭДС, на любом стороны трансформатора противостоят друг другу и, таким образом, не влияют на плотность магнитного потока магнитного сердечника, связанного с трансформатором, что в противном случае привело бы к насыщению ядра.

Электрические машины, которые полагаются на индукционные или асинхронные принципы, замыкают один порт схемы трансформатора, и в результате реактивный импеданс трансформаторной цепи становится доминирующим по мере увеличения скольжения, что ограничивает величину активного (то есть реального) тока. Тем не менее реализуются всплески крутящего момента, которые в два-три раза превышают максимальный расчетный крутящий момент.

Синхронная двухсторонняя машина (BWRSDF) с бесколлекторным раневым ротором является единственной электрической машиной с истинно двухполярной топологией трансформаторной схемы (т.е. оба порта независимо возбуждены без короткого замыкания). Известно, что топология схемы с двумя портированными трансформаторами нестабильна и требует многофазного узла щетки скольжения для распространения ограниченной мощности на комплект обмотки ротора. Если бы имелись прецизионные средства для мгновенного регулирования угла крутящего момента и скольжения для синхронной работы во время движения или генерации при одновременном обеспечении бесщеточной мощности на намотке ротора, активный ток машины BWRSDF не зависел бы от реактивного сопротивления схемы трансформатора и значительно превышающие максимальный рабочий крутящий момент и намного превосходящие практические возможности любого другого типа электрической машины. Рассчитаны крутящие моменты, превышающие восьмикратный рабочий крутящий момент.

Плотность непрерывного крутящего момента
Постоянная плотность крутящего момента обычных электрических машин определяется размером зоны воздушного зазора и глубиной заднего железа, которые определяются степенью мощности набора обмоток якоря, скоростью машины и достижимыми характеристиками воздушно- плотность потока зазоров до насыщения ядра. Несмотря на высокую коэрцитивность постоянных магнитов неодима или самария-кобальта, постоянная плотность крутящего момента практически одинакова среди электрических машин с оптимально разработанными намотками арматуры. Непрерывная плотность крутящего момента относится к способу охлаждения и допустимого периода эксплуатации перед разрушением при перегреве обмоток или повреждении постоянным магнитом.

Другие источники утверждают, что различные топологии e-machine имеют разную плотность крутящего момента. Один источник показывает следующее:

Тип электрической машиныУдельная плотность крутящего момента (Нм / кг)
SPM — бесщеточный переменного тока, токовая проводимость 180 °1,0
SPM — бесщеточный переменного тока, токовая проводимость 120 °0.9-1.15
IM, асинхронная машина0,7-1,0
IPM, внутренняя машина с постоянными магнитами0,6-0,8
VRM, машина с удвоенным показателем сопротивления0,7-1,0

где — удельная плотность крутящего момента нормализована до 1,0 для SPM — бесщеточный переменного тока, токовая проводимость 180 °, SPM — машина для поверхностного постоянного магнита.

Плотность крутящего момента примерно в четыре раза больше для электродвигателей, которые охлаждаются жидкостью, по сравнению с воздушными охлаждением.

Источник сравнения постоянного тока (DC), асинхронных двигателей (IM), синхронных двигателей с постоянными магнитами (PMSM) и переключаемых двигателей с сопротивлением (SRM) показал:

ХарактеристикаОкруг КолумбияЯPMSMSRM
Плотность крутящего момента33,554
Удельная мощность3453,5

Другой источник отмечает, что синхронные машины с постоянными магнитами до 1 МВт имеют значительно более высокую плотность крутящего момента, чем индукционные машины.

Непрерывная плотность мощности
Непрерывная плотность мощности определяется продуктом непрерывной плотности крутящего момента и постоянным диапазоном крутящего момента электрической машины.

Специальные магнитные двигатели

ротационный

Безрулевой или бесколлекторный роторный двигатель
Ничто в принципе ни одного из двигателей, описанных выше, не требует, чтобы железные (стальные) части ротора фактически вращались. Если мягкий магнитный материал ротора выполнен в виде цилиндра, то (за исключением эффекта гистерезиса) крутящий момент действует только на обмотки электромагнитов. Воспользовавшись этим фактом, используется бесконтактный или безредукторный двигатель постоянного тока, специализированный вариант постоянного двигателя постоянного тока. Оптимизированные для быстрого ускорения, эти двигатели имеют ротор, который построен без какого-либо железного сердечника. Ротор может иметь форму намоточного цилиндра или самонесущую конструкцию, содержащую только магнитную проволоку и связующий материал. Ротор может помещаться внутри магнитов статора; магнитно-мягкий неподвижный цилиндр внутри ротора обеспечивает обратный путь для магнитного потока статора. Вторая компоновка имеет корзину намотки ротора, окружающую магниты статора. В этой конструкции ротор помещается внутри магнитно-мягкого цилиндра, который может служить корпусом для двигателя, а также обеспечивает обратный путь для потока.

Поскольку ротор намного легче по массе, чем обычный ротор, образованный из медных обмоток на стальных ламинатах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени в течение одного мс. Это особенно верно, если на обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, чтобы действовать как теплоотвод, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом. Перегрев может быть проблемой для бесконтактных двигателей постоянного тока. Современное программное обеспечение, такое как Motor-CAD, может помочь увеличить тепловой КПД двигателей, хотя и находится на стадии проектирования.

Среди этих типов — типы дисков-роторов, более подробно описанные в следующем разделе.

Вибрирующий сигнал сотовых телефонов иногда генерируется крошечными цилиндрическими типами полей с постоянными магнитами, но существуют также дискообразные типы, которые имеют тонкий многополярный магнит на диске, и преднамеренно неуравновешенную формованную пластиковую роторную структуру с двумя связанными бесколлекторными катушками. Металлические щетки и плоский коммутатор переключаются на катушки ротора.

Связанные приводы с ограниченным ходом не имеют сердечника и связанной катушки, размещенной между полюсами тонких постоянных магнитов с высоким потоком. Это быстрые позиционеры для жестких дисков (жестких дисков). Хотя современный дизайн значительно отличается от современного громкоговорителя, он все еще свободно (и неправильно) называется структурой «звуковой катушки», поскольку некоторые более ранние жесткие диски с дисковым накопителем перемещаются по прямым линиям и имеют структуру привода, громкоговорителя.

Блин или осевой роторный двигатель
Печатный якорь или двигатель блинчика имеют обмотки в виде диска, работающего между массивами магнитов с высоким потоком. Магниты расположены в окружности, обращенной к ротору, с промежутком между ними, чтобы образовать осевой воздушный зазор. Эта конструкция широко известна как двигатель блинчика из-за ее плоского профиля. У технологии было много фирменных наименований с момента ее создания, например ServoDisc.

Печатная арматура (первоначально сформированная на печатной плате) в печатном двигателе якоря выполнена из перфорированных медных листов, которые ламинируются вместе с использованием передовых композитов для образования тонкого жесткого диска.Печатная арматура имеет уникальную конструкцию в мире мостового мотора, поскольку она не имеет отдельного кольцевого коммутатора. Щетки запускаются непосредственно на поверхности якоря, что делает весь дизайн очень компактным.

Альтернативным методом изготовления является использование намотанной медной проволоки, уложенной плоской с центральным обычным коммутатором, в форме цветка и лепестка. Обмотки обычно стабилизируются с помощью электрических систем эпоксидной заливки. Это наполненные эпоксиды, которые имеют умеренную, смешанную вязкость и длительное время гелеобразования. Они выделяются низкой усадкой и низкой экзотермией и обычно UL 1446 признаются в качестве заливающего компаунда, изолированного по 180 ° C, класса H.

Уникальным преимуществом бесщеточных двигателей постоянного тока является отсутствие зубцов (изменения крутящего момента, вызванные изменением притяжения между железом и магнитами). Паразитные вихревые токи не могут образовываться в роторе, поскольку он абсолютно невозможен, хотя железные роторы ламинируются. Это может значительно повысить эффективность, но контроллеры с переменной скоростью должны использовать более высокую скорость переключения (& gt; 40 кГц) или постоянный ток из-за пониженной электромагнитной индукции.

Эти двигатели были первоначально изобретены для привода ведущих магнитных ленточных накопителей, где минимальное время для достижения рабочей скорости и минимальной остановки было критическим. Масляные моторы широко используются в высокопроизводительных сервоуправляемых системах, роботизированных системах, промышленной автоматизации и медицинских устройствах. Благодаря разнообразию доступных конструкций технология используется в приложениях от высокотемпературных военных до недорогих насосов и базовых сервоприводов.

Другой подход (Magnax) — использовать один статор, зажатый между двумя роторами. Одна такая конструкция обеспечивала максимальную мощность 15 кВт / кг, устойчивую мощность около 7,5 кВт / кг. Этот беспилотный двигатель с осевым потоком имеет более короткий путь потока, удерживая магниты дальше от оси. Конструкция позволяет иметь нулевой обмотки; 100 процентов обмоток активны. Это усиливается благодаря использованию медной проволоки прямоугольного сечения. Двигатели могут быть сложены для параллельной работы.Нестабильность сводится к минимуму за счет того, что два диска ротора накладывают равные и противоположные силы на диск статора. Роторы соединены непосредственно друг с другом через кольцо вала, отменяя магнитные силы.

Двигатели Magnax имеют диаметр от 15 до 5,4 метра (5,9 дюйма на 17 футов 8,6 дюйма).

Серводвигатель
Сервомотор — это двигатель, который часто продается как полный модуль, который используется в системе управления с обратной связью по положению или скорости.Сервомоторы используются в таких применениях, как станки, пленочные плоттеры и другие технологические системы. Двигатели, предназначенные для использования в сервомеханизме, должны иметь хорошо документированные характеристики для скорости, крутящего момента и мощности. Кривая скорости и крутящего момента очень важна и имеет высокое соотношение для серводвигателя. Также важны динамические характеристики отклика, такие как индуктивность обмотки и инерция ротора; эти факторы ограничивают общую производительность петли сервомеханизма. Большие, мощные, но медленно реагирующие серво-петли могут использовать обычные двигатели переменного или постоянного тока и системы привода с обратной связью по положению или скорости на двигателе. По мере увеличения требований к динамическому реагированию используются более специализированные конструкции двигателей, такие как бесконтактные двигатели.Превосходные характеристики мощности и ускорения электродвигателей переменного тока по сравнению с двигателями постоянного тока имеют тенденцию поддерживать синхронные приводы с постоянным магнитом, BLDC, индукционные и SRM-приводы.

Сервосистема отличается от некоторых применений шагового двигателя тем, что обратная связь по положению постоянно, пока двигатель работает. Шаговая система по своей сути работает с разомкнутым контуром — полагаясь на двигатель, чтобы не «пропустить шаги» для краткосрочной точности — с любой обратной связью, такой как «домашний» переключатель или датчик положения, являющийся внешним по отношению к двигательной системе. Например, при запуске типичного компьютерного принтера с точечной матрицей его контроллер превращает привод шагового двигателя печатающей головки в его левый предел, где датчик положения определяет исходное положение и останавливается. Пока питание включено, двунаправленный счетчик в микропроцессоре принтера отслеживает положение печатающей головки.

Шаговый двигатель
Шаговые двигатели являются часто используемым двигателем, когда требуются точные вращения. В шаговом двигателе внутренний ротор, содержащий постоянные магниты или магнитно-мягкий ротор с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронным способом. Шаговый двигатель можно также рассматривать как крест между электродвигателем постоянного тока и ротационным соленоидом. Когда каждая катушка включается поочередно, ротор выравнивается с магнитным полем, создаваемым обмоткой возбужденного поля. В отличие от синхронного двигателя, при его применении шаговый двигатель не может вращаться непрерывно; вместо этого он «шагает» — начинается, а затем быстро останавливается снова — от одного положения к другому, когда обмотки возбуждения возбуждаются и обесточиваются последовательно. В зависимости от последовательности ротор может поворачиваться вперед или назад, и он может в любое время изменять направление, останавливаться, ускоряться или замедляться.

Простые драйверы шагового двигателя полностью активируют или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатому колесу» к ограниченному числу положений;более сложные драйверы могут пропорционально управлять мощностью обмоток поля, позволяя роторам располагаться между точками зубчатого колеса и тем самым вращаться чрезвычайно плавно. Этот режим работы часто называют микрошагом. Управляемые компьютером шаговые двигатели являются одной из самых универсальных форм позиционирующих систем, особенно в части цифровой сервоуправляемой системы.

Шаговые двигатели можно легко поворачивать под определенным углом дискретными шагами, и, следовательно, шаговые двигатели используются для позиционирования головки чтения / записи в дисководах гибких дисков. Они использовались с той же целью в компьютерных дисках в эпоху до гигабайта, где точность и скорость, которые они предлагали, были достаточными для правильного позиционирования головки чтения / записи на жестком диске.По мере увеличения плотности дисков ограничения скорости и скорости шаговых двигателей сделали их устаревшими для жестких дисков — ограничение точности сделало их непригодными для использования, а ограничение скорости сделало их неконкурентоспособными, поэтому новые жесткие диски используют системы с головным приводом с голосовой катушкой. (Термин «звуковая катушка» в этой связи является историческим, он относится к структуре в типичном (коническом) громкоговорителе. Эта структура использовалась некоторое время для размещения головок. Современные приводы имеют поворотную катушку, катушки качания назад и вперед, что-то вроде лопасти вращающегося вентилятора. Тем не менее, как звуковая катушка, современные проводники катушки привода (магнитный провод) движутся перпендикулярно силовым линиям магнитного поля.)

Шаговые двигатели использовались и по-прежнему часто используются в компьютерных принтерах, оптических сканерах и цифровых фотокопировальных устройствах для перемещения оптического сканирующего элемента, каретки печатающей головки (точечной матрицы и струйных принтеров) и валиков или подающих роликов. Аналогично, многие компьютерные плоттеры (которые с начала 1990-х годов были заменены крупноформатными струйными и лазерными принтерами) использовали вращающиеся шаговые двигатели для движения пера и валика; типичными альтернативами здесь были либо линейные шаговые двигатели, либо серводвигатели с аналоговыми системами управления с замкнутым контуром.

Так называемые кварцевые аналоговые наручные часы содержат наименьшие обычные шаговые двигатели; они имеют одну катушку, набирают очень мало энергии и имеют постоянный магнитный ротор. Такой же двигатель работает от кварцевых часов с батарейным питанием. Некоторые из этих часов, например, хронографы, содержат более одного шагового двигателя.

Тесно связанные с проектированием трехфазные синхронные двигатели переменного тока, шаговые двигатели и SRM классифицируются как тип двигателя с переменным сопротивлением. Шаговые двигатели были и остаются часто используемыми в компьютерных принтерах, оптических сканерах и компьютерах с числовым программным управлением (ЧПУ), таких как маршрутизаторы, плазменные резцы и токарные станки с ЧПУ.

Немагнитные двигатели
Электростатический двигатель основан на притяжении и отталкивании электрического заряда.Обычно электростатические двигатели сочетаются с обычными моторами на катушках.Обычно они требуют высоковольтного источника питания, хотя очень маленькие двигатели используют более низкие напряжения. Обычные электродвигатели вместо этого используют магнитное притяжение и отталкивание и требуют большого тока при низких напряжениях. В 1750-е годы первые электростатические двигатели были разработаны Бенджамином Франклином и Эндрю Гордоном. Сегодня электростатический двигатель часто используется в микроэлектромеханических системах (МЭМС), где их приводные напряжения составляют менее 100 вольт, а движущиеся заряженные пластины намного легче изготавливать, чем катушки и железные сердечники. Кроме того, молекулярный механизм, который управляет живыми клетками, часто основан на линейных и вращающихся электростатических двигателях.

Пьезоэлектрический двигатель или пьезомотор — это тип электродвигателя, основанный на изменении формы пьезоэлектрического материала при приложении электрического поля.Пьезоэлектрические двигатели используют обратный пьезоэлектрический эффект, при котором материал производит акустические или ультразвуковые колебания для создания линейного или вращательного движения. В одном механизме удлинение в одной плоскости используется для того, чтобы сделать ряд растяжек и удерживание положения, подобно тому, как движется гусеница.

В двигательной силовой установке с электрическим приводом используется технология электродвигателей для запуска космических аппаратов в космическом пространстве, причем большинство систем основано на электрическом питании пропеллента на высокой скорости, причем некоторые системы основаны на принципах электродинамической привязки движений к магнитосфере.

Поделиться ссылкой:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pinterest (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Tumblr (Открывается в новом окне)
  • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
  • Нажмите, чтобы поделиться в WhatsApp (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Skype (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)
  • Нажмите, чтобы поделиться на Reddit (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)

Принципы работы электрического двигателя для чайников

Июнь 29, 2014

52683 просмотров

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов.

В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку.

Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе.

Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС.

Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности.

Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

  • Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.
  • Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.
  • Режимы работы электродвигателя в следующей статье.

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи.

Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач.

Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу.

Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается.

То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток.

Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю.

Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе.

Принцип его работы следующий.

Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы.

Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля.

Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора.

То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно.

На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать.

Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку.

При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

 • Скачать лекцию: двигатели постоянного тока 

Свежие записи:

Синхронный электродвигатель с обмоткой возбуждения

Дмитрий Левкин

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Принцип работы

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже.

Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля.

Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил.

Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитные поля ротора и статора сцепленные друг с другом

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении.

Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы.

В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой.

При запуске электродвигателя катушки ротора не возбуждаются.

Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью.

При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю.

Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Принципы работы электрического двигателя для чайников

Главная › Электрика ›

26.05.2019

Курс электрических машин посвящён изучению принципов построения, конструкций, технических и эксплуатационных характеристик трансформаторов, а также генераторов и двигателей постоянного и переменного тока. Этот курс является основным разделом электротехники, наряду с теорией линейных электрических цепей и электрическим приводом.

  • Цель курса – получение базовых знаний в области теории электрических машин, достаточных для специалистов технических направлений подготовки неэлектротехнических профилей, а также для всех желающих познакомиться с основами электротехники и получить навыки решения задач, связанных с эксплуатацией электрических машин.
  • При изучении каждого из десяти разделов курса используются виртуальные лаборатории, характер которых соответствует задачам повседневной инженерной практики.
  • После окончания курса слушатели будут знать принципы построения, конструкции, технические и эксплуатационные характеристики трансформаторов, генераторов и двигателей постоянного и переменного тока, а также приобретут навыки решения задач, связанных с эксплуатацией электрических машин.

Программа курса

  1. Катушка с магнитопроводом в цепи переменного тока.
  2. Преобразование энергии трансформатором.
  3. Специальные типы трансформаторов и их применение в технике.
  4. Магнитные поля бесколлекторных машин.
  5. Конструкция, принцип действия и характеристики асинхронного двигателя.
  6. Управление асинхронным двигателем. Специальные типы двигателей.
  7. Конструкция принцип действия и характеристики синхронных машин.
  8. Синхронные двигатели.
  9. Двигатели постоянного тока.
  10. Управление двигателем постоянного тока. Специальные типы коллекторных машин и вентильные двигатели.

Каждая тема предполагает изучение в течение одной недели.

На 6-й и 12-й неделях запланированы упражнения по пройденному материалу.

В курсе имеется два типа дедлайна (предельного срока выполнения оценивающих мероприятий):
– мягкий дедлайн, при котором необходимо выполнить все оценивающие мероприятия текущей недели до ее завершения;

– жесткий дедлайн, при котором на выполнение оценивающих мероприятий после мягкого дедлайна дополнительно выделяется еще две недели, по окончании которых доступ к соответствующим мероприятиям закрывается.

Принципы работы электрического двигателя для чайников Ссылка на основную публикацию

Электрические машины постоянного тока: виды и принцип их работы

Машины постоянного тока представляют собой возвратную электрическую машину, в которых происходит процесс преобразования энергии. В машинах, где механическая энергия преобразуется в электрическую, называются генераторами. Они предназначены для выработки электроэнергии. Для работы необходимо наличие какого-либо двигателя (дизеля, паровой или водяной турбины), который будет вращать вал генератора.

Обратное преобразование энергий происходит в электродвигателях. Они приводят в движение колесные пары локомотивов, вращают валы вентиляторов и т.д. Для работы необходимо подсоединение электродвигателя с источником электроэнергии посредством проводов.

Принцип работы электрических машин постоянного тока основан на использовании явления электромагнитной индукции, а также законов, которые определяют взаимодействие электрических токов и магнитных полей.

Эти машины включают в себя неподвижную и вращающуюся части. В конструкцию неподвижной части, или статора входят станина, главные и дополнительные полюса, подшипниковые щиты и щеточная траверса с графитовыми или медно-графитовыми щетками.

Вращающаяся часть, или ротор, в электрических машинах постоянного тока именуются якорем. Якорь, снабженный коллектором, в электродвигателях играет роль преобразователя частоты, а в генераторах – выпрямителя.

При вращении машины происходит перемещение якоря и статора относительно друг друга. Статор создает магнитное поле, а в обмотке якоря индуцируется э. д. с. Возникает ток, который при воздействии с магнитным полем создает электромагнитные силы, отвечающие за процесс преобразования энергии.

Электрические машины постоянного тока в зависимости от наличия или отсутствия коммутации бывают обычными и униполярными, а по расположению вала — вертикальными и горизонтальными.

По типу переключателей тока их можно подразделить на машины с щеточно-коллекторным и электронным переключателем. Последние называются еще вентильными электродвигателями.

По мощности они делятся на микромашины мощностью до 0,5 кВт, а также, машины малой, средней и большой мощности — 0,5-10 кВт, 10-200 кВт и более 200 кВт соответственно.

По частоте вращения различают тихоходные (до 300 об/мин), средней быстроходности (300-500 об/мин), быстроходные (1500-6000 об/мин) и сверхбыстроходные (более 6000 об/мин) электрические машины постоянного тока.

Устройство и принцип действия синхронного двигателя

Синхронный электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Его также можно использовать в качестве генератора. Чаще всего он применяется в компрессорах, прокатных станках, поршневых насосах и другом подобном оборудовании. Рассмотрим принцип действия синхронного электродвигателя, его характеристики и свойства.

Устройство синхронного электродвигателя

Строение агрегата данного вида типично. Двигатель состоит из:

  • Неподвижной части (якорь или статор).
  • Подвижной части (ротор или индуктор).
  • Вентилятора.
  • Контактных колец.
  • Щеток.
  • Возбудителя.

Статор представляет собой сердечник, состоящий из обмоток, который заключен в корпус. Индуктор комплектуется электромагнитами постоянного тока (полюсами).

Конструкция индуктора может быть двух видов – явнополюсная и неявнополюсная. В статоре и роторе расположены ферромагнитные сердечники, изготовленные из специальной электротехнической стали.

Они необходимы для уменьшения магнитного сопротивления и улучшения прохождения магнитного потока.

Частота вращения ротора в синхронном двигателе равна частоте вращения магнитного поля. Независимо от подключаемой нагрузки частота ротора неизменна, так как число пар полюсов магнитного поля и ротора совпадают. Их взаимодействие обеспечивает постоянную угловую скорость, не зависящую от момента, приложенного к валу.

Принцип работы синхронного электродвигателя

Самые распространенные типы такого рода агрегатов – однофазный и трехфазный. Принцип работы синхронного электродвигателя в обоих случаях примерно одинаков. После подключения обмотки якоря к сети ротор остается неподвижным, в то время как постоянный ток поступает в обмотку возбуждения.

Направление электромагнитного момента меняется дважды за время одного изменения напряжения.

При значении среднего момента равном нулю, ротор под влиянием внешнего момента (механического воздействия) разгоняется до частоты, близкой по значению частоте вращения магнитного поля в зазоре, после чего двигатель переходит в синхронный режим.

В трехфазном устройстве проводники расположены под определенным углом относительно друг друга. В них возбуждается вращающееся с синхронной скоростью электромагнитное поле.

Разгон двигателя может осуществляться в двух режимах:

  • Асинхронный. Обмотки индуктора замыкаются с помощью реостата. Вращающееся магнитное поле, возникающее при включении напряжения, пересекает короткозамкнутую обмотку, установленную на роторе. В ней индуцируются токи, взаимодействующие с вращающимся полем статора. По достижении синхронной скорости крутящий момент начинает уменьшаться и сводится к нулю после замыкания магнитного поля.
  • С помощью вспомогательного двигателя. Для этого синхронный двигатель механически соединяется со вспомогательным (двигателем постоянного тока либо трехфазным индукционным двигателем). Постоянный ток подается только после того, как вращение двигателя достигает скорости, близкой к синхронной. Магнитное поле замыкается, и связь со вспомогательным двигателем прекращается.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.

Принцип работы электродвигателя. Простыми словами о сложном

Принцип работы электродвигателя основывается на эффекте обнаруженном Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита, может возникнуть непрерывное вращение.

   Принцип работы электродвигателя постоянного тока

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положение, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке выше это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

 

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

Простыми словами о сложном

На самом деле там векторное произведение, дифференциалы и т.п. но это детали, а у нас упрощённый случай. И так…

 

   Рис. 1 Основа работы электрического двигателя

Направление силы ампера определяется правилом левой руки.

 

   Рис. 2  Правило левой руки

Мысленно ставим левую ладонь на верхний рисунок и получаем направление сил Ампера. Она типа растягивают рамку с током в том положении как нарисовано на рис.1. И никуда вертеться тут ничего не будет, рамка в равновесии, устойчивом.

А если рамка с током повернута по-другому, то вот что будет:

   Рис. 3  Рамка

Здесь уже равновесия нет, сила Ампера разворачивает противоположные стенки так, что рамка начинает вращаться. Появляется механическое вращение. Это основа электрического двигателя, самая суть, дальше только детали.

Далее.

Теперь что будет делать рамка с током на рис.3?. Если система идеальная, без трения, то очевидно будут колебания. Если трение присутствует, то колебания постепенно затухнут, рамка с током стабилизируется и станет как на рис.1.

Но нам нужно постоянное вращение и достичь его можно двумя принципиально разными способами и отсюда и возникает разница между двигателями постоянного и переменного трёхфазного тока.

Принцип работы электродвигателя постоянного тока

Способ 1. Смена направления тока в рамке.

Этот способ используется в двигателях постоянного тока и его потомках.

Наблюдаем за картинками. Пусть наш двигатель обесточен и рамка с током ориентирована как-то хаотично, вот так например:

   Рис. 4.1 Случайно расположенная рамка

На случайно расположенную рамку действует сила Ампера и она начинает вращаться.

 
   Рис. 4.2

В процессе движения рамка достигает угла 90°. Момент (момент пары сил или вращательный момент) максимальный.

   Рис. 4.3

И вот рамка достигает положения, когда момента вращения нет. И если сейчас не отключить ток, то сила Ампера будет уже тормозить рамку и в конце полуоборота рамка остановится и начнёт вращение в противоположном направлении. Но нам ведь этого не надо.

Поэтому мы на рис.3 делаем хитрый ход – меняем направление тока в рамке.

   Рис. 4.4

И вот после пересечения этого положения, рамка с поменянным направлением тока уже не тормозится, а снова разгоняется.

   Рис. 4.5

А когда рамка подходит к следующему положению равновесия, мы меняем ток ещё раз.

   Рис. 4.6

И рамка опять продолжает ускоряться куда нам надо.

Вот так и получается постоянное вращение. Красиво? Красиво. Нужно только менять направление тока два раза за оборот и всего делов.

А делает это, т.е. обеспечивает смену тока специальный узел – щёточно-коллекторный узел. Принципиально он устроен так:

   Рис. 5

Рисунок понятен и без пояснений. Рамка трётся то об один контакт, то об другой и так вот ток и меняется.

Очень важная особенность щёточно-коллекторного узла – его малый ресурс. Из-за трения. Например, вот движок ДПР-52-Н1 – минимальная наработка 1000 часов. В то же время срок службы современных бесколлекторных двигателей более 10000 часов, а двигателей переменного тока (там тоже нет ЩКУ) более 40000 часов.

Принцип работы электродвигателя переменного тока

Способ 2. Вращается магнитный поток, т.е. магнитное поле.

Вращающееся магнитное поле получают с помощью переменного трёхфазного тока. Вот есть статор.

   Рис. 6  Статор электродвигателя

А есть значит 3 фазы переменного тока.

   Рис. 7

Между ними как видно на Рис. 7 120 градусов, электрических градусов.

Эти три фазы укладывают в статор специальным образом, чтобы они геометрически были повернуты друг к дружке на 120°.

 
   Рис. 8

И тогда при подаче трёхфазного питания получается само собой за счёт складывания магнитных потоков от трёх обмоток вращающееся магнитное поле.

   Рис. 9  Вращающееся магнитное поле

Далее вращающееся магнитное поле влияет силой Ампера на нашу рамку и она вращается.

Но здесь есть тоже различия, два разных способа.

Способ 2а. Рамка запитывается (синхронный двигатель).

Подаём значит на рамку напряжение (постоянное), рамка выставляется по магнитному полю. Помните рис.1 из самого начала? Вот так рамка и становится.

   Рис. 10  (Рис.1)

Но поле магнитное у нас тут вращается, а не просто так висит. Рамка чего будет делать? Тоже будет вращаться, следуя за магнитным полем.

Они (рамка и поле) вращаются с одинаковой частотой, или синхронно, поэтому такие двигатели называются синхронными двигателями.

Способ 2б. Рамка не запитывается (асинхронный двигатель).

Фишка в том, что рамка не запитывается, совсем не запитывается. Просто проволока такая замкнутая.

Когда мы начинаем вращать магнитное поле, по законам электромагнетизма в рамке наводится ток. От этого тока и магнитного поля получается сила Ампера. Но сила Ампера будет возникать только если рамка движется относительно магнитного поля (известная история с опытами Ампера и его походами в соседнюю комнату).

Так что рамка всегда будет отставать от магнитного поля. А то, если она его вдруг почему-то догонит, то пропадёт наводка от поля, пропадёт ток, пропадёт сила Ампера и всё вообще пропадёт. То есть, в асинхронном двигателе рамка всегда отстаёт от поля и частота у них значит разная, то есть вращаются они асинхронно, поэтому и двигатель называется асинхронным.

 

Смотрите также по этой теме:

   Как работает электродвигатель. Преимущества и недостатки разных видов.

   Асинхронный двигатель. Устройство и принцип работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Что представляет собой статор электрического двигателя. Электрический двигатель — принцип работы электродвигателя

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта , обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания :

  1. Переменного тока , работающие напрямую от электросети.
  2. Постоянного тока , которые работают от батареек, АКБ, блоков питания или других источников постоянного тока .

По принципу работы:

  1. Синхронные , в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные , самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре.

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор , являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила . Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока


Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Определение.

Электрический двигатель – механизм или специальная машина, предназначенная для преобразования электрической энергии в механическую, при котором так же выделяется тепло.

Предыстория.

Уже в 1821 году, знаменитый британский ученый Майкл Фарадей продемонстрировал принцип преобразования электромагнитным полем электрической энергии в механическую энергию. Установка состояли из подвешенного провода, которых окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Эту модель двигателя часто демонстрировали в школах и университетах. Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова. Однако новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все гораздо проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

Изначально мощность двигателя была небольшой и составляла всего 15 Вт, после доработок, Якоби удалось довести мощность до 550 Вт.. 13 сентября 1838 году, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов. Мощность современных электрических двигателей превышает 55 кВт. По вопросом прибретения электрических двигателей .

Принцип действия.

В основу работы электрической машины заложено явление электромагнитной индукции (ЭМИ). Явление ЭМИ заключается в том, что при любом изменении магнитного потока, пронизывающего замкнутый контур, в нем (контуре) образуется индукционный ток.

Сам двигатель состоит из ротора (подвижной части – магнита или катушки) и статора (неподвижной части – катушки). Чаще всего конструкция двигателя представляет собой две катушки. Статор обложен обмоткой, по которой, собственно, и течет ток. Ток порождает магнитное поле, которое воздействует на другую катушку. В ней, по причине ЭМИ, так же образуется ток, который порождает магнитное поле, действующее на первую катушку. И так все повторяется по замкнутому циклу. В итоге, взаимодействие полей ротора и статора создает вращающий момент, приводящий в движение ротор двигателя. Таким образом, происходит трансформация электрической энергии в механическую, которую можно использовать в различных приборах, механизмах и даже в автомобилях.

Вращение электромотора

Классификация электрических двигателей.

По способу питания:

двигатели постоянного тока – запитываются от источников постоянного тока.
двигатели переменного тока — запитываются от источников переменного тока.
универсальные двигатели – запитываются как от постоянного, так и переменного тока.

По конструкции:

Коллекторный электродвигатель — электродвигатель, в котором в качестве датчика положения ротора и переключателя тока используется щеточноколлекторный узел.

Бесколлекторый электродвигатель – электродвигатель, состоящий из замкнутой системы, в которой используются: системы управления (преобразователь координат), силовой полупроводниковый преобразователь (инвертор), датчик положения ротора (ДПР).

С приведением в действие постоянными магнитами;
С параллельным соединением якоря и обмоток возбуждения;
С последовательным соединением якоря и обмоток возбуждения;
Со смешанным соединением якоря и обмоток возбуждения;

По количеству фаз:

Однофазные – запускаются вручную, либо же имеют пусковую обмотка или фазосдвигающую цепь.
Двухфазные
Трехфазные
Многофазные

По синхронизации:

Синхронный электродвигатель – электрический двигатель переменного тока с синхронным движением магнитного поля питающего напряжения и ротора.
Асинхронный электродвигатель – электрический двигатель переменного тока с отличающейся частотой движения ротора и магнитного поля, порождаемого питающим напряжением.

В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные . У них отличается частота вращения ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они многофазными, а также одно-, двух- и трехфазными.
  • Электродвигатели шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.

К электродвигателям постоянного тока относят те, которые питаются постоянным током. Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:


Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.

Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные, которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность — наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

Ротор

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.

Бесколлекторный электродвигатель помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом, коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока той же мощности.

Поскольку электродвигатели переменного тока, питающиеся от 50 Гц (питание промышленной сети) не позволяют получать высокие частоты (выше 3000 об/мин), при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают с частотой сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и подобном оборудовании, рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания магнитного поля, разрывается связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.

Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).

Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.

Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Явление электромагнитной индукции стало основой возникновения и развития всех электрических машин. Первооткрывателем этого явления в конце 19 века был Майкл Фарадей, английский учёный — экспериментатор. Он провёл опыты с первыми электрическими машинами. Сейчас без них невозможно представить нашу жизнь. Электродвигатели стали одними из самых распространённых электрических машин.

Для работы электромотора необходимо напряжение, свойства которого определяют его конструкцию. На переменном напряжении и токе работают такие электродвигатели:

на постоянном напряжении и токе работают:

  • коллекторные;
  • униполярные;
  • шаговые.

Синхронные и асинхронные электродвигатели

Синхронные и асинхронные электромоторы имеют общие условия для своей работы. Для этого необходимо магнитное поле, максимальная величина которого перемещается в пространстве. Такое поле может быть создано двумя или большим числом обмоток. Обычные конструкции синхронных и асинхронных электромоторов содержат две или три обмотки.

Они размещаются на массивных ферримагнитных сердечниках, усиливающих магнитное поле. Для трёх обмоток применяется трёхфазное напряжение, для двух обмоток – двухфазное или одна фаза с фазосдвигающим конденсатором. Но с таким конденсатором к однофазной сети можно подключить и трёхфазные двигатели.

Если ротор электромотора создаёт постоянное магнитное поле, либо от постоянных магнитов, либо от встроенного в ротор источника питания постоянного тока, либо от внешнего источника питания постоянного тока через кольца со щётками такой двигатель является синхронным. В нём частота оборотов и частота напряжения источника питания одинаковы. В асинхронных двигателях используется немагнитный ротор без явно выраженных полюсов, колец со щётками, встроенных выпрямителей и комбинированных деталей из различных материалов. Исключением является синхронный гистерезисный двигатель.

Ротор асинхронного двигателя работает как вторичная обмотка трансформатора, которая замкнута накоротко. Но ток в его роторе может возникнуть только при более медленном вращении в сравнении с магнитным полем статора. Такое различие скоростей называется скольжением. Простота конструкции и соответствующая надёжность делают асинхронный электромотор наиболее широко используемым.

Коллекторные машины

Однако у синхронных и асинхронных электромоторов есть один непреодолимый недостаток – частота питающего напряжения. Она определяет скорость вращения магнитного поля и вала в этих двигателях. Никакими конструктивными изменениями в них при заданной частоте питающего напряжения невозможно получить частоту вращения вала большую, чем частота питающего напряжения. При необходимости большего числа оборотов используются коллекторные электромоторы.

В этих двигателях происходит постоянное переключение обмоток ротора коллектором. Каждая обмотка по сути это рамка с током, которая, как известно из опытов Фарадея, поворачивается в магнитном поле. Но одна рамка повернётся и остановится. Поэтому рамок — обмоток сделано несколько и каждой из них соответствует пара пластин в коллекторе. Ток подаётся через щётки, скользящие по коллектору.

Конструкция такого электромотора позволяет работать от источника либо постоянного, либо переменного напряжения, который обеспечивает ток и в статоре и в роторе. При переменном напряжении направление тока в статоре и роторе изменяется одновременно и поэтому направление действия силы вращающей ротор сохраняется. Частота питающего напряжения никак не влияет на частоту вращения ротора. Она зависит только от величины напряжения, питающего электромотор. Скользящий контакт щётки с коллектором ограничивает возможности этих электродвигателей по сроку службы и месту применения, поскольку искрение в щётках довольно быстро разрушает скользящий контакт и недопустимо в условиях повышенной взрывоопасности.

Униполярные и шаговые варианты

Однако есть такие конструкции электромоторов постоянного тока, в которых коллектора нет. Это униполярные электромоторы.

В этих электродвигателях ротор выполнен в виде диска, расположенного между полюсами постоянных магнитов. Щётки расположенные диаметрально противоположно питают током диск – ротор. Под воздействием силы Лоренца диск вращается. Несмотря на привлекательную простоту конструкции, такой электромотор не имеет широкого практического использования, поскольку требует слишком больших значений тока и магнитного поля. Тем не менее, существуют уникальные лабораторные разработки униполярных электромоторов со щётками из жидкого металла, которые развивают обороты немыслимые для иных конструкций двигателей.

Шаговый двигатель это ещё одна конструкция, работающая на постоянном токе.

В целом этот двигатель подобен синхронному электромотору с ротором из постоянных магнитов. Отличие в том, что число обмоток здесь больше, и они управляются ключами, которые подают на каждую обмотку питающее напряжение. В результате ротор меняет своё положение, притягиваясь к подключенной обмотке. Число обмоток определяет минимальный угол поворота ротора, а коммутаторы – скорость вращения ротора. В шаговом двигателе ротор может вращаться почти как угодно, поскольку ключи связаны с электронной схемой управления.

Рассмотренные конструкции электромоторов являются базовыми. На их основе для решения определённых задач создано много специальных разновидностей электромоторов. Но это уже совсем другая история…

Содержание:

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель , устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Электрический двигатель: основные принципы действия электродвигателей

Принцип работы электродвигателя основан на использовании эффекта электромагнитной индукции. Само устройство предназначено для создания механической энергии за счёт использования электрических полей. Тип и мощность получаемой энергии зависят от способа взаимодействия магнитных полей и собственно устройства электродвигателя. В зависимости от типа используемого напряжения двигатели классифицируют на постоянного и переменного тока.

Электродвигатели

Электродвигатель постоянного тока

Принцип действия этих двигателей основан на использования постоянных магнитных полей, создаваемых в корпусе устройства. Для их создания служит либо постоянный магнит, закреплённый на корпусе, либо электромагниты, расположенные по периметру ротора.

Основным отличием двигателей постоянного тока является наличие в их корпусе постоянно действующего магнита, закреплённого на корпусе машины. Мощность электродвигателя зависит от этого магнита, точнее от его поля. Магнитное поле в якоре создаётся при подключении к нему постоянного тока. Но для этого необходимо, чтобы полюса постоянного магнитного поля якоря менялись местами. Для этого используются специальные коллекторно-щёточные устройства. Они устроены в виде кольца-коллектора, зафиксированного на валу движка и подключённого к обмотке якоря. Кольцо разделено на сектора, разделённые диэлектрическими вставками. Соединение сектора коллектора с цепью якоря создаётся через скользящие по нему графитные щетки. Для более плотного контакта щётки прижимаются к кольцу коллектора пружинами. Графит применяется ввиду своей скользящей способности, высокой теплопроводности и мягкости. Его применение практически не вредит проводникам коллектора.

При большой мощности электромоторов постоянного тока использование постоянного магнита неэффективно из-за большого веса такого устройства и низкой мощности создаваемого постоянным магнитом поля. Для создания магнитного поля статора в этом случае используется конструкция из ряда катушечных электромагнитов, подключённых к отрицательной или положительной линии питания. Одноименные полюсы подключаются последовательно, их количество составляет от одного до четырёх, количество щёток соответствует количеству полюсов, но, в общем, конструкция якоря практически идентична вышеописанной.

Для упрощения запуска электрического двигателя используют два варианта возбуждения:

  • параллельное, при этом рядом с обмоткой якоря включается независимая регулируемая линия, используется для плавного регулирования оборотов вала;
  • последовательное возбуждение, что говорит о способе подключения дополнительной линии, в этом случае существует возможность резкого наращивания количества оборотов или его снижения.

Нужно отметить, что этот тип моторов имеет регулируемую частоту оборотов, что достаточно часто используется в промышленности и транспорте.

Интересно. В станках используются двигатели с параллельным возбуждением, что позволяет использовать регулировку количества оборотов, в то же время для грузоподъёмного оборудования подходит последовательное возбуждение. Даже эта особенность двигателей поставлена на службу человечеству.

Двигатель постоянного тока

Электродвигатель переменного тока

Устройство и принцип действия электродвигателя переменного тока впервые описал и запатентовал физик Никола Тесла, патент Великобритании за номером 6481. Но этот мотор не получил широкого распространения из-за низких пусковых характеристик, не смог найти решение пуска. Нужно отметить, что Тесла являлся основным апологетом развития этого типа двигателей, в отличие от Эдисона, который как раз ратовал за использование сетей постоянного тока.

Именно Тесла открыл явление, которое получило название сдвиг фаз, и предложил использовать его в электродвигателе, кроме того он опытным путём определил его наиболее эффективное значение в 90°. Кроме того, знаменитый физик обосновал использование вращающего магнитного поля в многофазных системах.

Но в 1890 году инженер М.О. Доливо-Добровольский создаёт первый рабочий образец асинхронного электродвигателя с якорем «беличье колесо» и с обмоткой статора по периметру окружности. В конструкции этого изделия нашли применение, как работа Никола Теслы, так и труды других инженеров и изобретателей. Справедливости ради нужно отметить, что элементы по отдельности были изобретены раньше, М. Доливо-Добровольский только совместил их в работоспособное устройство.

Вращающее магнитное поле, энергию которого использует этот тип электромотора, возникает в тройной обмотке статора, при подключении его к источнику тока. Ротор такого двигателя представляет собой металлический цилиндр, не имеющий обмотки. Магнитное поле статора за счёт объединения в короткозамкнутую систему с ротором возбуждает в нем токи. Они вызывают создание собственного магнитного поля якоря, которое, соединившись с вихревым полем статора, вызывает вращение ротора и объединённого с ним вала двигателя вокруг своей оси.

Название асинхронный двигатель получил из-за того, что поля не синхронизированы, магнитное поле статора имеет одинаковую скорость с полем якоря, но по фазе отстаёт от него.

Для запуска асинхронного электромотора требуются довольно значительные значения пусковых токов, это заметно и в реальности – при запуске в сеть станка или другого потребителя с таким мотором свет ламп накаливания зачастую мигает из-за падения напряжения в сети. Для упрощения пуска используют фазный ротор, это устройство якоря обычно используется в высокопроизводительных электродвигателях. Фазный ротор, в отличие от обычного, имеет на корпусе три обмотки, объединённые в «звезду». В отличие от статора, они не подключены к энергоисточнику, а соединены со стартовым устройством. Подключение устройства в сеть характеризуется падением сопротивления до нулевых значений. В результате двигатель запускается ровно и работает без перегрузки. Работа такого мотора довольно сложно регулируется, в отличие от моторов постоянного тока.

Интересно. Использование электромоторов переменного тока продвигал знаменитый Никола Тесла, в то время как энергию постоянного тока – не менее знаменитый Эдисон. В результате этого между двумя известнейшими учёными возник конфликт, продлившийся до самой смерти.

Двигатель переменного тока

Линейные электродвигатели

Для ряда устройств требуется не вращательное движение вала движка, а его возвратно-поступательное движение. Для того чтобы удовлетворить требования промышленников, конструкторами были разработаны и линейные электродвигатели. Понятно, что можно использовать для перехода вращательного движения в поступательное различные редукторы и коробки передач, но это усложняет конструкцию, делает её более дорогой, а также снижает её эффективность.

Статор и ротор такого устройства представляют собой полосы металла, а не кольцо и цилиндр как в традиционных моторах. Принцип действия электродвигателя заключается в возвратно-поступательном движении ротора, которое возможно из-за электромагнитного поля, создаваемого статором с незамкнутой системой магнитопроводов. В самой конструкции при работе генерируется движущееся магнитное поле, которое воздействует на обмотку якоря с коллекторно-щеточным устройством. Возникающее поле смещает ротор только в линейном направлении, без придания ему вращения. Мощность электродвигателя линейного типа ограничена его устройством.

Недостатком этих двигателей являются: сложность их изготовления, достаточно высокая стоимость такого оборудования и низкая эффективность, хотя и выше чем использование вращения через редуктор.

Использование электромоторов переменного тока в однофазной сети

Получить вращающееся магнитное поле статора проще всего в трёхфазной сети, но, несмотря на то, можно использовать асинхронные движки и в однофазной, бытовой сети. Требуется лишь проведение некоторых расчетов и изменение конструкции двигателя.

Формула изменений такова:

  1. Размещение на статоре движка двух обмоток: стартовой и рабочей;
  2. Включение в цепь конденсатора позволит сдвинуть по фазе ток в стартовой обмотке 90°. Практически можно сделать так: объединить обмотки трехфазного асинхронного двигателя, две обмотки в одну и установить конденсатор на это соединение.

Этот двигатель будет работать в бытовой сети, но, в отличие от двигателей постоянного тока, этот движок не регулируется по количеству оборотов, кроме того слабо переносит критические нагрузки и имеет меньший КПД. Мощность электродвигателя тоже сравнительно низка и во многом зависит от сети. Трехфазная сеть больше подходит для эксплуатации таких моторов.

В настоящее время электродвигатели широко распространены по всему миру. В числе их достоинств:

  • высокое КПД, до 80%;
  • высокая мощность двигателя при компактных размерах;
  • неприхотливость в обслуживании;
  • надежность;
  • низкие требования к энергопитанию.

Но в тоже время существует ряд проблем, которые ограничивают их более широкое распространение. Так, например, их мобильность ограничивает источники питания – в настоящее время нет достаточно мощных источников питания, которые смогли бы обеспечить длительную функциональность такого устройства. Единственным исключением из правил является атомный реактор. Гребные электродвигатели подводных лодок и кораблей имеют отличную автономность, но в то же время использование энергоносителей таких размеров невозможно в быту. Ситуацию могли бы исправить графеновые аккумуляторы, но их перспективы пока туманны.

Электромобиль

Видео

Оцените статью:

Запишите принцип работы электромотора класса 12 по физике CBSE

Подсказка: Электродвигатель можно определить как электрическое устройство, которое преобразует электрическую энергию в механическую. Большинство электродвигателей работают на основе взаимодействия между магнитным полем электродвигателя и электрическим током в проволочной обмотке, что является основным принципом для создания силы в виде крутящего момента, приложенного к валу электродвигателя.

Полный пошаговый ответ:
Электродвигатель работает по принципу магнитного воздействия тока.Его принцип заключается в том, что когда прямоугольная катушка помещается в магнитное поле и через нее пропускается ток, катушка вращается в результате сил, действующих на катушку.
Следующие части являются частями электродвигателя:
Источник питания постоянного тока: это компонент, в котором генерируется рабочий источник энергии.
Коммутатор: направление электрического источника, обеспечиваемого источником питания, поддерживается этой частью электродвигателя.
Якорь ротора: он непрерывно вращается при работающем двигателе.Он также предназначен для помощи в перемещении и подаче электроэнергии на другие части двигателя и транспортного средства.
Ось: Ось электрического транспортного средства содержит часть основного источника энергии, который обеспечивает возможность управления транспортным средством посредством рулевого управления и использования редуктора.
Полевой магнит: полевой магнит находится внутри электродвигателя и создает магнитное поле, которое позволяет внутреннему проводу катушки в двигателе постоянного тока вращаться.
Основная идея электродвигателя действительно очень проста: вы помещаете в него электричество с одного конца, а металлический стержень вращается на другом конце, давая вам возможность приводить в движение любую машину.

Примечание: Электродвигатели настолько важны, что влияют практически на все аспекты современной жизни. Холодильники, пылесосы, кондиционеры, вентиляторы, жесткие диски компьютеров, автоматические автомобильные стеклоподъемники и многие другие приборы и устройства используют электродвигатели для преобразования электрической энергии в полезную механическую энергию.

Каков принцип электродвигателя?

Все мы слышали об электродвигателях, но всегда возникал вопрос: «Каков принцип электродвигателя»? Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.В основном существует три типа электродвигателей.

  1. Двигатель постоянного тока.
  2. Асинхронный двигатель.
  3. Синхронный двигатель.

Все эти двигатели работают по более или менее одинаковому принципу. Работа электродвигателя в основном зависит от взаимодействия магнитного поля с током.

Принцип действия электродвигателя: перемещение электродвигателя с помощью электромагнетизма

Основная идея электродвигателя очень проста: вы помещаете в него электричество на одном конце, а ось (металлический стержень) вращается на другом конце, давая вам способность управлять какой-то машиной.Как это работает на практике? Как именно преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы должны вернуться почти на 200 лет назад.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю и прокладываете его между полюсами мощного постоянного подковообразного магнита. Теперь, если вы подключите два конца провода к батарее, провод ненадолго подпрыгнет. Удивительно, когда видишь это впервые. Это похоже на волшебство! Но есть совершенно научное объяснение.

Когда электрический ток начинает течь по проводу, он создает вокруг него магнитное поле. Если вы поместите провод рядом с постоянным магнитом, это временное магнитное поле будет взаимодействовать с полем постоянного магнита. Вы знаете, что два расположенных рядом магнита либо притягиваются, либо отталкиваются. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнита, и это то, что заставляет провод подпрыгивать.

Каков принцип электродвигателя: правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобную мнемонику (вспомогательную память), называемую правилом левой руки Флеминга (иногда называемым правилом двигателя) .

Вытяните большой, указательный и второй пальцы левой руки так, чтобы все три были под прямым углом. Если вы укажете пальцем C в направлении тока C (который течет от положительного полюса аккумулятора к отрицательному), а первый палец F — в направлении поля F (который течет от северного полюса магнита к южному), ваш thu M b покажет направление, в котором движется провод M .

Это…

  • F Первый палец = F Поле
  • Se C Второй палец = C текущий
  • Чт M b = M otion

Что такое Принцип работы электродвигателя: как работает электродвигатель

Теоретически предположим, что мы сгибаем наш провод в квадратную U-образную петлю, так что фактически через магнитное поле проходят два параллельных провода. Один из них отводит от нас электрический ток по проводу, а другой возвращает ток обратно.Поскольку ток течет в проводах в противоположных направлениях, правило левой руки Флеминга говорит нам, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включаем электричество, один из проводов будет двигаться вверх, а другой — вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы были бы на пути к созданию электродвигателя. Но этого не может произойти с нашей нынешней настройкой: провода быстро запутаются.Более того, если бы катушка могла вращаться достаточно далеко, произошло бы кое-что еще.

Когда катушка достигает вертикального положения, она переворачивается, поэтому электрический ток течет через нее в противоположном направлении. Теперь силы на каждой стороне катушки меняются местами. Вместо того, чтобы непрерывно вращаться в одном и том же направлении, он движется назад в том направлении, откуда только что пришел! Представьте себе электропоезд с таким двигателем: он продолжает двигаться вперед и назад на месте, фактически никуда не уезжая.

На практике есть два способа решить эту проблему. Один из них — использовать электрический ток, который периодически меняет направление, известный как переменный ток (AC). В небольших двигателях с батарейным питанием, которые мы используем дома, лучшим решением является добавление компонента, называемого коммутатором, на концах катушки.

Не беспокойтесь о бессмысленном техническом названии: это немного старомодное слово «коммутация» немного похоже на слово «коммутируют». Это просто означает движение вперед и назад так же, как поездка на работу означает движение туда и обратно.В своей простейшей форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины, и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждой половине коммутатора.

Электрический ток от аккумуляторной батареи подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных соединителей, называемых щетками, сделанных либо из кусочков графита (мягкий углерод, похожий на «грифель» карандаша), либо из тонких кусков упругого металла, который (как следует из названия) «задевает» коммутатор.Когда коммутатор установлен, при прохождении электричества по цепи катушка будет постоянно вращаться в одном и том же направлении.

Такой простой экспериментальный двигатель, как этот, не способен развивать большую мощность. Мы можем увеличить вращающую силу (или крутящий момент), которую может создать двигатель, тремя способами: либо у нас может быть более мощный постоянный магнит, либо мы можем увеличить электрический ток, текущий через провод, либо мы можем сделать катушку так, чтобы она много «витков» (петель) очень тонкой проволоки вместо одного «витка» толстой проволоки.

На практике двигатель также имеет постоянный магнит, изогнутый в форме круга, поэтому он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большую силу может создать двигатель.

Хотя мы описали ряд различных частей, вы можете думать о двигателе как о двух основных компонентах:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается неподвижным, поэтому он называется статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Вы можете посмотреть здесь, чтобы получить более наглядное представление о принципе работы электродвигателей.

Подробнее о Linquip

Простое руководство по эффективности двигателя: что это такое и что делать

Принцип работы электродвигателя: работа электродвигателей постоянного тока

Принцип работы электродвигателя постоянного тока в основном зависит от правила левой руки Флеминга.В базовом двигателе постоянного тока между магнитными полюсами размещен якорь. Если обмотка якоря питается от внешнего источника постоянного тока, ток начинает течь по проводникам якоря. Поскольку проводники проводят ток внутри магнитного поля, они испытывают силу, которая стремится вращать якорь.

Предположим, что проводники якоря под N полюсами полевого магнита проводят ток вниз (крестики), а проводники под S полюсами проводят ток вверх (точки).Применяя правило левой руки Флеминга, можно определить направление силы F, испытываемой проводником под N полюсами, и силу, испытываемую проводниками под S-полюсами. Обнаружено, что в любой момент силы, действующие на проводники, имеют такое направление, что они стремятся вращать якорь.

Опять же, из-за этого вращения проводники под N-полюсами попадают под S-полюс, а проводники под S-полюсами — под N-полюс. В то время как проводники идут от N-полюса к S-полюсу и S-полюса к N-полюсу, направление тока через них меняется на противоположное с помощью коммутатора.

Из-за этого реверсирования тока все проводники проходят под N-полюсами, переносят ток в нисходящем направлении, а все проводники, проходящие под S-полюсами, переносят ток в восходящем направлении, как показано на рисунке. Следовательно, каждый проводник находится под N-полюсом, испытывающим силу в одном и том же направлении, и то же самое верно для проводников, проходящих под S-полюсами. Это явление помогает развивать постоянный и однонаправленный крутящий момент.

Принцип работы электродвигателя: Работа асинхронных двигателей

Работа электродвигателя в случае асинхронного двигателя немного отличается от электродвигателя постоянного тока.В однофазном асинхронном двигателе, когда на обмотку статора подается однофазное питание, создается пульсирующее магнитное поле, а в трехфазном асинхронном двигателе, когда трехфазное питание подается на трехфазную обмотку статора, возникает вращающееся магнитное поле. производится.

Ротор асинхронного двигателя может быть с обмоткой или с короткозамкнутым ротором. Каким бы ни был тип ротора, проводники на нем закорочены на концах, образуя замкнутый контур. Из-за вращающегося магнитного поля поток проходит через воздушный зазор между ротором и статором, проходит мимо поверхности ротора и, таким образом, разрезает проводник ротора.

Следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках замкнутого ротора будет циркулировать индуцированный ток. Величина наведенного тока пропорциональна скорости изменения магнитной связи во времени. Опять же, эта скорость изменения магнитной связи пропорциональна относительной скорости между ротором и вращающимся магнитным полем. В соответствии с законом Ленца ротор будет пытаться уменьшить все причины возникновения в нем тока. Следовательно, ротор вращается и пытается достичь скорости вращающегося магнитного поля, чтобы уменьшить относительную скорость между ротором и вращающимся магнитным полем.

Принцип работы электродвигателя: работа синхронных двигателей

В синхронном двигателе, когда на неподвижную трехфазную обмотку статора подается сбалансированное трехфазное питание, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теперь, если внутри этого вращающегося магнитного поля поместить электромагнит, он будет магнитно заблокирован с вращающимся магнитным полем, и первый будет вращаться с вращающимся магнитным полем с той же скоростью, что и с синхронной скоростью.

Работа электродвигателя | Electrical4U

Электродвигатель — это устройство, преобразующее электрическую энергию в механическую. В основном существует три типа электродвигателей.

  1. Двигатель постоянного тока.
  2. Асинхронный двигатель.
  3. Синхронный двигатель.

Все эти двигатели работают по более или менее одинаковому принципу. Работа электродвигателя в основном зависит от взаимодействия магнитного поля с током.
Теперь мы обсудим основной принцип работы электродвигателя один за другим для лучшего понимания предмета.

Работа двигателя постоянного тока

Принцип работы двигателя постоянного тока в основном зависит от правила Флеминга для левой руки. В базовом двигателе постоянного тока между магнитными полюсами размещен якорь. Если обмотка якоря питается от внешнего источника постоянного тока, ток начинает течь по проводникам якоря. Поскольку проводники проводят ток внутри магнитного поля, они испытывают силу, которая стремится вращать якорь. Предположим, что проводники якоря под N полюсами полевого магнита проводят ток вниз (крестики), а проводники под S полюсами проводят ток вверх (точки).Применяя правило левой руки Флеминга, можно определить направление силы F, испытываемой проводником под N полюсами, и силу, испытываемую проводниками под S-полюсами. Обнаружено, что в любой момент силы, действующие на проводники, имеют такое направление, что они стремятся вращать якорь.
Опять же, из-за этого вращения проводники под N-полюсами попадают под S-полюс, а проводники под S-полюсами — под N-полюс. В то время как проводники идут от N-полюса к S-полюсу и S-полюса к N-полюсу, направление тока через них меняется на противоположное с помощью коммутатора.

Из-за этого реверсирования тока все проводники проходят под N-полюсами, переносят ток в нисходящем направлении, а все проводники, проходящие под S-полюсами, переносят ток в восходящем направлении, как показано на рисунке. Следовательно, каждый проводник находится под N-полюсом, испытывающим силу в одном и том же направлении, и то же самое верно для проводников, проходящих под S-полюсами. Это явление помогает развивать постоянный и однонаправленный крутящий момент.

Работа асинхронного двигателя

Работа электродвигателя в случае асинхронного двигателя немного отличается от двигателя постоянного тока.В однофазном асинхронном двигателе, когда на обмотку статора подается однофазное питание, создается пульсирующее магнитное поле, а в трехфазном асинхронном двигателе, когда трехфазное питание подается на трехфазную обмотку статора, создается вращающееся магнитное поле. . Ротор асинхронного двигателя может быть намотанным или с короткозамкнутым ротором. Каким бы ни был тип ротора, проводники на нем закорочены на концах, образуя замкнутый контур. Из-за вращающегося магнитного поля поток проходит через воздушный зазор между ротором и статором, проходит мимо поверхности ротора и, таким образом, разрезает проводник ротора.

Следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках замкнутого ротора будет циркулировать индуцированный ток. Величина наведенного тока пропорциональна скорости изменения магнитной связи во времени. Опять же, эта скорость изменения магнитной связи пропорциональна относительной скорости между ротором и вращающимся магнитным полем. В соответствии с законом Ленца ротор будет пытаться уменьшить все причины возникновения в нем тока. Следовательно, ротор вращается и пытается достичь скорости вращающегося магнитного поля, чтобы уменьшить относительную скорость между ротором и вращающимся магнитным полем.

Принцип работы трехфазного асинхронного двигателя — видео

Работа двигателя Schronous

В синхронном двигателе, когда на неподвижную трехфазную обмотку статора подается сбалансированное трехфазное питание, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теперь, если внутри этого вращающегося магнитного поля поместить электромагнит, он будет магнитно заблокирован с вращающимся магнитным полем, и первый будет вращаться с вращающимся магнитным полем с той же скоростью, что и с синхронной скоростью.

Электродвигатели — MagLab

Подробная инструкция для учителей по проведению практического занятия по электродвигателям.

Охваченные концепции

Время

Это занятие занимает от 45 минут до часа.

Фон

Электродвигатель состоит из двух частей: статора и ротора. В двигателе статор — это часть, которая остается неподвижной, а ротор — это часть, которая движется. Основным принципом для всех работающих двигателей является магнитное притяжение и отталкивание.Поскольку магнит больше не движется после притяжения, двигателю нужен какой-то способ манипулировать магнитными полями, чтобы магниты непрерывно притягивались и отталкивались. Один из способов сделать это — иметь текущее изменение направления. Поскольку электричество переменного тока чередуется, оно естественным образом меняет магнитные поля на противоположные с каждым изменением.

Зачем это нужно делать в классе

  • Поощрять следующие навыки процесса научного исследования: прогнозирование, наблюдение, выработка гипотез и умение делать выводы
  • Чтобы помочь студентам понять взаимосвязь между электричеством и магнетизмом
  • Разрешить учащимся управлять переменными и записывать изменения

Стандарты

Научные стандарты нового поколения для этого вида деятельности:

Элементарный: 3-PS2-3, 3-PS2-4, 4-PS3-4, 3-5-ETS1-3
Средний: MS-PS2-3, MS-PS2-5
Высокий: HS-PS2-5, HS-PS3-5

Материалы

  • D аккумулятор
  • # 20 Медный магнитный провод
  • 2 Скрепки
  • Резинка
  • Кольцо или дисковый магнит
  • Наждачная бумага

Процедура

  1. Оберните магнитный провод вокруг батареи D.С каждого конца оставьте по 3-5 см хвостик. Аккуратно уберите завитки с батареи и намотайте хвосты на противоположные стороны катушки. Полученная форма должна выглядеть как круг с двумя линиями, идущими с противоположных концов.
  2. Используйте мелкую наждачную бумагу, чтобы удалить изоляцию с одного из хвостовиков и только с верхней половины противоположного хвоста.
  3. Расправьте хвосты так, чтобы они были точно напротив друг друга. Проще всего это сделать, если катушка лежит на столе ровно.Это будет ваша арматура для вашего мотора.
  4. Разверните две скрепки и согните их в опоры для хвостов якоря. Они будут подвешивать катушку над блоком батареи / магнита.
  5. Используйте резиновую ленту, чтобы удерживать по одной канцелярской скрепке на батарее (+ и -).
  6. Поместите магнит на стороне батареи посередине между двумя опорами для скрепок. Магнит должен притягиваться к батарее.
  7. Установите якорь в опоры для скрепок.Убедитесь, что ему разрешено свободно вращаться.

Ваша установка должна выглядеть так:

Что происходит

Когда оголенные части якоря соприкасаются, якорь касается опор, течет ток, и он становится электромагнитом. Якорь отреагирует на магнитное поле постоянного магнита и переместится. По мере движения изолированная часть якоря будет контактировать с опорами, и ток прекратится, в результате чего магнитное поле якоря исчезнет, ​​что снова приведет к перемещению якоря.Когда он возвращается в исходное положение, весь процесс начинается снова и повторяется, вызывая непрерывное движение и создавая электродвигатель.


За дополнительной информацией обращайтесь к преподавателю MagLab Карлосу Вилле.

Строительство, работа, типы и применение

Преобразование энергии из электрической в ​​механическую было объяснено Майклом Фарадеем, британским ученым в 1821 году. Преобразование энергии может быть выполнено путем размещения проводника с током в магнитном поле.Таким образом, проводник начинает вращаться из-за крутящего момента, создаваемого магнитным полем и электрическим током. Британский ученый Уильям Стерджен сконструировал машину постоянного тока в 1832 году на основе своего закона. Однако это было дорого и не подходило ни для каких приложений. Итак, наконец, первый электродвигатель был изобретен в 1886 году Фрэнком Джулианом Спрагом.


Что такое электродвигатель?

Электродвигатель можно определить как; это один из видов машин, используемых для преобразования энергии из электрической и механической.Большинство двигателей работают за счет связи между электрическим током и магнитным полем обмотки двигателя для создания силы в форме вращения вала. Эти двигатели могут запускаться от источника постоянного или переменного тока. Генератор механически аналогичен электродвигателю, однако работает в противоположном направлении, преобразуя механическую энергию в электрическую. Схема электродвигателя представлена ​​ниже.

Классификация электродвигателей может быть сделана на основе таких соображений, как тип источника питания, конструкция, тип выходного сигнала движения и применение.Они бывают переменного тока, постоянного тока, бесщеточные, щеточные, фазного типа, например, однофазные, двух- или трехфазные и т. Д. Двигатели с типичными характеристиками и размерами могут обеспечивать подходящую механическую мощность для использования в промышленности. Эти двигатели применимы в насосах, промышленных вентиляторах, станках, воздуходувках, электроинструментах, дисковых накопителях.

Электродвигатель

Конструкция электродвигателя

Конструкция электродвигателя может быть выполнена с использованием ротора, подшипников, статора, воздушного зазора, обмоток, коллектора и т. Д.

конструкция электродвигателя

Ротор

Ротор в электродвигателе является подвижной частью, и его основная функция заключается во вращении вала для выработки механической энергии. Обычно ротор включает в себя проводники, которые проложены для проведения токов и сообщаются с магнитным полем в статоре.

Подшипники

Подшипники в двигателе в основном служат опорой для ротора, чтобы активировать его ось. Вал двигателя расширяется с помощью подшипников под нагрузку двигателя.Поскольку силы нагрузки используются за пределами подшипника, эта нагрузка называется консольной.

Статор

Статор двигателя — неактивная часть электромагнитной цепи. Он включает в себя постоянные магниты или обмотки. Статор может быть изготовлен из различных тонких металлических листов, которые известны как ламинаты. В основном они используются для уменьшения потерь энергии.

Воздушный зазор

Воздушный зазор — это пространство между статором и ротором.Эффект воздушного зазора в основном зависит от зазора. Это основной источник низкого коэффициента мощности двигателя. Когда воздушный зазор между статором и ротором увеличивается, ток намагничивания также увеличивается. По этой причине воздушный зазор должен быть меньше.

Обмотки

Обмотки в двигателях представляют собой провода, проложенные внутри катушек, обычно покрытые вокруг гибкого железного магнитного сердечника, чтобы образовывать магнитные полюса при подаче тока.Для обмоток двигателя медь является наиболее часто используемым материалом. Медь является наиболее распространенным материалом для обмоток, также используется алюминий, хотя он должен быть твердым, чтобы надежно выдерживать аналогичную электрическую нагрузку.

Коммутатор

Коммутатор представляет собой полукольцо в двигателе, изготовленное из меди. Основная функция этого — связать щетки с катушкой. Кольца коммутатора используются для обеспечения того, чтобы направление тока внутри катушки менялось на противоположное каждый полупериод, поэтому одна поверхность катушки часто толкается вверх, а другая поверхность катушки толкается вниз.

Работа электродвигателя

В основном, большинство электродвигателей работают по принципу электромагнитной индукции, однако существуют различные типы двигателей, в которых используются другие электромеханические методы, а именно пьезоэлектрический эффект и электростатическая сила.

Основной принцип работы электромагнитных двигателей может зависеть от механической энергии, которая воздействует на проводник, используя поток электрического тока, и он помещается в магнитное поле. Направление механической силы перпендикулярно магнитному полю, проводнику и магнитному полю.

Типы электродвигателей

В настоящее время наиболее часто используемые электродвигатели включают электродвигатели переменного тока и электродвигатели постоянного тока

Двигатель переменного тока

Двигатели переменного тока

подразделяются на три типа: асинхронные, синхронные и линейные двигатели

  • Асинхронные двигатели подразделяются на два типа, а именно однофазные и трехфазные двигатели
  • Синхронные двигатели подразделяются на два типа: гистерезисные и реактивные двигатели

Двигатель постоянного тока

Двигатели постоянного тока

подразделяются на два типа: двигатели с самовозбуждением и двигатели с независимым возбуждением.

  • Двигатели с самовозбуждением подразделяются на три типа, а именно: серийные, составные и параллельные двигатели
  • Составные двигатели подразделяются на два типа, а именно: двигатели с коротким шунтом и электродвигатели с длинным шунтом.

Применение электродвигателя

Применения электродвигателя включают следующее.

  • Применения электродвигателя в основном включают нагнетатели, вентиляторы, станки, насосы, турбины, электроинструменты, генераторы переменного тока, компрессоры, прокатные станы, корабли, грузчики, бумажные фабрики.
  • Электродвигатель является важным устройством в различных приложениях, таких как HVAC- отопление, вентиляционное и охлаждающее оборудование, бытовая техника и автомобили.

Преимущества электродвигателя

Электродвигатели

имеют несколько преимуществ по сравнению с обычными двигателями, которые включают следующее.

  • Первичная стоимость этих двигателей невысока по сравнению с двигателями, работающими на ископаемом топливе, но их номинальная мощность в лошадиных силах одинакова.
  • Эти двигатели содержат движущиеся части, поэтому срок службы этих двигателей больше.
  • При надлежащем обслуживании мощность этих двигателей составляет до 30 000 часов. Таким образом, каждый двигатель требует минимального обслуживания
  • Эти двигатели чрезвычайно эффективны и обеспечивают автоматическое управление функциями автоматического пуска и останова.
  • Эти двигатели не используют топливо, потому что они не требуют обслуживания моторным маслом или аккумулятором.

Недостатки электродвигателя

К недостаткам этих моторов можно отнести следующее.

  • Большие электродвигатели нелегко перемещать, поэтому необходимо учитывать точное напряжение и ток питания
  • В некоторых ситуациях дорогостоящее расширение линии является обязательным для изолированных областей, где нет доступа к электроэнергии.
  • Обычно эти двигатели работают более эффективно.

Таким образом, все дело в электродвигателе, и его основная функция заключается в преобразовании энергии из электрической в ​​механическую.Эти двигатели очень тихие и удобные, в них используется переменный ток или постоянный ток. Эти двигатели доступны везде, где механическое движение может происходить с использованием переменного или постоянного тока. Вот вам вопрос, как сделать электродвигатель?

Что такое электродвигатель? Определение и типы

Определение : Электродвигатель — это электромеханическая машина, преобразующая электрическую энергию в механическую.Другими словами, устройство, создающее вращающую силу, называется двигателем. Принцип работы электродвигателя в основном зависит от взаимодействия магнитного и электрического поля. Электродвигатели в основном подразделяются на два типа. Это двигатель переменного тока и двигатель постоянного тока. Двигатель переменного тока принимает переменный ток в качестве входа, тогда как двигатель постоянного тока принимает постоянный ток.

Типы электродвигателей

Классификация электродвигателя показана на рисунке ниже.

Двигатель переменного тока

Двигатель переменного тока преобразует переменный ток в механическую энергию. Он подразделяется на три типа; это асинхронный двигатель, синхронный двигатель, линейный двигатель. Подробное описание двигателя приведено ниже.

1. Асинхронный двигатель

Машина, которая никогда не работает с синхронной скоростью, называется асинхронным или асинхронным двигателем. Этот двигатель использует явление электромагнитной индукции для преобразования электроэнергии в механическую.По конструкции ротора различают два типа асинхронных двигателей. А именно асинхронный двигатель с короткозамкнутым ротором и асинхронный двигатель с фазной обмоткой.

  • Ротор с короткозамкнутым ротором — Двигатель, который состоит из ротора с короткозамкнутым ротором, известен как асинхронный двигатель с короткозамкнутым ротором. Ротор с короткозамкнутым ротором снижает гудение и магнитную блокировку ротора.
  • Ротор с фазовой обмоткой — Этот ротор также известен как ротор с контактным кольцом, а двигатель, использующий этот тип ротора, известен как ротор с фазовой обмоткой.

По фазам асинхронный двигатель подразделяется на два типа. Это однофазный асинхронный двигатель и трехфазный асинхронный двигатель.

  • Однофазный асинхронный двигатель — Машина, которая преобразует электрическую мощность однофазного переменного тока в механическую с помощью явления электромагнитной индукции, известна как однофазный асинхронный двигатель.
  • Трехфазный асинхронный двигатель
  • T Двигатель, который преобразует трехфазную электрическую мощность переменного тока в механическую энергию, такой тип двигателя известен как трехфазный асинхронный двигатель.

2. Линейный двигатель

Двигатель, который создает линейную силу вместо силы вращения, известен как линейный двигатель. Этот двигатель имеет развернутые ротор и статор. Такой тип двигателя используется в раздвижных дверях и в приводах.

3. Синхронный двигатель

Машина, которая преобразует переменный ток в механическую энергию с желаемой частотой, известна как синхронный двигатель. В синхронном двигателе скорость двигателя синхронизирована с частотой питающего тока.

Синхронная скорость измеряется относительно вращения магнитного поля и зависит от частоты и полюсов двигателя. Синхронный двигатель подразделяется на два типа: реактивный и гистерезисный.

  • Реактивный двигатель — Двигатель, процесс пуска которого аналогичен асинхронному двигателю и который работает как синхронный двигатель, известен как реактивный двигатель.
  • Двигатель с гистерезисом — Двигатель с гистерезисом представляет собой тип синхронного двигателя, который имеет равномерный воздушный зазор и не имеет системы возбуждения постоянным током.Крутящий момент в двигателе создается гистерезисом и вихревым током двигателя.

Двигатель постоянного тока

Машина, преобразующая электрическую мощность постоянного тока в механическую, известна как двигатель постоянного тока. Его работа зависит от основного принципа: когда проводник с током помещается в магнитное поле, на него действует сила и возникает крутящий момент. Электродвигатели постоянного тока подразделяются на два типа: электродвигатели с самовозбуждением и электродвигатели с независимым возбуждением.

1. Двигатель с автономным возбуждением

Двигатель, в котором обмотка постоянного тока возбуждается отдельным источником постоянного тока, известен как двигатель постоянного тока с отдельным возбуждением.С помощью отдельного источника обмотка якоря двигателя возбуждается и создает магнитный поток.

2. Двигатель с самовозбуждением

По подключению обмотки возбуждения двигатели постоянного тока с самовозбуждением подразделяются на три типа. Это последовательные, шунтовые и комбинированные двигатели постоянного тока.

  • Шунтирующий двигатель — Двигатель, в котором обмотка возбуждения расположена параллельно якорю, такой тип двигателя известен как параллельный двигатель.
  • Двигатель серии — В этом двигателе обмотка возбуждения соединена последовательно с якорем двигателя.
  • Электродвигатель с комбинированной обмоткой — электродвигатель постоянного тока, который имеет как параллельное, так и последовательное соединение обмотки возбуждения, известен как комбинированный ротор с обмоткой. Электродвигатели с комбинированной обмоткой подразделяются на электродвигатели с коротким шунтом и электродвигатели с длинным шунтом.
    • Короткий шунтирующий двигатель — Если обмотка шунтирующего возбуждения параллельна только якорю двигателя, а не последовательному полю, то это известно как короткое шунтирующее соединение двигателя.
    • Длинный шунтирующий двигатель — Если шунтирующая обмотка возбуждения параллельна якорю и последовательной обмотке возбуждения, то двигатель называется длинным шунтирующим двигателем.

Помимо вышеупомянутых двигателей, существуют различные другие типы специальных машин, которые имеют дополнительные функции, такие как шаговый двигатель, серводвигатель переменного и постоянного тока и т. Д.

Электродвигатель — класс 10, магнитное воздействие электрического тока

Вопрос 1 Что такое электродвигатель?

Вопрос 2 По какому принципу работает электродвигатель?

Вопрос 3 Объясните, как устроен электродвигатель?

Вопрос 4 Даете коммерческое использование электродвигателю?

Вопрос 5 Дайте примеры использования D.C. мотор?

Электродвигатель

Электродвигатель

— это устройство, преобразующее электрическую энергию в механическую.

Принцип электродвигателя

Принцип работы электродвигателя основан на том факте, что проводник с током создает вокруг себя магнитное поле. На проводник с током, расположенный перпендикулярно магнитному полю, действует сила.

Конструкция электродвигателя

(1) Катушка якоря

Состоит из одиночного витка изолированного медного провода в форме прямоугольника.

(2) Магнит с сильным полем

Катушка якоря расположена между 2 полюсными наконечниками сильного магнита, которые создают сильное магнитное поле.

(3) Коммутатор с разъемным кольцом

Состоит из 2-х половинок металлического кольца. Два конца катушки якоря соединены с этими двумя половинками кольца. Коммутаторы меняют направление тока в катушке якоря.

(4) Щетки

Две угольные щетки прижимаются к коллектору.Эти щетки действуют как контакт между коммутатором и клеммой аккумуляторной батареи.

(5) Аккумулятор

Подключен через угольные щетки. Он подает ток на катушку якоря.

Работа электродвигателя

(i) На стороне AB прямоугольной катушки ABCD направление тока от A к B, а на стороне CD катушки направление тока от C к D. Направление магнитного поля от N полюс магнита к его S полюсу.

(ii) Применяя правило левой руки Флеминга к сторонам AB и CD катушки, сила на стороне AB катушки направлена ​​вниз, тогда как сила на стороне CD катушки направлена ​​вверх. За счет этого сторона AB катушки прижимается вниз, а сторона CD — вверх. Это заставляет катушку ABCD вращаться против часовой стрелки.

(iii) При вращении, когда катушка достигает вертикального положения, тогда щетки касаются зазора между двумя кольцами коммутатора, и ток катушки отключается.Хотя ток в катушке отключается, когда она находится в точном вертикальном положении, катушка не перестает вращаться, потому что она уже набрала импульс, из-за чего она выходит за пределы вертикального положения.

(iv) После полуоборота, когда катушка выходит за вертикальное положение, боковая сторона CD катушки выходит на левую сторону, тогда как сторона AB катушки идет вправо, и два полукольца коммутатора автоматически меняют контакт с одного. кисть к другому.

(v) После полуоборота катушки полукольцо коммутатора R 2 входит в контакт со щеткой B 1 , тогда как полукольцо коммутатора R 1 контактирует со щеткой B 2 .Это меняет направление тока в катушке.

(vi) Изменение направления тока меняет направление силы, действующей на стороны AB и CD катушки. Боковая сторона CD катушки теперь находится на левой стороне с направленной вниз силой, тогда как сторона AB теперь находится на правой стороне с направленной вверх силой. За счет этого боковая сторона CD катушки прижимается вниз, а сторона AB катушки подталкивается вверх. Это заставляет катушку вращаться против часовой стрелки еще на половину оборота.

(vii) Реверсирование тока в катушке повторяется после каждой половины оборота, в результате чего катушка продолжает вращаться, пока через нее проходит ток от батареи.

Коммерческий двигатель использует

(1) Электромагнит вместо постоянного магнита.

(2) Сердечник из мягкого железа, на который намотана катушка.

Использование электродвигателя постоянного тока

Применяется в электромобилях, прокатных станах, электрических кранах, подъемниках, сверлильном станке, вентиляторах, фенах, нагнетателях, магнитофонах, холодильниках, стиральных машинах, миксерах, блендерах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *