Принцип работы электростанций: устройство ТЭС и ТЭЦ

Как устроены и работают тепловые электростанции. Какие бывают виды ТЭС. В чем отличие ТЭЦ от КЭС. Какой принцип работы парогазовых установок. Как повысить эффективность тепловых электростанций.

Содержание

Принцип работы тепловых электростанций

Тепловые электростанции (ТЭС) преобразуют тепловую энергию сжигаемого топлива в электрическую. Основные этапы этого процесса:

  1. Сжигание топлива (угля, газа, мазута) в котле
  2. Нагрев воды и получение пара высокого давления
  3. Подача пара на турбину, вращение ротора турбины
  4. Вращение ротора электрогенератора, выработка электроэнергии
  5. Охлаждение отработанного пара в конденсаторе
  6. Возврат конденсата в котел

Как происходит преобразование тепловой энергии в электрическую на ТЭС? Пар высокого давления подается на лопасти турбины, заставляя ее вращаться. Турбина соединена с ротором электрогенератора. При вращении ротора в обмотках статора индуцируется электрический ток.

Виды тепловых электростанций

Основные виды ТЭС:


  • Конденсационные электростанции (КЭС)
  • Теплоэлектроцентрали (ТЭЦ)
  • Парогазовые установки (ПГУ)
  • Газотурбинные установки (ГТУ)

Чем отличаются КЭС от ТЭЦ? КЭС вырабатывают только электроэнергию, а ТЭЦ производят как электричество, так и тепло для отопления и горячего водоснабжения. КПД ТЭЦ выше за счет комбинированной выработки энергии.

Устройство и принцип работы ТЭЦ

Теплоэлектроцентраль (ТЭЦ) состоит из следующих основных элементов:

  • Котельная установка
  • Паровая турбина
  • Электрогенератор
  • Система теплофикации
  • Система водоподготовки
  • Система топливоподачи

Как работает ТЭЦ? В котле сжигается топливо и вырабатывается пар. Часть пара направляется в турбину для выработки электроэнергии. Отработанный пар из турбины используется для нагрева сетевой воды в теплообменниках. Нагретая вода подается потребителям для отопления и горячего водоснабжения.

Парогазовые установки: принцип действия

Парогазовая установка (ПГУ) объединяет газотурбинный и паротурбинный циклы. Принцип работы ПГУ:

  1. Сжигание газа в камере сгорания газовой турбины
  2. Вращение газовой турбины и выработка электроэнергии
  3. Использование выхлопных газов турбины для получения пара в котле-утилизаторе
  4. Подача пара на паровую турбину для дополнительной выработки электричества

Какие преимущества у парогазовых установок? ПГУ имеют более высокий КПД (до 60%) по сравнению с обычными паросиловыми установками. Они позволяют экономить топливо и снижать выбросы вредных веществ.


Повышение эффективности тепловых электростанций

Основные способы повышения КПД тепловых электростанций:

  • Применение парогазового цикла
  • Увеличение начальных параметров пара (температуры и давления)
  • Снижение конечного давления пара в конденсаторе
  • Промежуточный перегрев пара
  • Регенеративный подогрев питательной воды
  • Когенерация (комбинированная выработка электроэнергии и тепла)

Какой максимальный КПД можно получить на современных ТЭС? КПД лучших парогазовых установок достигает 60-63%. Это значительно выше, чем у традиционных паросиловых установок, КПД которых обычно не превышает 40-45%.

Экологические аспекты работы тепловых электростанций

Основные экологические проблемы, связанные с работой ТЭС:

  • Выбросы парниковых газов (CO2)
  • Выбросы оксидов серы и азота
  • Образование золы и шлаков при сжигании угля
  • Тепловое загрязнение водоемов

Как снизить негативное воздействие ТЭС на окружающую среду? Основные методы:

  1. Установка систем очистки дымовых газов
  2. Внедрение технологий чистого сжигания угля
  3. Использование более экологичных видов топлива (газ вместо угля)
  4. Повышение КПД электростанций
  5. Утилизация золы и шлаков

Перспективы развития тепловой энергетики

Основные тенденции развития тепловых электростанций:


  • Увеличение единичной мощности энергоблоков
  • Повышение параметров пара (до суперсверхкритических)
  • Широкое внедрение парогазовых технологий
  • Развитие систем автоматизации и цифровизации
  • Применение водородных технологий
  • Внедрение технологий улавливания и хранения углерода

Какое будущее у тепловой энергетики? Несмотря на развитие возобновляемых источников энергии, тепловые электростанции еще долго будут играть важную роль в энергетике. Основной задачей является повышение их эффективности и экологичности.


Принцип работы ТЭЦ, устройство ТЭС

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.

Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО

2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.

Чистое сжигание угля (Clean Coal)

Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО

2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.

Сургутская ГРЭС-2

Принцип работы ТЭЦ

Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других — до уровня обессоленной воды и идет на подпитку энергоблоков.

Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

Высококлассные специалисты «Мосэнерго» круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

Как работает парогазовый энергоблок


Тепловые электростанции (КЭС, ТЭЦ): разновидности, принцип работы, мощность

Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции — теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее собственных нужд.

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.

Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу — вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, трансформаторов) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на напряжения 110—750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего напряжения или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок — система напряжения 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Теплоэлектроцентрали

Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, коэффициент полезного действия (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.

Этот пар или  непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.

Основное отличие технологии производства энергии на ТЭЦ в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).

Связь ТЭЦ с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.

Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.

Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.

По таким схемам сооружаются промышленные ТЭЦ с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.

На крупных современных ТЭЦ применяются генераторы мощностью до 250 мВт при общей мощности станции 500—2500 мВт.

Такие ТЭЦ сооружаются вне черты города и электроэнергия передается на напряжении 35—220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной ТЭЦ предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на ТЭЦ имеется ГРУ и несколько генераторов соединены по блочным схемам.

Атомные электростанции | Ассоциация «НП Совет рынка»

Полезные разделы

Атомные электростанции

Атомные электростанции

Атомные электростанции —  Атомные электростанции, в настоящее время, являются одними из основных поставщиков электроэнергии для промышленности и бытового потребления. Примечательно то, что первая в мире атомная электростанция была построена в СССР, в городе Обнинске. Первоначальная её мощность составляла 5 МВт, однако именно Обнинская АЭС положила начало для бурного развития атомной энергетики во всем мире. Запустив первый на планете управляемый атомный реактор, практически была доказана сама возможность получения электроэнергии на основе расцепления урановых ядер. В то время, атомная энергетика являлась своего рода возможностью использования альтернативного топлива, однако очень быстро именно атомные электростанции стали доминировать среди прочих систем получения электроэнергии. Принцип работы атомной электростанции очень прост — это обычное преобразование тепловой энергии в электрическую. Иными словами АЭС работают по тому же принципу, что и обычные тепловые электростанции, с одним лишь отличием  — для нагрева воды используется энергия, получаемая при распаде ядер урана.  Источником тепловой энергии в АЭС служит ядерный реактор, в котором протекает управляемая ядерная реакция. Сама реакция протекает по цепному механизму: деление одного ядра самопроизвольно вызывает деление других ядер. Цепная реакция сама себя поддерживает, и может длиться до полного распада всех ядер вещества. А управление сводится лишь к регулированию её скорости и, соответственно, мощности, а также к произвольной её остановке в случае необходимости. Топливом для атомных электростанций служат вещества, способные, при определенном начальном стимулировании, совершать цепную реакцию расщепления ядер элементов, в основном трансурановой группы. В настоящее время основными являются плутоний и уран.Как же работает цепная реакция? При делении ядра урана высвобождаются нейтроны, которые воздействуют на другие ядра, вызывая их деление. Однако практически осуществить подобную реакцию не так просто, как кажется на первый взгляд. Дело в том, что такие нейтроны могут вызывать деление изотопов урана с массовым числом 235, тогда как в природной руде их содержится лишь 0,7%. Остальные 99,3% приходятся на долю изотопа 238, для деления которого, энергии нейтронов, не хватает. Именно поэтому для функционирования реактора важна критическая масса  — это минимальная масса урана, при которой возможно возникновение и протекание цепной реакции. Например, для урана-235 она составляет несколько десятков килограмм, что на самом деле, учитывая низкое его процентное соотношение, не так уж и мало.Перейдем к устройству и принципу выработки электричества АЭС.Та часть ядерного реактора, в котором находится топливо, и идут процессы деления ядер урана называется активной зоной. В результате протекания ядерной реакции выделяется огромное количество тепла — это и есть начальная тепловая энергия, преобразующаяся впоследствии в электрическую.Активная зона реактора имеет очень высокую степень защиты, обеспечивающей сравнительно безопасные условия для работы персонала АЭС. В активной зоне находятся специальные управляющие стержни, позволяющие регулировать скорость протекания реакции. Чаще всего — это бор или кадмий, которые достаточно сильно поглощают нейтроны. Иными словами, чем больше поглощено нейтронов, тем меньше ядер урана делиться, и, соответственно, снижается скорость реакции. Чем глубже погружаются стержни, тем меньше выделяется тепла, и наоборот.  Именно образование тепловой энергии и есть суть цепной реакции. Тепло из реактора выводится при помощи определенных теплоносителей, которыми, в зависимости от типа атомной электростанции, могут выступать вода, металлический натрий или некоторые газы. Они отбирают в активной зоне тепло, и переносят его в специальные теплообменники, попутно охлаждая реактор. Эта система называется первым контуром. Далее вступает в действие так называемый второй контур АЭС. В теплообменнике нагревается вода, образующийся в результате этого пар передается на лопасти турбины, которая через специальную систему приводит в действие генераторы, непосредственно вырабатывающие электричество.  Иными словами, атомные электростанции  — это очень большие «чайники», работающие на ядерном топливе и служащие, в первую очередь, для нагрева воды до кипения.  В настоящее время активно ведутся работы по проектированию и созданию термоядерных электростанций, основным преимуществом которых является возможность работать неопределенно долгое время.  Термоядерные электростанции, в отличие от атомных, протекают на основе термоядерного синтеза, в результате которого из изотопов водорода образуется гелий и выделяется огромное количество энергии. Кроме того, такие электростанции более безопасны и экологически чистые, так как реакция термоядерного синтеза не приводит к образованию радиоактивных продуктов, а топливом для неё может служить обычная вода, из которой получают тяжелый изотоп водорода — дейтерий.  К сожалению, на данный момент иной альтернативы атомным электростанциям, даже учитывая их потенциальную опасность, нет, так как в мире не предвидится скорого снижения спроса на электроэнергию, потребности в которой, напротив, растут год от года.   

Принцип работы и типы ТЭЦ, устройство ТЭС

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, экологическая угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.

Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Типы ТЭЦ

По типу соединения котлов и турбин теплоэлектроцентрали могут быть блочные и неблочные (с поперечными связями). На блочных ТЭЦ котлы и турбины соединены попарно (иногда применяется дубль-блочная схема: два котла на одну турбину). Такие блоки имеют, как правило, большую электрическую мощность: 100—300 МВт.


ТЭЦ-1 и ТЭЦ-2 в Северодвинске


ТЭЦ-5 в Новосибирске

Схема с поперечными связями позволяет перебросить пар от любого котла на любую турбину, что повышает гибкость управления станцией. Однако для этого необходимо установить крупные паропроводы вдоль главного корпуса станции. Кроме того, все котлы и все турбины, объединённые в схему, должны иметь одинаковые номинальные параметры пара (давление, температуру). Если в разные годы на ТЭЦ устанавливалось основное оборудование разных параметров, должно быть несколько схем с поперечными связями. Для принудительного изменения параметров пара может быть использовано редукционно-охладительное устройство (РОУ).

По типу паропроизводящих установок могут быть ТЭЦ с паровыми котлами, с парогазовыми установками, с ядерными реакторами (атомная ТЭЦ). Могут быть ТЭЦ без паропроизводящих установок — с газотурбинными установками. Поскольку ТЭЦ часто строятся, расширяются и реконструируются в течение десятков лет (что связано с постепенным ростом тепловых нагрузок), то на многих станциях имеются установки разных типов. Паровые котлы ТЭЦ различаются также по типу топлива: уголь, мазут, газ.

По типу выдачи тепловой мощности различают турбины с регулируемыми теплофикационными отборами пара (в обозначении турбин, выпускаемых в России, присутствует буква «Т», например, Т-110/120-130), с регулируемыми производственными отборами пара («П»), с противодавлением («Р»). Обычно имеется 1—2 регулируемых отбора каждого вида; при этом количество нерегулируемых отборов, используемых для регенерации тепла внутри тепловой схемы турбины, может быть любым (как правило, не более 9, как для турбины Т-250/300-240). Давление в производственных отборах (номинальное значение примерно 1—2 МПа) обычно выше, чем в теплофикационных (примерно 0,05—0,3 МПа). Термин «Противодавление» означает, что турбина не имеет конденсатора, а весь отработанный пар уходит на производственные нужды обслуживаемых предприятий. Такая турбина не может работать, если нет потребителя пара противодавления. В похожем режиме могут работать теплофикационные турбины (типа «Т») при полной тепловой нагрузке: в таком случае весь пар уходит в отопительный отбор, однако давление в конденсаторе поддерживается немногим более номинального (обычно не более 12—17 кПа). Для некоторых турбин возможна работа на «ухудшенном вакууме» — до 20 кПа и более.

Кроме того, выпускаются паровые турбины со смешанным типом отборов: с регулируемыми теплофикационными и производственными отборами («ПТ»), с регулируемыми отборами и противодавлением («ПР») и др. На ТЭЦ могут одновременно работать турбины различных типов в зависимости от требуемого сочетания тепловых нагрузок.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Преимущества ТЭС

ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Главное – электричество

Обозначение «ГРЭС»  – пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто – «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС компании «Юнипро» в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.

В современном понимании ГРЭС – это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции – выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года).
Поэтому ГРЭС, как правило, расположены вдали от крупных городов – благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт – как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва».

Интересно, что далеко не все станции, имеющие в своем названии аббревиатуру «ГРЭС», являются конденсационными; некоторые из них давно работают как теплоэлектроцентрали. Например, Кемеровская ГРЭС «Сибирской генерирующей компании» (СГК). «Изначально, в 1930-е годы, она вырабатывала только электроэнергию. Тем более что энергодефицит тогда был большой. Но когда вокруг станции вырос город Кемерово, на первый план вышел другой вопрос – как отапливать жилые кварталы? Тогда станцию перепрофилировали в классическую теплоэлектроцентраль, оставив лишь историческое название – ГРЭС. Для того, чтобы работник с гордостью мог сказать: «Я работаю на ГРЭС!». Потребление угля на электричество и тепло на станции идет сегодня в пропорции 50 на 50», — объясняет «Кислород.ЛАЙФ» начальник управления эксплуатации ТЭС Кузбасского филиала СГК Алексей Кутырев.

В то же время на других ГРЭС, входящих в СГК – например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае – 97% сжигаемого угля идет на генерацию электричества. И всего 3% – на выработку тепла. И такая же картина, за редким исключением – практически на любой другой ГРЭС.

Алексей Кутырев    начальник управления эксплуатации ТЭС Кузбасского филиала

«Для ТЭЦ электроэнергия, в отличие от ГРЭС – продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя – и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия – не так уж и важно. Важно – выдать нужные гигакалории, чтобы потребителям, в основном – населению, было комфортно»

Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2(входит в «Юнипро») – ее мощность 5657,1 МВт (мощнее в нашей стране – только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2017 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская — она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь.


Кемеровская ГРЭС давно перепрофилирована в классическую теплоэлектроцентраль, ей оставлено лишь историческое название – ГРЭС.

В приоритете – тепло

Теплоэнергоцентрали (ТЭЦ) – это еще один тип ТЭС, но это не конденсационная, а теплофикационная станция.  ТЭЦ, главным образом, производят тепло – в виде технологического пара и горячей воды (в том числе для горячего водоснабжения и отопления жилых и промышленных объектов). Поэтому ТЭЦ являются ключевым элементом в централизованных системах теплоснабжения в городах, по уровню проникновения которых Россия является одним из мировых лидеров. Средние и малые ТЭЦ являются также незаменимыми спутниками крупных промышленных предприятий. Ключевая черта ТЭЦ – когенерация: одновременное производство тепла и электричества . Это и эффективнее, и выгоднее выработки, например, только электроэнергии (как на ГРЭС) или только тепла (как на котельных). Поэтому в СССР в свое время и сделали ставку на повсеместное развитие теплофицикации.

Принципиальное отличие ТЭЦ от ГРЭС, при том что все это котлотурбинные и паротурбинные электростанции — разные типы турбин. На теплоэлектроцентралях ставят теплофикационные турбины марки «Т», отличие которых от конденсационных турбин типа «К» (которые работают на ГРЭС) – наличие регулируемых отборов пара. В дальнейшем он направляется, например, к подогревателям сетевой воды, откуда она идет в батареи квартир или в краны с горячей водой. Наибольшее распространение в нашей стране исторически получили турбины Т-100, так называемые «сотки». Но работают на ТЭЦ и противодавленческие турбины типа «Р», которые производят технологический пар (у них нет конденсатора и пар, после того, как выработал электроэнергию в проточной части, идет напрямую промышленному потребителю). Бывают и турбины типа «ПТ», которые могут работать и на промышленность, и на теплофикацию.

В турбинах типа «К» процесс расширения пара в проточной части заканчивается его кондесацией (что позволяет получать на одной установке большую мощность – до 1,6 ГВт и более).

Алексей Кутырев    начальник управления эксплуатации ТЭС Кузбасского филиала

«Для ТЭЦ электроэнергия, в отличие от ГРЭС – продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя – и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия – не так уж и важно. Важно – выдать нужные гигакалории, чтобы потребителям, в основном – населению, было комфортно»

В отопительный сезон ТЭЦ работают по так называемому «тепловому графику» – поддерживают температуру сетевой воды в магистрали в зависимости от температуры наружного воздуха. В этом режиме ТЭЦ могут нести и базовую нагрузку по электроэнергии, демонстрируя, кстати, очень высокие коэффициенты использования установленной мощности (КИУМ). По электрическому графику ТЭЦ обычно работают в теплые месяцы года, когда отборы на теплофикацию с турбин отключаются. ГРЭС же работают исключительно по электрическому графику.

Нетрудно догадаться, что ТЭЦ в России гораздо больше ГРЭС – и все они, как правило, сильно различаются по мощности. Вариантов их работы также великое множество. Некоторые ТЭЦ, например, работают как ГРЭС — такова, к примеру, ТЭЦ-10 компании «Иркутскэнерго». Другие функционируют в тесной спайке с промышленными предприятиями – и потому не снижают свою мощность даже в летний период. Например, Казанская ТЭЦ-3 ТГК-16 снабжает паром гигант химиндустрии – «Казаньоргсинтез» (обе компании входят в Группу ТАИФ). А Ново-Кемеровская ТЭЦ СГК генерирует пар для нужд КАО «Азот». Некоторые станции обеспечивают теплом и горячей водой преимущественно население – например, все четыре ТЭЦ в Новосибирске с 1990-х практически прекратили производство технологического пара.

Случается, что теплоэлектроцентрали вообще не производят электрической энергии – хотя таких сейчас и меньшинство. Связано это с тем, что в отличие от гигакалорий, стоимость которых жестко регулируются государством, киловатты в России являются рыночным товаром. В этих условиях даже те ТЭЦ, что ранее не работали на оптовый рынок электроэнергии и мощности, постарались на него выйти. В структуре СГК, например, такой путь прошла Красноярская ТЭЦ-3, до марта 2012 года вырабатывавшая только тепловую энергию. Но с 1 марта того года на ней ввели в строй первый угольный энергоблок в России на 208 МВт, построенный в рамках ДПМ. С тех пор эта станция вообще стала образцово-показательной в СГК по энергоэффективности и экологичности.


Красноярская ТЭЦ-3 до марта 2012 года вырабатывала только тепловую энергию. А сейчас является образцово-показательной в СГК по энергоэффективности и экологичности.

Крупнейшие ТЭЦ в России работают на газе и находятся под крылом «Мосэнерго». Самой мощной, вероятно, можно считать ТЭЦ-26, расположенную в московском районе Бирюлево Западное – по крайней мере, по показателю электрической мощности 1841 МВт она опережает все другие ТЭЦ страны. Эта электростанция обеспечивает централизованное теплоснабжение промышленных предприятий, общественных и жилых зданий с населением более 2 млн человек в районах Чертаново, Ясенево, Бирюлево и Марьино. Тепловая мощность у этой ТЭЦ хоть и высока (4214 Гкал/час), но не является рекордной. У ТЭЦ-21 того же «Мосэнерго» мощность по теплу выше – 4918 Гкал/час, хотя по электроэнергии она немногим уступает «коллеге» (1,76 ГВт).

Математические модели и методы, используемые в задачах управления ТЭС

Как известно, технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии. Технологический процесс имеет особенность — конечный продукт — электроэнергия — не подлежит складированию. Косвенным показателем соответствия между паропроизводительностью котла мощностью турбины служит давление перегретого пара.

Современные ТЭС делятся на два типа:

  1. С поперечными связями. Основной агрегат по пару и воде связаны между собой
  2. С блочной компоновкой. При таком типе основное оборудование описывается отдельным технологическим процессом в пределах каждого энергоблока.

Для описания технологических процессов и формирования критериев управления составляются математические модели. Их изображают в форме уравнений.

В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе.

Экологические аспекты использования

Энергетика является одним из тех секторов мировой экономики, изменения в которых необходимы, чтобы избежать неприемлемых последствий глобального потепления. Оценки энергоинфраструктуры на основе глобального 2эмиссионного бюджета CO показывают, что после 2017 года в мире не должны вводиться в строй новые электростанции, работающие на ископаемом топливе.

Тепловые электростанции зачастую становятся «мишенями» для радикально настроенных климатических активистов.

Источники

  • http://www.vseznaika.org/proizvodstvo/chto-takoe-aes-tec-i-tes/
  • https://www.techcult.ru/technology/5057-princip-raboty-i-ustrojstvo-tec-tes
  • https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%B0%D0%BB%D1%8C
  • https://www.syl.ru/article/315522/tes—eto-chto-takoe-tes-i-tets-razlichiya
  • https://sibgenco.online/news/element/what-distinguishes-tpp-from-tpp/
  • https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D0%B0%D1%8F_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%81%D1%82%D0%B0%D0%BD%D1%86%D0%B8%D1%8F

[свернуть]

Принцип работы атомной электростанции. Справка

Сpеди них пеpвый и наиболее pаспpостpаненный тип – это pеактоp на обогащенном уpане, в котоpом и теплоносителем, и замедлителем является обычная, или «легкая», вода (легководный реактор). Существуют две основные pазновидности легководного реактора: pеактоp, в котоpом паp, вpащающий туpбины, обpазуется непосpедственно в активной зоне (кипящий реактор, в России – РБМК — реактор большой мощности, канальный), и pеактоp, в котоpом паp обpазуется во внешнем, или втоpом, контуpе, связанном с пеpвым контуpом теплообменниками и паpогенеpатоpами (водо водяной энергетический реактор – ВВЭР).

Втоpой тип pеактоpа – газоохлаждаемый pеактоp (с гpафитовым замедлителем).

Тpетий тип pеактоpа, – это реактоp, в котоpом и теплоносителем, и замедлителем является тяжелая вода, а топливом природный уран.

Существует также реактор на быстрых нейтронах (БН).

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление – до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива  под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы – ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки – ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции – двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты – сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

Основные процессы, происходящие во время работы АЭС:

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум  из двух независимых комплектов. 

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не  менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому  необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При  достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в  любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе  любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Газопоршневая электростанция принцип работы — IEC Energy

Газопоршневая установка (ГПУ) — это вид энергетического оборудования, предназначенного для нецентрализованного производства электрической энергии. В зависимости от комплектации ГПУ дополнительными устройствами агрегат также может служить источником дополнительных энергоресурсов:

  • тепловой энергии в виде горячей воды и/или пара;
  • охлаждённой воды как хладагента.

Основу газопоршневой установки составляет приводной двигатель внутреннего сгорания (ДВС), работающий на природном газе. На одной раме с ним установлен синхронный электрический генератор.

Двигатели внутреннего сгорания, использующие в качестве топлива газ, называют газопоршневыми двигателями (ГПД).

Принцип работы двигателя газопоршневой установки

Газопоршневой двигатель, используемый в ГПУ, является конструктивной разновидностью двигателя внутреннего сгорания. По этой причине плюсы и минусы ГПУ имеют общие черты с другими установками, использующими ДВС. Источником энергии, вырабатываемой ГПД, служит теплота сгорания газообразного топлива.

Двигатели газопоршневых установок оборудованы внешней системой образования рабочей газо-воздушной смеси. В функции системы входит подготовка смеси воздуха с горючим газом в требуемой пропорции. Эта работа осуществляется газовым смесителем с трубками Вентури.

В газопоршневых установках производства компании MTU применяются двигатели, оборудованные системой турбонаддува. Вращение турбины происходит за счёт использования энергии выхлопных газов двигателя. Турбина служит приводом компрессора, создающего избыточное давление для нагнетания топливной смеси в цилиндры. Такая схема топливоподачи в сочетании с использованием обеднённой топливной смеси обеспечивает уменьшение удельного расхода топлива в расчёте на 1 кВт вырабатываемой мощности. Для воспламенения топлива применяется искровое высоковольтное зажигание.

Газопоршневые установки MTU оснащены двигателями с V-образным расположением цилиндров, количество которых в зависимости от мощности агрегата может быть от 8 до 20.

Генератор газопоршневой установки

Газопоршневая электростанция — это совместная работа ГПД и синхронного генератора переменного тока. Конструктивно синхронный генератор состоит из следующих элементов:

  • неподвижного статора, содержащего обмотку переменного тока;
  • вращающегося ротора, находящегося внутри статора.

На роторе расположена обмотка постоянного тока, которая питается от внешнего источника и называется обмоткой возбуждения.

Принцип работы газопоршневой электростанции с синхронным генератором заключается в следующем:

  • приводной двигатель вращает вал ротора генератора;
  • ток, протекающий в обмотке возбуждения, создаёт вращающееся электромагнитное поле;
  • поле обмотки ротора индуцирует переменное синусоидальное напряжение в обмотке статора, которое используется для питания нагрузки электростанции.

Особенностью синхронного генератора является совпадение частоты вращения ротора с частотой вращения электрического поля обмотки возбуждения. Неотъемлемая часть синхронного генератора — контактный щёточно-коллекторный механизм. Его наличие связано с необходимостью подачи питания на обмотку возбуждения, вращающуюся вместе с ротором.

Генератор крепится на рамном основании ГПУ в непосредственной близости от ГПД. Валы генератора и двигателя сопряжены соосно.

Основные системы ГПУ

Газопоршневая установка — это не только двигатель и генератор, собранные на одной раме, но и большое количество вспомогательного оборудования. Рассмотрим его подробнее на примере ГПУ GB2145N5/ 20V4000L33 производства MTU Onsite Energy (Германия).

Мотор без вспомогательных агрегатов

  • Картер мотора из серого чугуна с монтажными отверстиями, картер маховика SAE 00, маховик 21, масляная ванна из серого чугуна.
  • Кованый коленчатый вал.
  • Кованый шатун.
  • Отдельные четырех-клапанные цилиндрические головки, армированные клапаны с устройством вращения клапана Rotocap.
  • Цельный поршень (из легкого сплава) с упрочняющей вставкой для кольца; канал для охлаждения; охлаждение поршня через заправочные жиклеры.

Смесеобразование

  • Всасывание воздуха через установленные на моторе воздухоочистители с сухим фильтрующим элементом.
  • Газовый смеситель с трубками Вентури; подача газа через электрически регулируемый клапан-дозатор.

Наддув

  • Сжатие смеси турбокомпрессором, работающим на отработавших газах.
  • Двухступенчатый смесительный охладитель.
  • Дроссельные клапаны между смесительным охладителем и трубопроводами распределения смеси.

Система отработавшего газа

  • Неохлаждаемые, изолированные выпускные коллекторы в пространстве V-образного ДВС.

Система зажигания

  • Система зажигания высокого напряжения управляется микропроцессором, вкл. распределение низкого напряжения, без движущихся деталей, не изнашивается.
  • Автоматическая регулировка энергии зажигания.
  • Различные моменты зажигания.
  • Датчики на маховике и распределительном вале.
  • Катушки зажигания для каждого цилиндра.
  • Промышленные свечи зажигания.

Система смазки двигателя

Данная система предназначена для обеспечения двигателя смазочным маслом и включает:

  • насос смазочного масла с предохранительным клапаном для циркуляционной смазки под давлением и охлаждения поршней,
  • установленный на моторе водомасляный теплообменник,
  • бумажный масляный фильтр со сменным фильтрующим элементом,
  • система контроля уровня масла (установлена на моторе),
  • указатель уровня масла,
  • охлаждение кривошипной камеры через маслоотделитель в контуре смеси перед турбокомпрессором,
  • соединительные разъемы для заливки и слива масла.

Система пуска, зарядное устройство, аккумулятор

Система пуска двигателя — электро-стартерная. Она состоит из следующих основных компонентов:

  • Стартер — электрический стартер (24 В пост. тока).
  • Аккумуляторы стартера — комплект свинцово-кислотных аккумуляторов на напряжение 24В (согласно DIN 72311), укомплектованных крышками, клеммами и аккумуляторным пробником для контроля плотности.
  • Устройство контроля напряжения аккумулятора.
  • Оборудование для зарядки аккумулятора предназначено для зарядки стартерных батарей с I/U характеристикой и питания всех подключенных потребителей постоянного тока DC.

Генератор 6,3 кВ

Синхронный генератор с внутренними полюсами, саморегулируемый, встроенный бесщеточный возбудитель, регулировка напряжения и cos ϕ. Исполнение согласно VDE0530, степень помех радиоприему N, конструкция с малым количеством гармоник.

1.1 Газовая рампа 200 мбар

Газовая рампа низкого давления состоит из предварительно смонтированной на заводе-изготовителе газовой рампы со следующим установленным оборудованием:

  • механический фильтр,
  • регулятор давления газа,
  • блок отсечных клапанов,
  • устройство контроля герметичности,
  • реле давления,
  • гибкий шланг для соединения с двигателем.

1.2 Блок системы охлаждения двигателя (тепловой модуль IEC)

Система охлаждения двигателя предназначена для полезного использования тепловой энергии охлаждения воды рубашки двигателя, охлаждения масла и топливной смеси. Отбор тепловой энергии осуществляется в виде горячей воды с температурой 70/850С с помощью соответствующих теплообменников.

Блок системы охлаждения двигателя (тепловой модуль IEC) поставляется смонтированным на отдельной раме, которая устанавливается рядом с двигателем, и включает следующее оборудование:

  • пластинчатый теплообменник для подключения к тепловой сети (теплообменник пластинчатого типа, предназначен для подогрева сетевой воды горячей водой двигателя),
  • расширительный бак контура охлаждения двигателя,
  • расширительный бак контура охлаждения топливной смеси,
  • запорную и предохранительную арматуру, КИП,
  • 3-х ходовой клапан контура воды рубашки,
  • 3-х ходовой клапан контура охлаждения смеси,
  • 3-х ходовой клапан контура аварийного охлаждения,
  • насос контура охлаждения двигателя,
  • насос контура охлаждения 2-ой ступени топливной смеси,
  • двигателя,
  • насос сетевой воды,
  • необходимые компенсаторы и гибкие шланги,
  • трубная обвязка блока системы охлаждения двигателя,
  • несущая рама блока системы охлаждения двигателя.

1.3 Радиатор аварийного охлаждения

Система аварийного охлаждения

Данная система предназначена для сброса тепла системы охлаждения двигателя и обеспечения бесперебойной работы когенерационного модуля на режимах как с частичной тепловой нагрузкой, так и без нее через радиатор. Радиатор разработан для температуры окружающей среды 32°С.

Система состоит из радиатора (воздушный теплообменник).

1.4 Радиатор охлаждения 2-ой ступени топливной смеси

Система охлаждения 2-ой ступени топливной смеси

Данная система предназначена для сброса тепла из второй ступени промежуточного охладителя топливной смеси через радиатор. Радиатор разработан для температуры окружающей среды 32°C.

1.5 Блок системы утилизации тепла (тепловой модуль IEC)

Блок системы утилизации тепла (тепловой модуль IEC) поставляется смонтированным на отдельной раме, которая устанавливается рядом с двигателем, и включает следующее оборудование:

  • водогрейный котел-утилизатор дымовых газов (80/90),
  • байпас выхлопных газов,
  • глушитель выхлопных газов (65 дБА в 10 м),
  • 3-х ходовой регулирующий клапан контура сетевой воды,
  • запорная и предохранительная арматура, КИП,
  • трубная обвязка блока системы утилизации тепла,
  • несущая рама блока системы утилизации тепла.

Водогрейный котел-утилизатор дымовых газов кожухо-трубного типа устанавливается по ходу выхлопных газов после глушителя выхлопных газов. Предназначен для полезного использования тепла выхлопных газов и нагрева горячей воды до требуемой температуры. Комплектуется системой управления теплообменником, которая интегрируется с систему управления установкой или комплектуется в отдельной панели управления.

Байпас выхлопных газов состоит из двух механически связанных клапанов с одним электроприводом, подключаемых к системе управления двигателя. Основная функция — распределение расхода выхлопных газов между системой утилизации тепла выхлопных газов и байпасным газоходом, в зависимости от режима работы установки. Байпас выхлопных газов активизируется в случае, когда выхлопные газы используются частично или вовсе не используются. Объем поставки:

  • 2 клапана на выхлопе,
  • привод электродвигателя,
  • контроль клапана — ON/OFF.

Глушитель выхлопных газов предназначен для снижения шума выхлопа двигателя. Разработан для остаточного уровня звукового давления 65 дБ(А) в 10 м (как уровня зоны измерения по DIN 45635), измеряемом в выхлопной трубе.

Материал: углеродистая сталь

Состоит из: глушителя выхлопных газов, фланцев, уплотнений, креплений

Изоляция: тепловая изоляция для глушителя выхлопных газов не включена в объем поставки глушителя и должна обеспечиваться по месту.

3-х ходовой регулирующий клапан контура сетевой воды предназначен для исключения резкого снижения температуры сетевой/горячей воды на входе в теплообменник системы охлаждения двигателя, и, соответственно, в теплообменник выхлопные газы/вода, состоит из следующего оборудования:

  • 3-х ходовой регулирующий клапан — 1 шт.
  • датчик температуры — 1 шт.

Комплект запорной, предохранительной и защитной арматуры, КИП блока системы утилизации тепла, необходимый для его нормальной работы, включает:

  • запорный клапан — 2 шт.
  • предохранительный клапан — 1 шт.
  • термометр биметаллический стрелочный — 1 шт.
  • реле максимальной температуры — 1 шт.
  • реле минимальной температуры — 1 шт.
  • манометр стрелочный — 1 шт.
  • реле максимального давления — 1 шт.
  • реле минимального давления — 1 шт.
  • реле минимального потока — 1 шт.
  • преобразователь давления — 1 шт.

1.6 Система вентиляции машинного зала двигателя

Система вентиляции предназначена для работы при температурах наружного воздуха в диапазоне от –25°C до +30°C. Уровень шума на расстоянии 1 м от машинного зала с учетом работы системы вентиляции 65–75 dB(A).

Функции:

  • Обеспечение требуемым количеством воздуха для процесса горения.
  • Удаление теплоизбытков мотора и генератора (вспомогательного оборудования).

Система забора воздуха поставляется готовым смонтированным блоком и включает:

  • Металлические жалюзи.
  • Воздушный фильтр.
  • Шумоглушитель.
  • Электродвигатель.
  • Нагнетающий вентилятор.
  • Частотный преобразователь электродвигателя вентилятора.

Расчетные параметры системы забора воздуха:

  • Производительность (при нормальных условиях) не менее 66 000 нм3/ч.
  • Напор вентиляторов в рабочей точке не менее 100 кПа.

Система отвода воздуха включает:

  • Шумоглушитель.
  • Металлические жалюзи.

Расчетные параметры системы отвода воздуха:

  • Производительность (при нормальных условиях) — не менее 55 000 нм3/ч.

Шкаф питания и управления системой вентиляции — силовой низковольтный щит, обеспечивающий следующие функции:

  • Питание вентилятора(ов) системы забора воздуха (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Автоматический запуск/остановка системы вентиляции по сигналу от системы управления двигателя.
  • Автоматическое регулирование производительности вентиляторов в зависимости от температуры воздуха внутри машинного зала.

1.7 Система маслохозяйства

Данная система предназначена для хранения расходного объема чистого масла, автоматического пополнения картеров двигателей, проведения замены масла в картерах.

Включает следующее оборудование:

  • бак чистого масла емкостью 750 л,
  • электрический насос заполнения / слива / подачи масла,
  • резервный ручной насос заполнения / слива / подачи масла,
  • датчик уровня бака чистого масла,
  • комплект необходимой запорной арматуры,
  • несущая рама системы маслохозяйства,
  • трубная обвязка системы маслохозяйства,
  • шкаф управления системой маслохозяйства.

Возможны следующие функции:

  • Заполнение бака чистого масла из цистерны.
  • Заполнение маслобака из цистерны.
  • Опустошение картера двигателя в цистерну.

1.8 Система управления двигателем

Каждая установка MTU Onsite Energy комплектуется системой управления. Она обеспечивает подачу питания, управление и сбор информации от оборудования двигателя, генератора и всего вспомогательного оборудования, поставляемого не смонтированным, комплектно с установкой.

Основные функции системы управления:

  • управление и визуализация,
  • настройка вспомогательных электроприводов (BHKW / внешн.),
  • подключение генератора к сети / отключение генератора от сети,
  • управление защитой генератора:
    • перегрузка/короткое замыкание,
    • повышение напряжения,
    • понижение напряжения,
    • асимметричность напряжения,
    • превышение частоты,
    • понижение частоты,
  • регулировка скорости вращения,
  • регулировка смеси по универсальным характеристикам,
  • операции пуска и выключения мотора операции аварийной остановки,
  • контроль мотора (температура, давление, скорость и т. д.),
  • контроль отработавших газов по каждому цилиндру,
  • подготовка работы интерфейса CANOPEN,
  • долив масла,
  • контроль минимальной нагрузки,
  • электронное устройство зажигания,
  • настройка момента зажигания,
  • контроль скорости вращения,
  • акустическая система контроля стука,
  • настройка момента зажигания по цилиндрам.

Система управления серии 4000 состоит из шкафов управления MMC (MTU — модуль управления) и MIP (MTU — интерфейсная панель). Шкаф управления MMC поставляется отдельно и устанавливается обычно вне машинного зала. Панель MIP смонтирована на раме агрегатов, образуя функциональный узел.

MMC служит в основном для:

  • Управления и индикации.
  • Управления вспомогательными приводами.

MIP служит в основном для:

  • Связи с регулятором двигателя ECU и устройством контроля работы двигателя EMU.
  • Синхронизации и включения генератора в сеть.
  • Управления вспомогательными приводами на блоке ТЭЦ.
  • Функций генератора и защиты сети.

MTU интерфейсная панель (MIP)

MIP включает в себя следующие основные компоненты:

  • Органы управления (аварийный выключатель, главный выключатель).
  • Центральный блок ПЛК (программируемый модуль управления компьютером с различными интерфейсами и модулями ввода / вывода).
  • EMM (энергоизмерительный модуль — устройство защиты генератора и сети, устройство синхронизации). Соответствует нормам BDEW (Союза энергетиков).
  • Связь с регулятором двигателя ECU и устройством контроля работы двигателя EMU осуществляется через аппаратные сигналы и шину CAN.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты).
  • Управление вспомогательными приводами, установленными на агрегате.

Фактическая программа управления работает самостоятельно в центральном блоке ПЛК. Таким образом, в случае выхода из строя ППК (промышленного компьютера) можно и дальше эксплуатировать систему с ранее установленными параметрами.

MIP (MTU Interface Panel) — интерфейсная панель

Основной орган управления ГПУ, является связующим звеном между панелью управления MMC и двигателем.

MIP включает в себя следующие основные компоненты:

  • Органы управления (аварийный выключатель, главный выключатель).
  • Центральный блок ПЛК (программируемый модуль управления компьютером с различными интерфейсами и модулями ввода / вывода).
  • EMM (энергоизмерительный модуль — устройство защиты генератора и сети, устройство синхронизации). Соответствует нормам BDEW (Союза энергетиков).
  • Связь с регулятором двигателя ECU и устройством контроля работы двигателя EMU осуществляется через аппаратные сигналы и шину CAN.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты).
  • Управление вспомогательными приводами, установленными на агрегате.

Фактическая программа управления работает самостоятельно в центральном блоке ПЛК. Таким образом, в случае выхода из строя ППК (промышленного компьютера) можно и дальше эксплуатировать систему с ранее установленными параметрами.

AUX (Auxiliaries supply) — шкаф питания вспомогательного оборудования двигателя

Система обеспечивает подачу питания на основные панели управления и вспомогательное оборудование двигателя.

Силовой низковольтный щит, обеспечивающий подачу питания на следующее вспомогательное оборудования двигателя:

  • Циркуляционный насос контура охлаждения двигателя.
  • Циркуляционный насос контура охлаждения 2-ой ступени топливной смеси.
  • Циркуляционный сетевой насос.
  • Электродвигатели вентиляторов радиатора аварийного охлаждения (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Электродвигатели вентиляторов радиатора охлаждения 2-ой ступени топливной смеси (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Привода 3-х ходовых клапанов.

MMC (MTU Modul Control) — модуль управления

Модуль обеспечивает управление и сбор информации от оборудования двигателя, генератора и всего вспомогательного оборудования.

Щит MMC включает в себя следующие компоненты:

  • Промышленный ПК (IPC) с сенсорным экраном.
  • Устройства управления (замок-выключатель, кнопочный выключатель, кнопка аварийной остановки).
  • Дополнительные модули ПЛК-управления с цифровыми и аналоговыми входами и выходами.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты). Опционально возможна передача информации в систему верхнего уровня по интерфейсам Modbus. Profibus.
  • Контроль периферийных приводов через беспотенциальные контакты или силовые узлы.

Функции MMC:

  • Визуализация системы управления.
  • Управление вспомогательным оборудованием контуров аварийного охлаждения и охлаждения 2-ой ступени топливной смеси (электродвигатели радиаторов, электродвигатели насосов, трехходовые клапана, датчики температуры и давления).
  • Управление вспомогательным оборудованием теплообменника выхлопные газы/вода (опционально).

1.9 Панель с генераторным выключателем 

Распределительное устройство 

Для подключения генераторов и распределения электрической энергии переменного трёхфазного тока промышленной частоты 50 Гц напряжением. РУ выполнено по схеме простой системы сборных шин, с вакуумным/элегазовым выключателем. Комплектация генераторного выключателя в соответствии с требованием завода-изготовителя газовых двигателей MTU Onsite Energy.

Состав РУ:

  • ввод линии генератора — 1 шт.
  • выключатель ввода генератора — 1 шт.
  • ввод линии от сети — 1 шт.
  • трансформатора напряжения (ТН)  — 2 шт.

В объем поставки входят следующие микропроцессорные устройства защиты, устанавливаемые в релейных отсеках ячеек:

  • защиты генератора;
  • защиты трансформаторов напряжения шин РУ.

В релейных отсеках ячеек размещены все необходимые электроизмерительные приборы, на лицевой части выполнены активные мнемосхемы. В релейном отсеке ячейки ввода генераторов предусмотрено место для установки расчётных электронных счётчиков электрической энергии и клеммные колодки с возможностью опломбировки. Комплектация ячеек распределительного устройства в соответствии с электрической схемой.

Генераторный выключатель соответствует следующим основным требованиям:

  • Тип выключателя — вакуумный/элегазовый.
  • Генераторный выключатель пригоден для работы в режиме синхронизации с электрической сетью.
  • Максимальное время включения 70 мсек после подачи сигнала включения.
  • Максимальное время отключения 60 мсек после подачи сигнала выключения.
  • Оснащение катушками включения, выключения и катушкой минимального напряжения.
  • Не менее 6 пар блок-контактов типа (нормально открытый — НО) и (нормально закрытый — НЗ).
  • Механический ресурс не менее 10 000 операций (МЭК 56).
  • Коммутационный ресурс не менее 40 операций при 12,5-кА (МЭК 56) или не менее 10 000 операций при Iном.

Купить газопоршневую электростанцию c нужными характеристиками вы можете в компании IEC Energy. Все интересующие вас вопросы задавайте по телефону +7 495 799 74 64.


Тепловые электростанции: компоненты и принцип работы

Принцип работы тепловых электростанций

Принцип работы тепловых электростанций: «Тепло, выделяемое при сжигании топлива, которое производит (рабочую жидкость) (пар) из воды. Генерируемый пар запускает турбину, соединенную с генератором, который вырабатывает электроэнергию на тепловых электростанциях.

Основные элементы ТЭЦ

Генеральный план ТЭЦ: Генеральный план ТЭЦ

Принцип работы ТЭЦ

Рабочая среда — вода и пар.Это называется циклом питательной воды и пара. Идеальный термодинамический цикл, которому очень близка работа ТЭЦ , — это ЦИКЛ RANKINE.

В паровом котле вода нагревается за счет сжигания топлива в воздухе в топке, и функция котла состоит в том, чтобы давать сухой перегретый пар требуемой температуры. Образующийся пар используется для привода паровых турбин. Эта турбина соединена с синхронным генератором (обычно трехфазным синхронным генератором переменного тока), который вырабатывает электрическую энергию.Отработавший пар из турбины может конденсироваться в воду в конденсаторе пара турбины, что создает всасывание при очень низком давлении и позволяет пару в турбине расширяться до очень низкого давления. Основными преимуществами работы конденсации являются увеличенное количество энергии, извлекаемой на 1 кг пара, и, таким образом, повышение эффективности, а конденсат, который подается в котел, снова снижает количество свежей питательной воды.

Конденсат вместе с небольшим количеством свежей подпиточной воды снова подается в котел с помощью насоса (называемого питающим насосом котла).В конденсаторе пар конденсируется охлаждающей водой. Охлаждающая вода рециркулирует через градирню. Это представляет собой контур охлаждающей воды.

Поступление атмосферного воздуха в котел допускается после фильтрации от пыли. Также дымовой газ выходит из котла и через дымовые трубы выводится в атмосферу. Они составляют контур воздуха и дымовых газов. Поток воздуха, а также статическое давление внутри парового котла (называемое тягой) поддерживается двумя вентиляторами, называемыми вентилятором с принудительной тягой (FD), и вентилятором с принудительной тягой (ID) (ID) .

Полная схема типовой ТЭЦ с различными схемами представлена ​​ниже.

Принципиальная схема паровой электростанции

Внутри котла расположены различные теплообменники, а именно. Экономайзер , Испаритель (не показан на рисунке выше, это в основном водяные трубы, то есть контур стояка с нисходящим потоком), перегреватель (иногда также присутствует промежуточный подогреватель, подогреватель воздуха).

В экономайзере питательная вода в значительной степени нагревается за счет остаточного тепла дымовых газов.Барабан котла поддерживает напор для естественной циркуляции двухфазной смеси (пар + вода) по водяным трубам.

Существует также перегреватель, который также забирает тепло от дымовых газов и повышает температуру пара в соответствии с требованиями.

Вы можете прочитать: Газотурбинные электростанции и их функционирование.

Основные компоненты тепловой электростанции

Основные компоненты тепловой электростанции
  • Котел (1)
    • Огромный котел действует как топка, передающая тепло от горящего топлива ряду за рядом водяных труб, которые полностью окружают пламя.
    • Вода поддерживается насосом P1
  • Барабан (2)
    • Он содержит воду и пар под высоким давлением и производит поток для турбины.
    • Он также принимает воду, подаваемую питающим насосом котла P2
  • Турбина высокого давления (ВД) (3)
    • Преобразует тепловую энергию в механическую, позволяя пару расширяться при прохождении через лопатки турбины.
    • Затем пар проходит через подогреватель S3, чтобы повысить термический КПД и предотвратить преждевременную конденсацию.
  • Турбина среднего давления (MP) (4)
    • Она похожа на турбину высокого давления, за исключением того, что она больше, так что пар может расширяться еще больше. содержит воду и пар под высоким давлением и производит поток для турбины .
  • Турбина низкого давления (НД) (5)
    • Она состоит из двух идентичных секций и удаляет оставшуюся доступную энергию из пара.Паровая турбина может быть импульсной или реактивной, а иногда и того и другого.
Паровые турбины
  • Конденсатор (6)
    • Он вызывает конденсацию пара, позволяя ему течь по охлаждающим трубам S4.
    • Холодная вода из внешних источников, протекающая по трубам, уносит тепло. Температура охлаждающей воды увеличивается на 5–10 ° C по мере ее протекания по трубкам конденсатора. Конденсированный пар имеет температуру от 27oC до 33oC.
    • Конденсирующийся пар создает почти вакуумное давление 5 кПа.
    • Конденсатный насос P2 удаляет теплый конденсированный пар и направляет его через подогреватель (7) к насосу питательной воды (8).
  • Подогреватель (7)
    • Теплообменник принимает горячий пар, отводимый от турбины высокого давления, для повышения температуры питательной воды. Термодинамические исследования показывают, что при отводе некоторого количества пара таким образом повышается общий КПД.
  • Горелка (9)
    • Горелки обеспечивают подачу газа, масла или угля в котел и регулируют его количество.Уголь измельчается перед закачкой. Точно так же тяжелое бункерное топливо предварительно нагревается и впрыскивается в виде распыленной струи для улучшения контакта поверхности с окружающим воздухом.
  • Принудительная тяга (10)
    • Доставляет огромное количество воздуха, необходимого для горения.
  • Тяговый вентилятор (10)
  • Он переносит газы и другие продукты сгорания к очистному устройству, а оттуда в дымовую трубу и наружный воздух.
  • Генератор (G)
  • Подключенный к трем турбинам, преобразует механическую энергию в электрическую.
  • Градирни
    • Каждый раз, когда один процент воды испаряется, температура оставшейся воды падает до 5,8 o C. Для охлаждения конденсатора используется явление испарения для создания охлаждающего эффекта. .
    • Испарение происходит при воздействии окружающего воздуха на большую поверхность воды.Самый простой способ сделать это — разбить воду на мелкие капли и продуть воздух через искусственный дождь.
Принудительная и естественная градирня для электростанции

Теплая охлаждающая вода, выходящая из конденсатора, направляется по трубопроводу в верхнюю часть градирни, где она разбивается на мелкие капли. Когда капли падают к открытому резервуару внизу, происходит испарение, и капли охлаждаются.

Диаграмма потока энергии

Диаграмма потока энергии тепловой электростанции

Современные котлы вырабатывают пар с температурой 550 o C и давлением 16.5 МП а. В этом случае общий КПД (электрическая мощность / тепловая мощность) составляет около 40%.

Используя предыдущую модель, мы можем оценить характеристики станции мощностью 480 МВт. Градирня должна испарить q = 2% X 14400 = 288 кг / с охлаждающей воды

Паровые турбины и турбогенератор практически не изменились за последние 100 лет

Усовершенствованная угольная электростанция

Суперкритический (SC): 540-580 o C и 22.1-25 Па

Сверхкритичный (USC): 580-620 o C и 22-25 Па

Расширенный сверхкритический (A- USC): 700-725 o C и 25-35 Па

Комбинированное производство тепла и электроэнергии (ТЭЦ)

При этом одновременно производится тепло и электричество. Электроэнергия потребляется внутри станции ТЭЦ, хотя любой излишек или дефицит обменивается с системой распределения коммунальных услуг.

  • Эйслесфордская электростанция: Тепловая мощность 220 МВт и электрическая энергия 98 МВт
  • Когенерационная электростанция нефтеперерабатывающего завода Lindesy : 118 МВт тепла и 38 МВт электроэнергии

Энергия из отходов

Различные отходы, такие как страницы , твердые отходы, пластик — все это можно использовать для производства с помощью следующих технологий

  • Традиционные установки для сжигания
  • Газификация и пиролиз

Геотермальная электростанция

Тепло, выделяемое из земли, также может использоваться для производства электроэнергии.Горячие источники и гейзеры использовались не менее 10 000 лет. Экологически чистый и требует меньше места по сравнению с гидро- и солнечной электростанциями. По мере того, как мы углубляемся в землю, температура увеличивается по градиенту, поэтому для этого гидротермального резервуара также необходимо найти.

Геотермальный насос также используется внутри страны для нагрева воды в зимний период, в основном в Европе. Геотермальная энергия зависит от участка еще и потому, что мы должны найти то место, где температура повышается на 1 км глубины.Что касается природных ресурсов и энергии, США имеют большое количество площадок для геотермальной энергии.

Геотермальная электростанция Хербер: 52 кВт

Тепловая электростанция на основе солнечной энергии

За счет концентрации солнечной энергии стандартная турбина / генератор может производить электроэнергию.

  • Башня питания : В этой башне используются различные вогнутые солнечные зеркала для отражения солнечных лучей на башню для нагрева топлива (воды), таким образом производится пар, а затем остальная часть материала для производства электроэнергии.
  • 1,291 зеркальные гелиостаты и башня высотой 54 — крупнейшая в мире солнечная электростанция в районе Севильи в Испании, вырабатывающая 20 мегаватт (МВт) электроэнергии, достаточной для снабжения 10 000 домов.

Преобразование тепловой энергии океана (OTEC)

Это все еще находится в стадии разработки. Он использует разницу температур между теплой поверхностной водой и холодной водой на глубине для запуска «теплового двигателя » . Разница температур должна быть не менее 40 o F (22 o C) круглый год, что наблюдается только вблизи экватора.

Пакистан: Электроэнергия из багассы

Пакистан является пятым по величине производителем сахарного тростника, производя 50 миллионов тонн сахарного тростника в год, производя 10 миллионов тонн жома. В стране 87 сахарных заводов с производственной мощностью 3000 мегаватт зимой из жома. В настоящее время 7 сахарных заводов продают излишки электроэнергии государству. Энергия, вырабатываемая из жмыха, является возобновляемой энергией, как и энергия ветра, поскольку углерод, выделяемый после сгорания, уже улавливается растениями сахарного тростника во время их роста.Таким образом, чистый выброс углерода электростанциями на основе жмыха фактически равен нулю.

o 21 МВт Завод по производству биомассы Tracy

Воздействие тепловых электростанций на окружающую среду

Двуокись углерода, двуокись серы и вода являются основными продуктами сгорания при сжигании нефти, угля или газа. SO 2 образует вещества, вызывающие кислотные дожди. Пыль и летучая зола — это другие загрязнители, которые могут попасть в атмосферу. На новых заводах действуют меры контроля для каждого из них, однако более старые растения ежегодно выбрасывают в атмосферу тысячи фунтов каждого из них.

Каждую зиму основной проблемой в Пакистане является туман, который создается тепловыми электростанциями. Индия также признает, что ее угольные электростанции вызывают туман внутри Пакистана. Атомная электростанция может производить радиоактивные излучения в окружающей среде, вредные для жизни. Точно так же нефтяные и угольные электростанции могут загрязнять окружающую среду.

o ТЭЦ Гудду (Пакистан) 1655 МВт o ТЭЦ Джамшоро (Пакистан) 850 МВт

Запасы угля Пакистана

o Синд 186.560 миллиардов тонн o Белуджистан 217 миллионов тонн o Пенджаб 235 миллиардов тонн o NWFP 90 миллионов тонн

o Azad Jamu Кашмир 9 миллионов тонн энергии введены в эксплуатацию достаточно власти в Пакистане. Но по политическим причинам многие плодотворные энергетические проекты до сих пор не сданы в эксплуатацию, которые могут удовлетворить потребности Пакистана в энергии.

Угольный завод Тар

Это одни из крупнейших запасов угля в мире с мощностью 9.75 млрд тонн угля . Подземный газ должен быть преобразован в угольный газ с помощью процесса, известного как подземная газификация угля (UCG). Он может производить 50 000 МВт электроэнергии в течение десятилетий и 100 миллионов баррелей нефти в течение 500 лет.

Это может изменить правила игры для Пакистана, и произведенная электроэнергия будет дешевле. Но из-за политических проблем и комиссионных мафий этот проект до сих пор не сдан. В последнее десятилетие Пакистан столкнулся с серьезным энергетическим кризисом, уголь Тар может стать решением проблемы нехватки энергии в Пакистане.

Преимущества тепловых электростанций:

  1. Экономичен при низких начальных затратах, по сравнению с любыми электростанциями.
  2. На землю требуется меньше гидроэлектростанции.
  3. Поскольку уголь является основным топливом, и его стоимость довольно дешевая, чем бензин / дизельное топливо, стоимость производства является экономичной.
  4. Обслуживать проще.
  5. Тепловая электростанция может быть установлена ​​в любом месте, где есть транспортировка и большие объемы воды.

Недостатки тепловых электростанций

  1. Эксплуатационные расходы тепловой электростанции сравнительно высоки из-за топлива, технического обслуживания и т. Д.
  2. Большое количество дыма вызывает загрязнение воздуха. Тепловая электростанция ответственна за глобальное потепление.
  3. Нагретая вода, поступающая с тепловой электростанции, отрицательно сказывается на водных организмах в воде и нарушает экологию.
  4. Общий КПД ТЭС низкий, менее 30%.

Заключительные слова

Надеюсь, вам понравилась наша обширная статья о принципе работы и работе тепловой электростанции.Вам также могут понравиться компоненты ветряной электростанции и 10 программ, которые необходимо изучить инженеру-электрику.

Чтобы быть в курсе последних статей, вы можете подписаться на веб-сайт с помощью значка колокольчика в нижнем левом углу, чтобы получать дальнейшие обновления. Спасибо.

Как работают электростанции?

Не так давно алхимики мечтали стать дешевыми и уродливыми. металлы в ценные, такие как золото. Электростанции (также называемые электростанции) проделывают аналогичный трюк, превращая куски угля и капли нефти в скопления электрический ток, которым можно приготовить ужин или зарядить телефон. Если это не было бы для электростанций, я бы не писал эти слова сейчас — и вы бы их не читали. Фактически, большинство вещей мы делаем каждый день, и большая часть того, что мы используем, имеет скрытый долг в благодарность этим гигантским энергетическим фабрикам, которые превращают «ископаемое топливо» (уголь, природный газ и нефть) в электроэнергию.

Эта энергетическая алхимия — довольно удивительный трюк — и совсем недавно тоже, так как самая первая практическая электростанция была построена в только 1882 г. (Томас Эдисон). Однако изумление часто бывает последним, что мы чувствуем, когда подумайте о производстве электроэнергии в начале 21 века. В эпоху, когда забота об окружающей среде (вполне справедливо) важнее, чем Всегда модно глумиться над электростанциями как над злыми, грязными местами закачивая загрязнения в наш воздух, землю и воду. Однажды мы могли бы быть в состоянии сделать всю нашу электроэнергию полностью чистой и экологически чистой.А пока электростанции жизненно важны для поддержания наших школ, больницы, дома и офисы светлые, теплые и кипящие жизнью; без них современная жизнь была бы невозможна. Как они работают? Давайте присмотритесь!

Фото: Типичная электростанция, работающая на ископаемом топливе, в Дидкоте, Англия. Изначально это были две отдельные электростанции: старая работала на угле и нефти, а новая работала на природном газе. Только газовая установка по-прежнему работает. Обратите внимание на градирни справа и пилоны и линии электропередач, отводящие электричество слева.

Магическая наука о электростанциях

Одна большая электростанция может производить достаточно электроэнергии (около 2 гигаватт, 2000 мегаватт или 20000000000 ватт) для обеспечения пара сотен тысяч домов, и это столько же мощности вы могли бы сделать примерно с 1000 больших ветряных турбин работает изо всех сил. Но блестящая наука, стоящая за этим удивительным трюком, не имеет ничего общего с силовой установкой. чем с топливом горит. Настоящая магия не в этом электростанции превращают топливо в электричество: дело в том, что даже небольшие количества ископаемого топлива содержат большое количество энергии.Килограмм угля или литр масла содержит около 30 МДж энергии — огромное количество, эквивалентен нескольким тысячам 1,5-вольтовых батарей! Работа электростанции состоит в том, чтобы высвободить эту химическую энергию в виде тепла, использовать тепло для управления прядильная машина называется турбиной, а затем использовать турбину для питания генератор (машина для производства электроэнергии). Электростанции могут сделать так много энергии, потому что они сжигают огромное количество топлива — и каждый немного этого топлива заполнено энергией.

К сожалению, большинство электростанций не очень эффективны: на типичной старой электростанции, работающей на угле, только около трети энергии, содержащейся в топливе, преобразуется в электричество, а остальная часть тратится впустую.Более новые конструкции, такие как электростанции с комбинированным циклом (которые мы рассмотрим через минуту), могут иметь до 50 процентов эффективности. Как показывает диаграмма, на пути от электростанции до вашего дома тратится еще больше электроэнергии. Если сложить все потери вместе, только пятая часть энергии топлива доступна в качестве полезной энергии в вашем доме.

Диаграмма: Большие централизованные электростанции, работающие на ископаемом топливе, очень неэффективны, тратя около двух третей энергии на топливо.Вот типичный сценарий: около 62 процентов теряется в самой установке в виде отработанного тепла. Еще 4 процента исчезают в линиях электропередач и трансформаторах, по которым электричество подается с электростанции в ваш дом. После подачи электричества ваша бытовая техника теряет еще 13 процентов. В общем, только 22 процента первоначальной энергии топлива (зеленый кусочек) превращается в энергию, которую вы действительно можете использовать. Источник: данные «Децентрализация власти: энергетическая революция 21 века», Гринпис, 2005 г.

Типы электростанций

Паровая турбина

Большинство традиционных электростанций вырабатывают энергию, сжигая топливо для выпуск тепло . По этой причине их называют термическими (тепловые) электростанции. Угольные и масличные заводы работают так же, как я показано на иллюстрации выше, сжигание топлива с кислородом для выделения тепла энергия, которая кипятит воду и приводит в действие паровую турбину. Этот базовую конструкцию иногда называют простым циклом .

Фото: Превосходная макет паровой турбины и электрогенератора в разрезе.Пар втекает в турбину по огромным серым трубам наверху, вращая турбину, похожую на ветряную мельницу, посередине. Когда турбина вращается, она вращает подключенный к ней электрогенератор (синий цилиндр, который вы можете видеть справа). Эта модель находится в Think Tank, музее науки и техники в Бирмингеме, Англия.

Газовая турбина

Установки, работающие на природном газе, работают немного иначе, аналогично тому, как работает реактивный двигатель. Вместо пара они горят постоянный поток газа и использовать его для приведения в действие турбины немного другой конструкции (называемой газовой турбиной ) вместо.

Фото: The Электростанция McNeil в Берлингтоне, штат Вермонт, сжигает древесное топливо (коричневый, слева) в газовой турбине, чтобы вырабатывать скромные 50 мегаватт энергии, чего достаточно для местный город. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Комбинированные конструкции

Каждая построенная когда-либо электростанция преследовала одну главную цель: как можно больше полезного электричества из его топлива — другими словами, быть максимально эффективным.Когда реактивные двигатели кричат ​​сквозь небо пускает горячие газы, как реактивные двигатели, они тратят впустую энергия. В самолете мы мало что можем сделать, но мы можем что-то об этом на электростанции. Мы можем взять горячий выхлоп газы, поступающие из газовой турбины и использующие их для питания паровой турбины а также в так называемом комбинированном цикле . Это позволяет нам производят на 50 процентов больше электроэнергии из топлива по сравнению с на обычную установку простого цикла. В качестве альтернативы мы можем улучшить КПД электростанции за счет пропускания отработанных газов через теплообменник. теплообменник, поэтому они вместо этого нагревают воду.Эта конструкция называется комбинированное производство тепла и электроэнергии (ТЭЦ) или когенерация, и это быстро становится одним из самых популярных проектов (также может быть используется для очень мелкомасштабного производства энергии в единицах примерно одинаковых размер как автомобильные двигатели).

Ядерная

Атомные электростанции работают так же, как уголь или уголь простого цикла. масличные растения, но вместо того, чтобы сжигать топливо, они разбивают атомы на части, выделять тепловую энергию. Он используется для кипячения воды, производства пара и запитать паровую турбину и генератор обычным способом.Для большего Подробности читайте в нашей основной статье о том, как работают атомные электростанции.

Hydro

Хотя все эти типы электростанций в основном тепловые (генерирует и выделяет тепло для привода паровой или газовой турбины), два другие очень распространенные типы вообще не используют никакого тепла. Гидроэлектростанции и гидроаккумулирующие станции предназначены для перекачивания огромного количества вода мимо огромных водяных турбин (считайте их очень эффективными водяные колеса), которые напрямую приводят в действие генераторы. В гидроэлектростанции завод , река устроена так, чтобы подпирать огромную бетонную плотину.В вода может выходить через относительно небольшое отверстие в дамбе, называемое затвор и при этом заставляет одну или несколько турбин вращаться около. Пока река течет, турбины крутятся и плотина производит гидроэлектроэнергию. Хотя они не производят загрязнения или выбросов, гидроэлектростанции очень вредны в других отношениях: они деградируют реки, блокируя их течение, и они затапливают огромные территории, вынуждая многих людей из своих домов (плотина Три ущелья в Китае сместила примерно 1.2 млн человек).

ГАЗ вырабатывает электроэнергию аналогично гидроэлектростанция, но перемещает одну и ту же воду туда и обратно между высокоуровневым озером и нижним. Во времена пиковый спрос, воде позволено течь из высокого озера в нижний, производящий электроэнергию по высокой цене. Когда спрос ниже, посреди ночи вода снова перекачивается от низкого озера к высокому с использованием низкотарифной электроэнергии. Так накачано хранение — это действительно способ использовать преимущества электричества в одни разы стоит больше, чем в другие.

Фото: плотина гидроэлектростанции Макнари в Орегоне вырабатывает 980 мегаватт электроэнергии, когда через нее проносится вода. его турбины. Фото Дэвида Хикса любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Как электричество попадает в ваш дом

Одно из замечательных свойств электричества заключается в том, что мы можем сделать его практически в любом месте и передавать его на большие расстояния по линиям электропередач в наши дома. Это позволяет нам управлять огромными городами без строить огромные грязные электростанции прямо посреди них или размещать электростанции там, где есть удобные месторождения угля или реки с быстрым течением, чтобы кормить их.Теперь требуется энергия, чтобы отправить электрический ток по проводу, потому что даже самые лучшие провода сделаны из таких веществ, как золото, серебро и медь, имеют то, что называется сопротивление — они препятствуют прохождению электричества. В чем длиннее провод, тем больше сопротивление и больше энергии это напрасно. Таким образом, вы можете подумать, что выбросить электричество очень сильно. длинные силовые кабели было бы очень глупо и расточительно.

Однако есть простой способ обойти это. Оказывается, чем больше ток течет через провод тратится больше энергии.Сделав текущим как можно меньше, мы можем свести к минимуму энергию — и мы делаем это, сделав напряжение как можно большим. Электростанции на чем-то производят электричество вроде 14000 вольт, но они используют трансформаторы (повышающие напряжение или понижающих устройств), чтобы «поднять» напряжение на что-нибудь от от трех до пятидесяти раз, примерно до 44 000–750 000 вольт, прежде чем отправить его по линиям электропередачи в города где он будет потребляться. Как правило, мощность передается в течение длительного времени. расстояния с использованием ВЛ, натянутых между опорными рамами называется пилонов ; это сделать намного быстрее и дешевле, чем закапывать линии под землей, что обычно делается в городах.Поставка пилонов подстанции , которые фактически являются мини-точками электроснабжения, предназначенными для питания, возможно, большой завод или небольшой жилой массив. Подстанция использует «понижающие» трансформаторы для преобразования высоковольтной электроэнергии. от линии питания до одного или нескольких более низких напряжений, подходящих для фабрики, офисы, дома или что-то еще.

На фото: слева: трансформаторы линий электропередач. Справа: линия передачи (пилон).

Как работает электросеть

Подстанции получили свое название с тех времен, когда электростанции снабжали очень четко определенные локальные территории: каждая станция питала ряд близлежащих подстанций, которые проходили мимо питание домов и других зданий.Проблема с этим договоренность заключается в том, что если электростанция внезапно выйдет из строя, многие дома придется обходиться без электричества. Есть и другие проблемы с запуском электростанции самостоятельно. Одна электростанция могла бы производить электричество очень дешево (возможно, потому что оно очень новое и используется природный газ), а другой (по старой технологии на угле) может быть намного дороже, поэтому имеет смысл использовать более дешевый вокзал по возможности. К сожалению, электростанции не похожи на машину двигатели: они должны работать постоянно; как правило, они не могут запускаться и полностью прекратить, когда мы этого хотим.По этим и другим причинам электроэнергетические компании пришли к выводу, что имеет смысл подключить все их электростанции в обширную сеть, называемую сеткой . Высоко сложные компьютеризированные центры управления используются для повышения или снизить производительность станций, чтобы соответствовать спросу от минуты до минута и час за часом (так что больше станций будут работать без перерыва в вечер, например, когда большинство людей готовят себе ужин).

Что ждет электростанции в будущем?

Нам всегда будет нужна энергия и особенно электричество — очень универсальный вид энергии, который мы можем легко использовать по-разному, но это не значит, что нам всегда будут нужны электростанции, подобные тем, которые мы есть сегодня.Давление на окружающую среду уже заставляет многих страны закрыть угольные электростанции, которые производят наибольшие выбросы углекислого газа (ответственные за изменение климата и глобальное потепление). Хотя атомные станции могут предложить самый чистый путь к низкоуглеродному будущему, есть серьезные опасения по поводу того, сможем ли мы построить их достаточно быстро или преодолеть страхи людей по поводу загрязнения и безопасности (будь то опасения рациональны или нет).

Щиток на газ

В краткосрочной перспективе довольно ясно, что нас ждет в будущем: есть всемирный «рывок за бензином».«Большинство новых электрических электростанции теперь используют природный газ, что значительно дешевле, в относительно большом количестве (на данный момент) и с меньшими выбросами чем другие станции, работающие на ископаемом топливе. АЗС также быстрее и дешевле построить, чем более сложные альтернативы, такие как атомные станции и сталкиваются с меньшим сопротивлением общественности. В 2011 году в США было произведено около четверти его электричество из природного газа; к 2017 году этот показатель вырос почти до трети (32 процента).

Диаграмма: Тире за газом.Примерно за последнее десятилетие в Соединенных Штатах произошел значительный переход от угольных электростанций (синий) к природному газу (красный), в то время как ядерная энергия (желтый) и гидроэлектроэнергия (зеленый) по-прежнему обеспечивают чуть более четверти всего электричества. Ветер (фиолетовый) и солнечный (оранжевый) сильно выросли, но с очень маленькой базы, поэтому даже сейчас они по-прежнему обеспечивают только около 11 процентов всей электроэнергии. На этой диаграмме показана разбивка источников выработки электроэнергии между 2007 г. (внутреннее кольцо) и 2019 г. (внешнее кольцо), и она была составлена ​​с использованием данных за июнь 2020 г. из журнала Electric Power Monthly, Управления энергетической информации США, по состоянию на 6 сентября 2020 г. (и предыдущих версий настоящего документа). документ).Примечания: 1) Гидроэлектростанция скорректирована с учетом гидроаккумуляции. 2) На диаграмме показано производство электроэнергии только коммунальными предприятиями и исключены маломасштабные фотоэлектрические и другие небольшие установки. 3) «Ветровая и прочая энергия» включает все возобновляемые источники энергии, кроме солнечной и гидроэлектрической.

ТЭЦ

Другие тенденции также становятся важными, особенно смещение к более мелким станциям, использующим комбинированное производство тепла и электроэнергии (ТЭЦ). В отчете Управления энергетической информации США за 2016 г. Соединенные Штаты имеют потенциал построить почти 300 000 малых ТЭЦ. заводы (многие просто питают отдельные здания или комплексы), которые позволит избежать необходимости строительства около 100 крупных угольных или атомных электростанций. растения.Поскольку некоторые из них будут питаться биомассой (например, деревьями или «энергетические культуры», выращенные специально для этой цели) или отходы, которые иллюстрирует три разные тенденции в действии: переход к более мелким растений и многое другое, а также переход от ископаемого топлива к возобновляемые источники энергии.

Возобновляемые источники энергии

В более долгосрочной перспективе будущее должно быть возобновляемым, потому что ископаемые запасы топлива либо закончатся, либо (что более вероятно) сочтутся слишком грязными, либо дорогой в использовании. Мы уже видели огромное распространение ветровой энергии на последние пару десятилетий и солнечная энергия, вероятно, увеличится резко в ближайшие годы.Большой недостаток, как я упоминалось ранее, заключается в том, что вам потребуется не менее 1000 ветряных турбин (номинальная мощностью 2 МВт) или 400000 солнечных крыш (номинальной мощностью 5 кВт), работающих на максимальной мощности, чтобы сделать то же самое мощность как одна большая электростанция (2 ГВт), поэтому, если мы собираемся переключить от электростанций до зеленой энергии, нам нужно очень много покрывая массивную территорию. Какие бы недостатки ни были у электростанций, они, безусловно, очень эффективно используют землю (хотя можно утверждать, что также следует учитывать обширный отвод угольных шахт или нефтяных и газовых месторождений).

Диаграммы: Изменяющийся характер электростанций. На этих двух диаграммах общая численность населения электростанций в электроэнергетике США разбита по типу топлива или другой энергии, которую они использовали в 2003 и 2018 годах. Вы можете видеть, что произошло значительное сокращение угольных и нефтяных электростанций, небольшое увеличение. на заводах, работающих на природном газе (и других газах), и огромном увеличении использования возобновляемых источников энергии (хотя гидроэлектростанции остаются примерно такими же). На основе данных за декабрь 2018 г. Сколько и каких электростанций имеется в Соединенных Штатах ?, Управление энергетической информации США, 8 декабря 2019 г. (и более ранние версии того же документа для более ранних данных).

Эффективность и управление спросом

Некоторые утверждают, что мы можем избежать строительства электростанций. за счет энергоэффективности, например, за счет более эффективного использования дома техника и лучшая изоляция. Многие коммунальные предприятия имеют принял эту идею с помощью простых инициатив, таких как раздача бесплатных энергосберегающие лампочки домовладельцам. Теоретически, если вы выдадите 50 миллионов энергосберегающих ламп, каждая из которых экономит 50 Вт энергии, вы полностью избежать необходимости строить один большой (2.5ГВт) электростанция. (Эта идея иногда называют «негаватт», это слово было придумано Эмори Ловинсом из Института Скалистых гор.) Мы также можем уменьшить потребность в новых электростанции за счет более рационального хранения энергии и управления спросом, у нас нет таких огромных пиков потребления энергии. К сожалению, это подход только уводит нас так далеко. Проблема в том, что наша общая энергия потребности постоянно растут — и наша потребность в электричестве ограничена также расти, поскольку мы переходим от автомобилей, работающих на ископаемом топливе, и дизельного топлива поезда на альтернативы электричеству.Более того, есть проблема растущие потребности в энергии в развивающихся странах: люди в тех страны не могут экономить энергию, которую они еще не используют, и это быть безнравственным, чтобы помешать им использовать энергию, чтобы выбраться из бедности. В конечном счете, миру в целом нужно будет использовать гораздо больше энергии и гораздо больше электроэнергии и, хотя эффективность имеет решающее значение роль, которую нужно сыграть, это лишь небольшая часть решения.

В краткосрочной перспективе стремление к газу помогает, если оно уводит нас от угля.ТЭЦ также помогает, если улучшается эффективности, но не в том случае, если это приведет к тому, что мы будем вынуждены работать с ископаемым топливом на десятилетия, чтобы прийти. Улавливание и хранение углерода (CCS) может помочь нам сделать старее, угольные электростанции более экологичны, но по-прежнему в значительной степени бездоказательно и дорого. Долгосрочное будущее непременно должно быть возобновляемым, и энергоэффективность может сделать будущее более зеленым, питается солнцем и ветром, этого легче достичь. Тем не менее, на данный момент и на десятилетия вперед обычные электростанции, работающие на ископаемом топливе. останется основой нашей энергетики и электроснабжения.Мы должны восхищаться ими, уважать их за то, что они делают нашу жизнь источником энергии, и заставлять они настолько чистые и зеленые, насколько это возможно.

Как работают электростанции?

Не так давно алхимики мечтали стать дешевыми и уродливыми. металлы в ценные, такие как золото. Электростанции (также называемые электростанции) проделывают аналогичный трюк, превращая куски угля и капли нефти в скопления электрический ток, которым можно приготовить ужин или зарядить телефон.Если это не было бы для электростанций, я бы не писал эти слова сейчас — и вы бы их не читали. Фактически, большинство вещей мы делаем каждый день, и большая часть того, что мы используем, имеет скрытый долг в благодарность этим гигантским энергетическим фабрикам, которые превращают «ископаемое топливо» (уголь, природный газ и нефть) в электроэнергию.

Эта энергетическая алхимия — довольно удивительный трюк — и совсем недавно тоже, так как самая первая практическая электростанция была построена в только 1882 г. (Томас Эдисон). Однако изумление часто бывает последним, что мы чувствуем, когда подумайте о производстве электроэнергии в начале 21 века.В эпоху, когда забота об окружающей среде (вполне справедливо) важнее, чем Всегда модно глумиться над электростанциями как над злыми, грязными местами закачивая загрязнения в наш воздух, землю и воду. Однажды мы могли бы быть в состоянии сделать всю нашу электроэнергию полностью чистой и экологически чистой. А пока электростанции жизненно важны для поддержания наших школ, больницы, дома и офисы светлые, теплые и кипящие жизнью; без них современная жизнь была бы невозможна. Как они работают? Давайте присмотритесь!

Фото: Типичная электростанция, работающая на ископаемом топливе, в Дидкоте, Англия.Изначально это были две отдельные электростанции: старая работала на угле и нефти, а новая работала на природном газе. Только газовая установка по-прежнему работает. Обратите внимание на градирни справа и пилоны и линии электропередач, отводящие электричество слева.

Магическая наука о электростанциях

Одна большая электростанция может производить достаточно электроэнергии (около 2 гигаватт, 2000 мегаватт или 20000000000 ватт) для обеспечения пара сотен тысяч домов, и это столько же мощности вы могли бы сделать примерно с 1000 больших ветряных турбин работает изо всех сил.Но блестящая наука, стоящая за этим удивительным трюком, не имеет ничего общего с силовой установкой. чем с топливом горит. Настоящая магия не в этом электростанции превращают топливо в электричество: дело в том, что даже небольшие количества ископаемого топлива содержат большое количество энергии. Килограмм угля или литр масла содержит около 30 МДж энергии — огромное количество, эквивалентен нескольким тысячам 1,5-вольтовых батарей! Работа электростанции состоит в том, чтобы высвободить эту химическую энергию в виде тепла, использовать тепло для управления прядильная машина называется турбиной, а затем использовать турбину для питания генератор (машина для производства электроэнергии).Электростанции могут сделать так много энергии, потому что они сжигают огромное количество топлива — и каждый немного этого топлива заполнено энергией.

К сожалению, большинство электростанций не очень эффективны: на типичной старой электростанции, работающей на угле, только около трети энергии, содержащейся в топливе, преобразуется в электричество, а остальная часть тратится впустую. Более новые конструкции, такие как электростанции с комбинированным циклом (которые мы рассмотрим через минуту), могут иметь до 50 процентов эффективности. Как показывает диаграмма, на пути от электростанции до вашего дома тратится еще больше электроэнергии.Если сложить все потери вместе, только пятая часть энергии топлива доступна в качестве полезной энергии в вашем доме.

Диаграмма: Большие централизованные электростанции, работающие на ископаемом топливе, очень неэффективны, тратя около двух третей энергии на топливо. Вот типичный сценарий: около 62 процентов теряется в самой установке в виде отработанного тепла. Еще 4 процента исчезают в линиях электропередач и трансформаторах, по которым электричество подается с электростанции в ваш дом. После подачи электричества ваша бытовая техника теряет еще 13 процентов.В общем, только 22 процента первоначальной энергии топлива (зеленый кусочек) превращается в энергию, которую вы действительно можете использовать. Источник: данные «Децентрализация власти: энергетическая революция в 21 веке», Гринпис, 2005 г.

Типы электростанций

Паровая турбина

Большинство традиционных электростанций вырабатывают энергию, сжигая топливо для выпуск тепло . По этой причине их называют термическими (тепловые) электростанции. Угольные и масличные заводы работают так же, как я показано на иллюстрации выше, сжигание топлива с кислородом для выделения тепла энергия, которая кипятит воду и приводит в действие паровую турбину.Этот базовую конструкцию иногда называют простым циклом .

Фото: Превосходная макет паровой турбины и электрогенератора в разрезе. Пар втекает в турбину по огромным серым трубам наверху, вращая турбину, похожую на ветряную мельницу, посередине. Когда турбина вращается, она вращает подключенный к ней электрогенератор (синий цилиндр, который вы можете видеть справа). Эта модель находится в Think Tank, музее науки и техники в Бирмингеме, Англия.

Газовая турбина

Установки, работающие на природном газе, работают немного иначе, аналогично тому, как работает реактивный двигатель. Вместо пара они горят постоянный поток газа и использовать его для приведения в действие турбины немного другой конструкции (называемой газовой турбиной ) вместо.

Фото: The Электростанция McNeil в Берлингтоне, штат Вермонт, сжигает древесное топливо (коричневый, слева) в газовой турбине, чтобы вырабатывать скромные 50 мегаватт энергии, чего достаточно для местный город.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Комбинированные конструкции

Каждая построенная когда-либо электростанция преследовала одну главную цель: как можно больше полезного электричества из его топлива — другими словами, быть максимально эффективным. Когда реактивные двигатели кричат ​​сквозь небо пускает горячие газы, как реактивные двигатели, они тратят впустую энергия. В самолете мы мало что можем сделать, но мы можем что-то об этом на электростанции.Мы можем взять горячий выхлоп газы, поступающие из газовой турбины и использующие их для питания паровой турбины а также в так называемом комбинированном цикле . Это позволяет нам производят на 50 процентов больше электроэнергии из топлива по сравнению с на обычную установку простого цикла. В качестве альтернативы мы можем улучшить КПД электростанции за счет пропускания отработанных газов через теплообменник. теплообменник, поэтому они вместо этого нагревают воду. Эта конструкция называется комбинированное производство тепла и электроэнергии (ТЭЦ) или когенерация, и это быстро становится одним из самых популярных проектов (также может быть используется для очень мелкомасштабного производства энергии в единицах примерно одинаковых размер как автомобильные двигатели).

Ядерная

Атомные электростанции работают так же, как уголь или уголь простого цикла. масличные растения, но вместо того, чтобы сжигать топливо, они разбивают атомы на части, выделять тепловую энергию. Он используется для кипячения воды, производства пара и запитать паровую турбину и генератор обычным способом. Для большего Подробности читайте в нашей основной статье о том, как работают атомные электростанции.

Hydro

Хотя все эти типы электростанций в основном тепловые (генерирует и выделяет тепло для привода паровой или газовой турбины), два другие очень распространенные типы вообще не используют никакого тепла.Гидроэлектростанции и гидроаккумулирующие станции предназначены для перекачивания огромного количества вода мимо огромных водяных турбин (считайте их очень эффективными водяные колеса), которые напрямую приводят в действие генераторы. В гидроэлектростанции завод , река устроена так, чтобы подпирать огромную бетонную плотину. В вода может выходить через относительно небольшое отверстие в дамбе, называемое затвор и при этом заставляет одну или несколько турбин вращаться около. Пока река течет, турбины крутятся и плотина производит гидроэлектроэнергию.Хотя они не производят загрязнения или выбросов, гидроэлектростанции очень вредны в других отношениях: они деградируют реки, блокируя их течение, и они затапливают огромные территории, вынуждая многих людей из своих домов (плотина «Три ущелья» в Китае привела к перемещению примерно 1,2 миллиона человек).

ГАЗ вырабатывает электроэнергию аналогично гидроэлектростанция, но перемещает одну и ту же воду туда и обратно между высокоуровневым озером и нижним. Во времена пиковый спрос, воде позволено течь из высокого озера в нижний, производящий электроэнергию по высокой цене.Когда спрос ниже, посреди ночи вода снова перекачивается от низкого озера к высокому с использованием низкотарифной электроэнергии. Так накачано хранение — это действительно способ использовать преимущества электричества в одни разы стоит больше, чем в другие.

Фото: плотина гидроэлектростанции Макнари в Орегоне вырабатывает 980 мегаватт электроэнергии, когда через нее проносится вода. его турбины. Фото Дэвида Хикса любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Как электричество попадает в ваш дом

Одно из замечательных свойств электричества заключается в том, что мы можем сделать его практически в любом месте и передавать его на большие расстояния по линиям электропередач в наши дома. Это позволяет нам управлять огромными городами без строить огромные грязные электростанции прямо посреди них или размещать электростанции там, где есть удобные месторождения угля или реки с быстрым течением, чтобы кормить их. Теперь требуется энергия, чтобы отправить электрический ток по проводу, потому что даже самые лучшие провода сделаны из таких веществ, как золото, серебро и медь, имеют то, что называется сопротивление — они препятствуют прохождению электричества.В чем длиннее провод, тем больше сопротивление и больше энергии это напрасно. Таким образом, вы можете подумать, что выбросить электричество очень сильно. длинные силовые кабели было бы очень глупо и расточительно.

Однако есть простой способ обойти это. Оказывается, чем больше ток течет через провод тратится больше энергии. Сделав текущим как можно меньше, мы можем свести к минимуму энергию — и мы делаем это, сделав напряжение как можно большим.Электростанции на чем-то производят электричество вроде 14000 вольт, но они используют трансформаторы (повышающие напряжение или понижающих устройств), чтобы «поднять» напряжение на что-нибудь от от трех до пятидесяти раз, примерно до 44 000–750 000 вольт, прежде чем отправить его по линиям электропередачи в города где он будет потребляться. Как правило, мощность передается в течение длительного времени. расстояния с использованием ВЛ, натянутых между опорными рамами называется пилонов ; это сделать намного быстрее и дешевле, чем закапывать линии под землей, что обычно делается в городах.Поставка пилонов подстанции , которые фактически являются мини-точками электроснабжения, предназначенными для питания, возможно, большой завод или небольшой жилой массив. Подстанция использует «понижающие» трансформаторы для преобразования высоковольтной электроэнергии. от линии питания до одного или нескольких более низких напряжений, подходящих для фабрики, офисы, дома или что-то еще.

На фото: слева: трансформаторы линий электропередач. Справа: линия передачи (пилон).

Как работает электросеть

Подстанции получили свое название с тех времен, когда электростанции снабжали очень четко определенные локальные территории: каждая станция питала ряд близлежащих подстанций, которые проходили мимо питание домов и других зданий.Проблема с этим договоренность заключается в том, что если электростанция внезапно выйдет из строя, многие дома придется обходиться без электричества. Есть и другие проблемы с запуском электростанции самостоятельно. Одна электростанция могла бы производить электричество очень дешево (возможно, потому что оно очень новое и используется природный газ), а другой (по старой технологии на угле) может быть намного дороже, поэтому имеет смысл использовать более дешевый вокзал по возможности. К сожалению, электростанции не похожи на машину двигатели: они должны работать постоянно; как правило, они не могут запускаться и полностью прекратить, когда мы этого хотим.По этим и другим причинам электроэнергетические компании пришли к выводу, что имеет смысл подключить все их электростанции в обширную сеть, называемую сеткой . Высоко сложные компьютеризированные центры управления используются для повышения или снизить производительность станций, чтобы соответствовать спросу от минуты до минута и час за часом (так что больше станций будут работать без перерыва в вечер, например, когда большинство людей готовят себе ужин).

Что ждет электростанции в будущем?

Нам всегда будет нужна энергия и особенно электричество — очень универсальный вид энергии, который мы можем легко использовать по-разному, но это не значит, что нам всегда будут нужны электростанции, подобные тем, которые мы есть сегодня.Давление на окружающую среду уже заставляет многих страны закрыть угольные электростанции, которые производят наибольшие выбросы углекислого газа (ответственные за изменение климата и глобальное потепление). Хотя атомные станции могут предложить самый чистый путь к низкоуглеродному будущему, есть серьезные опасения по поводу того, сможем ли мы построить их достаточно быстро или преодолеть страхи людей по поводу загрязнения и безопасности (будь то опасения рациональны или нет).

Щиток на газ

В краткосрочной перспективе довольно ясно, что нас ждет в будущем: есть всемирный «рывок за бензином».«Большинство новых электрических электростанции теперь используют природный газ, что значительно дешевле, в относительно большом количестве (на данный момент) и с меньшими выбросами чем другие станции, работающие на ископаемом топливе. АЗС также быстрее и дешевле построить, чем более сложные альтернативы, такие как атомные станции и сталкиваются с меньшим сопротивлением общественности. В 2011 году в США было произведено около четверти его электричество из природного газа; к 2017 году этот показатель вырос почти до трети (32 процента).

Диаграмма: Тире за газом.Примерно за последнее десятилетие в Соединенных Штатах произошел значительный переход от угольных электростанций (синий) к природному газу (красный), в то время как ядерная энергия (желтый) и гидроэлектроэнергия (зеленый) по-прежнему обеспечивают чуть более четверти всего электричества. Ветер (фиолетовый) и солнечный (оранжевый) сильно выросли, но с очень маленькой базы, поэтому даже сейчас они по-прежнему обеспечивают только около 11 процентов всей электроэнергии. На этой диаграмме показана разбивка источников выработки электроэнергии между 2007 г. (внутреннее кольцо) и 2019 г. (внешнее кольцо), и она была составлена ​​с использованием данных за июнь 2020 г. из журнала Electric Power Monthly, Управления энергетической информации США, по состоянию на 6 сентября 2020 г. (и предыдущих версий настоящего документа). документ).Примечания: 1) Гидроэлектростанция скорректирована с учетом гидроаккумуляции. 2) На диаграмме показано производство электроэнергии только коммунальными предприятиями и исключены маломасштабные фотоэлектрические и другие небольшие установки. 3) «Ветровая и прочая энергия» включает все возобновляемые источники энергии, кроме солнечной и гидроэлектрической.

ТЭЦ

Другие тенденции также становятся важными, особенно смещение к более мелким станциям, использующим комбинированное производство тепла и электроэнергии (ТЭЦ). В отчете Управления энергетической информации США за 2016 г. Соединенные Штаты имеют потенциал построить почти 300 000 малых ТЭЦ. заводы (многие просто питают отдельные здания или комплексы), которые позволит избежать необходимости строительства около 100 крупных угольных или атомных электростанций. растения.Поскольку некоторые из них будут питаться биомассой (например, деревьями или «энергетические культуры», выращенные специально для этой цели) или отходы, которые иллюстрирует три разные тенденции в действии: переход к более мелким растений и многое другое, а также переход от ископаемого топлива к возобновляемые источники энергии.

Возобновляемые источники энергии

В более долгосрочной перспективе будущее должно быть возобновляемым, потому что ископаемые запасы топлива либо закончатся, либо (что более вероятно) сочтутся слишком грязными, либо дорогой в использовании. Мы уже видели огромное распространение ветровой энергии на последние пару десятилетий и солнечная энергия, вероятно, увеличится резко в ближайшие годы.Большой недостаток, как я упоминалось ранее, заключается в том, что вам потребуется не менее 1000 ветряных турбин (номинальная мощностью 2 МВт) или 400000 солнечных крыш (номинальной мощностью 5 кВт), работающих на максимальной мощности, чтобы сделать то же самое мощность как одна большая электростанция (2 ГВт), поэтому, если мы собираемся переключить от электростанций до зеленой энергии, нам нужно очень много покрывая массивную территорию. Какие бы недостатки ни были у электростанций, они, безусловно, очень эффективно используют землю (хотя можно утверждать, что также следует учитывать обширный отвод угольных шахт или нефтяных и газовых месторождений).

Диаграммы: Изменяющийся характер электростанций. На этих двух диаграммах общая численность населения электростанций в электроэнергетике США разбита по типу топлива или другой энергии, которую они использовали в 2003 и 2018 годах. Вы можете видеть, что произошло значительное сокращение угольных и нефтяных электростанций, небольшое увеличение. на заводах, работающих на природном газе (и других газах), и огромном увеличении использования возобновляемых источников энергии (хотя гидроэлектростанции остаются примерно такими же). На основе данных за декабрь 2018 г. Сколько и каких электростанций имеется в Соединенных Штатах ?, Управление энергетической информации США, 8 декабря 2019 г. (и более ранние версии того же документа для более ранних данных).

Эффективность и управление спросом

Некоторые утверждают, что мы можем избежать строительства электростанций. за счет энергоэффективности, например, за счет более эффективного использования дома техника и лучшая изоляция. Многие коммунальные предприятия имеют принял эту идею с помощью простых инициатив, таких как раздача бесплатных энергосберегающие лампочки домовладельцам. Теоретически, если вы выдадите 50 миллионов энергосберегающих ламп, каждая из которых экономит 50 Вт энергии, вы полностью избежать необходимости строить один большой (2.5ГВт) электростанция. (Эта идея иногда называют «негаватт», это слово было придумано Эмори Ловинсом из Института Скалистых гор.) Мы также можем уменьшить потребность в новых электростанции за счет более рационального хранения энергии и управления спросом, у нас нет таких огромных пиков потребления энергии. К сожалению, это подход только уводит нас так далеко. Проблема в том, что наша общая энергия потребности постоянно растут — и наша потребность в электричестве ограничена также расти, поскольку мы переходим от автомобилей, работающих на ископаемом топливе, и дизельного топлива поезда на альтернативы электричеству.Более того, есть проблема растущие потребности в энергии в развивающихся странах: люди в тех страны не могут экономить энергию, которую они еще не используют, и это быть безнравственным, чтобы помешать им использовать энергию, чтобы выбраться из бедности. В конечном счете, миру в целом нужно будет использовать гораздо больше энергии и гораздо больше электроэнергии и, хотя эффективность имеет решающее значение роль, которую нужно сыграть, это лишь небольшая часть решения.

В краткосрочной перспективе стремление к газу помогает, если оно уводит нас от угля.ТЭЦ также помогает, если улучшается эффективности, но не в том случае, если это приведет к тому, что мы будем вынуждены работать с ископаемым топливом на десятилетия, чтобы прийти. Улавливание и хранение углерода (CCS) может помочь нам сделать старее, угольные электростанции более экологичны, но по-прежнему в значительной степени бездоказательно и дорого. Долгосрочное будущее непременно должно быть возобновляемым, и энергоэффективность может сделать будущее более зеленым, питается солнцем и ветром, этого легче достичь. Тем не менее, на данный момент и на десятилетия вперед обычные электростанции, работающие на ископаемом топливе. останется основой нашей энергетики и электроснабжения.Мы должны восхищаться ими, уважать их за то, что они делают нашу жизнь источником энергии, и заставлять они настолько чистые и зеленые, насколько это возможно.

Как работают электростанции?

Не так давно алхимики мечтали стать дешевыми и уродливыми. металлы в ценные, такие как золото. Электростанции (также называемые электростанции) проделывают аналогичный трюк, превращая куски угля и капли нефти в скопления электрический ток, которым можно приготовить ужин или зарядить телефон.Если это не было бы для электростанций, я бы не писал эти слова сейчас — и вы бы их не читали. Фактически, большинство вещей мы делаем каждый день, и большая часть того, что мы используем, имеет скрытый долг в благодарность этим гигантским энергетическим фабрикам, которые превращают «ископаемое топливо» (уголь, природный газ и нефть) в электроэнергию.

Эта энергетическая алхимия — довольно удивительный трюк — и совсем недавно тоже, так как самая первая практическая электростанция была построена в только 1882 г. (Томас Эдисон). Однако изумление часто бывает последним, что мы чувствуем, когда подумайте о производстве электроэнергии в начале 21 века.В эпоху, когда забота об окружающей среде (вполне справедливо) важнее, чем Всегда модно глумиться над электростанциями как над злыми, грязными местами закачивая загрязнения в наш воздух, землю и воду. Однажды мы могли бы быть в состоянии сделать всю нашу электроэнергию полностью чистой и экологически чистой. А пока электростанции жизненно важны для поддержания наших школ, больницы, дома и офисы светлые, теплые и кипящие жизнью; без них современная жизнь была бы невозможна. Как они работают? Давайте присмотритесь!

Фото: Типичная электростанция, работающая на ископаемом топливе, в Дидкоте, Англия.Изначально это были две отдельные электростанции: старая работала на угле и нефти, а новая работала на природном газе. Только газовая установка по-прежнему работает. Обратите внимание на градирни справа и пилоны и линии электропередач, отводящие электричество слева.

Магическая наука о электростанциях

Одна большая электростанция может производить достаточно электроэнергии (около 2 гигаватт, 2000 мегаватт или 20000000000 ватт) для обеспечения пара сотен тысяч домов, и это столько же мощности вы могли бы сделать примерно с 1000 больших ветряных турбин работает изо всех сил.Но блестящая наука, стоящая за этим удивительным трюком, не имеет ничего общего с силовой установкой. чем с топливом горит. Настоящая магия не в этом электростанции превращают топливо в электричество: дело в том, что даже небольшие количества ископаемого топлива содержат большое количество энергии. Килограмм угля или литр масла содержит около 30 МДж энергии — огромное количество, эквивалентен нескольким тысячам 1,5-вольтовых батарей! Работа электростанции состоит в том, чтобы высвободить эту химическую энергию в виде тепла, использовать тепло для управления прядильная машина называется турбиной, а затем использовать турбину для питания генератор (машина для производства электроэнергии).Электростанции могут сделать так много энергии, потому что они сжигают огромное количество топлива — и каждый немного этого топлива заполнено энергией.

К сожалению, большинство электростанций не очень эффективны: на типичной старой электростанции, работающей на угле, только около трети энергии, содержащейся в топливе, преобразуется в электричество, а остальная часть тратится впустую. Более новые конструкции, такие как электростанции с комбинированным циклом (которые мы рассмотрим через минуту), могут иметь до 50 процентов эффективности. Как показывает диаграмма, на пути от электростанции до вашего дома тратится еще больше электроэнергии.Если сложить все потери вместе, только пятая часть энергии топлива доступна в качестве полезной энергии в вашем доме.

Диаграмма: Большие централизованные электростанции, работающие на ископаемом топливе, очень неэффективны, тратя около двух третей энергии на топливо. Вот типичный сценарий: около 62 процентов теряется в самой установке в виде отработанного тепла. Еще 4 процента исчезают в линиях электропередач и трансформаторах, по которым электричество подается с электростанции в ваш дом. После подачи электричества ваша бытовая техника теряет еще 13 процентов.В общем, только 22 процента первоначальной энергии топлива (зеленый кусочек) превращается в энергию, которую вы действительно можете использовать. Источник: данные «Децентрализация власти: энергетическая революция в 21 веке», Гринпис, 2005 г.

Типы электростанций

Паровая турбина

Большинство традиционных электростанций вырабатывают энергию, сжигая топливо для выпуск тепло . По этой причине их называют термическими (тепловые) электростанции. Угольные и масличные заводы работают так же, как я показано на иллюстрации выше, сжигание топлива с кислородом для выделения тепла энергия, которая кипятит воду и приводит в действие паровую турбину.Этот базовую конструкцию иногда называют простым циклом .

Фото: Превосходная макет паровой турбины и электрогенератора в разрезе. Пар втекает в турбину по огромным серым трубам наверху, вращая турбину, похожую на ветряную мельницу, посередине. Когда турбина вращается, она вращает подключенный к ней электрогенератор (синий цилиндр, который вы можете видеть справа). Эта модель находится в Think Tank, музее науки и техники в Бирмингеме, Англия.

Газовая турбина

Установки, работающие на природном газе, работают немного иначе, аналогично тому, как работает реактивный двигатель. Вместо пара они горят постоянный поток газа и использовать его для приведения в действие турбины немного другой конструкции (называемой газовой турбиной ) вместо.

Фото: The Электростанция McNeil в Берлингтоне, штат Вермонт, сжигает древесное топливо (коричневый, слева) в газовой турбине, чтобы вырабатывать скромные 50 мегаватт энергии, чего достаточно для местный город.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Комбинированные конструкции

Каждая построенная когда-либо электростанция преследовала одну главную цель: как можно больше полезного электричества из его топлива — другими словами, быть максимально эффективным. Когда реактивные двигатели кричат ​​сквозь небо пускает горячие газы, как реактивные двигатели, они тратят впустую энергия. В самолете мы мало что можем сделать, но мы можем что-то об этом на электростанции.Мы можем взять горячий выхлоп газы, поступающие из газовой турбины и использующие их для питания паровой турбины а также в так называемом комбинированном цикле . Это позволяет нам производят на 50 процентов больше электроэнергии из топлива по сравнению с на обычную установку простого цикла. В качестве альтернативы мы можем улучшить КПД электростанции за счет пропускания отработанных газов через теплообменник. теплообменник, поэтому они вместо этого нагревают воду. Эта конструкция называется комбинированное производство тепла и электроэнергии (ТЭЦ) или когенерация, и это быстро становится одним из самых популярных проектов (также может быть используется для очень мелкомасштабного производства энергии в единицах примерно одинаковых размер как автомобильные двигатели).

Ядерная

Атомные электростанции работают так же, как уголь или уголь простого цикла. масличные растения, но вместо того, чтобы сжигать топливо, они разбивают атомы на части, выделять тепловую энергию. Он используется для кипячения воды, производства пара и запитать паровую турбину и генератор обычным способом. Для большего Подробности читайте в нашей основной статье о том, как работают атомные электростанции.

Hydro

Хотя все эти типы электростанций в основном тепловые (генерирует и выделяет тепло для привода паровой или газовой турбины), два другие очень распространенные типы вообще не используют никакого тепла.Гидроэлектростанции и гидроаккумулирующие станции предназначены для перекачивания огромного количества вода мимо огромных водяных турбин (считайте их очень эффективными водяные колеса), которые напрямую приводят в действие генераторы. В гидроэлектростанции завод , река устроена так, чтобы подпирать огромную бетонную плотину. В вода может выходить через относительно небольшое отверстие в дамбе, называемое затвор и при этом заставляет одну или несколько турбин вращаться около. Пока река течет, турбины крутятся и плотина производит гидроэлектроэнергию.Хотя они не производят загрязнения или выбросов, гидроэлектростанции очень вредны в других отношениях: они деградируют реки, блокируя их течение, и они затапливают огромные территории, вынуждая многих людей из своих домов (плотина «Три ущелья» в Китае привела к перемещению примерно 1,2 миллиона человек).

ГАЗ вырабатывает электроэнергию аналогично гидроэлектростанция, но перемещает одну и ту же воду туда и обратно между высокоуровневым озером и нижним. Во времена пиковый спрос, воде позволено течь из высокого озера в нижний, производящий электроэнергию по высокой цене.Когда спрос ниже, посреди ночи вода снова перекачивается от низкого озера к высокому с использованием низкотарифной электроэнергии. Так накачано хранение — это действительно способ использовать преимущества электричества в одни разы стоит больше, чем в другие.

Фото: плотина гидроэлектростанции Макнари в Орегоне вырабатывает 980 мегаватт электроэнергии, когда через нее проносится вода. его турбины. Фото Дэвида Хикса любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Как электричество попадает в ваш дом

Одно из замечательных свойств электричества заключается в том, что мы можем сделать его практически в любом месте и передавать его на большие расстояния по линиям электропередач в наши дома. Это позволяет нам управлять огромными городами без строить огромные грязные электростанции прямо посреди них или размещать электростанции там, где есть удобные месторождения угля или реки с быстрым течением, чтобы кормить их. Теперь требуется энергия, чтобы отправить электрический ток по проводу, потому что даже самые лучшие провода сделаны из таких веществ, как золото, серебро и медь, имеют то, что называется сопротивление — они препятствуют прохождению электричества.В чем длиннее провод, тем больше сопротивление и больше энергии это напрасно. Таким образом, вы можете подумать, что выбросить электричество очень сильно. длинные силовые кабели было бы очень глупо и расточительно.

Однако есть простой способ обойти это. Оказывается, чем больше ток течет через провод тратится больше энергии. Сделав текущим как можно меньше, мы можем свести к минимуму энергию — и мы делаем это, сделав напряжение как можно большим.Электростанции на чем-то производят электричество вроде 14000 вольт, но они используют трансформаторы (повышающие напряжение или понижающих устройств), чтобы «поднять» напряжение на что-нибудь от от трех до пятидесяти раз, примерно до 44 000–750 000 вольт, прежде чем отправить его по линиям электропередачи в города где он будет потребляться. Как правило, мощность передается в течение длительного времени. расстояния с использованием ВЛ, натянутых между опорными рамами называется пилонов ; это сделать намного быстрее и дешевле, чем закапывать линии под землей, что обычно делается в городах.Поставка пилонов подстанции , которые фактически являются мини-точками электроснабжения, предназначенными для питания, возможно, большой завод или небольшой жилой массив. Подстанция использует «понижающие» трансформаторы для преобразования высоковольтной электроэнергии. от линии питания до одного или нескольких более низких напряжений, подходящих для фабрики, офисы, дома или что-то еще.

На фото: слева: трансформаторы линий электропередач. Справа: линия передачи (пилон).

Как работает электросеть

Подстанции получили свое название с тех времен, когда электростанции снабжали очень четко определенные локальные территории: каждая станция питала ряд близлежащих подстанций, которые проходили мимо питание домов и других зданий.Проблема с этим договоренность заключается в том, что если электростанция внезапно выйдет из строя, многие дома придется обходиться без электричества. Есть и другие проблемы с запуском электростанции самостоятельно. Одна электростанция могла бы производить электричество очень дешево (возможно, потому что оно очень новое и используется природный газ), а другой (по старой технологии на угле) может быть намного дороже, поэтому имеет смысл использовать более дешевый вокзал по возможности. К сожалению, электростанции не похожи на машину двигатели: они должны работать постоянно; как правило, они не могут запускаться и полностью прекратить, когда мы этого хотим.По этим и другим причинам электроэнергетические компании пришли к выводу, что имеет смысл подключить все их электростанции в обширную сеть, называемую сеткой . Высоко сложные компьютеризированные центры управления используются для повышения или снизить производительность станций, чтобы соответствовать спросу от минуты до минута и час за часом (так что больше станций будут работать без перерыва в вечер, например, когда большинство людей готовят себе ужин).

Что ждет электростанции в будущем?

Нам всегда будет нужна энергия и особенно электричество — очень универсальный вид энергии, который мы можем легко использовать по-разному, но это не значит, что нам всегда будут нужны электростанции, подобные тем, которые мы есть сегодня.Давление на окружающую среду уже заставляет многих страны закрыть угольные электростанции, которые производят наибольшие выбросы углекислого газа (ответственные за изменение климата и глобальное потепление). Хотя атомные станции могут предложить самый чистый путь к низкоуглеродному будущему, есть серьезные опасения по поводу того, сможем ли мы построить их достаточно быстро или преодолеть страхи людей по поводу загрязнения и безопасности (будь то опасения рациональны или нет).

Щиток на газ

В краткосрочной перспективе довольно ясно, что нас ждет в будущем: есть всемирный «рывок за бензином».«Большинство новых электрических электростанции теперь используют природный газ, что значительно дешевле, в относительно большом количестве (на данный момент) и с меньшими выбросами чем другие станции, работающие на ископаемом топливе. АЗС также быстрее и дешевле построить, чем более сложные альтернативы, такие как атомные станции и сталкиваются с меньшим сопротивлением общественности. В 2011 году в США было произведено около четверти его электричество из природного газа; к 2017 году этот показатель вырос почти до трети (32 процента).

Диаграмма: Тире за газом.Примерно за последнее десятилетие в Соединенных Штатах произошел значительный переход от угольных электростанций (синий) к природному газу (красный), в то время как ядерная энергия (желтый) и гидроэлектроэнергия (зеленый) по-прежнему обеспечивают чуть более четверти всего электричества. Ветер (фиолетовый) и солнечный (оранжевый) сильно выросли, но с очень маленькой базы, поэтому даже сейчас они по-прежнему обеспечивают только около 11 процентов всей электроэнергии. На этой диаграмме показана разбивка источников выработки электроэнергии между 2007 г. (внутреннее кольцо) и 2019 г. (внешнее кольцо), и она была составлена ​​с использованием данных за июнь 2020 г. из журнала Electric Power Monthly, Управления энергетической информации США, по состоянию на 6 сентября 2020 г. (и предыдущих версий настоящего документа). документ).Примечания: 1) Гидроэлектростанция скорректирована с учетом гидроаккумуляции. 2) На диаграмме показано производство электроэнергии только коммунальными предприятиями и исключены маломасштабные фотоэлектрические и другие небольшие установки. 3) «Ветровая и прочая энергия» включает все возобновляемые источники энергии, кроме солнечной и гидроэлектрической.

ТЭЦ

Другие тенденции также становятся важными, особенно смещение к более мелким станциям, использующим комбинированное производство тепла и электроэнергии (ТЭЦ). В отчете Управления энергетической информации США за 2016 г. Соединенные Штаты имеют потенциал построить почти 300 000 малых ТЭЦ. заводы (многие просто питают отдельные здания или комплексы), которые позволит избежать необходимости строительства около 100 крупных угольных или атомных электростанций. растения.Поскольку некоторые из них будут питаться биомассой (например, деревьями или «энергетические культуры», выращенные специально для этой цели) или отходы, которые иллюстрирует три разные тенденции в действии: переход к более мелким растений и многое другое, а также переход от ископаемого топлива к возобновляемые источники энергии.

Возобновляемые источники энергии

В более долгосрочной перспективе будущее должно быть возобновляемым, потому что ископаемые запасы топлива либо закончатся, либо (что более вероятно) сочтутся слишком грязными, либо дорогой в использовании. Мы уже видели огромное распространение ветровой энергии на последние пару десятилетий и солнечная энергия, вероятно, увеличится резко в ближайшие годы.Большой недостаток, как я упоминалось ранее, заключается в том, что вам потребуется не менее 1000 ветряных турбин (номинальная мощностью 2 МВт) или 400000 солнечных крыш (номинальной мощностью 5 кВт), работающих на максимальной мощности, чтобы сделать то же самое мощность как одна большая электростанция (2 ГВт), поэтому, если мы собираемся переключить от электростанций до зеленой энергии, нам нужно очень много покрывая массивную территорию. Какие бы недостатки ни были у электростанций, они, безусловно, очень эффективно используют землю (хотя можно утверждать, что также следует учитывать обширный отвод угольных шахт или нефтяных и газовых месторождений).

Диаграммы: Изменяющийся характер электростанций. На этих двух диаграммах общая численность населения электростанций в электроэнергетике США разбита по типу топлива или другой энергии, которую они использовали в 2003 и 2018 годах. Вы можете видеть, что произошло значительное сокращение угольных и нефтяных электростанций, небольшое увеличение. на заводах, работающих на природном газе (и других газах), и огромном увеличении использования возобновляемых источников энергии (хотя гидроэлектростанции остаются примерно такими же). На основе данных за декабрь 2018 г. Сколько и каких электростанций имеется в Соединенных Штатах ?, Управление энергетической информации США, 8 декабря 2019 г. (и более ранние версии того же документа для более ранних данных).

Эффективность и управление спросом

Некоторые утверждают, что мы можем избежать строительства электростанций. за счет энергоэффективности, например, за счет более эффективного использования дома техника и лучшая изоляция. Многие коммунальные предприятия имеют принял эту идею с помощью простых инициатив, таких как раздача бесплатных энергосберегающие лампочки домовладельцам. Теоретически, если вы выдадите 50 миллионов энергосберегающих ламп, каждая из которых экономит 50 Вт энергии, вы полностью избежать необходимости строить один большой (2.5ГВт) электростанция. (Эта идея иногда называют «негаватт», это слово было придумано Эмори Ловинсом из Института Скалистых гор.) Мы также можем уменьшить потребность в новых электростанции за счет более рационального хранения энергии и управления спросом, у нас нет таких огромных пиков потребления энергии. К сожалению, это подход только уводит нас так далеко. Проблема в том, что наша общая энергия потребности постоянно растут — и наша потребность в электричестве ограничена также расти, поскольку мы переходим от автомобилей, работающих на ископаемом топливе, и дизельного топлива поезда на альтернативы электричеству.Более того, есть проблема растущие потребности в энергии в развивающихся странах: люди в тех страны не могут экономить энергию, которую они еще не используют, и это быть безнравственным, чтобы помешать им использовать энергию, чтобы выбраться из бедности. В конечном счете, миру в целом нужно будет использовать гораздо больше энергии и гораздо больше электроэнергии и, хотя эффективность имеет решающее значение роль, которую нужно сыграть, это лишь небольшая часть решения.

В краткосрочной перспективе стремление к газу помогает, если оно уводит нас от угля.ТЭЦ также помогает, если улучшается эффективности, но не в том случае, если это приведет к тому, что мы будем вынуждены работать с ископаемым топливом на десятилетия, чтобы прийти. Улавливание и хранение углерода (CCS) может помочь нам сделать старее, угольные электростанции более экологичны, но по-прежнему в значительной степени бездоказательно и дорого. Долгосрочное будущее непременно должно быть возобновляемым, и энергоэффективность может сделать будущее более зеленым, питается солнцем и ветром, этого легче достичь. Тем не менее, на данный момент и на десятилетия вперед обычные электростанции, работающие на ископаемом топливе. останется основой нашей энергетики и электроснабжения.Мы должны восхищаться ими, уважать их за то, что они делают нашу жизнь источником энергии, и заставлять они настолько чистые и зеленые, насколько это возможно.

Гидроэлектроэнергия: как это работает

• Школа водных наук ГЛАВНАЯ • Темы водопользования •

Падающая вода производит гидроэлектроэнергию.

Кредит: Управление долины Теннесси

Так как же нам получить электричество из воды? Фактически, гидроэлектростанции и угольные электростанции производят электроэнергию одинаковым образом.В обоих случаях источник энергии используется для вращения пропеллероподобной детали, называемой турбиной, которая затем вращает металлический вал в электрическом генераторе, который является двигателем, вырабатывающим электричество. На угольной электростанции пар вращает лопасти турбины; тогда как гидроэлектростанция использует падающую воду для вращения турбины. Результаты такие же.

Взгляните на эту схему (любезно предоставленную Управлением долины Теннесси) гидроэлектростанции, чтобы увидеть подробности:

Теория состоит в том, чтобы построить плотину на большой реке , которая имеет большой перепад высот (в Канзасе или Флориде не так много гидроэлектростанций).Плотина хранит много воды за собой в резервуаре . У подножия стены дамбы находится водозабор. Гравитация заставляет его проваливаться через напорный водовод внутри дамбы. В конце напорного водовода находится пропеллер турбины, который вращается движущейся водой. Вал турбины идет вверх в генератор, который производит мощность. К генератору подключены линии электропередач, по которым электричество доставляется в ваш дом и в мой. Вода проходит мимо гребного винта через отводной канал в реку мимо плотины.Кстати, играть в воде прямо под плотиной, когда выходит вода, — не лучшая идея!

Электроэнергия вырабатывается турбиной и генератором

Схема гидроэлектрической турбины и генератора.

Источник: Инженерный корпус армии США

Что касается того, как работает этот генератор, Инженерный корпус объясняет это следующим образом:
«Гидравлическая турбина преобразует энергию текущей воды в механическую.Гидроэлектрический генератор преобразует эту механическую энергию в электричество. Работа генератора основана на принципах, открытых Фарадеем. Он обнаружил, что когда магнит проходит мимо проводника, он заставляет течь электричество. В большом генераторе электромагниты создаются за счет циркуляции постоянного тока через петли из проволоки, намотанные на стопки пластин из магнитной стали. Они называются полевыми полюсами и устанавливаются по периметру ротора. Ротор прикреплен к валу турбины и вращается с фиксированной скоростью.Когда ротор вращается, полюса поля (электромагниты) проходят мимо проводников, установленных в статоре. Это, в свою очередь, вызывает прохождение электричества и повышение напряжения на выходных клеммах генератора ».

Гидроаккумулятор: повторное использование воды для пикового спроса на электроэнергию

Спрос на электроэнергию не «плоский», а постоянный. Спрос повышается и понижается в течение дня, и в ночное время потребность в электричестве в домах, на предприятиях и других объектах снижается.Например, здесь, в Атланте, штат Джорджия, в 17:00 в жаркий августовский выходной день можно поспорить, что существует огромный спрос на электроэнергию для работы миллионов кондиционеров! Но 12 часов спустя, в 5:00 … не так уж и много. Гидроэлектростанции более эффективны в обеспечении пиковой потребности в энергии в течение коротких периодов времени, чем электростанции, работающие на ископаемом топливе и атомные электростанции, и один из способов сделать это — использовать «гидроаккумулирующие станции», которые повторно используют одну и ту же воду более одного раза.

Насосный накопитель — это метод сохранения воды в резерве на период пиковой нагрузки за счет перекачки воды, которая уже прошла через турбины, в резервный бассейн над электростанцией в то время, когда потребность потребителей в энергии низка, например, во время Середина ночи.Затем воде позволяют течь обратно через турбогенераторы в периоды, когда потребность высока и на систему ложится большая нагрузка.

Гидроаккумулятор: повторное использование воды для пикового спроса на электроэнергию

Резервуар действует как батарея, накапливая энергию в виде воды, когда потребности в ней низкие, и вырабатывая максимальную мощность в периоды суточных и сезонных пиковых нагрузок. Преимущество гидроаккумулирующего оборудования заключается в том, что гидроагрегаты могут быстро запускаться и быстро регулировать производительность.Они работают эффективно при использовании в течение одного или нескольких часов. Поскольку гидроаккумуляторы относительно малы, затраты на строительство обычно невысоки по сравнению с обычными гидроэнергетическими сооружениями.

A ТЭЦ, работающая на угле

• Школа водных наук ГЛАВНАЯ • Темы водопользования •

Электростанция Джорджии Пауэр Шерер — одно из крупнейших угольных предприятий по производству термоэлектрической энергии в Соединенных Штатах.Это угольный объект мощностью 3 520 000 киловатт, который обеспечивает электричеством Грузию. Как показано на этой диаграмме, установка работает по тем же принципам, что и другие электростанции, работающие на ископаемом топливе — она ​​сжигает уголь для производства тепла, которое превращает воду в пар, который затем превращает турбины в генератор.

Такая большая термоэлектрическая станция сжигает много угля — в данном случае около 11 миллионов тонн в год. Уголь, измельченный в мелкодисперсный порошок с помощью пульверизатора, выдувается в печное устройство, называемое котлом, и сжигается.Вырабатываемое тепло преобразует воду, которая проходит через ряд труб в котле, в пар. Пар высокого давления вращает лопатки турбины, соединенной валом с генератором. Генератор вращается и производит электричество.

На диаграмме вы можете увидеть, как в основном вода используется для охлаждения конденсаторных агрегатов, которые получают конденсированный пар, который использовался для вращения турбин. Горячий конденсированный водяной пар проходит по трубам, которые охлаждаются более холодной водой (в данном случае забираемой из водохранилища реки Окмалджи и озера Джульетта).Таким образом, конденсированная вода охлаждается, а затем рециркулируется обратно через угольный котел, чтобы снова превратиться в пар и привести в действие турбины. Это часть системы с замкнутым циклом, которая постоянно повторно использует воду.

В другой части цикла водопользования станции, в замкнутом цикле, большие объемы воды забираются из реки и водохранилища и перекачиваются в конденсаторы. Эта более холодная вода окружает трубы, содержащие горячий конденсированный пар, и поэтому сильно нагревается.Горячая вода перекачивается из конденсаторных агрегатов в четыре градирни высотой 530 футов, поэтому она может терять тепло. Каждая градирня на заводе Scherer обеспечивает циркуляцию 268 000 галлонов воды в минуту. Большая часть этой воды повторно используется после охлаждения, но около 8000 галлонов в минуту теряется на испарение (таким образом, вы видите, как пар выходит из верхних частей градирен).

Источник: раздаточный материал Plant Robert W. Scherer, Georgia Power

Power Generation System — обзор

5.1 Введение

Энергетические системы обычно рассматриваются как тепловые двигатели для преобразования подводимого тепла в работу и, следовательно, для производства электроэнергии с постоянной скоростью. Подвод тепла осуществляется за счет сжигания ископаемого топлива (угля, нефти и природного) и биомассы, обработки ядерного топлива или получения тепловой энергии из возобновляемых источников энергии. Например, на обычной угольной электростанции (также используется термин «электростанция») энергия угля в конечном итоге преобразуется в электроэнергию. Как правило, обычные электростанции состоят из нескольких генерирующих блоков, которые спроектированы для работы при номинальной нагрузке, когда они работают оптимально.

Существует ряд хорошо известных энергогенерирующих систем, обозначенных как обычные, а именно двигатель с искровым зажиганием, двигатель с воспламенением от сжатия, паровая или органическая электростанция Ренкина, электростанция с турбиной внутреннего сгорания, электростанция с комбинированным циклом, атомная электростанция, и гидроэлектростанция. Все эти традиционные энергогенерирующие системы (CPGS) в основном производят механическую работу, которая передается последующим системам в виде вращения вала. В транспортных средствах мощность на валу, развиваемая двигателями, передается в тяговую систему для обеспечения движения.В стационарных электростанциях или генераторах мощность на валу, развиваемая первичным двигателем, используется для вращения электрического генератора, который преобразует механическую мощность вращения в электрическую.

Ключевым компонентом CPGS является первичный двигатель или орган, вырабатывающий мощность на валу. В CPGS используются два типа первичных двигателей: объемные машины (например, поршневые двигатели) и турбомашины. Поршневые машины обычно состоят из поршневых и цилиндрических узлов, в которых сила давления расширяющегося газа преобразуется в возвратно-поступательное движение, которое впоследствии преобразуется во вращение вала.Турбомашины (турбины) преобразуют кинетическую энергию жидкости непосредственно во вращение вала.

Малогабаритные КПГС используются в обычных поршневых тягачах; это двигатель с искровым зажиганием и двигатель с воспламенением от сжатия. Крупномасштабные CPGS используют турбины в качестве первичных двигателей. Единственная ГЭС, которая не использует тепло в качестве источника энергии, — это гидроэлектростанция, где гидравлическая энергия является входом. Все остальные КПГС представляют собой термомеханические преобразователи и работают по определенному термодинамическому циклу.Паровой цикл Ренкина используется на угольных, газовых и нефтяных электростанциях, а также на обычных атомных электростанциях. Цикл Брайтона используется на газотурбинных электростанциях. Дизельный цикл характерен для двигателей с воспламенением от сжатия, тогда как двигатель с искровым зажиганием работает на основе цикла Отто.

Любая CPGS имеет свой особый тип оборудования. Как уже упоминалось, наиболее важным оборудованием является первичный двигатель: паровые электростанции вырабатывают мощность с помощью паровых турбин, газотурбинные электростанции вырабатывают энергию, используя конкретную турбомашину в качестве первичного двигателя (это газовая турбина), гидроэлектростанции используют различные Типы гидравлических турбин и двигателей внутреннего сгорания используют системы поршневой поршень-цилиндр для их впуска, сгорания, сжатия и расширения процессов, обеспечивая, таким образом, чистую выходную мощность.

На паровых электростанциях вторым по значимости оборудованием после паровой турбины является парогенератор. Обычные парогенераторы работают на угле, нефти или природном газе. На атомной электростанции парогенератор является более специализированным, поскольку он нагревается с помощью различных типов систем, направленных на передачу тепла от ядерного реактора к кипящей воде контролируемым и безопасным образом. Конкретные ядерные энергогенерирующие системы и их энергетические циклы, обычные и усовершенствованные, представлены в главе 6 этой книги.

В этой главе CPGS представлены в следующем порядке: электростанции с паровым циклом, электростанции с газотурбинным циклом, газовые двигатели и гидроэлектростанции. Для паровых электростанций сначала представлен термодинамический цикл парового типа Ренкина с различными схемами. Затем вводятся угольные электростанции со своими парогенераторами. Системы с органическим циклом Ренкина (ORC) обсуждаются как вариант циклов Ренкина с использованием органической рабочей жидкости вместо пара.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *