Принцип работы транзистора для чайников. Принцип работы транзистора: полное руководство для начинающих

Как устроен транзистор и как он работает. Какие бывают типы транзисторов. Какие режимы работы есть у транзистора. Как правильно подключать транзистор в схему. Где применяются транзисторы в электронике.

Содержание

Что такое транзистор и для чего он нужен

Транзистор — это полупроводниковый прибор, который служит для усиления, генерации и преобразования электрических сигналов. Он является одним из основных компонентов современной электроники.

Основные функции транзистора:

  • Усиление электрических сигналов
  • Коммутация электрических цепей
  • Генерация электрических колебаний
  • Преобразование электрических сигналов

Транзистор позволяет управлять большим током в цепи с помощью малого тока или напряжения. Это его ключевое свойство, которое определяет широкое применение транзисторов в электронике.

Устройство и принцип работы транзистора

Транзистор состоит из трех областей полупроводника с различным типом проводимости. Эти области называются:

  • Эмиттер (Э)
  • База (Б)
  • Коллектор (К)

Принцип работы транзистора основан на взаимодействии двух близко расположенных p-n переходов. Рассмотрим работу транзистора n-p-n типа:


  1. На переход база-эмиттер подается небольшое прямое напряжение (0.6-0.7 В).
  2. Это открывает переход и вызывает инжекцию электронов из эмиттера в базу.
  3. Большая часть электронов проходит через тонкую базу и попадает в коллектор.
  4. Коллекторный переход смещен в обратном направлении и собирает эти электроны.
  5. В результате небольшой ток базы управляет большим током коллектора.

Таким образом, транзистор усиливает входной сигнал по току в десятки и сотни раз.

Основные типы транзисторов

Существует два основных типа транзисторов:

Биполярные транзисторы

В биполярных транзисторах используются носители заряда обоих знаков — электроны и дырки. Они бывают двух типов:

  • n-p-n транзисторы
  • p-n-p транзисторы

Полевые транзисторы

В полевых транзисторах ток управляется электрическим полем. Основные разновидности:

  • МОП-транзисторы (металл-оксид-полупроводник)
  • Полевые транзисторы с управляющим p-n переходом

Полевые транзисторы также бывают с каналом n-типа и p-типа.

Основные параметры и характеристики транзисторов

Важнейшие параметры биполярных транзисторов:


  • Коэффициент усиления по току (β) — отношение тока коллектора к току базы
  • Максимально допустимый ток коллектора
  • Максимальное напряжение коллектор-эмиттер
  • Граничная частота усиления
  • Мощность рассеивания

Ключевые параметры полевых транзисторов:

  • Крутизна характеристики
  • Пороговое напряжение
  • Максимальный ток стока
  • Максимальное напряжение затвор-исток

Эти параметры определяют возможности применения транзисторов в различных схемах.

Режимы работы транзистора

Различают следующие основные режимы работы транзистора:

Активный режим

В этом режиме транзистор работает как усилитель. Эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Это основной рабочий режим.

Режим насыщения

Оба перехода открыты и через транзистор протекает максимальный ток. Используется в ключевых схемах.

Режим отсечки

Оба перехода закрыты, ток через транзистор не протекает. Также применяется в ключевых схемах.

Инверсный режим

Коллекторный переход открыт, а эмиттерный закрыт. Применяется редко из-за низкого коэффициента усиления.

Правильный выбор режима работы важен для корректного функционирования транзистора в схеме.

Схемы включения транзисторов

Существует три основные схемы включения биполярных транзисторов:

С общим эмиттером (ОЭ)

Эмиттер является общим для входной и выходной цепи. Обеспечивает усиление по току и напряжению. Самая распространенная схема.

С общей базой (ОБ)

База общая для входа и выхода. Дает усиление по напряжению, но ослабление по току. Применяется на высоких частотах.

С общим коллектором (ОК)

Коллектор общий. Обеспечивает усиление по току, но не по напряжению. Используется как эмиттерный повторитель.

Выбор схемы включения зависит от требуемых характеристик усиления.

Применение транзисторов в электронике

Транзисторы нашли широчайшее применение в современной электронике:

  • Усилители сигналов
  • Генераторы колебаний
  • Стабилизаторы напряжения
  • Ключевые и импульсные схемы
  • Логические элементы
  • Источники питания
  • Преобразователи сигналов

Они являются основой интегральных микросхем, микропроцессоров и других сложных электронных устройств.

Как правильно подключать транзистор в схему

При подключении транзистора в схему важно соблюдать несколько правил:

  1. Правильно определить тип транзистора (n-p-n или p-n-p) и его выводы.
  2. Соблюдать полярность подключения источников питания.
  3. Не превышать максимально допустимые токи и напряжения.
  4. Использовать токоограничивающие резисторы в цепи базы.
  5. Обеспечить надежный теплоотвод для мощных транзисторов.

Неправильное подключение может привести к выходу транзистора из строя.

Заключение

Транзисторы являются ключевыми компонентами современной электроники. Понимание их принципов работы и основных характеристик необходимо для успешного проектирования электронных устройств. При правильном применении транзисторы обеспечивают широкие возможности по усилению и преобразованию сигналов.


Принцип работы транзистора

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

  • Устройство
  • Принцип действия
  • Классификация устройств
  • Устройство транзисторов
  • Принцип работы транзистора
  • Как работает транзистор — видео
  • Принцип работы биполярного транзистора
  • Типы полевых транзисторов
  • Режимы работы

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок.

Принцип действия

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером.

Биполярный прибор бывает двух типов:

  • p-n-p;
  • n-p-n.

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы.

Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный.

В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто».

В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Как работает транзистор — видео

Принцип работы биполярного транзистора

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет

Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Типы полевых транзисторов

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Режимы работы

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 9 чел.
Средний рейтинг: 4.3 из 5.

Как работает транзистор [ПРОСТО И КРАТКО]

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Физические процессы

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном – обратное. Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Соответственно, как и раньше, темные маленькие кружки со стрелками – электроны, красные – дырки, большие кружки – положительно и отрицательно заряженные атомы доноров и акцепторов. Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усиление электрических колебаний с помощью транзистора. Основные биполярные транзисторы приведены в таблице ниже.


Таблица характеристик биполярных транзисторов.

При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора.Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.


Схема работы и устройства биполярного транзистора.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы.

Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.

Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.

Будет интересно➡ Как устроен туннельный диод?

Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу.

Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается. Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.


Как устроен транзистор.

Помимо рассмотренных процессов существует еще ряд явлений. Рассмотрим модуляцию толщины базы.При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией.

Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя.

Тепловой пробой может наступить без повышения коллекторного напряжения до пробивного. При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы.

Особенно важно учитывать напряжение коллектор-база, поскольку при этом толщина коллектора возрастает, толщина базы уменьшается. При очень тонкой базе может возникнуть эффект смыкания (так называемый “прокол” базы) – соединение коллекторного перехода с эмиттерным. При этом область базы исчезает и транзистор перестает нормально работать.

При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.

И напоследок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.


Схема устройства транзистора.

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех чередующихся областей полупроводника с различным типом проводимости (р-п-р или п-р-п) с выводом от каждой области. Рассмотрим работу транзистора n-р-n-типа. Чередующиеся области образуют два р-п-перехода база–эмиттер (БЭ) и база–коллектор (БК).

К переходу БЭ прикладывают прямое напряжение EБЭ, под действием которого электроны n-области эмиттера устремляются в базу, создавая ток эмиттера. Концентрацию примесей в эмиттере делают во много раз больше, чем в базе, а саму базу по возможности тоньше. Поэтому лишь незначительная часть (1–5%) испущенных эмиттером электронов рекомбинирует с дырками базы.

Большая же часть электронов, миновав узкую (доли микрона) область базы, “собирается” коллекторным напряжением Ек, представляющим обратное напряжение для перехода БК, и, устремляясь к плюсу внешнего источника Eк, создает коллекторный ток, протекающий по нагрузке Rн. Электроны, рекомбинировавшие с дырками базы, составляют ток базы IБ.

Ток коллектора, таким образом, определяется током эмиттера за вычетом тока базы. Аналогично работает транзистор р-n-р-типа, отличаясь лишь тем, что его эмиттер испускает в базу не электроны, а дырки, поэтому полярности прикладываемых к нему прямого UЭБ и обратного Ек напряжений должны быть противоположны транзистору п-р-п-типа.

Важное по теме. Как прозвонить транзистор.

На условном обозначении транзисторов стрелка ставится на эмиттере и направлена всегда от р-области к n-области. На рис. 1.8, б приведено условное обозначение транзистора п-р-п, а на рис. 1.9, б – р-п-р. Кружок вокруг транзистора означает, что транзистор изготовлен в самостоятельном корпусе, а отсутствие кружка – что транзистор выполнен заодно с другими элементами на пластинке полупроводника интегральной микросхемы.

Будет интересно➡ Виды и устройство оптронов (оптопар)

Стрелку эмиттера удобно рассматривать как указатель полярности прямого напряжения, приложенного между базой и эмиттером, которое “открывает” (подобно выпрямительному диоду) транзистор. При использовании транзистора в электронных устройствах нужны два вывода для входного сигнала и два – для выходного.

Так как у транзистора всего лишь три вывода, один из них должен быть общим, принадлежащим одновременно и к входной, и к выходной цепи. Возможны три варианта схем включения транзисторов – с общей базой, общим эмиттером и с общим коллектором.

Переход в биполярном транзисторе.

Схема с общей базой

Схема включения транзистора с общей базой (ОБ) показана на рис. 1.10. Входным сигналом для схемы с ОБ является напряжение, поданное между эмиттером и базой UBX = = UЭБ; выходным – напряжение, выделяемое на нагрузке Uвых = IкRн; входным током – ток эмиттера Iвх = IЭ; выходным током – ток коллектора Iвых = Iк.

Входное напряжение UЭБ является управляющим для транзистора, поэтому небольшое его изменение (па доли вольт) приводит к изменению тока эмиттера в очень широких пределах – практически от нуля до максимального. Максимальный ток определяется назначением транзистора (маломощные, средней мощности и большой мощности) и соответствующей конструкцией.

Так как напряжение UΚБ является обратным, величина напряжения внешнего источника Ек может в десятки раз превышать значение напряжения UЭБ. Падение напряжения, выделяемого на нагрузке, будет тем больше, чем больше ток коллектора, при этом на самом транзисторе будет падать лишь небольшое напряжение UКБ, которое будет тем меньше, чем больше ток коллектора.

Таким образом, изменение на доли вольт входного напряжения приводит к изменению напряжения на нагрузке, чуть меньшего, чем напряжение Ек. Это положение определяет усилительные свойства транзистора.

Для оценки работы транзистора и его усилительных свойств в различных схемах включения рассматривают приращения входных и вызванные ими приращения выходных величин. Рассматривая транзистор как усилитель, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:

  • • коэффициент усиления по току КI = ΔIвых /ΔIвх;
  • • коэффициент усиления по напряжению КU = ΔUвых/ΔUвх;
  • • коэффициент усиления по мощности КР = КI • КU.

Отношение изменения входного напряжения к изменению входного тока: Rвх = ΔUвх/ΔIвх. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает некоторым внутренним сопротивлением, и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя.

Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника. Таким образом, КРБ тоже определяется соотношением сопротивлений. Так как коэффициент усиления схемы с ОБ по току КIБ оказывается меньше единицы, она применения не нашла.


Размеры биполярного транзистора.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Область применения и основной принципы функционирования

В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».

Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.


Простейшие схемы подключения транзисторов

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Обозначение на электросхемах

У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.


Схема работы простейшего радиоэлемента

По принципу действия и строению различают следующие полупроводниковые триоды:

  • Полевого типа;
  • Биполярного;
  • Комбинированного.

Все они обладают схожим функционалом и отличаются по технологии работы.

Полевые

Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:

  • Транзисторы с PN переходом управления;
  • Элементы с затвором изолированного типа;
  • Такие же транзисторы другой структуры (металл-диэлектрик-проводник).

Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.


Схема элемента с затвором изолированного типа

Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.

Вам это будет интересно Классы автоматических выключателей


Электронно-дырочный переход

Биполярные

Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.


Принцип работы биполярного транзистора в схеме

Комбинированные

Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:

  • Биполярными с внедрёнными в их схему резисторами;
  • Двумя триодами одной или нескольких структур строения в единой детали;
  • Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
  • Элементы, в которых полевые составляющие управляют биполярными.


Комбинированный транзистор

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры. Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры. Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Транзисторы

Transistor Basics — Circuit Cellar

В наши дни и в эпоху высокоинтегрированных микросхем, какова актуальность одиночного дискретного транзистора? Это правда, что большинство потребностей при проектировании встраиваемых систем можно удовлетворить с помощью решений на уровне микросхем. Но поставщики электронных компонентов по-прежнему производят и продают отдельные транзисторы, потому что для них все еще существует рынок. В этой статье Стюарт делает обзор некоторых важных основ транзисторов и того, как их можно использовать при разработке встраиваемых систем.

Что хорошего в транзисторе? Конечно, интегральные схемы (ИС) состоят из тысяч транзисторов. До революции интегральных схем и микропроцессоров произошла революция транзисторов, когда телевизоры, радиоприемники и компьютеры были построены с использованием новых твердотельных устройств. Транзистор был отцом ИС. Но не устарел ли сегодня отдельный транзистор как элемент схемы? Какая польза от скромного транзистора в мире, где нынешние микропроцессоры Intel имеют более миллиарда транзисторов каждый?

Это правда, что почти все, что мы раньше делали с транзисторами, можно сделать дешевле, лучше и эффективнее с помощью ИС, и мы можем делать с ИС то, что невозможно с дискретными транзисторами. Было бы невозможно построить современный микропроцессор с дискретными транзисторами — одни только длины выводов сделали бы скорости невозможными. Но верно и обратное. Дискретный транзистор может быть простым способом решения некоторых проблем. Транзисторы, например, обычно имеют гораздо более высокие пределы рабочего напряжения и мощности в простых схемах, чем у сопоставимых ИС. Производители и дистрибьюторы электроники по-прежнему изготавливают и продают отдельные транзисторы, потому что их детали все еще используются. В этой статье я хочу рассказать о некоторых основных вещах о транзисторах, о том, как они используются и как вы можете включить их в свои приложения.

ОБЗОР
BJT (транзистор с биполярным переходом) был первым общедоступным транзистором, и он способствовал переходу от электронных ламп. BJT бывают двух видов: NPN и PNP. Оба (обычно) кремниевые устройства. Кремний модифицируют (легируют) примесями для получения материала N-типа или P-типа. Транзистор NPN имеет слой P-типа, зажатый между двумя слоями N-типа, а PNP — наоборот.

На рис. 1 показан схематический символ NPN BJT, простая схема структуры и модель диода. Структура N-P-N является просто репрезентативной. В реальном транзисторе область коллектора обычно больше области эмиттера, и ни одна из них не является квадратной, как показано на диаграмме. Представление транзистора диодом указывает, как протекает ток, а не как устроена фактическая часть. Вы не можете построить транзистор из двух диодов, но использование двух диодов помогает объяснить, как работает смещение транзистора.

РИСУНОК 1 – Схематическое обозначение, физическое представление и диодная модель транзистора NPN

Работа транзистора NPN концептуально проста для понимания. Что касается диодной модели, если вы подключите коллектор к положительному напряжению, скажем, 5 В, а эмиттер к земле, вы получите два диода, соединенных спиной к спине, с их анодами, соединенными вместе. Соединение двух анодов представляет собой базу транзистора. Если вы приложите к базе положительное напряжение больше 0,7 В, эмиттерный диод будет смещен в прямом направлении, и ток будет течь от базы через эмиттер к земле. Коллекторный диод будет смещен в обратном направлении, и через него не будет протекать ток.

РЕАЛЬНАЯ РАБОТА ТРАНЗИСТОРА
Теперь отбросьте модель диода и посмотрите на настоящий транзистор. Если коллектор подключен к +5 В, а эмиттер к земле, а напряжение на базе достаточно высокое (0,7 В) для прямого смещения перехода база-эмиттер, ток будет течь от базы к эмиттеру  и . от коллектора к эмиттеру. Если напряжение база-эмиттер ниже 0,7 В, транзистор находится в состоянии «отсечки», и ток через эмиттер или коллектор не течет. Вот и все. Вот как работает BJT.

— РЕКЛАМА—

—Реклама здесь—

Протекание тока коллектор-эмиттер заложено в конструкции транзистора. Вот почему фактический транзистор отличается от модели диода, и именно поэтому вы не можете собрать транзистор из двух диодов. Если на коллекторе +5 В, а эмиттер на земле, доведение базы примерно до 0,7 В приведет к протеканию тока от источника питания 5 В через коллектор к эмиттеру и земле. Если эмиттер находится на +2 В, то вы должны довести базу примерно до 2,7 В, чтобы ток протекал от коллектора к эмиттеру.

Волшебство транзистора заключается в том, чтобы определить, как добиться нужной величины тока, протекающего через коллектор. Если вы просто подключите транзистор, как я описал, без каких-либо ограничений тока, ваш транзистор быстро превратится в дымящийся расплавленный кусок пластика.

Обычно, если транзистор работает в пределах номинальных значений тока, мощности и напряжения, ток в эмиттере будет представлять собой ток, протекающий в базу, плюс ток, протекающий от коллектора к эмиттеру. Очень маленький ток базы контролирует гораздо больший ток коллектора, поэтому ток коллектора примерно равен току эмиттера. Когда ток в коллекторе отсутствует, транзистор находится в «отсечке», как упоминалось ранее. Если протекающий ток достаточен для того, чтобы напряжение коллектор-эмиттер было настолько низким, насколько это возможно (обычно около 0,3 В для транзистора с малым сигналом), транзистор считается «насыщенным». В этом состоянии изменения тока базы больше не влияют на ток коллектора.

ИСПОЛЬЗОВАНИЕ
Как мы можем использовать этот транзистор? На рис. 2 показана простая схема. В этой схеме мы подключаем коллектор к +5 В, эмиттер к земле через резистор 220 Ом и базу к фиксированному значению 1 В. Прямое напряжение 2N3904 составляет от 0,65 В до 0,85 В при токе коллектора 10 мА. . Условно для расчетов используется 0,7 В. Итак, напряжение на эмиттере (VE) будет 1 В – 0,7 В или 0,3 В. Вот где происходит волшебство: напряжение на эмиттере фиксировано, поэтому ток через резистор 220 Ом составляет 0,3 В/220 Ом, или 1,36 мА. Ток коллектора одинаков. Следовательно, управляя базовым напряжением, мы управляем током эмиттера и, тем самым, током коллектора.

РИСУНОК 2. Простая схема показывает соотношение между напряжением и током база-эмиттер Эта схема идентична схеме на рис. 2, за исключением того, что теперь мы добавили резистор 1,5 кОм, R2, между коллектором и источником питания 5 В. Поскольку ток в эмиттере зафиксирован на уровне 1,36 мА, ток в коллекторе также составляет 1,36 мА. Этот ток протекает через R2, создавая напряжение на R2, равное 1,36 мА x 1,5 кОм, или 2,04 В. Таким образом, напряжение на коллекторе, VC, равно 5 В питания минус напряжение на R2, или 2,9 В.5 В.

РИСУНОК 3. Транзистор, включенный в качестве усилителя путем добавления резистора в коллектор

Что произойдет, если напряжение на базе поднять до 1,1 В? Когда это происходит, напряжение на эмиттере теперь составляет 0,4 В (1,1–0,7 В), в результате чего ток эмиттера составляет 1,8 мА. Ток коллектора также составляет 1,8 мА, поэтому напряжение на R2 теперь составляет 1,8 мА x 1,5 кОм, или 2,7 В. VC теперь составляет 5–2,73 В, или 2,27 В. Таким образом, изменение базового напряжения на 0,1 В вызвало напряжение на коллекторе упало с 2,95 В до 2,27 В, изменение на -0,68 В. Напряжение на коллекторе упало на 6,8 x 0,1 В (изменение входного напряжения).

Вот что интересно: изменение напряжения коллектора равно отрицательному значению изменения входного напряжения, умноженному на отношение резистора коллектора R2 к резистору эмиттера R1, или 1,5 кОм / 220 = 6,8. Если вы работаете с математикой, это имеет смысл, потому что ток коллектора такой же, как ток эмиттера. Но поскольку резистор коллектора R2 в 6,8 раза больше резистора эмиттера, любое изменение тока в резисторе эмиттера приведет к изменению напряжения на коллекторе в 6,8 раз больше.

Если вы проделаете тот же расчет после снижения базового напряжения с 1 В до 0,9 В, вы увидите, что напряжение коллектора возрастет на 0,68 В. Эта схема представляет собой инвертирующий усилитель с коэффициентом усиления -6,8. Положительное изменение напряжения на входе вызывает отрицательное изменение напряжения на выходе и наоборот.

Эта схема имеет некоторые ограничения. Если вы поместите 1,32 В на базу, вы обнаружите, что напряжение на эмиттере составляет 0,62 В, а напряжение на коллекторе почти равно напряжению на эмиттере. Транзистор не может привести коллектор к напряжению эмиттера, поэтому он насыщается. Таким образом, ограничением этой конкретной схемы является максимальное входное напряжение около 1,3 В. С другой стороны, любое напряжение менее 0,7 В приводит к тому, что транзистор переходит в режим отсечки. Таким образом, полезный диапазон входного напряжения этой схемы составляет от 0,7 В до примерно 1,3 В. Тем не менее, этого будет достаточно для усиления низкоуровневого аудиосигнала до уровня, который можно дополнительно усилить.

— РЕКЛАМА—

—Реклама здесь—

Говоря об аудио, как бы вы подключили аудиосигналы к цепи? Аудиосигналы обычно колеблются между отрицательным и положительным напряжением. Если вы поместите это в базу, транзистор большую часть времени будет в отсечке — все время, если положительные пики сигнала никогда не достигают 0,7 В.

Это приводит нас к смещению. Рисунок 4  представляет собой модификацию рисунка 3 с добавлением к основанию нескольких резисторов смещения. Резисторы R3 и R4 образуют делитель напряжения, который доводит базовое напряжение примерно до 1 В. Это находится посередине между нижним и верхним пределами схемы 0,7 В и 1,3 В. Теперь скажем, что мы подаем на вход сигнал, который колеблется между -0,1 В и +0,1 В. Из-за разделительного конденсатора постоянного тока C1 это станет 0,9V до 1,1 В на базе, а в цепи будет усиливаться на -6,8 В.

РИСУНОК 4. Резисторы смещения позволяют транзистору работать со входами, связанными по переменному току, такими как аудиосигналы.

Существуют и другие способы смещения базы транзистора. Диод опорного напряжения, как показано на рис. 5 , фиксирует базу при известном напряжении. В этой схеме напряжение эмиттера VE будет около 1,3 В, поэтому ток эмиттера и коллектора будет 5,9 мА. Дело не в том, чтобы показать все возможные способы смещения транзистора, просто в том, что есть и другие способы сделать это.

РИСУНОК 5. Зенеровский или опорный диод можно использовать для создания фиксированного смещения.

ОГРАНИЧЕНИЯ ТРАНЗИСТОРА
Как и все вещи в физическом мире, транзисторы имеют некоторые ограничения. Мы уже рассмотрели один — значения резисторов базы и эмиттера в схеме усилителя должны быть выбраны таким образом, чтобы транзистор не перешел в режим отсечки или насыщения при любом входном сигнале, который вы пытаетесь усилить.

Транзисторы имеют другие характеристики. Например, 2Н39.04, используемый в этих примерах, имеет максимальное напряжение коллектор-эмиттер 40 В. Если больше, транзистор перегорит. Обратное напряжение база-эмиттер, где база считается отрицательной по отношению к эмиттеру, имеет максимальное значение 6 В. Кроме того, переход эмиттер-база выходит из строя.

Коллектор может работать с максимальным постоянным током 200 мА. Устройство имеет максимальную рассеиваемую мощность около 600 мВт. Так что хотя коллектор-эмиттер выдерживает 40 В и ток коллектора может достигать 200 мА, если вы попытаетесь пропустить через него 200 мА при 40 В, он выйдет из строя. 40 В при 200 мА составляет 8 Вт, что значительно превышает возможности устройства по мощности.

Суть всего этого в том, что, как и любое полупроводниковое устройство, ваша конструкция должна соответствовать всем максимальным параметрам: мощность, напряжение коллектор-эмиттер, ток коллектора, обратное напряжение пробоя эмиттер-база и так далее.

Одной из ключевых характеристик транзистора является коэффициент усиления по току. Это число описывает, насколько изменяется ток эмиттера при заданном изменении тока базы. Коэффициент усиления по току зависит от величины тока, протекающего в коллекторе. Для 2Н3904, минимальный коэффициент усиления по току при токе коллектора 0,1 мА равен 40. При 10 мА минимальный коэффициент усиления равен 50. Максимальный коэффициент усиления по даташиту равен 300. Непосредственно перед написанием этого абзаца я измерил несколько 2N3904. Все они имели коэффициент усиления. превышает 300.

Практическое значение коэффициента усиления заключается в том, чтобы влиять на то, как эмиттер взаимодействует с базой. Если бы коэффициент усиления транзистора в схеме усилителя на рис. 3 составлял всего 10, резистор 220 Ом в эмиттере выглядел бы примерно как 2 кОм на базе, что повлияло бы на смещение и нагрузку, подаваемую на схему возбуждения. В этом случае вы хотели бы, чтобы резисторы смещения имели достаточно низкое значение, чтобы эффект нагрузки эмиттерного резистора изменил напряжение смещения менее чем на 10% или около того. Но если вам приходится использовать резисторы с меньшим номиналом в вашей цепи смещения, это, в свою очередь, увеличивает нагрузку на то, что ею управляет. В случае с усилителем это снижает общее сквозное усиление.

К счастью, для большинства приложений со слабыми сигналами не так уж сложно найти транзистор с достаточно высоким минимальным коэффициентом усиления, чтобы сделать эту проблему незначительной. Трудности возникают, когда вам нужно очень низкое значение сопротивления эмиттера. Даже при коэффициенте усиления 300 эмиттерный резистор сопротивлением около 10 Ом может оказать значительное влияние на нагрузку базы, что необходимо учитывать при расчетах. Поскольку транзистор имеет конечный коэффициент усиления, вы не можете использовать очень большие резисторы, например, в мегаомном диапазоне, для смещения базы. Если вы это сделаете, эмиттер понизит напряжение.

Одним из распространенных дополнений к аудиоусилителям является шунтирование эмиттерного резистора с помощью электролитического конденсатора. Конденсатор имеет очень высокий импеданс (почти бесконечный) на постоянном токе, но импеданс уменьшается с увеличением частоты. Это позволяет работать смещению постоянного тока, но увеличивает усиление для аудиосигналов, делая импеданс эмиттера (сопротивление, параллельное импедансу конденсатора) очень низким значением на звуковых частотах. Это делает отношение сопротивления коллектора к сопротивлению эмиттера намного выше на аудио, чем на постоянном токе, что увеличивает коэффициент усиления. (Помните: коэффициент усиления равен резистору коллектора, деленному на импеданс эмиттера.) Однако это также приводит к значительному снижению входного импеданса схемы на этих звуковых частотах. Другие характеристики транзисторов, влияющие на использование в радиочастотных схемах, например в быстродействующих переключающих схемах, выходят за рамки этой статьи и не будут здесь обсуждаться.

ПРИМЕНЕНИЕ
Вы можете создавать усилители на транзисторах, и многие люди так и делают. Но также легко построить усилитель с операционным усилителем или другой ИС, и здесь я хочу сосредоточиться на приложениях, в которых полезны уникальные характеристики транзистора.

Как вы могли бы использовать транзистор, учитывая то, что мы уже сделали? В Рисунок 6 я изменил Рисунок 5, установив опорное напряжение 2,5 В, сопротивление R1 120 Ом и добавив светодиод в цепь коллектора. Поскольку опорный диод фиксирует напряжение на базе на уровне 2,5 В, напряжение эмиттера составляет 1,8 В, а ток эмиттера составляет 15 мА. Это справедливо до тех пор, пока напряжение питания V+ достаточно велико, чтобы опорный диод и светодиод оставались включенными. Таким образом, светодиод будет иметь ток 15 мА независимо от напряжения питания 5 В или 20 В.

РИСУНОК 6 – 2N3904, подключенный в качестве драйвера светодиодов постоянного тока дым. Я показал схему смещения, запитанную от 5 В. Если бы вы также питали ее от переменного V+, вам также нужно было бы учитывать ограничения R3 и D1. Но если вам нужен постоянный ток через светодиод независимо от напряжения питания (в разумных пределах), эта схема подойдет. Вы можете сделать это, если хотите, чтобы светодиод имел постоянную яркость независимо от приложенного напряжения, или просто чтобы более высокие напряжения не превышали максимальный ток светодиода.

На рис. 7 показан 2N3904, используемый для преобразования логического уровня между двумя разными схемами, работающими при разных напряжениях. Вы можете использовать это для преобразования между выходом 3,3 В микроконтроллера (MCU) и входом схемы, которой требуется 5 В. V + на схеме будет подключен к напряжению питания целевой системы. Что бы ни управляло входом, оно должно иметь достаточный выходной ток, чтобы управлять резистором 2,2 кОм. Эта схема инвертирует сигнал — высокий уровень на входе дает низкий уровень на выходе. В этой схеме транзистор всегда находится либо в состоянии отсечки, либо в состоянии насыщения.

— РЕКЛАМА—

—Реклама—

РИСУНОК 7 — 2N3904, используемый в качестве преобразователя логического уровня

Существует множество ИС, которые могут это делать, например, буферы с открытым коллектором, так зачем использовать транзистор? Транзистор может работать с более высокими напряжениями, чем большинство схем транслятора логического уровня. Например, транзистор может переводить цепь 3,3 В в цепь 12 В.

Для многих схем преобразователя напряжения необходимо знать напряжение питания и, следовательно, управляющее напряжение на входе. Но однажды у меня была ситуация, когда вход мог поступать из разных источников, в диапазоне от менее 2,5 В до 5 В. Транзисторное решение работает для всех логических напряжений, потому что транзистор включается при любом управляющем напряжении выше 0,7 В. Он может даже можно использовать для преобразования входного напряжения 12 В или 24 В в выходное напряжение 3,3 В или 5 В, если входной резистор R2 достаточно большой, чтобы предотвратить чрезмерный ток.

Окончательное приложение NPN показано на рис. 8 . На рисунке 8а 2N3904 управляет реле. Диод D1 защищает транзистор от перенапряжения. Когда реле выключается путем выключения транзистора, создается «обратное» напряжение, поскольку энергия в катушке реле рассеивается. Это напряжение может достигать уровней, достаточных для разрушения транзистора из-за чрезмерного напряжения коллектор-эмиттер — помните раздел о характеристиках транзистора. Диод D1 ограничивает напряжение на 0,7 В выше V+ для защиты транзистора. Но это имеет побочный эффект замедления открытия реле.

РИСУНОК 8 – Управление реле с помощью 2N3904. Базовый диодный зажим (а) и зажим Зенера с более высоким напряжением (б) для более быстрой работы.

На рис. 8b показана та же схема, но со стабилитроном D2 на 12 В, включенным последовательно с D1. Это позволяет напряжению обратного хода достигать 12,7 В выше V+, что позволяет гораздо быстрее рассеивать энергию катушки, ускоряя работу реле. Но с реле на 12 В напряжение коллектора превысит 24 В в период обратного хода. Эта схема использует высокое напряжение пробоя коллектор-эмиттер для повышения скорости. Есть несколько драйверов реле, которые могут это сделать, но они не имеют большого преимущества перед транзистором. Обратите внимание, однако, что базовый резистор R1 должен иметь такой размер, чтобы обеспечить достаточный ток для транзистора, чтобы управлять реле. Для большого сильноточного реле может потребоваться предварительный драйвер и силовой транзистор. В этот момент IC может быть лучшим решением.

ТРАНЗИСТОРЫ PNP
До сих пор я сосредоточился на транзисторах NPN. Функционально PNP является противоположностью NPN. Напряжение коллектора PNP (при нормальном смещении) меньше эмиттерного, а база ниже эмиттерного на 0,7 В для включения транзистора. Нет необходимости использовать отрицательное напряжение. Как и в случае с NPN, важно напряжение относительно эмиттера. Транзистор PNP может быть соединен с NPN в простых аудиоусилителях для создания усилителя для наушников или динамика. Дополнение ПНП к 2Н3904 это 2N3906.

На рис. 9 показано, как можно использовать 2N3906 для создания отрицательного напряжения смещения в системе только с положительным питанием. Вам может понадобиться отрицательное смещение для смещения входного сигнала или для питания операционного усилителя, которому по какой-то причине нужен отрицательный источник питания.

РИСУНОК 9 – Генератор отрицательного напряжения с использованием PNP 2N3906

Вход управляется прямоугольным сигналом, который может поступать с выхода таймера микроконтроллера или двухтранзисторного мультивибратора (погуглите). Я произвольно выбрал значения для компонентов в этом примере. Вы хотели бы использовать значения компонентов, соответствующие входной частоте, выходному току и напряжению, а также другим требованиям вашего приложения. Обратите внимание, что входной сигнал должен колебаться близко к положительной шине питания (5 В в показанной схеме), чтобы полностью закрыть Q1, иначе транзистор никогда не выключится и нагреется. Если вы управляли схемой с выходом логического уровня, вам может понадобиться подтягивающий резистор, чтобы убедиться, что вход качается до положительной шины. Вы также можете использовать эту схему в системе 3,3 В.

Я включил этот пример, чтобы показать, как можно использовать PNP-транзистор. Это не значит, что нет IC, которые могут это сделать. Например, DC/DC-преобразователь TPS6735 производства Texas Instruments может выдавать -5 В на выходе при 200 мА, хотя он не будет работать при 3,3 В.

МОП-транзисторы
но есть еще один класс транзисторов, называемых полевыми МОП-транзисторами (полевые транзисторы с металлическим оксидом и полупроводником). Там, где у BJT есть база, эмиттер и коллектор, эквивалентными выводами MOSFET являются затвор, исток и сток. Работа MOSFET аналогична BJT, но есть некоторые важные отличия.

Ранее MOSFET иногда называли IGFET (полевой транзистор с изолированным затвором). Я не видел, чтобы этот термин использовался много лет, но он носит описательный характер. Затвор MOSFET электрически изолирован от остальной части, а ток от стока к истоку регулируется электрическим полем, создаваемым приложением напряжения к затвору. Изолированный затвор означает, что полевой МОП-транзистор имеет очень высокий входной импеданс, поэтому ток не должен протекать через затвор для управления током сток-исток. На самом деле, если в затвор течет ток, это, вероятно, означает, что какой-то предел был превышен и транзистор вышел из строя.

BJT можно рассматривать как токоуправляемое устройство, в котором небольшое изменение тока базы вызывает большое изменение тока коллектора. МОП-транзистор — это токовый прибор, управляемый напряжением, в котором изменение напряжения на затворе вызывает большое изменение тока стока. На рис. 10 показан полевой МОП-транзистор 2N7000, подключенный в качестве преобразователя логического уровня, аналогично тому, как был подключен биполярный транзистор на рис. 7. Он будет работать так же, как и схема 2N3904, со следующими отличиями:

РИСУНОК 10 – МОП-транзистор 2N7000 в качестве инвертирующего преобразователя логических уровней

1. Высокий импеданс означает, что для ограничения тока в затворе не требуется последовательного резистора. Это также означает, что транзисторный вход не будет нагружать любой выход, который им управляет.
2. Биполярному транзистору требуется 0,7 В и небольшой ток для включения транзистора. МОП-транзистору требуется, чтобы затвор был положительным по отношению к истоку. В случае 2N7000 напряжение включения Vgs может находиться в диапазоне от 0,8 В до 3 В. Это означает, что использование 2N7000 для преобразования входного напряжения 2,5 В или 3,3 В в более высокое выходное напряжение может быть проблематичным, и транзистор может не открыться. Однако при переходе от входного сигнала системы 5 В или выше к выходному напряжению 3,3 В или 2,5 В будет работать так же, как и с биполярной схемой.
3. Насыщенный МОП-транзистор не имеет напряжения насыщения — у него есть сопротивление между истоком и стоком. Для 2N7000 это может быть примерно до 6 Ом, когда V+ составляет 5 В для версии компонента On Semiconductor. Для большинства приложений это значение достаточно мало, чтобы не иметь значения, но об этом следует помнить, особенно при переключении значительных токов.

2N7000 обычно используется в качестве коммутатора. Вы можете смещать его как усилитель, но различное пороговое значение Vgs делает это немного сложнее, чем для биполярного транзистора. Подобно дополнению PNP к транзистору NPN, N-канальные полевые МОП-транзисторы имеют дополнение, которым является P-канальный полевой МОП-транзистор. BS250 от Vishay является приблизительным P-канальным эквивалентом 2N7000. Вы можете использовать такой транзистор вместо PNP для реализации генератора отрицательного напряжения, упомянутого ранее, хотя, конечно, вы должны быть уверены, что управляющее напряжение превышает пороговое напряжение затвора.

ДРУГИЕ ТРАНЗИСТОРЫ
Я сосредоточился на транзисторах со слабым сигналом, чтобы продемонстрировать основные принципы. Как в биполярных, так и в МОП-транзисторах есть устройства, предназначенные для работы с большими токами и высокими напряжениями, детали, разработанные специально для радиочастотных приложений, и другие варианты. Но основные принципы те же.

Я надеюсь, что мое объяснение того, как работают транзисторы, помогло вам лучше понять их, и что приведенных примеров достаточно, чтобы вы могли экспериментировать с транзисторами в своих приложениях. Иногда транзисторы полезны, даже если они существуют уже давно. И даже в схемах, которые вы можете построить с помощью ИС, транзисторы представляют собой интересные устройства для работы, потому что вы можете перейти на уровень базовых компонентов.

РЕСУРСЫ
Спецификацию On Semiconductor для 2N3904, используемого в качестве примера в этой статье, можно найти по адресу https://www. onsemi.com/pub/Collateral/2N3903-D.PDF

Спецификацию On Semiconductor для 2N3906, дополняющий 2N3904, можно найти по адресу: https://www.onsemi.com/pub/Collateral/2N3906-D.PDF

Спецификация On Semiconductor для 2N7000 находится по адресу: https://www.onsemi .com/pub/Collateral/2N7000-D.PDF

О полупроводниках | www.onsemi.com
Техасские инструменты | www.ti.com
Вишай | www.vishay.com

ПУБЛИКУЕТСЯ В ЖУРНАЛЕ CIRCUIT CELLAR • МАЙ 2019 № 346 – Получите PDF-файл номера

Будьте в курсе наших БЕСПЛАТНЫХ еженедельных информационных бюллетеней!

Не пропустите предстоящие выпуски Circuit Cellar.

Подписка на журнал Circuit Cellar

Примечание. Мы сделали выпуск Circuit Cellar за май 2020 г. бесплатным образцом. В нем вы найдете большое разнообразие статей и информации, иллюстрирующих типичный номер текущего журнала.

Хотели бы вы написать для Circuit Cellar ? Мы всегда принимаем статьи/сообщения от технического сообщества. Свяжитесь с нами и давайте обсудим ваши идеи.
Спонсор этой статьи

Стюарт Болл

+ сообщения

Стюарт Болл недавно ушел на пенсию после более чем 40-летней карьеры инженера-электрика и инженера-менеджера. Его последней должностью была должность главного инженера в Seagate Technologies.

Основы транзисторов — типы, принцип работы и применение

Транзисторы также относятся к категории полупроводников. Они ответственны за революционные изменения в области электроники. Первый практический транзистор был представлен в 1927 году и известен как транзистор с точечным контактом Джоном Бардином, Уолтером Браттейном и Уильямом Шокли.

Уменьшение размеров электронных устройств произошло только из-за изобретения транзисторов. Слово транзистор можно разделить на два основных слова. Самый первый «транс» называется передачей сигналов. Вторая часть слова «истор» относится к свойству сопротивления, которое предлагается на соответствующих соединениях.

Обладает характеристиками переключателя. Он имеет возможность участвовать в процессе усиления, а также выпрямления сигналов, будь то сигналы напряжения или токовые сигналы.

Что такое транзистор?

Цепь с низким сопротивлением участвует в передаче слабых сигналов в цепь с большим сопротивлением. Этот тип схемы определяется как транзистор.

Конструкция транзистора

Транзистор состоит из двух диодов с p-n переходом, которые можно соединить таким образом, чтобы оба конца соединились вместе. В середине связанная область очень тонкая, называется основанием.

Одна сторона называется эмиттером, а другая — коллектором. Так устроены транзисторы. Эмиттер присутствует справа от транзистора, тогда как наличие коллектора можно наблюдать слева.

Типы транзисторов

Основные транзисторы можно разделить на два типа в зависимости от типа их конструкции. Один называется p-n-p, а другой — n-p-n. Конструкция этих p-n-p и n-p-n очень проста.

Транзистор с центром как n-типа, так и обоих p-типов приводит к образованию p-n-p. Транзистор, сформированный с центром p-типа и обоими n-типами с обеих сторон, приводит к образованию n-p-n.

Существуют обозначения, представленные стрелками, которые показывают обычное течение тока в этом конкретном направлении. Это можно назвать единственным различием между транзисторами n-p-n и p-n-p. Каждый транзистор имеет три основных вывода.

Эти три терминала называются

  1. Базовый
  2. Излучатель
  3. Коллектор

Основные символы транзистора вместе с его выводами

(1) База

Находится в центре транзистора. Он взаимодействует с двумя цепями, одна из которых называется входной схемой, а другая — выходной. Входной формируется за счет взаимодействия эмиттера и базы, а выходной – за счет коллектора и базы.

Меньшее сопротивление видно на входной цепи со стороны помех базы эмиттера. Более высокое сопротивление предлагается на выходной цепи базы и коллектора. Концентрация легирования в основе мала. Размер основания тонкий.

(2) Эмиттер

Для того, чтобы всегда питать большинство носителей заряда, соответствующий переход базы эмиттера должен питаться прямым смещением. Он имеет тяжелую легированную консистенцию, так что большинство носителей можно ввести в основу. Размер излучателя будет умеренным.

(3) Коллектор

Как следует из названия, действует как коллектор большинства перевозчиков. Следовательно, это считается для сбора выходов, по этой причине взаимодействующая часть коллектора и базы остается в обратном смещении.

Консистенция легирования коллектора умеренная, но его размер велик по сравнению с базой и эмиттером. Выше показаны клеммы базового транзистора.

Принцип работы транзистора

Элемент, называемый кремнием, обычно предпочтительнее для конструкции транзистора. Кремний менее чувствителен к температуре. Он способен выдерживать высокие значения напряжения и большие диапазоны токов.

Как известно, эмиттерно-базовый переход должен находиться в прямом смещении, а коллекторно-базовый переход должен оставаться в обратном смещении. Из-за условия прямого смещения на эмиттерно-базовом переходе большинство носителей проникает в базу.

Это является причиной образования базового тока, который имеет тенденцию течь через область базы. Этот ток стремится течь к коллектору, и в ответ на это наблюдается движение электронов в области коллектора от базы.

Ток базы также отвечает за образование вакансии на коллекторе. Но имеет малую величину. Как мы уже знаем, база, присутствующая в транзисторе, всегда слегка легирована.

Это причина того, что будет меньшее количество носителей заряда, например, электронов меньше по сравнению с количеством эмиттера. Это небольшое количество электронов взаимодействует с отверстиями в основании, тогда как оставшееся количество электронов можно увидеть движущимся к коллектору.

Это проложило путь для генерации коллекторного тока. Следовательно, колебания на базе могут составлять большую величину тока на коллекторе.

Режимы работы транзистора

Условия, которые приводят к различным режимам работы, определяются соединениями, образованными на базе эмиттера и базе коллектора. Эмиттерно-базовый переход смещен в прямом направлении, а коллекторно-базовый переход смещен в обратном направлении, что приводит к активной области этого конкретного транзистора, таким образом, на основе дополнительных условий смещения в переходе можно анализировать различные режимы работы.

(1) FR

При рассмотрении случаев эмиттерно-базового перехода в этом случае эмиттерно-базовый переход смещен в прямом направлении, тогда как коллекторно-базовый переход смещен в обратном направлении. Следовательно, эти условия приводят к тому, что транзистор работает в активной области. Когда он находится в активной области, токи на коллекторе зависят от тока на эмиттере.

(2) FF

В этом случае соединение базы эмиттера и базы коллектора смещено в прямом направлении. Этот тип условий приводит к тому, что транзистор находится в области насыщения. Эта область отвечает за то, чтобы ток на коллекторе не зависел от тока, генерируемого на эмиттере.

(3) RR

Следовательно, этот случай имеет дело с состоянием, когда оба перехода транзистора работают при обратном смещении. Если рассматривать при обратном смещении, то в схеме не наблюдается проводимости. Этот тип области известен как область отсечки.

Эмиттер на данном этапе не может поставлять большинство носителей заряда, и сбор этих носителей не может быть очевиден на коллекторе. Ситуация такого типа приводит к тому, что транзистор действует как замкнутый переключатель.

(4) RF

Эмиттерно-базовый переход транзистора смещен в обратном направлении, а коллекторно-базовый переход в этом состоянии смещен в прямом направлении. Поскольку коллектор легирован легкой консистенцией, он не способен подавать основные носители заряда на соответствующую базу этого транзистора. Следовательно, действие транзистора в этом случае плохое.

Таким образом, в зависимости от типа смещения в соединении определяются различные типы рабочих областей. Смещение транзистора основано на принципе необходимости.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о MCQ на транзисторах

Применение и использование транзисторов

В современном мире электроники все так или иначе зависит от электроники. Либо это может быть схема усиления, либо схема переключения. Существуют различные типы транзисторов, которые можно использовать для различных целей.

(1) Транзистор в основном используется в качестве усилителя в различных типах генераторов, модуляторов и т. д., кроме того, в области цифровых схем эти транзисторы могут использоваться для механизма переключения.

(2) В случае транзистора, когда на него падает количество света, наблюдается генерация тока, они относятся к категории фототранзисторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *